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Abstract Matrix sketching is a technique used to create summaries of large matri-
ces. Frequent directions (FD) and its parameterized variant, α-FD are deterministic
sketching techniques that have theoretical guarantees and also work well in practice.
An algorithm called the iterative singular value decomposition (iSVD) has been shown
to have better performance than FD and α-FD in several datasets, despite the lack of
theoretical guarantees. However, in datasets with major and sudden drift, iSVD per-
forms poorly when compared to the other algorithms. The α-FD algorithm has better
error guarantees and empirical performance when compared to FD. However, it has
two limitations: the restriction on the effective values of its parameter α due to its
dependence on sketch size and its constant factor reduction from selected squared sin-
gular values, both of which result in reduced empirical performance. In this paper, we
present a modified parameterized FD algorithm, β-FD in order to overcome the limi-
tations of α-FD, while maintaining similar error guarantees to that of α-FD. Empirical
results on datasets with sudden and major drift and those with gradual and minor or
no drift indicate that there is a trade-off between the errors in both kinds of data for
different parameter values, and for β ≈ 28, our algorithm has overall better error
performance than α-FD.
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1 Introduction

Matrices with large number of examples and/or large number of attributes pose a
significant challenge in large-scale machine learning applications like recommender
systems, gene expression data analysis etc. Storing as well as manipulating such large
data has become difficult, particularly in the streaming data setting. Creating a sketch
of the data matrix is a useful step towards reducing the amount of storage as well as
reducing the computational costs of subsequent operations performed on it. Comput-
ing a low rank approximation of the matrix is one such approach of matrix sketching.
This can be done by performing the singular value decomposition (SVD) of thematrix.
But for an n × d matrix, computing its SVD requires time O(min{nd2, n2d}) which
becomes a problem in situations where n and/or d is large. In order to overcome
this problem, other low rank approximation schemes have been proposed in the past
(Drineas et al. 2006; Har-Peled 2014). Given a matrix X ∈ R

n×d and a rank k, such
methods construct a matrix Xk with rank k such that Xk is a good approximation to
X. A sketch of a matrix is a summarized version of it that has certain theoretical guar-
antees. Randomized matrix sketching techniques have been developed by Woodruff
(2014) and Mahoney (2011), a column sampling technique was proposed by Bout-
sidis et al. (2009), and random projection based approaches were proposed by Sarlós
(2006), Achlioptas and McSherry (2007), Clarkson and Woodruff (2013) and Nelson
and Nguyên (2013). A deterministic matrix sketching algorithm, FD was originally
proposed by Liberty (2013) which was shown to have better empirical performance
than previous methods. It was later improved upon by Ghashami et al. (2014) and
Desai et al. (2016).

This work focuses on the deterministic matrix sketching algorithm, FD and its
parameterized variant. The FD (Liberty 2013) algorithm creates the sketch of a matrix
in the streaming data model (rows arrive in a streaming manner). It has a number
of advantages over previously proposed methods for matrix sketching. It has good
provable guarantees (Liberty 2013; Ghashami and Phillips 2014) and also has better
empirical performance than other techniques (Ghashami et al. 2014; Desai et al. 2016).
A heuristic approach called iSVD performs better than FD in practice for datasets with
gradual and minor or no drift. However, it fails to produce a good enough sketch when
the input data contains sudden and major drift.

Later on, a parameterized form of the FD algorithm called α-FD was proposed by
Ghashami et al. (2014). The aim of this algorithm was to match the empirical per-
formance of iSVD on datasets with gradual and minor or no drift, and that of FD on
datasets with sudden and major drift, while maintaining the theoretical guarantees of
FD. It has improved empirical performance as well as better theoretical guarantees
when compared to FD. Its performance in datasets with gradual and minor or no drift
is slightly worse than that of iSVD. But it obtained significantly better results than
iSVD on datasets with major and sudden concept drift (Ghashami et al. 2014). How-
ever, it has two main drawbacks. The first is the restriction on the effective values of
its parameter α due to its dependence on sketch size and its constant factor reduc-
tion from selected squared singular values, both of which result in reduced empirical
performance.
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In this work an improvement of the α-FD algorithm is proposed. It overcomes the
drawbacks of α-FD, while maintaining error guarantees similar to that of α-FD. It
has better empirical performance than α-FD on several real-world as well as synthetic
datasets, and also performs significantly better than iSVD on datasets with major and
sudden drift.

1.1 Data and concept drift

An important characteristic of data that has significant impact on the performance
of learning algorithms is drift. Concept drift (Schlimmer and Granger 1986; Widmer
and Kubat 1996) is a phenomenon in which the underlying distribution of the data
keeps changing over time. It can be categorized into types based on factors such as
subject, frequency, transition, re-occurrence and magnitude (Webb et al. 2016). This
work considers only unsupervised data, so we consider only drifts that happen due to
change in the data distribution. This can be categorized as covariate drift according to
Webb et al. (2016). A covariate drift occurs when the distribution of the data changes
over time and throughout the work, whenever we use the term concept drift, we mean
the covariate drift of the data. Theduration of the occurrence of drift also introduces two
categories of drift, namely, sudden/abrupt and gradual (Tsymbal 2004). Themagnitude
of the drift also introduces categories such as major and minor drifts. Data streams in
which the distribution changes suddenly and dramatically are adversarial to the iSVD
algorithm (Ghashami et al. 2014).

First we introduce a quantifiable notion of the magnitude of drift in data streams.
A difference function D (Webb et al. 2016) can be used to measure the difference
between two distributions of data streams that arrive at two different time instances.

Drift Magnitude = D(t, t + p) (1)

This function is domain dependent, but some of the choices are Kullback–Leibler
(KL) divergence (Kullback and Leibler 1951), Hellinger distance (Hoens et al. 2011),
etc. The drift magnitude measures the difference between the data distribution at two
time instances t and t + p, p > 0. If the drift magnitude between the data streams
observed at two different times is greater than a threshold, κ , it can be concluded that
a drift has occurred.

Let Sx be the starting time of a stable concept x and Ey be the ending time of
another stable concept y. The data stream has minor drift if the criterion in Eq. 2 is
satisfied and it has major drift if Eq. 3 is satisfied. Here κ is a positive real number
that acts as a threshold.

D(Ex , Sy) < κ (2)

D(Ex , Sy) ≥ κ (3)

Sudden drift is said to occur when Eq. 4 is satisfied. Here η is a small natural number
that is an upper bound on the duration during which sudden drift occurs. A gradual
drift occurs when for μ, the maximum difference between the two concepts during

123



456 D. P. Francis, K. Raimond

time periodm, the Eq. 5 is satisfied. Herem is a natural number, typically much bigger
than η. Whenever the drift magnitude rises slowly up to a threshold μ, gradual drift is
said to occur.

Sy − Ex ≤ η (4)

∀t∈[Ex ,Sy−m]D(t, t + m) ≤ μ (5)

In this work, data with sudden, gradual, minor, major and no drift are considered.

1.2 Overview of main contributions and scope

While α-FD comes with theoretical guarantees and clearly outperforms iSVD in
datasets with sudden and major drift, it has certain limitations which restrict its empir-
ical performance. The drawbacks of the previous method is overcome by the proposed
algorithm, which we call β-FD. The key contributions are summarized as follows.

– We propose β-FD algorithm that has a parameter β and a special function aimed
at reducing the effect of noisy components in the data.

– We provide theoretical guarantees with regard to performance.
– We also provide extensive experimental results demonstrating an improved error
performance when compared to the previous method.

– We demonstrate the ability to improve the performance of the proposed algorithm
to handle the two different kinds of data considered in this work, namely data with
(1) sudden and major drift and (2) gradual and minor or no drift, by fine tuning its
parameter β.

Theβ-FD algorithm creates the sketch of amatrix, where the rows arrive as streams.
The accuracy of its sketch remains unaffected and its theoretical guarantees hold
regardless of whether the data is mean-centered or not. The requirement of mean-
centering comes into play only when a machine learning algorithm like Principal
Component Analysis (PCA) is to be applied on the data, as it is the case for a dataset
called Birds (Sect. 5.2).

The number of rows and columns of the input matrix can be arbitrarily large. The
experiments (Sect. 5) carried out in thiswork consist of two parts, namely the sketching
part and the performance evaluation part. While the former part involves creating a
sketch of the input data as it arrives in a stream, the latter part involves computing
the error between the original data matrix and the computed sketch. Since the error
measurement, which involves computing the full SVD of the whole data matrix, is
costly (O(n2d) in the worst case, n is the number of examples and d is the number
of attributes), we have limited the size of the datasets considered in the experiments.
This however does not mean that the proposed algorithm is limited to handling such
small datasets. On the contrary, the proposed algorithm can handle datasets of any
size (rows or columns). The running time of the proposed algorithm is only O(ndl),
where l is the sketch size. Some of the datasets are also sparse in nature. The proposed
algorithm can also handle data with concept drift. There are many kinds of concept
drift present in modern data, but in our work we have considered only data with
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sudden, gradual, major, minor or no drift. The detailed definitions of these types of
drift are given in Sect. 1.1. In the case of data with major drift there exists a simple
baseline which discards the current sketch of the data and starts anew as soon as a
major drift is encountered. We also provide a comparison of β-FD with this simple
baseline (Sect. 5.5).

The paper is organized as follows: Sect. 2 describes the basic formulas and notations
used in this work, the related previous works, their limitations and a discussion on how
to overcome them. Section 3 describes the proposed β-FD algorithm. The theoretical
guarantees of the algorithm are given in Sect. 4. Experimental results are given in
Sect. 5. Section 6 provides the conclusion.

2 Preliminaries

In this section the notations used throughout the work, the related works, their limita-
tions and the ways of overcoming those limitations are discussed.

2.1 Notations used

Let A be a matrix with size n × d, where n is the number of rows and d is the
number of columns. The entries of the matrix A arrive as a stream of its rows,
a1, a2, . . . an, ai ∈ R

d . Throughout the work, array and matrix indices start from
1. The Frobenius norm of A is defined as ‖A‖F = ∑n

i=1 |ai |2. The spectral norm of
A is ‖A‖2 = max {x:‖x‖=1}‖Ax‖. The SVD of A results in three matrices, U,� and
V such that A = U�VT , where U and V are unitary matrices of sizes n × n and
d × n respectively. � is a diagonal matrix of size n × n that contains the singular
values σ1, σ2, . . . σn of the matrix A such that σ1 ≥ σ2 · · · ≥ σn , where ∀i, σi ≥ 0.
The covariance error between the input matrix A and its sketch B is computed as
‖ATA − BTB‖2. Another error measure used is projection error which is computed
as ‖A−AB†

kBk‖2F where B† is the pseudo-inverse of B and Bk is the k-rank approxi-
mation of B for some k. Both these error measures have been used in Ghashami et al.
(2014).

2.2 Related works

The sketch of a matrix has been produced using methods like random projection
(Sarlós 2006; Achlioptas and McSherry 2007; Clarkson and Woodruff 2013; Nelson
and Nguyên 2013), column/row sampling (Boutsidis et al. 2009) and deterministic
techniques (Liberty 2013; Ghashami et al. 2014; Desai et al. 2016). We focus on
deterministic sketching algorithm, FD and its parameterized variant, α-FD.

2.2.1 Frequent directions

FD algorithm (Liberty 2013) is a deterministic matrix sketching algorithm that takes
a row of an input matrix at a time and produces a sketch matrix. For any given matrix
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A ∈ R
n×d , a sketch matrix B ∈ R

l×d is constructed such that the following bound is
satisfied.

‖ATA − BTB‖2 ≤ 2

l
‖A‖2F (6)

This bound was further improved by Ghashami et al. (2016) to provide the following
error bounds,

‖ATA − BTB‖2 ≤ ‖A − Ak‖2F/(l − k) (7)

‖A − πBk (A)‖2F ≤
(

1 + k

l − k

)

‖A − Ak‖2F (8)

where Ak is the best k-rank approximation of A, l is the number of rows in the
sketch, and πBk (A) = AB†

kBk . This algorithm extended the idea of frequent item
approximation problem to the problem of matrix sketching. The steps involved are
explained in Algorithm 1. For the FD algorithm, in the reduceRank procedure (Eq. 9),
α = 1. Here Bi denotes the value of B at the end of the i th iteration, Ci is not actually
computed in the algorithm, it is only needed for the proof. The algorithm maintains
an l × d sketch matrix B which is first populated with l rows of A. Then SVD of this
matrix B is computed, B = U�VT . This SVD computation is inexpensive since the
number of rows l in B is very small compared to n. Then a singular value shrinking

step is done where�′ ←
√

�2 − δIl×l where�′ is the rank reduced version of� and

δ = �2
l,l . The value of B is updated with the result of �′VT . The running time of this

algorithm is O(ndl2). A fast variant of FD improves this to O(ndl) for δ = �2
l/2,l/2

and setting �′ ← max{
√

�2 − δIl×l , 0}.

Algorithm 1 Generic-FD
1: Input: l,A ∈ R

n×d , α ∈ [0, 1]
2: B0 ← 0l×d

3: for i ∈ 1 . . . n do
4: Insert ai into zero valued row of Bi−1 and store into Bi
5: if Bi has zero valued rows then
6: continue
7: end if
8: [U, �,V] = SVD(Bi )

9: Ci = �VT // Used only in the proof, not computed.
10: �′ = reduceRank(�, α)

11: Bi = �′VT

12: end for
13: return Bi

2.2.2 Parameterized FD algorithm

The FD algorithm was improved by Ghashami et al. (2014) using a parameter α ∈
[0, 1]. The algorithm basically uses the same steps as that of Liberty (2013), but makes
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an important improvement wherein the singular value matrix � undergoes a selective
α dependent reduction step. The parameter α essentially determines the index of the
singular values from which the reduction happens. This is done as follows. σ ′

1 ←
σ1, σ

′
2 ← σ2, . . . , σ

′
(1−α)l ← σ(1−α)l , σ

′
(1−α)l+1 ←

√
σ 2

(1−α)l+1 − δ, σ ′
(1−α)l+2 ←

√
σ 2

(1−α)l+2 − δ, . . . , σ ′
l ←

√
σ 2
l − δ where δ = σl . Note that the singular values

between 1 and (1− α)l remain unchanged, whereas the rest of the singular values are
reduced by the constant factor δ. The reduceRank(�, α) procedure returns the matrix
�′, given by Eq. 9.

�′ = diag(�1,1, . . . ,�l(1−α),l(1−α),

√
�2

l(1−α)+1,l(1−α)+1 − δ, . . . ,

√
�2

l,l − δ) (9)

where δ = �2
l,l and diag() denotes the diagonalization operation. We refer to this

parameterized algorithm, that combines reduceRank with the Generic-FD algorithm
as α-FD. The steps are the same as Generic-FD (Algorithm 1), but using 0 < α < 1.
The error guarantees associated with this algorithm are described below.

‖ATA − BTB‖22 ≤ ‖A − Ak‖2F/(αl − k) (10)

‖A − πBk (A)‖2F ≤ αl

αl − k
‖A − Ak‖2F (11)

The time complexity of this algorithm is the same as that of FD.

2.2.3 Fast parameterized FD algorithm

The fast parameterized FD algorithm was proposed by Desai et al. (2016). We refer
to this algorithm as Fast-α-FD. It was suggested that setting δ to be �2

t,t where t =
(l−lα/2)will cause the α-FD algorithm to run faster. Similar to fast FD, the reduction

step is�′ ← max{
√

�2 − δIl×l , 0}. This algorithm has the same bounds as α-FD and
the time complexity of this algorithm is O(ndl/α).

2.2.4 Comparison of FD and its parameterized variants

FD algorithm’s reduceRank step involves making the lth singular value to be zero,
and subsequently reducing a constant value from the squares of the rest of the singu-
lar values. Since the singular values are sorted in the non-increasing order, and the
last value corresponds to the least important vector’s magnitude, the effect of noisy
components (associated with the least singular values) is reduced.

In α-FD, the parameter α determines the index of singular values from which the
reduction step must take place. This algorithm is more effective in removing noise
when compared to FD, because it subtracts square of the lth singular value from
the chosen index onward, and not just from the first singular value. This in effect
reduces the noise in the data. Instead of considering just the last singular value as that
belonging to noise, the last lα (= l−{l(1−α)+1}+1) singular values are considered
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Fig. 1 reduceRank() in FD algorithm

Fig. 2 reduceRank() in α-FD algorithm

Fig. 3 reduceRank() in iSVD algorithm

to contain noise. Figures 1 and 2 shows the reduceRank procedure of FD and α-FD
respectively. In Figs. 1 and 2, only the reduction from squared singular values are
shown for clarity, whereas in the actual algorithm, during the reduction, square root of
the reduced squared singular values are computed. In Fast-α-FD, the steps involved
are the same as parameterized FD, but the number of SVD computations is reduced,
and hence only the running time is improved, without actually providing any error
performance improvement.

2.2.5 Iterative SVD

iSVD is an algorithm that performs SVD computation for data streams. The work
of Brand (2002) computes the left singular vectors incrementally from the rows of a
large matrix. Similarly, many other works (Hall et al. 1998; Levey and Lindenbaum
2000), have performed SVD incrementally. The steps are the same as in Generic-FD
(Algorithm 1), but with α = 0. See Fig. 3 to see the reduceRank procedure in the
case of iSVD. Here, the last singular value is set to zero and the rest of them remain
unchanged. This algorithm does not have any theoretical guarantees, but it has been
shown to performwell onmany real-world datasets with gradual or no drift (Ghashami
et al. 2014). The work of Ghashami et al. (2014) introduced a dataset with sudden and
major concept drift that is adversarial to iSVD. In this dataset, iSVD was found to
perform poorly when compared to α-FD algorithm.
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2.3 Limitations of previous works

The α-FD algorithm improves the FD algorithm by providing better error bounds as
well as better empirical performance. However, it has two main limitations, both of
which result in reduced empirical performance.

– It uses a constant factor (δ) reduction from selected squared singular values
(σ 2

l(1−α)+1, . . . , σ
2
l ).

– The restriction on the effective values of α due to its dependence on sketch size.

From the selected singular value onward, the rankReduce step subtracts a con-
stant value. This method is unfair because it treats all the singular values with equal
weightage, whereas in reality, they are arranged in the non-increasing order of their
importance and hence should be treated differently. An associated sub-problem is that
the reduction happens only from a selected index onward. This is a restriction on the
flexibility of the algorithm, because we ideally want to include all singular values in
the rankReduce step as in Liberty (2013).

The parameter α essentially chooses the index of singular values from which the
reduceRank step is applied. This index is calculated as l(1−α)+1. Although the range
of values of α is [0, 1], its effective values are limited to the range { 1l , 2

l , . . . ,
l−1
l , l

l }.
This is because, the index of the selected singular value l(1 − α) + 1 can only be
a positive integer and in order to satisfy this requirement, α can only take certain
value of the finite set { 1l , . . . , l

l }. For example, when α = 1
l , the selected index is

l( l−1
l ) + 1 = l, and when α = 2

l , the index becomes l − 1, and so on. This shows
that the values of α are dependent on the sketch, which is alright with respect to α-FD
algorithm. But if were to change the algorithm in order to include all singular values
in the rankReduce step and use a variable reduction as mentioned above, then this
constraint on the value of α would be restrictive.

The iSVD algorithm outperforms α-FD on most datasets, but fails in the presence
of sudden and major concept drift (Ghashami et al. 2014). The limitations of the
algorithm are:

– Its poor performance in datasets with sudden and major drift (Ghashami et al.
2014).

– Lack of any theoretical guarantees.

Refer Sect. 5.3.2 for experimental results that show iSVD failing in the presence of
data with sudden concept drift.

2.4 Overcoming the limitations of previous methods

Some of the ways of overcoming the limitations of the previous methods, namely, that
of α-FD and iSVD are discussed in this section.

123



462 D. P. Francis, K. Raimond

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

k

f

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

k

f

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

k

f

(a) (b) (c)

Fig. 4 Various choices of function f which obey properties 1, 2 and 3. a Linear function, b quadratic
function, c exponential function

2.4.1 α-FD

First we deal with the problem of constant factor reduction in the reduceRank proce-
dure of α-FD. Reducing the effect of noise by subtracting a certain quantity from the
least few singular values (squared) is a sound idea. But instead of subtracting a con-
stant value from the selected squared singular values, we subtract a variable quantity
from each. This is because the singular values are sorted in the non-increasing order
of their importance as discussed in Sect. 2.3. This variable quantity, should intuitively
take monotonically increasing values, so that more is subtracted from the lth (least of
the singular values), and less is a subtracted from (l−1)th value, and so on. Moreover,
this variable can be set to the value of a function f of the sketch size, l, and the current
singular value index k. In order for this idea to work correctly, we require the following
properties to be satisfied by f .

1. f (k, l) is a strictly increasing function of k, for a given l.
2. f (0, l) = 0
3. f (l − 1, l) = 1

Using these three properties, one can devise a number of functions. Here, the various
choices and their problems are enumerated for clarity.

Linear function The simplest choice for f is a linear function of k, such that the
properties 2 and 3 are also satisfied. One such possible formulation is as follows.

f (k, l) = k

l − 1
(12)

This function is a strictly increasing function with bounds as seen in Fig. 4a. The graph
has been constructed by setting l = 100. It however, does not have the functionality
we desire. Instead of slowly increasing, this function rapidly increases thereby causing
more reduction than needed in some large singular values.

Quadratic function Another choice is a quadratic function of k and l.

f (k, l) = k2

(l − 1)2
(13)
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The graph of this function is shown in Fig. 4b. Again a rapid increase in the function
values is seen, which can over-reduce some singular values. Ideally we want minimal
(almost zero) reduction for largest singular values, but this quadratic function reduces
even those singular values by a non-trivial amount. If this form of function is used,
then the possibility of over-reducing (removing the actual data part of some singular
values) increases.

Exponential function The next logical choice for f is an exponential function that
obey properties 2 and 3. Such a function is given below.

f (k, l) = ek − 1

el−1 − 1
(14)

The graph of this function is shown in Fig. 4c. This function satisfies the three prop-
erties described above, and also has the desirable quality of being slowly increasing.
However, if this functionwere used on all kinds of datasets, the results may not be opti-
mal across all datasets. For instance, there may be datasets that require more reduction
on smaller singular values, and on some datasets, a smaller reduction suffices. There
is also another problem with using this function. Although f is bounded, the numer-
ator and denominator by themselves are not bounded. In fact, both the numerator and
denominator explode as k and l increases. For instance, if k = 40 and l = 100, the
numerator takes a very large number and the denominator also takes a really large
value, so the function f is potentially numerical unstable.

A tuneable exponential function It has been shown that an exponential function is a
good choice for f . But using the same exponential function for all kinds of datasets
may not yield optimal results. It also suffers from the problem of potential numerical
instability of f . The ways of overcoming the two disadvantages of the exponential
function (Eq. 14) are discussed here.

The first limitation can be overcome by introducing a tuning parameter β ∈ (0,∞)

into f (Eq. 15) in order to make it generalize to a family of functions rather than
to a single function. The second limitation can be overcome by making both the
numerator and denominator of the function bounded. In the Eq. 15, the numerator and
denominator are at most 1.

f (k, l) = e− (l−1−k)β
l−1 − e−β

1 − e−β
(15)

In Eq. 15, the parameter β takes on an infinite range of values. This ability to choose
β from a continuous range provides fine-grained control over the performance of the
algorithm. Depending on the value of β, the function takes on different forms. The
detailed behavior of this function is discussed in Sect. 3 and its graph is shown in
Fig. 5. The function (15) can be simplified as follows.

f (k, l) = e
kβ
l−1 − 1

eβ − 1
(16)
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Next we deal with the problem of the restricted effective values of α due to its
dependence on sketch size. A simple solution would be to make the parameter of
the algorithm independent of the sketch size. In the proposed algorithm, we call this
parameter β. In solution to the previous problem, we had introduced a tuneable expo-
nential function with a parameter β. It can take any values in the range (0,∞), and
thus offers a more flexible fine-tuning than α-FD.

2.4.2 iSVD

The main limitation of iSVD is its zeroing-out step, which simply discards the least
important singular value.Whenever a sudden andmajor change occurs the newconcept
is treated as noise, and it is subsequently discarded. FD and its variants overcome this
by replacing the zeroing-out step with a more smooth rankReduce step. This step
involves reducing the singular values by an amount determined by the algorithm. So
it would be beneficial to adopt a similar technique in order to deal with sudden and
major concept drift. FD and its variants also have theoretical guarantees with regard
to their performance.

3 Proposed algorithm

In this section, the proposed technique, its intuition, design requirements, and descrip-
tion are discussed.

3.1 Intuition

The highest singular values are generally associated with the signal, and the lowest
valued among them are associated with noise. In α-FD’s reduction step, the same
value of δ is subtracted from all of the selected squared singular values. It is desirable
to reduce the magnitude of noisy or least singular values. So the reduction step must
happen in such a way that the highest singular values are reduced by a very small
amount, and the lowest reduced by a larger amount. In order to do so, we introduce a
scaling function attenuate(β, k, l), which provides the desired scaling factor of δ for
a set of l singular values each indexed by k based on a parameter β ∈ (0,∞). This
function has the form of Eq. 16. Refer Sect. 2.4 for detailed discussion on the possible
choices for this function and reasoning behind why the current choice was made. The
function has the following properties: ∀β ∈ (0,∞)

1. attenuate(β, k, l) is a strictly increasing function of k, for a given β and l.
2. attenuate(β, 0, l) = 0
3. attenuate(β, l − 1, l) = 1

Due to these properties, the highest singular value, σ1 (k = 0) is not reduced at all
and the lowest singular value, σl (k = l − 1) is reduced to 0. The other singular values
∀k ∈ (0, l −1) are reduced in such a way that σk is reduced by a strictly lower amount
than σk+1.
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Fig. 5 Plot of attenuate(β, k, l) for different values of β and l = 100

In Fig. 5 it can be seen that as β → 0 attenuate behaves like a linear function
whereas, as β assumes higher values the function is nearly zero for lower k (cor-
responding to higher singular values) and larger values for higher values of k. For
β = 30, the function has nearly zero values for k till ∼ 80, implying nearly zero
reduction for first 80 singular values, which is the same as in the case of α = 0.2-FD.
The difference is that for k > 80 instead of a constant reduction (as in the case of
α-FD), the reduction increases exponentially with k till k = l − 1 where reduction is
maximum (=1) and hence the lth singular value is zeroed out.

Theoretically, β can assume infinitely many values, whereas in α-FD, effective
values of the parameterα are limited to the countable set { 1l , 2

l , . . . ,
l−1
l , l

l }. In datasets
with gradual and minor or no drift the smaller the value of the parameter, the lower the
empirical errors observed, whereas in datasets withmajor and sudden drift (adversarial
dataset and ConnectUS) empirical error reduces as α is increased. Setting α to ≈0.2
results in a good trade-off between errors in these two types of datasets (Ghashami
et al. 2014). Since all β ∈ (0,∞) have a unique effect on the β-FD algorithm subject
to the machine precision, we can better “fine tune” the trade-off between these errors
by varying β.

3.2 β-FD

We introduce a variant of the parameterized FD algorithm called β-FD. In this algo-
rithm, the reduceRank step has beenmodified to include a scaling function attenuate().
The β-FD algorithm uses the same basic steps as Generic-FD (Algorithm 1), but with
an important difference. In step 10 of the algorithm, the reduceRank procedure is
replaced with modifiedReduceRank that returns �′, given by Eq. 17.
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�′ = diag

([√
�2

1,1 − attenuate(β, 0, l)δ, . . .
√

�2
l,l − attenuate(β, l − 1, l)δ

])

(17)

where l = size(�) and δ = �2
l,l . The β-FD algorithm uses steps similar to α-FD

algorithm, with the exception that the rankReduce step has been modified. In each
iteration, the rank of B is reduced by subtracting the value of δ scaled by the function
attenuate() (given in Eq. 18). There is another important difference between our algo-
rithm and that of α-FD, which is that the reduction step is done for all singular values
instead of the last few. The attenuate function returns a quantity γ given as follows.

γ =
(
e

kβ
l−1 − 1

eβ − 1

)

(18)

Figure 5 shows the behavior of this function for different values of β. The running
time of the algorithm is the same as that of α-FD which is O(ndl2). This could be
improved to O(ndl) as discussed later.

3.3 Fast β-FD algorithm

A fast version of the β-FD algorithm is introduced by incorporating the suggestion of
Desai et al. (2016) (Sect. 3.1.2 in the referred work) in the proposed algorithm. Setting
α = 0.2, we get,

ld = (l − lα/2)

= 0.9l

Here we set δ = �2
ld ,ld

and ld = 0.9l to make our algorithm comparable to Fast-
α = 0.2-FD in effective sketch size. As a result, after the reduction step is done, at
least l/10 singular values are zeroed out and the SVD step is done only for every l/10
input rows. Thus the algorithm takes O(nd + (n/(l/10))dl2) = O(ndl) time. The
reduceRank procedure for fast β-FD returns �′, which is computed as follows.

�′ = diag

([√
�2

1,1 − attenuate(β, 0, ld)δ,
√

�2
2,2 − attenuate(β, 1, ld)δ, . . . ,

√
�2

ld ,ld
− attenuate(β, ld − 1, ld)δ, zeros(1, l − ld)

])

. (19)

4 Theoretical guarantees

In this sectionwe show thatβ-FD algorithm admits theoretical error guarantees similar
to α-FD. For any unit vector x ∈ R

d ,
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Claim 1. ‖Ax‖2 − ‖Bx‖2 ≥ 0
Claim 2. ‖Ax‖2 − ‖Bx‖2 ≤ Δ where Δ > 0
Claim 3. ‖Ax‖2F − ‖Bx‖2F ≥ g(β, l)Δ where Δ > 0 and g(β, l) is a positive
valued function of β and l.

In order to prove the claims, we first prove the following lemma.

Lemma 1 For any unit vector x and β ∈ (0,∞), 0 ≤ ‖Cix‖2 − ‖Bix‖2 ≤ δi

Proof

‖Cix‖2 − ‖Bix‖2 =
l∑

j=1

�2
j, j 〈v j , x〉2 − �

′2
j, j 〈v j , x〉2 (20)

=
l∑

j=1

(
�2

j, j − �
′2
j, j

)
〈v j , x〉2 (21)

= δi

l∑

j=1

attenuate(β, j − 1, l)〈v j , x〉2 (22)

≤ δi

l∑

j=1

attenuate(β, l − 1, l)〈v j , x〉2 (23)

= δi

l∑

j=1

1〈v j , x〉2 ≤ δi‖x‖2 = δi (24)

Equations (23) and (24) follow from the properties 1 and 3 of attenuate function (see
Sect. 3.1) respectively. Left side of the inequality of Lemma 1 is also true since

δi

l∑

j=1

attenuate(β, j − 1, l)〈v j , x〉2 ≥ 0

��
Using Lemma 1 with the fact ‖aix‖2 = ‖Cix‖2 − ‖Bi−1x‖2, and summing up for
all steps of our algorithm, it can be inferred that (see Lemma 2.3 of Ghashami and
Phillips (2014))

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤
n∑

i=1

δi = Δ

Thus Claims 1 and 2 are proved for our algorithm for any β ∈ (0,∞). Next we prove
Claim 3.
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Proof of Claim 3,

‖Ci‖2F =
l∑

j=1

�2
j, j =

l∑

j=1

(
�

′2
j, j + δi attenuate(β, j − 1, l)

)

= ‖Bi‖2F + δi

l−1∑

k=0

attenuate(β, k, l)

= ‖Bi‖2F + δi g(β, l) where g(β, l) =
l−1∑

k=0

attenuate(β, k, l)

Now we use the fact that ‖ai‖2 = ‖Ci‖2F − ‖Bi−1‖2F , we get

‖ai‖2 =
(
‖Bi‖2F + δi g(β, l)

)
− ‖Bi−1‖2F

‖A‖2F =
n∑

i=1

‖ai‖2 =
n∑

i=1

‖Bi‖2F − ‖Bi−1‖2F + δi g(β, l) = ‖B‖2F + g(β, l)�

This implies Claim 3. ��
Closed form expression of g(β, l)

g(β, l) =
l−1∑

k=0

attenuate(β, k, l)

=
l−1∑

k=0

(
e

kβ
l−1 − 1

eβ − 1

)

=
∑l−1

k=0

(
e

kβ
l−1

)
− l

eβ − 1

=
∑l−1

k=0

((
e

β
l−1

)k
)

− l

eβ − 1

=

(
e

βl
l−1 −1

e
β

l−1 −1

)

− l

eβ − 1

= (e
βl
l−1 − 1 − le

β
l−1 + l)

(e
β

l−1 − 1)(eβ − 1)

= e
β

l−1 (eβ − l) + l − 1

(e
β

l−1 − 1)(eβ − 1)
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The closed form of g(β, l) is given by e
β

l−1 (eβ−l)+l−1

(e
β

l−1 −1)(eβ−1)
. The function g(β, l) is a strictly

decreasing function of β, for a constant l.

Let φ = e
β

l−1 , then

g(β, l) = φ(eβ − l) + l − 1

(φ − 1)(eβ − 1)

Theorem 1 β-FD algorithm produces a sketch B ∈ R
l×d given an input matrix

A ∈ R
n×d such that for all k < g(β, l)

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ‖A − Ak‖2F
g(β, l) − k

= (φ − 1)(eβ − 1)

φ(eβ − l) + l − 1 − k(φ − 1)(eβ − 1)
‖A − Ak‖2F

and projection error admits the following bound

‖A − πBk (A)‖2F ≤ g(β, l)

g(β, l) − k
‖A − Ak‖2F

= φ(eβ − l) + l − 1

φ(eβ − l) + l − 1 − k(φ − 1)(eβ − 1)
‖A − Ak‖2F

The Proof of Theorem 1 can be arrived at by invoking Claim 3 in the proof of Lemmas
5 and 6 of Ghashami et al. (2014).

5 Experiments

The experimental settings and results are discussed in this section. We perform a
comparison between Fast-α-FD algorithm, iSVD and Fast-β-FD algorithm. Here we
used the value of 0.2 for α since it was the value of α for which better errors were
obtained on the two different kinds of datawhen compared to FD and iSVD (Ghashami
et al. 2014). To see the comparison of different values ofα referGhashami et al. (2014).

5.1 Performance metrics

In order to evaluate the performance of the proposed algorithm, we use the following
error metrics.

– Scaled covariance error: The scaled covariance error between the input matrix A
and its sketch B is computed as

Scaled covariance error = ‖ATA − BTB‖2/‖A‖2F (25)
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Table 1 Datasets and their characteristics

Dataset # examples # attributes Type of drift nnz (%)

Birds 11,789 312 None 100

Adversarial 10,000 500 Major and sudden 100

Random Noisy 10,000 500 None 100

Spam 9324 499 Minor and gradual 0.327

ConnectUS 394,792 512 Major and sudden 0.5578

MNIST 10,000 789 None 87.117

PeMS SF 63,360 963 None 100

HAR 10,299 561 None 100

Usenet 5995 500 Minor and gradual 0.2296

– Scaled projection error: The scaled projection error is calculated as

Scaled projection error = ‖A − AB†
kBk‖2F/‖A − Ak‖2F . (26)

5.2 Experimental setup

Datasets used: Synthetic as well as real world datasets were used for evaluating the
performance of the three algorithms (iSVD, α-FD and β-FD). There are two different
kinds of data considered in this work. The first kind of data has sudden and major
concept drift (Adversarial, ConnectUS), and the second kind of data has gradual and
minor or no drift (Birds, Random Noisy, Spam, MNIST, PeMS SF, HAR and Usenet).
The datasets and their characteristics are shown in Table 1. Here nnz(A) represents
the number of non-zero entries in the matrix A. The types of drift in the datasets have
been identified experimentally with a simple windowing scheme and KL divergence
measure (see Sect. 5.5), and from the literature.

– Birds (Wah et al. 2011): It contains the images of birds with each column repre-
senting some attribute. The size of the dataset is 11,789× 312. This dataset needs
to be centered around the mean because PCA is a typical operation applied on this
dataset (Ghashami et al. 2014).

– Adversarial data: This data was generated using the method of Ghashami et al.
(2014). There is a sudden drift in its stream which causes iSVD to perform poorly.
The method of generation of this dataset is as follows. The projection of two
random vectors x and y on two orthogonal subspacesM andN is computed. Here,
M ∈ R

m1 ,N ∈ R
m2 and we set m1 = 400 and m2 = 4. The dataset is constructed

as the concatenation of the normalized projection vectors, such that projection of
x onM appears before the projection of y on N. This data has a major and sudden
drift due to this construction procedure, which becomes evident in Sect. 5.5. The
size of this dataset is 10,000 × 500.

– Random noisy: This data was generated by a mechanism similar to Ghashami
et al. (2014). The n × d matrix A (n = 10,000, d = 500) was constructed in
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the following manner. A is composed of both signal and noise parts. The noise
part consists of values taken i.i.d from the Gaussian distribution with mean 0 and
standard deviation 1. It also has a signal to noise ratio controlling parameter ς

set to 10. The signal part contains a k dimensional signal such that k < d. In the
experiments we set k = 30, 50.When k = 30, the dataset is referred to as Rand30,
and when k = 50, the dataset is referred to as Rand50.

– Spam: The data can be downloaded from http://mlkd.csd.auth.gr/concept-drift.
html. The Spam dataset consists of spam messages and it exhibits minor and
gradual drift (Katakis et al. 2010). From the data that was downloaded, the first
499 attributes were used and thus the data used in the experiments has a size of
9324 × 499.

– ConnectUS (Buss 2016): It is a large sparse dataset consisting of 394,792 × 512
values. It contains the web page preferences of users. This dataset exhibits sudden
and major drift. In Sect. 5.5, the evidence for the sudden as well as major drift in
the data is provided.

– MNIST (Lecun and Cortes 2009): This dataset consists of 60,000 images with
784 attributes. In the experiments 10,000 random images from this dataset were
used.

– PeMS SF (Cuturi 2011): This dataset contains the occupancy rates of the car
lanes of the San Francisco Bay area freeways from the Caltrans Performance
Measurement System (PeMS). Data was collected every 10min from 963 sensors
for 440days. The number of measurements taken in a day is 144. The number of
columns in the dataset is 963 and the number of rows is (144 × 440) = 63,360.
The dataset obtained from the UCI repository contains data that has been permuted
using the file provided along with the dataset. In order to obtain the dataset in the
calender order, we used the inverse of the permutation.

– Human Activity Recognition (HAR) using smartphones dataset (Anguita et al.
2013): This dataset consists of the recordings of the activities of 30 subjects. The
size of this dataset is 10,299 × 561.

– Usenet: This is an email dataset that exhibits minor and gradual concept drift
(Katakis et al. 2008). It can be downloaded from http://mlkd.csd.auth.gr/concept_
drift.html. In the experiments, 5995 examples and the first 500 attributes were
used.

System specifications The experiments were carried out in a Fedora 24 system with
Intel Core i7 CPU (3.5GHz), and 16GB of RAM. Coding was done in C++.

5.3 Results and discussion

This section consists of plots of covariance and projection errors obtained for various
sketch sizes. Such plots have been made in order to understand the relation between
the sketch size of the matrix sketch B and the error obtained. According to the theory,
one can expect the error to decrease as the sketch size increases. The results for the
two kinds of data considered in this work are provided here.
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Fig. 6 Comparison of covariance error for Rand30 (left), Rand50 (right)
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Fig. 7 Comparison of projection error for Rand30 (left), Rand50 (right)

5.3.1 Results for data with minor and gradual or no drift

Plots of covariance errors obtained for Rand30 and Rand50 datasets are given in Fig. 6.
For the Rand30 dataset error obtained by β-FD is smaller than that of α-FD for sketch
size less than 40. It can also be observed that on Rand50 dataset, β-FD outperforms
0.2α-FD on all small values of l (l < 60). For instance, when l = 40, α-FD has error
0.0064, whereas β-FD has error 0.00542. Projection error comparison on Rand30 and
Rand50 datasets (Fig. 7) indicate that the proposed algorithm performs better than
α-FD for sketch size less than 40, after which all the three algorithms have almost
similar performance. In Fig. 8, on MNIST dataset, β-FD has low values of covariance
error for all l. iSVD still has the lowest error when compared to the other algorithms.
The experiments confirm the theory discussed in Sect. 3: as β increases, the error
decreases. In the case of projection error for MNIST, for l ≤ 40, β-FD has lower error
values than α-FD.

It can be seen that in Fig. 9, β-FD algorithm performs much better than 0.2α-FD
for all values of l, on the Birds dataset. For the Spam dataset, the β-FD algorithm for
β ≈ 28, outperforms 0.2α-FD for almost all values of l. Projection error comparison
is shown in Fig. 10. In the Birds dataset, for l = 20, 0.2α-FD algorithm has a larger
error when compared to both the other algorithms. Although for l ≥ 30, β-FD has
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Fig. 8 Comparison of covariance (left) and projection (right) errors for MNIST
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Fig. 9 Comparison of covariance error for Birds (left), Spam (right)
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Fig. 10 Comparison of projection error for Birds (left), Spam (right)

higher error values than iSVD, for l = 20, β-FD has lower error than iSVD. In Fig. 11,
the covariance error obtained by β-FD on PeMS indicates that for small values of l, β-
FD (β = 32) has better performance than 0.2α-FD. For HAR dataset, the covariance
error obtained for β-FD is smaller than that of α-FD for almost all values of l except
for l = 40, 50, where both the algorithms have similar performance. In Fig. 12, the
projection error obtained for β-FD is better than that of α-FD for both PeMS and
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Fig. 11 Comparison of covariance error for PeMS (left), HAR (right)
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Fig. 12 Comparison of projection error for PeMS (left), HAR (right)
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Fig. 13 Comparison of covariance (left) and projection (right) errors for Usenet

HAR datasets, and in the PeMS dataset, the error obtained by β-FD is lower than that
obtained by iSVD for l = 20. In the case of Usenet dataset, the covariance error of
β-FD is smaller than that of α-FD, particularly for l ≤ 60. For l ≈ 30, β-FD performs
better than iSVD. The proposed algorithm has lower projection error for small sketch
sizes (l ≤ 60) when compared to α-FD as shown in Fig. 13.
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Fig. 14 Comparison of covariance error for adversarial (left), ConnectUS (right)

In the experiments, different values of β were tried and the β values for which
the error was minimum was found to be {28, 30, 32}. By further investigation of the
results it can be concluded that for all datasets with gradual and minor or no drift, the
higher the value of β, the lower the error. In this case, the lowest error is obtained for
β = 32.

5.3.2 Results for data with major and sudden drift

Adversarial and ConnectUS datasets:Recall the procedure for constructing the adver-
sarial data wherem and n are the two orthogonal subspaces onto which the two vectors
X andY are projected. The adversarial data is then constructed as the concatenation of
those projections after they have been normalized. Due to the nature of the adversarial
data, iSVD cannot adapt to the sudden and major drift in the data. The iSVD algorithm
first encounters the data fromm, and then those of n. In the course of the algorithm the
rows from nwill always be removed because such rows will always be associated with
the smallest singular values, and hence iSVDwill always perform poorly on such data
with sudden and major drift. In the case of both α-FD and β-FD, the new rows will
not be removed, but rather, it adjusts to this sudden concept drift by the reduceRank
procedure.

In Fig. 14 it can be observed that iSVD performs much worse than both α-FD and
β-FD for all values of l in both the datasets. In the adversarial dataset, for all values of
l, β-FD algorithm has lower error than α-FD for l up to 80, after which both of them
have similar error values. On the ConnectUS dataset, β-FD matches the performance
ofα-FD,whereas iSVDhas larger error values for all values of l. In both these datasets,
lowest values of error were obtained for smaller values of β. In particular, for β = 28,
the lowest error was obtained.

It has been observed empirically, after trying different values of β, that for datasets
with sudden and major concept drift, the lower the value of β, the lower the error
obtained, and for data with gradual and minor or no drift, the higher the value of β,
the lower the error obtained. A trade-off between the errors on the two different kinds
of data was found to exist, and for β ≈ 28, our algorithm performs better than α-FD.
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5.4 Comparison of β-FD with α-FD

It has already been shown that α-FD empirically outperforms FD on all datasets and
iSVD on datasets with sudden and major concept drift (Ghashami et al. 2014). In
the previous section we further showed that β-FD outperforms α-FD on almost all
datasets. In order to clearly understand the differences in error obtained between β-FD
and α-FD, plots showing the percentage reduction in errors obtained for β-FD when
compared to α-FD for all the datasets have been shown in Fig. 15. Here, β = 28 and
α = 0.2. The percentage of error reduction is calculated as follows.

Errorpct = Eα − Eβ

Eα

∗ 100 (27)

where Eα is the covariance error obtained for α-FD, and Eβ is the covariance error
obtained for β-FD, for a particular value of β (β = 28).

In Fig. 15a, there is greater than 15% reduction in error for β-FD in the case of
Rand30 dataset. For Rand50 dataset (Fig. 15b), the percentage of error reduction is
15 for sketch size 20, and it becomes more than 30% for l = 30. In both the random
noisy datasets, the percentage of error reduction is minimal for l > 60. In the case of
MNIST, Spam, PeMS, and HAR datasets, the error reduction increases as sketch size
grows. In the case of Birds dataset, there is 20% error reduction for l = 20. In the
adversarial data we see a significant (≈40%) error reduction for sketch size 40 and
in the ConnectUS dataset, the percentage error reduction is notable only for sketch
size greater than 40. In summary, there is a good percentage error reduction for β-FD
(β = 28) for data with sudden and major drift. On data with gradual and minor or no
drift, the percentage of error reduction is sufficiently big for small sketch sizes. This
means that, even for small sketch sizes, the proposed algorithm is able to compute a
more accurate sketch than α-FD.

5.5 Comparison of β-FD with a simple baseline

In the case of data with major drift, there is a simple baseline algorithmwhich discards
the current sketch and recomputes a new sketch whenever major drift is encountered.
The intuition behind constructing such a baseline is that if the driftmagnitude (between
the old and new concepts) is too large, then it is better to discard the old concept and
start afresh with the new concept. In this section we compare β-FD (β = 28) with a
simple baseline for datasets with major drift. In order to detect major drift, we employ
Eq. 3, with KL divergence as D and since the data arrives in a streaming manner, the
indices of the data stream can be thought of as the time, t .

Using a basic windowing scheme it is possible to measure the KL divergence
between the distribution of the historical data and the current data. The historical
window includes a minimum number of data points that have arrived before time t
whose probability distribution is then compared against the distribution of the current
window, which includes the set of points that arrived after time t and within time t + p
for some fixed p. Measuring of drift happens at checkpoints and both the windows
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Fig. 15 Percentage reduction of relative covariance error of β-FD over α-FD for all datasets. a Rand30, b
Rand50, c MNIST, d Birds, e Spam, f PeMS, g HAR, h Usenet, i Adversarial, j ConnectUS
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Fig. 16 Variation of KL measure for the adversarial data

advance forward with time and KL divergence of the distributions of the points in
both the windows is computed. Whenever the drift magnitude crosses a threshold κ , a
major drift is said to have occurred. The advantage of using this windowing scheme is
that it can easily be integrated into any streaming algorithm like the simple baseline,
and as and when a major drift occurs it can restart.

A simple baseline algorithm: This algorithm basically incrementally computes the
SVD of the data and hence its sketch, and whenever a major drift occurs (corresponds
to KL measure exceeding threshold κ), the current SVD is scrapped and the SVD of
the new data (new concept) is computed. This is equivalent to discarding the current
sketch and starting anew whenever a major drift occurs.

Figure 16 shows the KL divergence across the data stream for the Adversarial data.
The KL measure at the index 7500 is 0.0, and it becomes 1 at index 8000, which is a
sudden and a major drift. Here the drift magnitude is large at index 7500, and this rise
of magnitude from 0 to 1 happens near instantaneously.

We compare our algorithm with the baseline. During the course of the simple
baseline algorithm, we detect major drift (Eq. 3) usingKL divergence, setting κ = 0.6.
Figure 17 shows the comparison ofβ-FD algorithmwith the baseline for various values
of l for the Adversarial dataset. It can be seen that the baseline algorithm performs
poorly in terms of the error obtained, when compared to β-FD.

The drift in the ConnectUS dataset is also sudden and major, as shown in Fig. 18.
There are two regimes in the plot, the first being the region of major drift (drift
magnitude >0.6) and the second being the region of minor drift. The major drift
occurs suddenly (in the matter of a few points). The plot of error for various values
of l for the baseline and β-FD is shown in Fig. 19. The error incurred by baseline
algorithm is larger than β-FD. Note that the magnitude of the baseline error in this
case is much smaller than that of the error obtained in case of Adversarial data, which
can be accounted for the fact that the restart in the case of ConnectUS dataset happens
early on as opposed to the late restart in the case of Adversarial dataset. This indicates
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Fig. 17 Comparison of β-FD with the baseline algorithm for the adversarial data

Fig. 18 Variation of KL scores for the ConnectUS dataset

that the simple baseline in fact removesmore data than necessary to create ameaningful
sketch.

5.6 Inferences

Some of the inferences that can be drawn from the experiments are as follows.

– The error obtained for datasets with sudden and major, gradual and minor or no
concept drift by β-FD is lesser than that obtained for α-FD. These results act
as evidence for the fact that the proposed solutions (as discussed in Sects. 2.4.1
and 2.4.2) actually work in practice. This shows the effectiveness of the proposed
method in overcoming the limitations of the previous method (Sect. 2.4).
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Fig. 19 Comparison of β-FD with the baseline algorithm for ConnectUS dataset

– Tuning the parameter β effectively improves the performance of the sketching
algorithm as discussed in Sects. 2.4.1 and 3, thereby overcoming the limitations
of α-FD. Particularly, for β = 28, our algorithm performs better than α-FD on all
datasets.

– The proposed method performs significantly better than iSVD on datasets with
sudden and major concept drift (Fig. 14). This shows that the strategies of smooth
reduction is more effective in handling sudden and major concept drift as opposed
to simply zeroing-out the least important singular value (Sect. 2.4.2). These types
of datasets are handled more effectively by the proposed method when compared
to the previous method, α-FD. In particular, the error obtained for the Adversarial
data for β-FD is much lesser than that obtained by α-FD (Fig. 14).

– β-FD performs much better than a simple baseline algorithm in the case of data
with major drift (Figs. 17, 19). The results indicate that the proposed algorithm is
flexible enough to handle datasets with minor as well as major drift equally well.

6 Conclusion

Many matrix sketching techniques have been proposed in the past, one of which
is a deterministic method called FD. It has good error guarantees, and also has a
parameterized variant called α-FD. The iSVD algorithm has been found to have better
performance in many real world datasets with gradual and minor or no drift when
compared to FD and α-FD, but, it has two disadvantages. The first is the lack of any
theoretical error guarantees and the second is its poor performance in the datasets
with sudden and major concept drift. The α-FD algorithm has good error guarantees
and it has better empirical performance than iSVD on data with sudden and major
drift. However, α-FD has two limitations, namely, the restriction on the effective
values of its parameter α and its constant factor reduction, both of which result in
reduced empirical performance. A modification of α-FD called the β-FD algorithm is
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proposed. The limitations of the previous method are overcome by using a parameter
β and a scaling function that ensures variable reduction. The proposed algorithm has
error guarantees similar to that of α-FD. Empirical results indicate that there exists a
trade-off between the error values on data with sudden and major drift and data having
gradual and minor or no drift for different parameter values. On many real-world as
well as synthetic datasets, for β ≈ 28, the proposed algorithm was found to perform
better than α-FD. In the case of data with major drift we compared β-FDwith a simple
baseline algorithm. It was found that our algorithm gave significantly better results
than the simple baseline which indicates that the proposed algorithm is flexible in
handling the two categories of data considered in this work.
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