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Abstract Similarity search is the core procedure for several time series mining tasks.
While different distance measures can be used for this purpose, there is clear evidence
that the Dynamic Time Warping (DTW) is the most suitable distance function for a
wide range of application domains. Despite its quadratic complexity, research efforts
have proposed a significant number of pruning methods to speed up the similarity
search under DTW. However, the search may still take a considerable amount of time
depending on the parameters of the search, such as the length of the query and the
warping window width. The main reason is that the current techniques for speeding
up the similarity search focus on avoiding the costly distance calculation between as
many pairs of time series as possible. Nevertheless, the few pairs of subsequences that
were not discarded by the pruning techniques can represent a significant part of the
entire search time. In this work, we adapt a recently proposed algorithm to improve the
internal efficiency of the DTW calculation. Our method can speed up the UCR suite,
considered the current fastest tool for similarity search under DTW. More important,
the longer the time needed for the search, the higher the speedup ratio achieved by our
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method. We demonstrate that our method performs similarly to UCR suite for small
queries and narrow warping constraints. However, it performs up to five times faster
for long queries and large warping windows.

Keywords Time series · Similarity search · Dynamic time warping

1 Introduction

Following the remarkable availability of temporal data, time series mining is becom-
ing a necessary procedure in a wide range of application domains. The estimate of a
distance or similarity value between time series objects or subsequences is a common
subroutine for several temporal data mining tasks. Consequently, the choice of the
distance measure adopted to compare the time series may harshly affect the perfor-
mance of most distance-based algorithms. The scientific community has shown that
the Dynamic Time Warping (DTW) is arguably the most suitable distance measure
for a wide range of applications and mining tasks, such as classification (Wang et al.
2013; Kate 2016), clustering (Begum et al. 2015), and pattern matching (Chavoshi
et al. 2016).

The similarity search consists of finding the most similar subsequence of a given
query in a long reference data. For some applications, it may be extended to the k-
nearest neighbor search, i.e., when the user is interested in finding a group of k similar
subsequences.

A straightforward implementation of DTW is quadratic regarding time and space
complexities. With the speed and the amount of data collected in several applications,
this makes the search under DTW impractical. However, Rakthanmanon et al. (2012)
have introduced the UCR suite, a set of optimizations that make the subsequence
similarity search under DTW even faster than Euclidean distance with the techniques
considered state-of-the-art up to that moment. Specifically, that work mainly consists
of lower-bounding and early-abandonmethods to discard nearest neighbors candidates
before the computation of DTW. In most cases, the UCR suite can avoid the need for
a DTW distance calculation.

Regarding the problem of finding the best match of a small subsequence in a long
time series, Rakthanmanon et al. (2012) claim that “for the problem of exact similarity
search with arbitrary length queries, our UCR suite is close to optimal”. In fact,
the authors use a large set of experiments to support this claim. However, while the
UCR suite approaches the optimality in avoiding the DTW calculation, such costly
operation is still required for a relatively small percentage of the time series. Even
being performed only to a small fraction of the subsequences, the DTW computation
still represents a significant amount of the similarity search runtime.

A simple experiment can illustrate this fact. When searching a query in an electro-
cardiography (ECG) dataset with approximately 30 million data points, the DTW is
calculated for only 4% of the total number of assessed subsequences. It demonstrates
the extraordinary ability of the pruning techniques in avoiding DTW calculations.
Even with this notable reduction of computations, the time for estimating the distance
between the query and the assessed subsequences corresponds to approximately 60%
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of the entire search runtime. This cost is even higher in some cases, depending on the
parameters of the similarity search, such as the query length.

In this work, we propose to embed a recently introduced method into the UCR suite
procedure, in order to make it even faster. Specifically, we adapt the DTWwith Pruned
Warping Paths (Silva and Batista 2016) to improve the internal efficiency of the DTW
calculation. In this way, we can speed up the bottleneck of the similarity search under
the warping distance, i.e., the comparison of pairs of time series which the pruning
procedure was not capable to discard.

We demonstrate that our method is faster than the proposed by Rakthanmanon
et al. (2012), considered the fastest tool for the exact similarity search under DTW.
The speedup achieved by our method depends on two factors: (i) the length of the
query; and (ii) the total amount of allowed warping. We demonstrate that the runtime
of our method is similar to the state-of-the-art for small queries and narrow warping
constraints. However, our method performs up to 5 times faster for long queries and
large warping windows.

The remainder of this paper is organized as follows. Section 2 introduces the nota-
tion as well as basic concepts and definitions on time series and the DTW measure.
Section 3 presents the UCR suite for similarity search. Section 4 describes the DTW
with Pruned Warping Paths method and how we adapt it to the similarity search pro-
cedure. Next, Sect. 5 presents the experimental evaluation to verify the efficiency of
our method. Because our method performs better on long queries and a large amount
of allowed warping, Sect. 6 discusses the need for both assumptions on several appli-
cation domains. Section 7 introduces how we can adapt the proposed ideas to other
distance measures. Finally, Sect. 8 concludes this work.

2 Background and definitions

In this section, we define the basic concepts related to our work and introduce the
notation used in the remaining of the paper. We begin by defining a time series.

Definition 1 A time series x is a set of N ordered values such that x =
(x1, x2, . . . , xN ) and xi ∈ R. Each value xi is referred asto an observation and N
is the length of the time series.

Note that, by this definition, a time series does not necessarily need to be defined in
time. The only requirement is the logical order of values which needs to be respected.
Furthermore, we assume that the interval between two consecutive observations can
be disregarded with no loss of generality. This allows the use of the methods described
in this section on sequences of real numbers used to describe shapes, spectral data,
and other numerical sequences.

Given the definition of time series, we are in the position to define a subsequence.

Definition 2 A subsequence xi,m is a continuous subset of x of lengthm starting from
the observation i , i.e, xi,m = (xi , xi+1, . . . , xi+m−1), such that i + m < N .
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The focus of this paper is the task of the subsequence similarity search,1 defined as
follows.

Definition 3 Subsequence similarity search is the procedure of finding the nearest
neighbor—i.e., the most similar subsequence—of a given query time series y with
length m in the long (reference) time series x with length N , such that m � N .

While describing the DTW and pruning techniques wemay use the term time series
for both objects under comparison, even if one of them is a subsequence of a longer
time series. Also, we consider that both the query and the subsequence of the reference
time series have the same length (m). We notice that the algorithms discussed in this
paper may be easily adapted to the nearest neighbor algorithm in batch datasets, i.e.,
composed of segmented time series which represent specific events.

The most important decision for similarity search is the distance function used to
match the subsequences. Despite the existence of several distance functions, there
is strong evidence in the literature that Dynamic Time Warping (DTW) is the most
suitable distance measure for the task of finding nearest neighbors in time series data
for a multitude of application domains (Ding et al. 2008; Wang et al. 2013).

The DTW distance achieves an optimal nonlinear alignment of the observations
under certain constraints. Specifically, the DTW between two time series of length
n and m is the cost of the optimal (n,m)-warping path between them. Such (n,m)-
warping is defined as follows.

Definition 4 An (n,m)-warping path is a sequence p = (p1, . . . , pL) with pl =
(il , jl) ∈ [1 : n] × [1 : m] for l ∈ [1 : L] satisfying the following three con-
straints (Müller 2007):

– Boundary constraint: p1 = (1, 1) and pL = (n,m);
– Monotonicity constraint: i1 ≤ i2 ≤ . . . ≤ iL and j1 ≤ j2 ≤ . . . ≤ jL ;
– Continuity constraint: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L − 1].
Thus, an (n,m)-warping path is a mapping between elements of the time series x

and y assigning the observations xil of x with y jl of y. The total cost cp(x, y) of an
(n,m)-warping path p between two time series x and y with respect to a cost measure
c is defined by the Eq. 1.

cp(x, y) =
L∑

l=1

c(xil , y jl ) (1)

The cost measure c(xil , y jl ) is usually defined by the squared Euclidean distance
between the pair of observations. Therefore, every (n,m)-warping path is monotoni-
cally increasing given that c(xil , y jl ) ≥ 0.

Finally, we define the optimal (n,m)-warping path.

Definition 5 The optimal (n,m)-warping path p∗ is the (n,m)-warping path hav-
ing minimal cost among all possible (n,m)-warping paths, i.e., cp∗(x, y) =
min{cp(x, y) | p is an (n,m)-warping path}.

1 From this point, we use this definition for the terms subsequence similarity search and similarity search
without any distinction between them.
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Fig. 1 Given two time series under comparison (left), the DTW algorithm calculates a cumulative cost
matrix (center) in order to find the optimal path in this matrix (highlighted in red). With such a path, it is
possible to reconstruct the optimal alignment between the series (right) (Color figure online)

A dynamic programming algorithm can calculate the optimal (n,m)-warping path.
Equation 2 defines the initial condition of the algorithm to estimate the DTW between
two time series x and y with lengths n and m respectively.

dtw(i, j) =
{

∞, if i = 0 or j = 0

0, if i = j = 0
(2)

where i = 1 . . . n and j = 1 . . .m. From this, Eq. 3 defines the recurrence relation of
DTW algorithm.

dtw(i, j) = c(xi , y j ) + min

⎧
⎪⎨

⎪⎩

dtw(i − 1, j)

dtw(i, j − 1)

dtw(i − 1, j − 1)

(3)

The DTW distance is given by the value calculated by dtw(n,m). The described
algorithm iteratively fills a cost matrix, which we refer to as cumulative cost matrix
or just DTW matrix from now on. Figure 1 shows an example of the DTW between
two subsequences, presenting the DTW matrix and the resulting alignment.

A space-efficient implementation of the DTW algorithm may use a two-row vector
instead of the cumulative cost matrix. Such optimization is possible because the calcu-
lation of a given cell only depends on values calculated in the same and previous rows,
reducing the DTW algorithm complexity toO(n) regarding space. However, reducing
the O(n2) time complexity is a more difficult matter. To the best of our knowledge,
the only way to reduce its complexity is by means of approximations—which do not
provide any boundaries for the approximation error—or warping windows (Sakoe and
Chiba 1978; Itakura 1975).

A warping window, or constraint band, defines the maximum allowed time differ-
ence between twomatched observations. From the algorithm standpoint, this technique
restricts the values that need to be computed to a smaller area around themain diagonal
of the matrix. In addition to providing a faster calculation, warping windows usually
improves the accuracy of the similarity search and 1-NN classification (Wang et al.
2013). In this work, we consider the warping windows proposed by Sakoe and Chiba
(1978).
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BecauseDTWis a costly distancemeasure, several papers haveproposed techniques
to improve the runtime of its calculation. More specifically, most of them are indexing
methods, focused on the similarity search procedure. In the next section, we discuss
these algorithms and the fastest implementation of the similarity search under DTW
known so far.

3 The UCR suite

Given the ubiquity of temporal data, there is a plethora of work on speeding up the
subsequence similarity search of time series. However, we concentrate our attention
on the work by Rakthanmanon et al. (2012), which is the first to expedite time series
search to an order of trillions of observations. In this work, the authors describe some
of the most important speedup methods and present novel techniques to perform the
subsequence similarity search in admissible time. Also, they discuss how to use them
together to create the fastest tool for exact time series similarity search under DTW
available so far, the UCR Suite.

In this section, we briefly describe the techniques used to implement the UCRSuite.
We refer the reader interested in more details about each method to Rakthanmanon
et al. (2012). We note that DTW does not obey the triangle inequality. Therefore,
indexing algorithms for metric spaces are not applicable to speeding up similarity
search under this distance measure.

Given that we are interested in a single nearest neighbor of a given query, we
can store the true DTW distance to the nearest subsequence up to a certain moment
during the search into a variable best-so-far (bsf ). The main purpose of having a bsf
is to avoid the expensive DTW algorithm, discarding its calculation for subsequences
that are certainly not the best match. In other words, with this value we can restrict
the space of nearest neighbor candidates. Despite this approach not explicitly using
indexing structures, we refer to the methods that limit the space of candidates as
indexing methods or indexing techniques.

The most popular techniques to index time series are lower bound (LB) distance
functions. An LB(x, y) function returns a value that is certainly lower or equal to the
true DTW(x, y) distance between two time series objects x and y. If such LB is greater
than the bsf, we know that x is not the nearest neighbor of y. Therefore, the subsequence
x can be discarded. Despite the fact that we focus on the nearest neighbor search, this
method can be trivially extended to the k-nearest neighbor search by defining the bsf
as the distance to the k-th nearest subsequence so far.

An LB function needs to fulfill the following requirements to be efficient: (i) its
calculation must be fast; and (ii) it needs to be tight, i.e., its value needs to be close to
the true DTW. These requirements usually imply in a trade-off between tightness and
time efficiency. In general, tight LB functions tend to be more expensive to calculate.

For this reason, Rakthanmanon et al. (2012) proposed to cascade LB functions. The
similarity search sorts the LB functions by increasing runtime costs. If the first (and
fastest) LB function fails to prune the DTW calculation, then the method tries the next
one. If all LB functions fail to prune the DTW calculation, then the method computes
the true DTW distance.
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Fig. 2 The LBKimFL (left) estimates a lower bound as the sum of the Euclidean distances of the first and
last pairs of observations. The LBKeogh (right) constructs an envelope around one of the time series and
estimates the lower bound as the Euclidean distance from the other sequence to the nearest (lower or upper)
envelope for each point outside the region encapsulated by the envelope

There exist several LB functions in the literature. However, the UCR Suite uses
only three of them. The authors argue that these three functions subsume all other
lower bound measures concerning the tightness-efficiency trade-off. In other words,
there is always a faster-to-compute LB with, at least, a similar pruning power.

The first LB calculated in the UCR Suite is the LBKimFL—a simplification of the
LBKim (Kim et al. 2001),—which is the sum of the distances between the first and
the last pairs of observations of the time series. This measure is guaranteed to be an
LB thanks to the boundary constraint of the DTW, specified in Definition 4.

The calculation of LBKimFL is extremely fast (O(1)); however, it prunes a small
percentage of the DTW comparisons. In the cases LBKimFL fails to prune the distance
calculation, theUCR suite uses the LBKeogh (Keogh andRatanamahatana 2005) lower
bound function.

Briefly, the LBKeogh constructs an envelope around the query, limited by the min-
imum and maximum values in the warping window for each observation. The lower
bound measure is the squared Euclidean distance between the reference subsequence
and the nearest envelope for each observation. LBKeogh is slower (specifically,O(n))
than LBKimFL ; however, LBKeogh can prune a much larger number of objects.

Figure 2 illustrates the previously described LB functions.
Finally, if the LBKeogh also fails in pruning the DTW calculation, it is repeated,

but inverting the roles of the query and the reference subsequence with respect to
the envelope. Such procedure is valid because the LBKeogh is asymmetric. So, its
calculation using the reference subsequence to construct the envelope may result in a
higher—and consequently tighter – value. In this case, the algorithm changes the value
of the LB by the maximum between the two LBKeogh calculated and re-evaluates the
pruning of the pair.

In addition to pruning by LB, an important technique to speed up the time series
search is early abandoning. In several cases, it is possible to know if the distance
between a pair of time series will be greater than the bsf during the computation
of necessary values for the search procedure. One example is the early abandoning
during the LBKeogh calculation. While calculating the LB, we incrementally increase
its value. If at any step we find that the value of the partial LB is greater than the bsf,
we can stop its calculation and skip to the next subsequence in the similarity search.

Two techniquesmay be used in this step to further improve the runtime of the search
in addition to the LB calculation. The first one is z-normalization. The normalization
procedure is necessary to improve the matching of subsequences in the presence of
offset and amplitude variation Keogh et al. (2009). This procedure transforms the time
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series such that the mean of its observations is μ = 0 and the standard deviation is
σ = 1.

A straightforward batch algorithm to calculate the z-normalization can harm to the
search runtime. Instead, the UCR suite implements it incrementally. This approach
allows interspersing the z-normalization with the LB calculation. In this way, if we
can early abandon the LB function, we are also abandoning the z-normalization cal-
culation.

For this purpose, we need to look at the definitions of mean and squared standard
deviation (variance). Equation 4 defines such statistics for a subsequence of the time
series x starting at the p-th observation.

μ = 1

m

⎛

⎝
m−1∑

i=p

xi

⎞

⎠ σ 2 = 1

m

⎛

⎝
m−1∑

i=p

x2i

⎞

⎠ − μ2 (4)

Given the mean and the variance of xp,m , these values may be reused in the calcu-
lation of the statistics referring to the subsequence xp+1,m . This is done by subtracting
the observation xp and adding xm to the summations. In the case of the standard devi-
ation, this procedure uses the squared value from the observations. Once we keep the
sum and the squared sum of the observation from a subsequence, we can update the
mean and standard deviation to the next subsequence in a constant time.

The second additional method is the reordering of observations to calculate the LB.
Instead of calculating the LB in the natural order (from the first to the last observation),
wemay sort the calculation by the absolute value of the query. This simplemodification
is likely to lead to the early-abandon of the LB calculation in fewer steps.

Finally, if all the previously described methods were not enough to avoid the DTW
calculation, it is still possible to not calculate thewhole cumulative costmatrix. Specif-
ically, we can early abandon the DTW calculation when the minimum value obtained
in a row (or column) of its cost matrix is greater than the bsf. In this case, the mono-
tonicity property of DTW (c.f. Eq. 1) guarantees that the final value is also greater
than the bsf. We can use the information of the partials calculated by the lower bound
function to improve the distance early abandoning. Consider we are storing the cumu-
lative lower bound from each point to the end of the time series. After the calculation
of each row i of the DTW matrix, we can estimate a new LB of the final distance
between the time series x and y given by DTW (x1,i , y1,i )+ LB(xi+1,m−i , yi+1,m−i ).
So, if such a value is greater than the bsf, the distance computation can be abandoned.
Figure 3 summarizes the similarity search techniques implemented in the UCR Suite.

We performed an experiment to measure the runtime of the indexing techniques
used by the UCR Suite and the time taken by the DTW calculations. For this purpose,
we measured the time to search a query of length 256 in an electrocardiography time
series (c.f. Sect. 5.1.3). The query was randomly selected from the data.

Fixing a relative warping window of 10% of the query length, the percentage of
DTW calculations was 1.42% of the total number of assessed subsequences. Despite
the incredibly small amount of DTW calculations, the relative time to calculate them
(even with the early abandoning) corresponded to approximately 25% of the runtime.
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Fig. 3 The UCR Suite sequentially applies different methods to avoid the costly DTW computation.
The distance calculation to the current subsequence may be abandoned at any step (dashed lines). The z-
normalization and the LBKeogh are calculated at the same time (third box), so both can be early abandoned
together. DTW is calculated only if the LB and early abandon methods were not successful in pruning it.
The value of the bsf is updated accordingly before the search continues to next subsequence. This process
continues until the last subsequence is assessed

This is even more evident for longer queries or larger warping windows. For
instance, using the same data with a relative warping window of 20% of the query
length, the number of DTW calculation was 4.06% of the total number of subse-
quences. The time to calculate the distances took approximately 60% of the whole
search procedure runtime.

In this paper, we improve the UCR Suite by adapting a recently introduced algo-
rithm, proposed to speed up DTW calculations independently of the bsf, named DTW
with Pruned Warping Paths (Silva and Batista 2016). We extended our previous work
incorporating the bsf to improve its performance in the similarity search. In the next
section, we describe this method, as well as its adaptation to the similarity search task.

4 DTW with pruned warping paths

In this paper, we improve the UCR suite performance by augmenting it with a recently
proposed method called DTWwith PrunedWarping Paths—PrunedDTW—(Silva and
Batista 2016). PrunedDTW was introduced as an alternative to speed up DTW calcu-
lations when the use of indexing methods is not applicable, such as applications that
require the all-pairwise distance matrix within a set of time series. One example is the
widely known family of hierarchical clustering (Xu and Wunsch 2008), given that
most of these algorithms require the relation among all the objects in the data set.

Although we have proposed PrunedDTW for a scenario in which current indexing
techniques are not applicable, we can adapt it to similarity search. PrunedDTW is
orthogonal to all lower bound functions and other indexing-based algorithms in the
time series literature. In other words, the application of PrunedDTW on the similarity
search is complementary to any adopted indexing techniques. While most methods
to speed up the time series similarity search “compete” between them, PrunedDTW
explores an entirely different strategy.

In this scenario, we propose the use of PrunedDTWwhen all the evidence obtained
by the indexing methods was not sufficient to reject the costly dynamic programming-
based distance calculation. Also, we introduce a subtle modification of PrunedDTW
to use the best-so-far distance to improve its performance. Before we explain this
change, we introduce the PrunedDTW algorithm.
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Fig. 4 DTW matrix between
two electrocardiogram
subsequences. The colors
indicate the value obtained in
each cell of the matrix (Color
figure online)
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4.1 The intuition behind PrunedDTW and its pruning strategies

Figure 4 provides a heat map of the DTW matrix for two electrocardiography time
series. Note that the values around the main diagonal are relatively close to the actual
DTWdistance, which is approximately 2.77 in this case. In contrast, most of the values
in the matrix are much higher than the real distance.

The value in each cell (i, j) of this matrix represents the cost of the best alignment
between the subsequences x1,i and y1, j . Any alignment between x and y which con-
tains such partial alignment has a total cost that is greater or equal to the value stored
in the cell (i, j). In the case in which such cell contains a value that is greater or equal
than the actual distance, the optimal partial alignment ending by matching the pair
(i, j) is guaranteed to not belong to the optimal path between the whole time series
under comparison. Therefore, the DTW algorithm can skip the calculations of all the
alignments that contain such partial.

To use the observed fact to speed up DTW calculations, PrunedDTW works with a
distance threshold to determine if a cell is amenable to pruning. For this, the original
proposal uses the squared Euclidean distance (ED) as an upper bound (UB) to DTW,
i.e., a value that is guaranteed to be greater or equal the actual distance. So, any cell
that has a value greater than the UB can be pruned, because it is guaranteed to not
belong to the optimal warping path.

Also, the algorithm uses such threshold to establish pruning strategies to decide
when to start and finish the computations in each row2 of the DTW matrix. Figure 5
exemplifies the pruning approach, that relies on monitoring two variables: the starting
column sc and the ending column ec.

In the row i + 1, the first two columns have a value greater than UB. Therefore,
the variable sc is set to column 2 and the processing can safely start at column 2 in
the next row. We can prune the computation of the cells containing A and B thanks
to the values used by the DTW recurrence relation represented by the three arrows.
Given the initialization with infinity and the large value already calculated in the cell
(i + 1, 0), the variable A will obligatorily have a value greater than UB. The same

2 Our implementation traverses the matrix in row-major order. However, the algorithm can also be imple-
mented by traversing the matrix in column-major order.
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B >
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B > B >

Fig. 5 Strategies adopted by PrunedDTW to prune the beginning and the end of each row of the DTW
cumulative cost matrix. The variable sc (left) denotes the position of the first value lower or equal than the
UB in the previous row and is used as the index to start the current iteration. On the opposite, the variable ec
(right) points to the first value in the previous row that is greater than the UB. From this point, the algorithm
may stop the calculation as soon as it finds a value that is greater than the UB

occurs to B which depends on A > UB and other two cells in the previous row also
greater than UB. In contrast, the cell with the value C may have a value smaller than
UB since it depends on the cell (i + 1, 2) ≤ UB.

The initial value of the variable sc is 0, i.e., while no values greater than UB are
found, the calculation in each row will start at the first column. In the case that a
warping window is used, the rows will be initiated in the column with the highest
index between the column established by the pruning criteria and the one related to
the warping window.

The second pruning strategy is responsible for pruning the last columns of the
current row. The variable ec points to the first of a continuous sequence of values
greater than UB that finishes at the end of the row. This value defines the column
where we can stop the calculation of the next row.

In the presented example, row i + 1 is processed and ec is set to j + 2. We can stop
the row i + 2 as soon as two criteria are met: (i) the last calculated value is greater
than UB and (ii) the current column index is greater or equal to ec. Suppose that A is
greater than UB. In this case, criterion (ii) is not met.We can see that B may be smaller
than UB since it can use (i + 1, j + 1) which is lower or equal to UB. However, if B
is greater than UB then both criteria are met, and we can stop processing the current
row. This occurs because C and D can only inherit values from the matrix that are
greater than UB.

For further details about the original PrunedDTWmethod including algorithm and
detailed performance results for the problem of computing the all-pairwise distance
matrix, we refer the reader to (Silva and Batista 2016). In this paper, we propose a
subtle variation of PrunedDTW which can significantly improve the performance of
existing similarity search indexing methods. For clarity, we refer to our proposal as
SS-PrunedDTW (for Similarity Search PrunedDTW).

4.2 Embbeding PrunedDTW into the similarity search procedure

The results presented by Silva and Batista (2016) demonstrate that PrunedDTW can
speed up the traditional all-pairwise DTW distance calculation from two to ten times.
Such a variance is the result of the tightness of the adopted UB function—Euclidean
distance. The tightness of an upper bound is related to how close its values are from
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the actual DTW distance, which may fluctuate between different datasets. In general,
a tight UB allows PrunedDTW to prune a large number of calculations, achieving a
higher speedup.

Euclidean distance is a natural and efficient UB for DTW. ED is the DTW distance
obtained by the warping path defined by the main diagonal of the DTW matrix. As
DTW returns an optimal path, i.e., the path that leads to the smallest distance, the
DTW between two time series is always lower or equal than ED. Although ED is a
reasonably tight UB for DTW, in similarity search we have access to a potentially
much tighter UB, the best-so-far distance.

Note that the bsf is not an upper bound for the DTWdistance between the query and
the subsequence from the long time series. Instead, it is an upper limit to consider such
subsequence as the (k-th) nearest neighbor of the query. Following the sameprinciple of
the distance early abandoning strategy, any partial alignment with a value greater than
the bsf leads to a DTW distance greater than the distance to the current (k-th) nearest
neighbor. So, the bsf is an admissible threshold for pruning in the similarity search
scenario. Also, the bsf has the advantage that its value is monotonically decreasing
during the search.

Regarding pruning power, bsf is usually much smaller than the ED between two
time series under comparison. Then, using the bsf must imply in a higher number of
skipped calculations. The bsf is usually smaller than the DTW distance between the
two subsequences, and a simple observation can help us to understand why. While
the DTW between two arbitrary subsequences can vary widely, the bsf is the DTW
distance between the two closest time series compared until a certain point of the
search process, which is independent of the current pair of subsequences.

Figure 6 visualizes the behavior of the DTW, ED, and bsf in a similarity search on a
dataset of electrocardiography (c.f. Sect. 5.1.3). In this case, we stored the ED and bsf
every time that we needed to calculate the DTW, i.e. when the lower bound functions
were not able to prune the candidate for nearest neighbor. As we can see, the value of
the bsf is usually much lower than the ED, except in the first distance calculation—
when the bsf is still undefined and, then, initialized as infinite. In contrast, the ED
depends only on the two time series under comparison, so its value has a significant
fluctuation during the search process.

The experiment presented in Fig. 6 indicates that the bsf is a better threshold for
pruning decisions in PrunedDTW than the ED. To verify this statement, we exper-
imented with all the datasets used in our experimental evaluation (c.f. Sect. 5). For
each dataset, we established ten distinct search scenarios, varying the query and warp-
ing window lengths. One characteristic is common for every experimented scenario:
after the first DTW calculation, when bs f is infinite, in 100% of the subsequences
not discarded by the pruning techniques, the bs f is lower than the ED between these
subsequences. Specifically, the bs f is approximately 7.77 times lower than the ED in
average. Besides, the bs f stores a value that is lower than the actual DTW in 94.14%
of these cases.

As an additional feature, just like in the distance early abandoning, wemay improve
PrunedDTW using partial lower bound calculations. When evaluating if a cell is liable
for pruning, PrunedDTW originally considers only the value obtained by the recur-
rence relation of the DTW algorithm for that cell.
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Fig. 6 Comparison of the Euclidean distance, Dynamic Time Warping, and best-so-far values during the
similarity search. Specifically, this figure visualizes the distances obtained each time that the DTW was
calculated in a search for a 128 observations long query and a relative warping window size of 10% of the
query length in an electrocardiography dataset. We highlight a moment of the search in which the current
DTW is lower than the bsf, updated for the next iteration

Alternatively, we can sum such value to the cumulative lower bound from the first
observation ahead of the values comprised by the warping window to the end of the
subsequences. In otherwords,we can use the total cost of the partial alignment summed
to such lower bound partials and compare to the bsf in order to decide the pruning.
For clarity, consider that cumLB[i] stores the summed contributions of LBKeogh from
the i-th position to the end of the envelopes (c.f. Fig. 2-right). For a value stored in
D[i, j], i.e., from the partial alignment ending in the i-th and j-th observations of the
subsequences x and y, we guarantee that DTW (x, y) ≥ D[i, j] + cumLB[i + i +
ws] ≥ D[i, j], where ws is the absolute warping window length. Once we only have
interest in a pair of subsequences x and y if DTW (x, y) < bs f , we need to have as
result that bs f > D[i, j] + cumLB[i + i + ws]. For this reason, we can use the bsf
and the cumulative LB as an upper bound. Specifically, if any partial alignment is such
that bs f − cumLB[i + i + ws] < D[i, j], we guarantee that this alignment will not
lead to a distance value lower than the bsf.

We are now in a position to describe the algorithm in details. Algorithm 1 imple-
ments the SS-PrunedDTW usingO(n) space. Note that, for simplicity, we omitted the
early abandoning of the DTW distance calculation.

The algorithm starts by defining auxiliary variables to the pruning strategy (lines 1
to 3) and by setting the initial values of the cumulative cost matrix (lines 4 to 6).

The for loop from line 7 to 47 traverses the observations of the series x. It starts
by defining the initial values of the pruning-related variables for the current iteration
(lines 8 to 11).

The next for loop traverses the observations of the time series y constrained by the
warping window, which length is defined by ws. In the first time that the algorithm
achieves this point, it is necessary to set the first value in the cumulative cost matrix.
It is done by the settings inside the condition starting in line 13 (which finishes at line
20). This condition is necessary to perform a correct initialization of such a structure.

When implemented to use linear space, the pruning of the last values in a row
may cause problems with non-computed cells in the cumulative cost matrix. It occurs
when the last row is pruned, and the cell which should contain the distance is currently
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Algorithm 1 SS-PrunedDTW algorithm
Require: Time series x and y, with length N

Warping window size ws
Best-so-far distance bs f
Cumulative LB values cumLB with the LB for each subsequence

Ensure: The distance between x and y according DTW
{Auxiliary variables to prune decisions}

1: sc ← 0
2: ec ← 0
3: lp ← 0 {last pruning control}

{Initialize the vector of DTW calculations of the previous row}
4: for i ← 1 to N do
5: D_prev[i] ← ∞
6: end for
7: for i ← 0 to N − 1 do
8: smaller_ f ound ← FALSE
9: pruned_ec ← FALSE
10: ec_next ← i
11: ub ← bs f − cumuLB[i + ws + 1]
12: for j ← max(0, sc, i − ws) to min(i + ws, N − 1) do
13: if ( j = 0 and i = 0) then {first cell in the cumulative matrix}
14: D[0] ← sqED(x0, y0)
15: min_cost ← D[0]
16: if D[0] ≤ ub then
17: smaller_ f ound ← T RUE
18: end if
19: continue {skip the remaining of this loop}
20: end if
21: if j ≥ lp then {avoid garbage at the end of the row}
22: D_prev[ j] = ∞
23: if j > lp then
24: D_prev[ j − 1] = ∞
25: end if
26: end if
27: D[ j] = sqED(xi , y j ) + min(D[ j − 1], D_prev[ j], D_prev[ j − 1])
28: if D[ j] > ub then {pruning strategy}
29: if j ≥ ec then
30: lp ← j
31: pruned_ec ← T RUE
32: break {break the for loop / jump to the next row}
33: end if
34: else
35: if smaller_ f ound = FALSE then
36: sc ← j
37: smaller_ f ound ← T RUE
38: end if
39: ec_next ← j + 1
40: end if
41: end for
42: D_prev ← D

{Pruning information updates}
43: if pruned_ec = FALSE then
44: lp ← i + 1 + ws
45: end if
46: ec ← ec_next
47: end for
48: if pruned_ec = T RUE then {last row was pruned}
49: D[N ] ← ∞
50: end if
51: return D[N ]

storing a value from a previous iteration. In this case, we only need to check in which
column the last row was pruned and avoid the values stored in any column ahead of
it. This is done by the condition between lines 21 and 26.
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Next, we calculate the value of the current cell of theDTWmatrix, in line 27. Notice
that we simplified this line for the sake of presentation. In an actual implementation
of the algorithm, it is necessary to check if j − 1 corresponds to a valid index. For
clarity, j − 1 may never be lower than its initial value defined in the heading of the
internal for loop, i.e., max(0, sc, i − ws). In this case, we use infinity instead of the
partials D[ j − 1] and D_prev[ j − 1].

This step of the algorithm finishes by checking whether the current row shall be
pruned and if any information related to the pruning mechanism needs to be updated
(lines 28 to 40). It first checks if the current value is greater or equal the bsf. In this
case, it is possible to prune the end of the row, regarding only one more condition.
Specifically, if the index of the current column is greater or equal the ec (line 29), then
we store this index in the variable lp (line 30). Afterward, we mark the row as pruned
(line 31) and prune the row calculation by skipping the next iterations on this row (line
32).

In the case that the current value is lower than the bsf, we need to update the values
sc (line 36, case it was not set in this row yet) and ec_next (line 39), which is an
auxiliary variable to set the ec for the next row.

After finishing the internal for loop, we first set the vector used as the previous row
in the next iteration with the values of the currently calculated row (line 42). Then,
we update the variables related to the pruning for the next row (lines 43 to 46). In the
case that no pruning occurred at the end of the row, we set the variable lp to the index
related to the last column of the warping window in the next row (line 44). In addition,
we set the variable ec as ec_next (line 46).

Finally, we return the final distance value (line 51). However, we first check if the
end of the last row was pruned (lines 48 to 50). In this case, we force the algorithm to
return infinity (or any value indicating early abandoning of the distance calculation).

4.3 On the correctness of the SS-PrunedDTW

Consider P = {p1, p2, . . . , pk} the set of all k possible (n,m)-warping paths between
two temporal data in which po denotes the optimal (n,m)-warping path. By definition,
any pi |i 	= o has a cost greater or equal to the cost of po. Although unlike, there may
be other (n,m)-warping paths with costs equal to the optimal alignment. However,
most of the paths pi do not fit this circumstance and may be disregarded.

The cell (i, j) in the cumulative cost matrix stores the cost of the optimal (i, j)-
warping path, i.e., the optimal alignment between the subsequences x1,i and y1, j .
Recall that the cost of matching two observations is nonnegative. Thus, any (n,m)-
warping path containing the (i, j)-warping path has a cost that is at least the value
stored in the cell (i, j) . If this value is greater than the cost associated to po, so the
(i, j)-warping path is not part of the optimal alignment between the time series under
comparison.

When such observations are embedded in a similarity search scenario, the notion
of which warping paths are relevant is now associated with the threshold defined by
the bsf and the cumulative lower bound. Specifically, any (i, j)-warping path with
a cost greater than the specified UB may be ignored. For this reason, we may say,
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without loss of generality, that SS-PrunedDTW is based on the same premise as the
early abandoning of the distance calculation.

The correctness of the pruning strategies can be obtained by the ordering of the
fulfillment of the DTWmatrix. According to Eq. 3, the value of each cell is influenced
by three other values:

(I) same row, preceding column: (i, j − 1);
(II) preceding row, same column: (i − 1, j);
(III) preceding row and column: (i − 1, j − 1).

For the pruning strategy that determines the value of the starting column variable
(sc), our proposal can be better understood if we observe how the cells are calculated
since the column zero of the DTW matrix. Because such column is initialized with
infinity, the value inherited from (I) never leads to theminimal value for the first column
in the DTW matrix. This fact is likewise true for any cell that starts the calculation in
a row—determined by pruning or warping constraints. Similarly, while the currently
calculated value exceeds the UB, any value obtained by (I) is also greater than the
distance to the (k − th) nearest neighbor—what only occurs due to (II) or (III). In any
case, such a value could be admissibly pruned.

The analysis of the values in (II) and (III) becomes necessary from the column
in which there is a value lower than the UB in the preceding row. Therefore, while
the values of a row are calculated, our algorithm stores the position where this value
occurs for the first time and uses this information to start the next row. In other words,
our method does not prune the calculation by determining the beginning of a row in a
column c if there is at least one promising value in the preceding row in any column
c′ < c. Thus, it is guaranteed that our method does not miss any promising value in
(II) or (III).

The two restrictions used to define the pruning strategy of the end column in each
row of the matrix guarantee the correctness of our method by the following facts. The
calculation of the values in a row will never be pruned while the current value is lower
than the UB, ensuring that there will be no missed promising values at the positions
defined by (I). Also, we ensure that there is no loss of promising values in (II) and
(III) by the fact that the algorithm monitors, with the variable ec, from which point
there are no more promising values in the preceding row. A row can only be pruned
if its current column is greater than ec. In other words, when calculating a value for a
column c, this criterion requires that ec ≤ c − 1.

5 Experimental evaluation

Given that we have presented our algorithm and proved its correctness, we evaluate
the effect of SS-PrunedDTW in improving the runtime of the similarity search. For
this purpose, we have modified the UCR suite and executed the same experiments
using both implementations. For clarity, we refer to the proposed implementation as
UCR-USP suite.

We note that we have made available the source code, as well as detailed results, in
a supplementary website (Silva et al. 2016b). In our experimental evaluation, we used
6 datasets from different application domains. For each of them, we defined a long
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reference time series and five different queries. We do not use any knowledge from
experts to define the queries. To create the queries, we randomly picked subsequences
from a time series that was not used to compose the reference data. For each dataset,
we selected five different queries. Also, we vary the length of the query. For this, we
cropped each selected query in lengths of 128, 256, 512 and 1024. Finally, we used
five different widths of the warping window: 10, 20, 30, 40, and 50% of the length
of the query. So, we have experimented with 100 different search scenarios for each
dataset.

For simplicity, we only evaluated the methods in single-dimensional time series.
However, we note that the generalization of the applied algorithms to the multidi-
mensional is simple. For a detailed discussion on the generalization of DTW to deal
with multi-dimensional data, we refer the reader to Shokoohi-Yekta et al. (2017) and
Górecki and Łuczak (2015).

Finally, we ran all the experiments on the same computer.3 To avoid spurious time
fluctuations, we guaranteed that, at any time, there was only one process—except OS
processes—running on the computer.

5.1 Data

We start the description of our evaluation by briefly presenting the datasets, regarding
the application domain and the length of the reference time series.

5.1.1 Physical activity monitoring

Due to the increasing availability of sensors, such as the accelerometers present in
the majority of smartphones, the human activity monitoring is an application with a
growing attention. In this work, we use the dataset PAMAP2 (Reiss and Stricker 2012),
which contains recordings of 18 different activities performed by 9 subjects. The data
have a sampling rate of 100 . In our experiments, we used the time series obtained by
z-axis measurements from the accelerometer in the arm position. The reference time
series has 3,657,033 observations.

Figure 7 shows how the accelerometers are arranged and an example of the collected
data.

5.1.2 Athletic performance monitoring

Monitoring activity may also be used for professional ends. One such example is the
tracking of athletes’ performance. For this, the athletes maywear sensors for recording
speed, trajectory, energy and other features. In this work, we used the position in the
axis attack/defense recorded by ZXY Wearable Tracking sensors4 in several soccer
players during three matches (Pettersen et al. 2014). The data has a sampling rate of

3 The experiments were carried out in a desktop computer with 12 Intel(R) Core(TM) i7 − 3930K CPU
@ 3.20GHz and 64Gb of memory running Debian GNU/Linux 7.3.
4 http://chyronhego.com/sports-data/zxy.
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Fig. 7 The PAMAP data are collected from three different accelerometers (left), positioned according the
red circles. We used the z-axis of the accelerometer in the hand position. The presented time series (right)
was obtained by 2 s of walking

20 Hz. The reference time series has 1,998,606 data points obtained by concatenating
data from the first two matches from a single player. We randomly chose the queries
from the third game.

5.1.3 Electrocardiography

Time series are a common category of data on health applications for a long time.
One of such applications is the monitoring of heart activity by electrodes placed in
the skin, a procedure known as electrocardiography (ECG). To evaluate our method
in this type of signal, we used the MIT-BIH Arrhythmia Database (Moody and Mark
2001; Goldberger et al. 2000), a collection of 48 ECG recordings digitized at 360
samples per second. For clarity, 2 s of data (720 data points) may contain information
of approximately three beats. Our reference time series for this dataset is composed
of 27,950,000 values.

5.1.4 Photoplethysmography

Another application related to health care evaluated in this work is the photoplethys-
mography (PPG). This technique is a non-invasive alternative for monitoring the heart
rate and cardiac cycle. An optical sensor placed in a peripheral portion of the patient’s
body generates the data. In this work, we use PPG data collected from the fingertip
(Kachuee et al. 2015). The number of observations in the reference time series is
333,570,000, with a sampling rate of 125 samples per second.

Figure 8 shows an example of the optical sensor used for the monitoring and 5 s of
a PPG data.

Time (s)
0 1 2 3 4 5-2

0

2

Fig. 8 A fingertip oximeter (left) and 5 s of PPG data obtained by its use (right)
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Fig. 9 This subsequence of the
acceleration of a subject’s thigh
shows the transition from a
normal state (with high
amplitude) to a freezing of gate
episode (where the amplitude is
clearly lower)
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5.1.5 Freezing of gait

The last medical application employed in this work is the detection of freezing of
gait (FoG), a symptom related to the Parkinson’s disease. In this work, we performed
the similarity search in the Daphnet FoG data (Bachlin et al. 2010). Specifically, we
used recordings of the horizontal forward acceleration of the subject’s thigh as data.
This is the smallest experimented dataset, being that the reference time series contains
1,724,584 observations.

Figure 9 shows an example of the time series in the transition from a normal state
to a FoG episode.

5.1.6 Electrical load measurements

Time series data frommeasuring the electrical consumption has attracted the attention
of researchers because of the its wide range of applications. Some examples are the
smart energy services (such as automatic demand response) and smart home and
smart city solutions. The REFIT dataset (Murray et al. 2015) is composed of the
electrical consumption monitoring (in Watts) of distinct appliances from 20 different
households. Thedata are sampled such that the interval betweenobservations is 8 s. The
version of this dataset used in this work was cleaned to avoid missing data, which was
substituted by the value zero. To prevent division-by-zero during the z-normalization,
we have added a small amplitude noise to the original signals. In our experiments, we
used the monitoring of dishwashers, composing a reference time series of 78,596,631
observations.

5.2 Results and discussion

SS-PrunedDTW is an exact algorithm that does not lead to false dismissals. Therefore,
the UCR-USP suite provides the same answers as the UCR-suite or any other exact
approach based on DTW. Therefore, we perform our evaluation comparing only the
runtime of UCR-USP and the UCR suites.We compare the runtime of these twometh-
ods varying two parameters: query length and warping window length. We measure
the warping window length by the number of observations in the warping window.

Figure 10 shows the runtime of the UCR and the UCR-USP suites for each dataset
according to the query length. The results are the average time over five queries and
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Runtime of both UCR and UCR-USP suites on the experimented datasets by varying the query
length. The datasets are presented sorted by the length of the reference time series. The plotted values
represent the average runtime over five different queries per query length and all the warping window rates
adopted in our experiments. a FoG, b Soccer, c PAMAP, d ECG, e REFIT, f PPG

five different lengths of warping window. However, we notice that the website that
supports this paper Silva et al. (2016b) presents the results for each parameter variation.

The other parameter which directly affects the results is thewarpingwindow length.
Figure 11 shows the difference in runtime between the experimented suites when this
parameter is varied.The reported result for eachwarpingwindow is the average runtime
for five queries and four query lengths.

The UCR-USP suite outperformed the UCR suite for most of the settings in our
experiments. In the few cases in which it did not happen, the difference between the
two methods is considerably small. Even more important, the UCR-USP suite only
achieved similar or slightly worse performance in the cases with the smallest runtimes
among our experiments, that is, for either short queries or small warping windows.
Specifically, the worst case—concerning search runtime—in which our method per-
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Runtime of both UCR and UCR-USP suites on the experimented datasets by varying the (relative)
warping window length. The datasets are presented sorted by the length of the reference time series. The
plotted values represent the average runtime over five different queries per warping window length and all
the query lengths adopted in our experiments. a FoG, b Soccer, c PAMAP, d ECG, e REFIT, f PPG

formed slightly slower in average occurred for the dataset of PPG and with a query
containing 256 observations and the warping window size of 10%. In this case, the
search lasted 86.4 s, while the UCR suite took 86.1 s. We observe that it does not
represent a notable difference in practice.

On the other hand, when searching for subsequence with 1024 observations and a
relative warping window of 50% in the same dataset, our method reduced the average
runtime from approximately 116,100–22,250 s, i.e., the UCR-USP suite performed 5
times faster. In general, the results show that the slower the similarity search procedure,
the higher the improvement provided by the UCR-USP suite.

To illustrate this fact, Fig. 12 shows the speedup ratio ordered by total time taken
by the UCR suite in the ECG dataset. The speedup ratio is the runtime of the UCR
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Fig. 12 Speedup ratio in the ECG dataset. There is an increasing trend according to the total time taken
by the UCR suite, i.e., the speedup is inversely proportional to the runtime of the original suite. This trend
is similar in all evaluated datasets. The markers represent real runtime measurements, and the dashed line
presents an exponential trend line for such values

suite divided by the runtime of the UCR-USP suite. In other words, a speedup ratio of
2.0 means that our method is two times faster in that experiment.

Given the presented results, we recommend the use of UCR-USP suite for all
settings. However, we strengthen that its use is remarkably recommended in cases
where long queries or large warping windows are required. In fact, the largest absolute
warping window in which the UCR suite performed better than our proposal—in the
average of different queries,—was composed of 25 observations (10% of a query with
256 data points). For all larger absolute warping windows, our method outperformed
the UCR suite.

Our results on larger queries and window sizes are sound. The larger the DTW
matrix is, the longer it will take calculate it. Therefore, large DTW matrices allow
more opportunities for pruning and speedup for SS-PrunedDTW.Wenotice that several
applications may require long queries and large warping windows. For this reason, we
dedicate the next section to discuss such subject.

6 On the need for long queries and large warping windows

The results presented in the previous section show that the improvements in perfor-
mance provided by the UCR-USP suite are more significant for long queries and large
warping windows. In this section, we show that these characteristics are not only likely
to appear, but required in some cases.

This scenario is particularly interesting because it defines the worst case of the
similarity search under DTW. In this case, the LB-based pruning strategies tend to
be less effective, i.e., the search procedure will require a higher number of DTW
calculations. Also, the cost to calculate each DTW distance is also higher.

Long queries are becoming more often with newer technologies. For instance,
the recent sensor technologies are more accurate and able to acquire data in higher
sampling ratios. In other words, these technologies can obtain time series with a larger
number of observations per second. For this reason, short subsequences can only
represent a short period. As a consequence, the assessed subsequences need to be
even longer than the ones used in our experimental evaluation. This topic is deeper
discussed in Sect. 6.1.
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At the same time, there is a multitude of applications in which a little warping
window may be inadequate. For example, time series from human activities, motion,
and locomotion represent people performing activities possibly in completely different
paces, resulting in time series with notable differences regarding local and global
scaling (Shen et al. 2017). Another example is the similarity in music applications,
such as the query-by-humming (Park 2015) andmusic information retrieval by emotion
(Deng and Leung 2015) or rhythm (Ren et al. 2016). Several other applications may
require warping windows larger than the usually adopted 10%. Section 6.2 better
explores this topic and presents a practical example.

6.1 Query length

We begin by discussing the queries length. The longest query used in our experiments
has 1024 observations. However, we notice that this length is usually too small for
several applications.

As an example, consider the dataset REFIT (c.f. Sect. 5.1.6), which stores the mea-
surement of the power consumption every 8 s. So, a query of 1024 points corresponds
to exact 8192 s, i.e., approximately 2 h and 15 min. If one is interested in analyzing
daily consumption patterns, the adequate query should be composed of 10,800 values.
Ten thousand data points are one order of magnitude longer than our longest query in
the previous experiments. Moreover, some applications may use even longer data. In
the example of the power consumption, one may be interested in finding weekly or
even monthly patterns, for instance.

While we used the dishwasher consumption in our experiments, Fig. 13 shows
two 24-h examples of electric heater consumption monitoring, which brings a more
intuitive example. In this example, we used the power monitoring during the Saint
Patrick’s (March 17th—early Autumn) and the Christmas (December 25th—Winter)
days of the year 2014.

Notice that both time series present a similar square shape during dawn. However,
this pattern lasts for a little less than 8 h and a query of 1024 points (8 h correspond
to 3600 observations) will not properly represent it.

We performed an experiment using one day long queries in this dataset, i.e., 10,800
observations. Specifically, the reference time series used in this experiment is the
power consumption of the heater from only one house. All the queries come from the
same kind of device but from another house. The length of the reference time series,
in this case, is 6,960,008 values.

00:00 04:00 08:00 12:00 16:00 20:00 24:0000:00 04:00 08:00 12:00 16:00 20:00 24:00

Fig. 13 Heater monitoring during 24 h in different seasons. Despite the similar pattern in the first 8 h of
the day, the daily pattern is clearly different
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Fig. 14 Examples of trajectories of an attack player monitored during 51.2 s (left), 5 min (center), and
10 min (right). Notice that in the short subsequence it is not possible to observe any playing pattern. In the
subsequence regarding 5 min, it is possible to note that this player’s positioning is more concentrated in the
head of the penalty area. This pattern is more clear in the last case, where it is possible to observe a wide
moving pattern close to the middle-field and more concentrated in the attack

Using this dataset, the speedup achieved by theUCR-USP suite varies between 1.12
(when using the relative warping window w = 0.1) to a slightly better rate of 1.33
(with w = 0.5). Applying our modified suite on the dishwasher dataset with queries
composed of the same number of observations, we can notice that our method may
achieve better results depending on the data. For the dishwasher dataset, the speedup
ratio varied from 1.42 to 3.5 using w = 0.1 and w = 0.5, respectively. It is important
to notice that even if the speedup of 1.42 seems “humble”, it represents a decay of
runtime from 97,763 to 68,679 s. In other words, in that case, the UCR-USP suite is
saving 29,084 s, which represents approximately 8 h, per searched query.

Another example is the athletic performance monitoring. The sensor generates data
with a sampling rate of 20Hz. Itmeans that a querywith 1024observations corresponds
to just 51.2 s. Clearly, it is not enough data to analyze the moving pattern of any player.
Figure 14 shows an example of the trajectory of a player by time series with lengths
1024, 6000 and 12,000 observations, i.e., 51.2 s, 5 min, and 10 min, respectively. For
the sake of exemplification, we used the bi-dimensional trajectory time series.

In the case of the soccer data, we analyzed the query lengths: 6000 and 12,000.
For the former case, the speedup ratios varied from 1.22 (using w = 0.1) to 3.22
(when w = 0.5). In the case of 12,000 observations in the query,—as expected—the
speedup was a bit higher, varying between 1.72 and 3.7 (using w = 0.1 and w = 0.5,
respectively).

In both dishwasher and soccer players monitoring datasets, these experiments con-
tribute to clarify the fact that the longer the query, the higher the speedup achieved by
our method. For instance, the speedup ratio on the soccer dataset varied between 1.1
and 2.6 when we searched for 1024 observations long queries.

6.2 Warping window

The warping window is an important parameter of DTW. In some tasks, such as classi-
fication, it may cause a significant impact on the results. Empirical evidence has shown
that for the UCR Time Series repository datasets (Chen et al. 2015), small window
sizes are more likely to provide superior 1-NN classification accuracy (Ratanama-
hatana and Keogh 2005). However, the best value for this parameter is strictly data
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Fig. 15 Single-linkage
clustering obtained by using
DTW with relative warping
window lengths of 10% (left)
and 50% (right). Note that the
correct cluster is only obtained
by using the larger warping
constraint

300340380420 106 108 110 112

dependent. There are several datasets in which a large warping window is necessary
to achieve the best accuracy results.

One example is the PAMAP data (c.f. Sect. 5.1.1). The time series in this dataset set
of human activities are labeled, so we can use the class information to make some con-
clusions on the subsequences by our search procedure. For this purpose, we compared
the class of each query to the subsequence found when using w = 0.1 and w = 0.5.
In most cases, either both parameter values would make the correct classification, or
both would make a mistake in a 1-NN classification. When the decisions are opposite
to each other, the classification using w = 0.5 is correct. Specifically, it happens in
four cases—in the total of 20 combinations of query and number of observations.

The UCR Time Series repository is the largest repository of time series datasets
for clustering and classification. The accuracy rates obtained by the nearest neighbor
algorithm using DTW in each dataset are presented in the repository’s website in two
different ways: (i) using no warping window, i.e., the relative length of the window
is 100% and (ii) warping-constrained DTW, in which the best value for the warping
window length is learned in the training data. In some datasets, the warping window
taken as optimal is larger than 10% (around 15% of the datasets). Evenmore, in several
cases, the performance of DTWwith no warping window is better than its constrained
version.

Besides the recommendations for the 1-NN classification, there are no conclusive
studies about this parameter for different algorithms or mining tasks. Silva and Batista
(2016) performed an experiment on hierarchical clustering varying the warping win-
dow size in several datasets. The results show that more than a half of the best results
were obtained by using warping windows larger than 10% of the time series’ length,
being several of them obtained using no warping window at all.

Figure 15 shows a small and intuitive example of data in which a large warping
window is necessary. The time series used in this example are from the dataset REFIT
(c.f. Sect. 5.1.6). It is evident, byvisual inspection, that a similar cycle of the dishwasher
generated two of the presented time series, but with different durations (e.g. the user
chose a longer washing cycle, more suitable for greasy dishes). Nevertheless, when we
cluster the time series by the single-linkage hierarchical clustering using DTW with
10% of relative warping window, the best match in this simple subset is wrong. We
can obtain a similar clustering using 20% of warping, with changes only in the scale
of the distances. When we use a larger warping window, however, the time series are
correctly clustered.
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Despite that we used a hierarchical clustering algorithm to exemplify the need
for large warping window, the result presented in Fig. 15 has a direct impact on the
similarity search. Consider that the objects at the bottom and the top of the figure are
part of the reference time series. If we search the nearest neighbor of the object in the
middle using a small window, the search will return the object at the bottom instead
of the correct one (at the top).

In this dataset, the UCR-USP suite is approximately 3 times faster than the UCR
suite with a warping window of 50% and a query with 1024 observations (approxi-
mately 2 h and 15 min of monitoring, c.f. Sect. 6.1).

7 Pruning paths on DTW variations and other distance measures

We have stated so far the relevance of DTW on the similarity search. In fact, it is
arguably the most used distance measure in time series similarity search. However,
one may be interested in using another distance measure for the nonlinear alignment
between time series.

In the last decades, DTWwas modified in several different ways, to provide robust-
ness to certain variances found in specific application domains. Some examples are
the Derivative DTW (Keogh and Pazzani 2001), the Weighted DTW (Jeong et al.
2011), and the Prefix and Suffix Invariant DTW (Silva et al. 2016a). Also, some dis-
tance measures find a nonlinear alignment while respect the triangle inequality, i.e.,
they are metrics calculated by a dynamic programming algorithm similar to DTW.
Some examples are the TimeWarp Edit Distance (Marteau 2009) and the Move-Split-
Merge (Stefan et al. 2013).

Speeding up the similarity search under different nonlinear alignment distance
measures is a widely studied topic in the time series literature (Wang et al. 2013). In
these cases, the procedure to avoid distance calculations may vary, depending on the
distancemeasure. For instance,when using the distancemetrics,we can apply indexing
structures based on the triangle inequality to reduce the search space (Hjaltason and
Samet 2003).

On the other hand, we are not aware of strategies similar to the PrunedDTW. We
believe that adapting PrunedDTW to other distance measures can have a similar effect
to the ones demonstrated in this work: improve the worst case of the similarity search,
tackling the bottleneck of the search procedure.

Most of the distance measures for time series comparison are based on minimizing
the cost of matching the observations. In these cases, the steps of PrunedDTW are
fully repeated to prune unpromising alignment paths. However, the UB needs to be
calculated accordingly. In general, the bsf can be used, as described in Sect. 4.

It is important to notice that some algorithms to compare time series are based
on maximizing an objective function. One example of these methods is the Longest
Common Subsequence (LCSS). While DTW and its variations aim to minimize the
total cost of matching the observations, LCSS maximizes the length of the similar
subsequence between the time series under comparison. In this case, the roles of LB
and UB are inverted. To prune the LCSS calculations between pairs of subsequences,
we first need to calculate a UB (Vlachos et al. 2006). Conversely, to prune unpromising
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partial alignments, we need to replace the UB used by PrunedDTWby an LB function.
As a consequence, the comparisons used in the pruning decision step also need to
be inverted. Specifically, we need to invert the operators < and >, as well as ≤
and ≥.

Adapting the pruning of unpromising alignment paths for these distance measures
can be subtle, and we let a deeper discussion and experimentation as part of the
future work. The next section concludes this work and briefly introduces other ideas
to develop in the future.

8 Conclusion

In this work, we embedded a recent advance on speeding up Dynamic Time Warp-
ing into the similarity search scenario. This approach is motivated by the fact
that this algorithm can speed up the distance calculations in the cases in which
the current similarity search methods perform worst. Specifically, we identified
that the DTW calculations configure the bottleneck of the subsequence similarity
search.

We have shown that our method can speed up the fastest tool for similarity search
under DTW. Also, our method achieves the highest speed up rates for long queries
and large warping windows, the worst case for the usual indexing techniques. When
the queries and the warping windows are small, our method achieves similar runtime
when compared to the state-of-the-art.

We notice that embedding the PrunedDTW in the similarity search procedure is not
necessarily the ultimate solution to mitigate the observed bottleneck for all scenarios.
For instance, if we need to perform the similarity search under sparse time series data,
we may use a method specific for this case (Mueen et al. 2016). If an approximate
solution is considered suitable for the problem, an algorithm that approximatesDTW—
such as FastDTW (Salvador and Chan 2007)—can be applied. However, PrunedDTW
is exact and can be applied in any case, improving the efficiency as demonstrated by
our experimental evaluation.

As a practical overview of our contribution, consider that one gets an average
speedup ratio of 2, i.e., the UCR-USP Suite spends half of the time then the UCR
Suite to search a set of queries. This speedup is a common achievement of our method
(see, for instance, Fig. 12). It means that a laboratory of medical analysis can serve
twice the number of patients per day, for example. Similarly, an industry needs to
spend half the computational power for monitoring cauldrons and machines. After all,
the speedup achieved by the UCR-USP Suite is directly proportional to the savings,
profit or any other benefits obtained by applying it.

As future work, we intend to evaluate the use of the adapted PrunedDTW in tasks
which use the nearest neighbor search as an intermediate step. Some examples are the
classification (Ding et al. 2008) and clustering (Begum et al. 2015) of time series. Also,
we intend to extend the proposed method to multidimensional time series (Shokoohi-
Yekta et al. 2017).
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