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Abstract Concept drift and shift are major issues that greatly affect the accuracy and
reliability of many real-world applications of machine learning. We propose a new
data mining task, concept drift mapping—the description and analysis of instances of
concept drift or shift. We argue that concept drift mapping is an essential prerequisite
for tackling concept drift and shift. We propose tools for this purpose, arguing for
the importance of quantitative descriptions of drift and shift in marginal distributions.
We present quantitative concept drift mapping techniques, along with methods for
visualizing their results. We illustrate their effectiveness for real-world applications
across energy-pricing, vegetation monitoring and airline scheduling.
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1 Introduction

The world is dynamic, in constant flux. But machine learning usually creates static
models from historical data. As theworld changes, thesemodels can grow increasingly
unreliable. A distribution that changes is called non-stationary and a change in the
distribution from which a model is learned is called concept drift.

There has been a very substantial effort investigating methods for detecting concept
drift (Widmer and Kubat 1996; Kifer et al. 2004; Gama et al. 2004; Baena-Garcıa et al.
2006; Nishida and Yamauchi 2007; Dries and Rückert 2009; Gama and Rodrigues
2009; Žliobaite 2010; Hoens et al. 2012; Moreno-Torres et al. 2012; Bifet et al. 2013;
Gama et al. 2014; Qahtan et al. 2015; Yu and Abraham 2017). This paper introduces
a complementary capability. Whereas drift detection seeks to detect whether or not
change is present, we instead seek to generate a detailed description of the nature and
form of whatever drift there may be. We call such a description a concept drift map.

Concept shift is closely related to concept drift. This occurs when a model learned
from data sampled from one distribution needs to be applied to data drawn from
another. For example, amodel learned in one regionmight be applied in another region,
or a model learned from customer data might be applied to potential customers. For
ease of exposition, this paper focuses only on the issue of analyzing concept drift, but
the approaches and discussion generalize directly to the equally important issue of
concept shift analysis.

Figure 1 shows some example raw data and a corresponding simple map from a
data set describing the Australian electricity market, explained in detail in Sect. 6.1.
This simple example concept drift map plots the drift in two key variables nswprice
and vicprice both individually and jointly. The first is the price in the state of New
South Wales. The second is the price in the state of Victoria. This map shows how
nswprice determines the drift up until May 1997. At this point the Victorian price is
deregulated and vicprice briefly dominates the drift before the market settles and
each attribute contributes to the joint drift. The map identifies the relative contribution
of each attribute to change within the system, revealing the relative rate of change in
the underlying distributions much more clearly than direct examination of the original
data. By way of contrast, a drift detection mechanism should have no difficulty in
detecting that drift has occurred around the times corresponding to each spike in the
magnitude of the drift in the joint distribution. However, a drift detection mechanism
would not provide any insight into which attributes were responsible for this drift.

In this paper we present techniques for generating drift maps from data. In Sect. 2
we provide a formal definition of the problem and related terminology. In Sect. 3 we
present methods for measuring total drift magnitude. In Sect. 4 we present methods
for measuring marginal drift magnitudes. Section 5 describes graphical methods for
communicating the detailed maps that our quantitative techniques produce. Section 6
evaluates the effectiveness of our techniques on three real-world datasets. Section 7
discusses related research. We present conclusions in Sect. 8.
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Fig. 1 Some example raw data and corresponding concept drift map plotting the changing drift magnitude
of two variables both individually and jointly. These variables record the electricity price in each of the
Australian states of Victoria and New SouthWales. Prior toMay 2nd 1997 there was no interstate electricity
market and the Victorian price was invariant. The top graph plots the raw price data. The bottom plot shows
the drift magnitude calculated at each day between the preceding 30days and the following 30days

2 Problem description

A data stream is a data set in which the objects have time stamps, which, depending
on the granularity of the stamps, induces either a total or a partial order between
observations.While our techniques generalize in a straightforwardmanner to situations
in which there is no target attribute, in the current work we assume a classification
learning context. In consequence,we can consider the process that generates the stream
to be a joint distribution over random variables Y and X = {X1, . . . , Xn}, where
y ∈ dom(Y ) are the class labels and the xi ∈ dom(Xi ) are the attribute values. We
provide a summary of the key symbols used in this paper in Table 1.

In order to reference the probability distribution at a particular time we add a time
subscript, such as Pt (X,Y ), to denote a probability distribution at time t . It is often
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Table 1 List of symbols used

Symbol(s) Usage Scope

t, u, v, w Points of time R>0

X = {X1, . . . , Xn} A random variable over covariates Stream dependent

xi A value of a covariate dom(Xi )

x̄ = 〈x1, . . . , xn〉 A simultaneous assignment of values to all
covariates

dom(X)

Y A random variable over class labels Stream dependent

y A class label dom(Y )

Z A vector of random variables over either covariate
values or class labels

Stream dependent

z̄i A value in dom(Zi ) dom(Zi )

Pt (X, Y ) A probability distribution at time t

P[t,u] (X, Y ) A probability distribution over time period [t, u]
σt,u(Z) Total variation distance measure of drift between

each of the probability distributions of vector of
random variables Z from time period t to time
period u

[0,1]

σ
X |Y
t,u Total variation distance measure of drift between

each of the conditional covariate probability
distributions from time period t to time period u

[0,1]

σ
Y |X
t,u Total variation distance measure of drift between

each of the conditional class probability
distributions from time period t to time period u

[0,1]

not practical to estimate the distribution in effect at a specific point in time and for this
purpose we often deal with concepts and probability distributions over a time interval,
P[t,u](X,Y ).

We follow recent practice and adopt Gama et al’s (2014) definition of a concept.

Concept = P (X,Y ) . (1)

In the context of a data stream, we need to recognize that concepts may change over
time. To this end we define the concept at a particular time t as

Pt (X,Y ) (2)

and at a specific time period [t, u] as

P[t,u] (X,Y ) . (3)

Concept drift occurs between times t and u when the distributions change,

Pt (X,Y ) �= Pu(X,Y ) (4)

and similarly between time periods [t, u] and [v,w],
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P[t,u](X,Y ) �= P[v,w](X,Y ). (5)

We define the concept drift mapping task as taking as input a data stream and
generating as output useful descriptions of the drift in the process that generates the
data. Note that in the concept shift mapping task, the input is sample data from each of
two ormore related distributions and the output is useful descriptions of the differences
between the distributions that generate the data.

3 Measuring total drift magnitude

Webb et al. (2016) proposed four quantitative measures of concept drift including
the key measure drift magnitude which measures the distance between two concepts
Pt (X,Y ) and Pu(X,Y ). Any measure of distance between distributions could be
employed. Webb et al. (2016) use Hellinger distance (Hellinger 1909; Hoens et al.
2011) for this purpose. In the current work we employ total variation distance (Levin
et al. 2008):

σt,u(Z) = 1

2

∑

z̄∈dom(Z)

|Pt (z̄) − Pu(z̄)| (6)

where Z represents a vector of random variables.
Of all the standardmeasures of distance between probability distributionswe favour

Hellinger distance and total variation distance because they are metrics and it is highly
desirable that a measure of drift between two periods should be symmetric. In this
paper we use total variation distance because it is slightly less complex to analyse
than Hellinger distance and more efficient to compute. However, our approaches triv-
ially generalize to any measure of distance between probability distributions such as
Kullback–Leibler divergence or Wasserstein distance.

Note that our techniques are designed for discrete valued data. While there are
techniques for computing total variation and Hellinger distance for continuous data
drawn from specific distributions, such as aGaussian, these require strong assumptions
about the form of the distribution and hence are not applicable to numeric data drawn
from arbitrary distributions. In consequence, we discretize all numeric attributes, using
5 bin equal frequency discretization of each attribute across all time periods. Should an
appropriate method for calculating distances between arbitrary continuous probability
distributions be developed, the approaches we describe herein can be applied directly,
using them in place of discretization.

Webb et al. (2016) propose a number of quantitative measures for drift that pro-
vide gross summaries of the drift between two time points. These include using any
measure of distance between probability distributions to measure drift magnitude.
They demonstrate that these measures enable insights to be derived that are otherwise
not possible, such as how different algorithms perform in the face of drift of varying
magnitude. However, our subsequent uses of these measures in real world applications
have revealed that it can be important to augment these overviewmeasures with further
finer grained analysis.
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One limitation of a single gross measure of drift magnitude arises from both total
variation distance and Hellinger distance being monotonic as the dimensionality of
data increases. We provide a proof of this in Appendix A. As a result, in practice,
in high dimensional data these measures are likely to be close to their maximum,
1.0, simply through accumulation of small differences across many dimensions. This
reduces their capacity to distinguish between different types of drift.

Second, a single value measure of drift provides only a very gross description of
a complex drift phenomenon. It fails to recognize or to describe the details of how
drift differs across the subspaces defined on different attributes of the data. In the real
world, drift is often not uniform, as we show in Sect. 6. For example, not all factors
are subject to inflation and those that are may increase at varying rates. A change
in technology may cause a sudden abrupt change in some attributes of the data but
have no affect whatsoever on others. Some factors may drift in cycles with differing
periodicity and other factors may be subject to drift that is not cyclical. In many real
world applications it is likely to be useful to be able to understand which attributes
and combinations of attributes are drifting in which manners at any particular time.

For these reasons we investigate the introduction of concept drift maps, methods
for describing the drift affecting different subspaces of the data.

4 Measuring marginal drift magnitude

The key to describing drift in different attribute subspaces is to measure the drift in
the marginal distributions defined over different combinations of attributes.

A problem that arises is how to estimate the required probability distributions from
the available data. In order to manage the variance in the estimates it is important to
derive them from sufficiently large data samples. This will usually preclude the pos-
sibility of deriving instantaneous estimates—estimates of the probability distribution
at any single point in time. Rather it will often be necessary to derive estimates of
the distribution over some time interval, such as the distribution for a given hour, day
or week. However, this practical driver is not the only reason for considering drift
between extended periods rather than drift between instantaneous points in time. As
we show in Sect. 6, consideration of drift between periods of differing granularity
can also be extremely revealing. In consequence, our techniques estimate the drift
between two time intervals by first estimating the distributions in each interval and
then calculating the magnitude of the drift between them.

In the current work we use maximum likelihood estimates.
It turns out to be useful to map not only the drift in the joint distribution P(X,Y ),

but also the covariate distribution P(X), the class distribution P(Y ), the conditional
class distribution P(Y | X) and the conditional covariate distribution P(X | Y ), as
each reveals different facets of a potentially complex drift.

To give extreme examples, drift might occur because there is a change in the relative
frequencies of the classes, P(Y ), a change in the relative frequencies of the covariates,
P(X), or a change in the relationship between the classes and covariates, sometimes
called pure concept drift, P(Y | X) and P(X | Y ). By analysing all of these simul-
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taneously, drift maps allow the user to understand the extent to which each of these
forms of drift is affecting their data and to act accordingly.

For joint, covariate and class drift Eq. 6 applies directly. However, for the two
conditional drifts it is necessary to deal with multiple distributions, one for each value
of the conditioning attributes. We address this by weighted averaging, as described in
the next two subsections.

4.1 Conditional marginal covariate drift

For a given subset of the covariate attributes there will be a conditional probability
distribution over the possible values of the covariate attributes for each specific class, y.
The conditional marginal covariate drift is the weighted sum of the distances between
each of these probability distributions from time period t to u, where the weights are
the average probability of the class over the two time periods.

σ
X |Y
t,u =

∑

y∈Y

[
Pt (y) + Pu(y)

2

1

2

∑

x̄∈X
|Pt (x̄ | y) − Pu(x̄ | y)|

]
(7)

4.2 Conditional class drift

For each subset of the covariate attributes there will be a probability distribution over
the class labels for each combination of values of those attributes, x̄ at each time period.
Therefore, the Conditional Class Drift can be calculated as the weighted sum of the
distances between these probability distributions where the weights are the average
probability over the two periods of the specific value for the covariate attribute subset.

σ
Y |X
t,u =

∑

x̄∈X

⎡

⎣ Pt (x̄) + Pu(x̄)

2

1

2

∑

y∈Y
|Pt (y | x̄) − Pu(y | x̄)|

⎤

⎦ (8)

5 Methods for communicating drift maps

Our primary technique measures marginal drift magnitudes between time periods.
Sometimes it will be interesting to consider a single such comparison at a time. At
other times it will be useful to consider how drift unfolds over an extended period of
time. This can result in very large numbers of individual drift values. Here we present
methods for succinctly communicating these large amounts of information.

For drift over the marginals between two time periods the key information that we
want to convey is the relative magnitude of the drift in each combination of attributes.
We find that heat maps provide a highly effective means of doing so, clearly highlight-
ing the interactions between the variables. We provide examples in Figs. 11, 12, 13,
and 14 below.

We use line plots to communicate the evolution of drift over extended periods of
time. In doing so we use two periodicity parameters. The first parameter is how fre-
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quently should the drift be calculated. In the electricity and airlines domains discussed
below, we calculate the drift daily. The second parameter is the period over which to
determine the distributions to be compared. In the airlines domain we use two periods
for this purpose, daily and weekly, and show that each reveals different insights.

6 Illustrative examples

We illustrate the proposed techniques by application to a number of real-world datasets.

6.1 Electricity

The first example is electricity pricing in South-East Australia, a multivariate
time series dataset downloaded from the MOA dataset repository (MOA 2017)
and described by Harries (1999). The covariates are nswprice, nswdemand,
vicprice, vicdemand, and transfer, recording the price and demand in the
states of New South Wales and Victoria and the amount of power transferred between
the states. The class label identifies whether the transfer price is increased or decreased
relative to a moving average of the last 24 h. Examples are generated for every 30 min
period from 7 May 1996 to 5 December 1998. The values have been normalized to
the interval [0,1].

Figures 2 and 3 present the covariate drift and conditional marginal covariate drift
respectively. Each point corresponds to a day and presents the drift from the 30 day
period prior to that day compared to next 30 days.

As can be seen, there is a sudden increase in covariate drift on 2nd of May 1997.
This is the date at which the process of introducing a national electricitymarket (NEM)
commenced. From this date a trial NEM allowed wholesale electricity sales between
the states of New South Wales, Victoria, the Australian Capital Territory, and South
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Fig. 2 Covariate drift for the electricity data. Values calculated daily for the drift between the 30 days prior
to the current day and the 30 days thereafter
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Fig. 3 Conditional marginal covariate drift for the electricity data. Values are calculated daily for the drift
between the 30 days prior to the current day and the 30 days thereafter
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Fig. 4 Class drift for the electricity data. Values are calculated daily for the drift between the 30 days prior
to the current day and the 30 days thereafter

Australia (Roarty 1998). Vicprice, vicdemand, and transfer have no drift
prior to this date. Indeed these three variables are constant until the market is intro-
duced. Past May 1997, drift in nswprice and nswdemand stays similar to before,
but substantial variability is apparent in the driftwithinvicprice,vicdemand, and
transfer. The conditional covariate drift closely follows the unconditional covari-
ate drift indicating that there was little difference in drift of the covariates between
classes. This illustrates how our proposedmapping of drift over both marginals as well
as the distribution as a whole can provide additional useful information.

The class drift, depicted in Fig. 4, shows relatively low levels of drift. Note that as
this is a binary variable, high levels of drift in this map would indicate that the transfer
price has trended in one direction (up or down) for the previous 30 days and then in
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the opposite direction for the following 30 days. This plot indicates that there were no
such extended changes.

To summarize this example, drift increases substantially after May 2nd 1997. The
increase in drift is dominated by covariate drift and the covariate drift is dominated
by drift in three of the five covariates, VicPrice, VicDemand, and Transfer.

6.2 Airlines

The second example is the airlines dataset, also downloaded from the MOA dataset
repository (MOA 2017). Each example in this data represents a flight, with covari-
ates Airline, Flight. AirportFrom, AirportTo, DayOfWeek, Time, and
Length and with a binary class indicating whether the flight arrived on time. The
DayOfWeek has been used to partition the data into days and weeks and have not
been included as a covariate in the analysis. Figure 5 shows the covariate drift from
day to day. Figure 6 shows the covariate drift for the week prior to a day against the
week starting with that day and is plotted daily from the seventh day. Note that the
numbering starts with 4 as the first day in the data is day number 3.

The first figure shows that for the first two weeks there is a cyclical pattern in the
magnitude of covariate drift, with large changes from Friday to Saturday and from Sat-
urday to Sunday, but lower drift from Sunday to Monday and substantially lower drift
between successive weekdays. However, this pattern breaks down over the following
two weeks. Unfortunately we do not have the dates for which the data were collected
and hence can only speculate for the reasons for this change in pattern; weather and
public holidays being two potential explanations. The marginal distributions indicate
that the time of day is the major contributor to drift for most of the period but that
flight number overtakes it for some parts of the second half of the period.

0.0

0.1

0.2

0.3

0.4

0302010
time

dr
ift

 m
ag

ni
tu

de

legend
Airline

AirportFrom

AirportTo

all attributes

Flight

Length

Time

Fig. 5 Daily covariate drift for the airlines data. The dashed lines are placed between each Saturday and
Sunday
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Fig. 6 Weekly covariate drift calculated daily for the airlines data. The dashed lines are placed between
each Saturday and Sunday

Fig. 7 Daily class drift for the airlines data. The dashed lines are placed between each Saturday an Sunday

The weekly analysis shows that while there is substantial drift from day to day,
there is little drift between the first two weeks, confirming the notion that they follow
a steady cycle. The inter-week drift then rises sharply. Interestingly, it is the origin and
destination airports and flight lengths that change most from week to week as opposed
to the time of day and flight number which dominated the inter-day drift.

Figures 7 and 8 show the daily and weekly class drift, respectively. They reveal that
the class, representing on-time performance, is not subject to the same weekly cycle of
drift as the covariates and that there is greatest drift in on-time performance between
the second and third weeks. It is interesting to contrast the inter-week covariate drift
to the inter-week class drift. The covariates start with almost no drift which then
increases substantially, while the class starts with substantial drift and subsequently
drops to having almost no drift. In general, these plots are revealing in that they show
that the class drift for this data is quite different in nature to the covariate drift.
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Fig. 8 Weekly class drift calculated daily for the airlines data. The dashed lines are placed between each
Saturday an Sunday

This data demonstrates the importance of the granularity of the time periods used
in drift analysis and the manner in which different granularities can each convey
different and valuable insights. It also illustrates how it is revealing to consider each of
the different forms of drift, joint, class, covariate, conditioned class and conditioned
covariate. These different aspects of a distribution may each drift in different ways,
and an analysis that does not consider all may miss important insights into the nature
of drift in a domain.

6.3 Satellite

The final example is satellite data of land usage in France. We use Landsat-8 images
acquired over the agricultural year 2013. Images were obtained through the Theia
Land Data Centre (http://www.theia-land.fr/en/presentation/products). The Landsat
products are orthorectified prior to their release by the USGS and then, Theia pro-
cessing chains based on the algorithms described in Hagolle et al. (2015) (and cloud
shadow) screening and atmospheric corrections. These corrections ensure that the val-
ues observed cover the exact same geographic areas and that they are comparable over
time.

From these images, we use the multi-spectral product at a spatial resolution of 30 m
(Landsat-8 band 1 to band 7) and add three additional attributes, which are indices
of vegetation, water and brightness (resp. Normalized Difference Vegetation Index,
NDVI, Normalized Difference Water Index, NDWI, and Brightness). An example
Landsat-8 image is illustrated in Fig. 9 (Inglada et al. 2017).

In addition, we have a land-cover map for the whole year which associates a class
label to each “pixel” (or line) in our database; this label map is illustrated in Fig. 10.
The data was prepared by our colleagues at the CESBIO laboratory (see acknowledge-
ments).

The id class represents the land usage of the point being imaged. We analyse here
the drift between the images take on 5 May 2013 and 29 November 2013. These dates
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Fig. 9 Landsat-8 image taken on the 17th of July 2013—red displays near-infrared, green displays red
and blue displays green (traditional false-color composite). Contains USGS/NASA Landsat Program data
© 2013 processed at level 2A by CNES for THEIA Land data centre (Color figure online)

Fig. 10 Labels for the satellite dataset. © Inglada et al. (2017) available at http://dx.doi.org/10.3390/
rs9010095 under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/)

in Spring and Fall were chosen as ones between which there should be expected to
be substantial changes. May is generally just before the harvest of winter crops, e.g.
wheat, canola, and barley (light yellow in Fig. 10).
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Fig. 11 Pairwise drift in the joint distribution on the satellite data between May and November

Thedriftmagnitudes reveal that this is indeed the case.The covariate driftmagnitude
is 0.68, the conditional covariate drift is 0.76, the class drift is 0.00 and the conditional
class drift is 0.48. There is no class drift because the land usage is determined on an
annual basis and hence does not change during the year. There is nonetheless drift
in the class conditioned on the covariates because when P(Y ) is invariant and P(X)

changes it follows that there must be a change in P(Y | X).
Figure 11 is a heat map displaying the drift over each pair of attributes in the joint

distribution on the satellite data. The diagonal represents univariate drift. For example,
the cell at the intersection of the row and column labelled id gives the magnitude of
the drift for the class attribute id. As the land usage assigned to each point does
not change over the period, the drift magnitude is 0.0. The largest univariate drift
is for band 5, which corresponds to near-infrared. This is explained by the fact that
chlorophyll reflects near-infrared; in May, a lot of surfaces are covered by growing
crops, which leads to a large amount of near-infrared being reflected. On the other
hand, most crops have been harvested late November. More generally, it can be seen
that each of these univariate drifts is lower than any of the bivariate drifts involving
that same attribute, as our monotonicity proof in Appendix A demonstrates they must.

The drift for NDWI and NDVI is particularly interesting. The univariate drift for
both these attributes considered in isolation is relatively low, but when considered in
conjunction with most other attributes is high.

Figure 12 gives a heat map of the drift of each covariate conditioned on the class.
The x-axis gives the classes and the y-axis gives each of the covariates. This illustrates
how drift can vary greatly from class to class. For wheat and rapeseed/canola,
NDVI and NDWI are changing substantially between May and November, which is
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Fig. 12 Conditional marginal covariate drift of individual attributes

explained by the fact that May is the peak season for these winter crops while they
have been harvested in November. As a result there are significantly changes in the
NDVI—which is a proxy for plant health—andNDWI—which is a proxy for the water
content of the leaves. Interestingly, maize/corn doesn’t drift for NDVI and NDWI
as these crops are growing after May and harvested before November; they thus keep
the same “bare soil” reflectance.

Figure 13 provides heat maps for each pair of attributes conditioned by each class.
It also illustrates themonotonicity of driftmagnitude. The drift for any pair of attributes
given a class must always be at least as high as the univariate drift of either of the
attributes given that class. For instance, from Fig. 12, we can observe the attributes
band4 and band7 drift the lowest among the other band attributes given the classes
other_oilseed and sunflower. This translates to a low joint drift magnitude
under the same classes in Fig. 13.

Figure 14 shows the condiitonal class drift conditioned on pairs of attributes. It
might at first sight seem anomalous that there should be conditional class drift of up to
0.34 when the class is conditioned on specific pairs of attributes, but no drift when the
class is considered in isolation. As explained above, this arises because the only way
in which P(X) can change while P(Y ) remains invariant is for P(Y | X) to change.
It is particularly revealing that the conditional class drift within each individual x-
value is low, while for some combinations of x-values it becomes relatively high.
This demonstrates the value of evaluating the drift across different combinations of
attributes. We find here again high values for NDVI, NDWI, and band 5, which is
explained by the difference in the agricultural season.
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Fig. 13 Conditional marginal covariate drift for pairs of attributes

7 Related research

Prior techniques for describing concept drift (Widmer and Kubat 1996; Kifer et al.
2004; Gama et al. 2004; Baena-Garcıa et al. 2006; Nishida and Yamauchi 2007;
Dries and Rückert 2009; Gama and Rodrigues 2009; Žliobaite 2010; Hoens et al.
2012; Moreno-Torres et al. 2012; Bifet et al. 2013; Gama et al. 2014; Qahtan et al.
2015) have been qualitative, utilizing terms such as abrupt and gradual. As Webb
et al. (2016) argue, such qualitative descriptions are limited in that they require arbi-
trary specification of the boundaries between different values and cannot distinguish
between different gradations along dimensions that are in reality continuous in nature,
such as drift magnitude. In contrast, the current proposal provides detailed quantitative
descriptions of concept drift at a fine level of granularity.

The pioneering work of Pratt and Tschapek (2003) used brushed histograms to
visualize univariate drift in each of many dimensions simultaneously. Our work is
distinguished by focusing on quantitativemultivariatemeasures of drift. The visualiza-
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Fig. 14 Conditional class drift conditioned on pairs of attributes

tions that we develop are intended to efficiently and effectively convey these objective
multivariate measurements for large numbers of combinations of dimensions.

Yao et al. (2013) develop a more complex form of visualization that relies on
unsupervised learning of ‘concepts.’ The drift in the distributions of these ‘concepts’
are then visualized. In contrast, our methods directly quantify drift in the original
feature space and provide an objective framework with quantitative measures that are
directly comparable from one domain to another.

Drift mapping differs greatly in nature to drift detection (Gama et al. 2004; Baena-
Garcıa et al. 2006; Dries and Rückert 2009; Bifet et al. 2013; Gama et al. 2014; Qahtan
et al. 2015; Yu and Abraham 2017). The former seeks to describe in detail the nature
of drift between specific time periods, whereas the latter seeks to identify whether or
not drift has occurred at a specific point in time. Drift detection is often employed
as a mechanism within online learning algorithms, while drift mapping is primarily
intended as a standalone data analysis task. Whereas drift mapping is envisaged as
helping us understand how different drift response mechanisms perform in the face of
different forms of concept drift, drift detection is essentially one of those drift response
mechanisms.

8 Conclusions and future research

Concept drift is in some senses the great elephant in the room for machine learning.
The world is continually changing, but we have a dearth of techniques for understand-
ing the nature of these changes as they apply to specific machine learning contexts.We
have a growing body of sophisticated methods for learning in the context of concept
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drift (Gaber et al. 2005; Gama and Rodrigues 2009; Aggarwal 2009; Žliobaite 2010;
Bifet et al. 2011; Nguyen et al. 2015; Brzezinski and Stefanowski 2014; Krempl et al.
2014; Gama et al. 2014; Ditzler et al. 2015). There is a need to develop a supporting
body of techniques for understanding the phenomena that these methods address and
thereby understanding the relative capabilities of these methods in the face of different
expressions of that phenomena.

This paper proposes a new data mining task—drift mapping. The proposal builds
on Webb et al’s (2016) method of quantifying drift magnitude by

– revealing the importance of quantifying drift magnitude over marginals rather
than through a single gross measure — both because a single global measure
will become uninformative in high dimensional data and also because drift can
be expected be heterogeneous across different data subspaces and it will often be
critical to understand how drift differs between subspaces;

– proposing multiple techniques for communicating the complex information
revealed by the maps (see Sect. 5);

– revealing the importance of interval granularity for effective drift mapping (see
Sect. 6); and

– highlighting the importance of mapping all of the joint, class, covariate, condi-
tioned class and conditioned covariate distributions.

These preliminary techniques for mapping concept drift leave substantial scope for
refinement.

– It may prove useful to handle numeric data directly without requiring discretiza-
tion.

– In the current work we use maximum likelihood estimates of the probability distri-
butions. These are likely to be imprecise, adding noise to the estimates which will
accumulate as dimensionality increases. Methods to address this issue are likely
to be important when seeking to map high-dimensional data.

– For very high dimensional data it will not be feasible to present and consider every
pairwise marginal distribution. There is a need for techniques either to identify
and highlight the marginals in which the drift is most interesting, or to allow a user
to explore the space of marginals in an effective manner.

– In the airlines example, inter-day and inter-week drift demonstrated very different
patterns, each of which was revealing of different dynamics in the data. This
well illustrates the importance of identifying informative granularity for analysis.
In some domains this may be readily apparent to the relevant experts. However,
there are likely to be domains where the analyst does not have access to such
expertise and it would be useful to have tools to automatically identify appropriate
granularities for analysis.

We have presented practical techniques for a new data analysis task—modelling
and communicating the nature of drift affecting specific applications. Our case studies
on three real-world datasets demonstrate that these techniques can reveal insights into
the nature of specific instances of drift that cannot be obtained by any prior method.

All data analytics are necessarily after the fact. We cannot analyse drift that is
yet to happen. Drift maps reveal the forms of drift that have occurred in a particular
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domain. This is likely to provide insight into the types of drift that are likely to occur
into the future, but as our case studies reveal, just as there is drift in the underlying
distributions, there is also drift in the type of drift that affects a given domain. Drift
maps will help users understand how applicable historical data is to the immediate
past, but cannot definitively determine their applicability to the future.

We hope that these techniques will have practical application in addressing
the very real and present problem of concept drift. As a service to the commu-
nity we have established an online server to which users can upload data to be
analysed by our tools at http://driftmap.infotech.monash.edu.au. In the interests of
reproducible research we make the software necessary to reproduce our results
available at https://github.com/LeeLoongKuan/DriftMapper and https://github.com/
LeeLoongKuan/DataAnalysisR. The first of these produces the drift maps in numeric
form while the second creates the heat map and line plot visualizations.
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A Proof that drift magnitude is monotone under increasing
dimensionality

We here prove that total variation distance is monotone under increasing dimension-
ality. The proof generalizes trivially to Hellinger distance. Note that where one set of
variables is conditioned on another, it is the dimensionality of the conditioned variable
rather than the conditioning variables over which this monotone increase in distance
applies.

Let X, Z be sets of covariates.

σt,u(X) ≤ σt,u(X, Z)

�
1

2

∑

x̄ ∈ dom(X)

|Pt (x̄) − Pu(x̄)| ≤ 1

2

∑

x̄ ∈ dom(X)

z̄ ∈ dom(Z)

|Pt (x̄, z̄) − Pu(x̄, z̄)|

�
∑

x̄ ∈ dom(X)

∣∣∣∣∣∣∣

∑

z̄ ∈ dom(Z)

Pt (x̄, z̄) −
∑

z̄ ∈ dom(Z)

Pu(x̄, z̄)

∣∣∣∣∣∣∣
≤

∑

x̄ ∈ dom(X)

∑

z̄ ∈ dom(Z)

|Pt (x̄, z̄) − Pu(x̄, z̄)|

�
∑

x̄ ∈ dom(X)

∣∣∣∣∣∣∣

∑

z̄ ∈ dom(Z)

Pt (x̄, z̄) − Pu(x̄, z̄)

∣∣∣∣∣∣∣
≤

∑

x̄ ∈ dom(X)

∑

z̄ ∈ dom(Z)

|Pt (x̄, z̄) − Pu(x̄, z̄)|

123

http://driftmap.infotech.monash.edu.au
https://github.com/LeeLoongKuan/DriftMapper
https://github.com/LeeLoongKuan/DataAnalysisR
https://github.com/LeeLoongKuan/DataAnalysisR


1198 G. I. Webb et al.

References

Aggarwal CC (2009) Data streams: an overview and scientific applications. Springer, Berlin, pp 377–397.
https://doi.org/10.1007/978-3-642-02788-8_14

Baena-Garcıa M, del Campo-Ávila J, Fidalgo R, Bifet A, Gavalda R, Morales-Bueno R (2006) Early drift
detection method. In: Fourth international workshop on knowledge discovery from data streams, vol
6, pp 77–86

Bifet A, Gama J, Pechenizkiy M, Zliobaite I (2011) Handling concept drift: importance, challenges and
solutions. PAKDD-2011 Tutorial, Shenzhen, China

Bifet A, Read J, Pfahringer B, Holmes G, Žliobaite I (2013) CD-MOA: change detection framework for
massive online analysis. In: International symposium on intelligent data analysis. Springer, Berlin, pp
92–103

Brzezinski D, Stefanowski J (2014) Reacting to different types of concept drift: the accuracy updated
ensemble algorithm. IEEE Trans Neural Netw Learn Syst 25(1):81–94

Ditzler G, Roveri M, Alippi C, Polikar R (2015) Learning in nonstationary environments: a survey. IEEE
Comput Intell Mag 10(4):12–25

Dries A, Rückert U (2009) Adaptive concept drift detection. Stat Anal Data Min 2(5–6):311–327
Gaber MM, Zaslavsky A, Krishnaswamy S (2005) Mining data streams: a review. ACM SIGMOD Rec

34(2):18–26
Gama J, Žliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation.

ACM Comput Surv 46(4):44:1–44:37. https://doi.org/10.1145/2523813
Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Brazilian symposium

on artificial intelligence. Springer, pp 286–295
Gama J, Rodrigues P (2009) An overview on mining data streams, vol 206. Studies in computational

intelligence. Springer, Berlin, pp 29–45. https://doi.org/10.1007/978-3-642-01091-0_2
Hagolle O, Sylvander S, HucM, Claverie M, Clesse D, Dechoz C, Lonjou V, Poulain V (2015) Spot-4 (take

5): simulation of sentinel-2 time series on 45 large sites. Remote Sens 7(9):12242–12264. https://doi.
org/10.3390/rs70912242

Harries M (1999) Splice-2 comparative evaluation: electricity pricing. Technical Report UNSW-CSE-TR-
9905, University of New South Wales

Hellinger E (1909) Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen.
Journal für die reine und angewandte Mathematik 136:210–271

Hoens TR, ChawlaNV, Polikar R (2011)Heuristic updatable weighted random subspaces for non-stationary
environments. In: Cook DJ, Pei J, Wang W, Zaiane OR, Wu X (eds) IEEE international conference on
data mining, ICDM-11. IEEE, pp 241–250

Hoens TR, Polikar R, Chawla NV (2012) Learning from streaming data with concept drift and imbalance:
an overview. Prog Artif Intell 1(1):89–101. https://doi.org/10.1007/s13748-011-0008-0

Inglada J, Vincent A, Arias M, Tardy B, Morin D, Rodes I (2017) Operational high resolution land cover
map production at the country scale using satellite image time series. Remote Sens. https://doi.org/
10.3390/rs9010095

Kifer D, Ben-David S, Gehrke J (2004) Detecting change in data streams. In: Proceedings of the thirtieth
international conference on very large data bases—volume 30, VLDB Endowment, VLDB ’04, pp
180–191

Krempl G, Zliobaite I, Brzezinski D, Hullermeier E, Last M, Lemaire V, Noack T, Shaker A, Sievi
S, Spiliopoulou M, Stefanowski J (2014) Open challenges for data stream mining research. ACM
SIGKDD Explor Newsl 16–1:1–10

Levin D, Peres Y, Wilmer E (2008) Markov chains and mixing times. American Mathematical Society,
Providence

MOA dataset repository (2017) http://moa.cms.waikato.ac.nz/datasets/. Accessed 1 Sept 2017
Moreno-Torres JG, Raeder T, Alaiz-Rodriguez R, Chawla NV, Herrera F (2012) A unifying view on dataset

shift in classification. Pattern Recognit 45(1):521–530
Nguyen HL, Woon YK, Ng WK (2015) A survey on data stream clustering and classification. Knowl Inf

Syst 45:535–569
Nishida K, Yamauchi K (2007) Detecting concept drift using statistical testing. In: International conference

on discovery science. Springer, pp 264–269
Pratt KB, Tschapek G (2003) Visualizing concept drift. In: Proceedings of the ninth ACM SIGKDD inter-

national conference on knowledge discovery and data mining. ACM, pp 735–740

123

https://doi.org/10.1007/978-3-642-02788-8_14
https://doi.org/10.1145/2523813
https://doi.org/10.1007/978-3-642-01091-0_2
https://doi.org/10.3390/rs70912242
https://doi.org/10.3390/rs70912242
https://doi.org/10.1007/s13748-011-0008-0
https://doi.org/10.3390/rs9010095
https://doi.org/10.3390/rs9010095
http://moa.cms.waikato.ac.nz/datasets/


Analyzing concept drift and shift from sample data 1199

Qahtan AA, Alharbi B, Wang S, Zhang X (2015) A PCA-based change detection framework for multidi-
mensional data streams: Change detection in multidimensional data streams. In: Proceedings of the
21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp
935–944

Roarty M (1998) Electricity industry restructuring: the state of play. Research Paper 14, Science, Technol-
ogy, Environment and Resources Group. http://www.aph.gov.au/About_Parliament/Parliamentary_
Departments/Parliamentary_Library/pubs/rp/RP9798/98rp14. Accessed 1 Sept 2017

Webb GI, Hyde R, Cao H, Nguyen HL, Petitjean F (2016) Characterizing concept drift. Data Min Knowl
Discov 30:964–994

Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn
23(1):69–101. https://doi.org/10.1007/BF00116900

Yao Y, Feng L, Chen F (2013) Concept drift visualization. J Inf Comput Sci 10(10):3021–3029
Yu S, Abraham Z (2017) Concept drift detection with hierarchical hypothesis testing. In: Proceedings of

the 2017 SIAM international conference on data mining. SIAM, pp 768–776
Žliobaite I (2010) Learning under concept drift: an overview. CoRR arXiv:1010.4784

123

http://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/RP9798/98rp14
http://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/RP9798/98rp14
https://doi.org/10.1007/BF00116900
http://arxiv.org/abs/1010.4784

	Analyzing concept drift and shift from sample data
	Abstract
	1 Introduction
	2 Problem description
	3 Measuring total drift magnitude
	4 Measuring marginal drift magnitude
	4.1 Conditional marginal covariate drift
	4.2 Conditional class drift

	5 Methods for communicating drift maps
	6 Illustrative examples
	6.1 Electricity
	6.2 Airlines
	6.3 Satellite

	7 Related research
	8 Conclusions and future research
	Acknowledgements
	A Proof that drift magnitude is monotone under increasing dimensionality
	References




