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Abstract The problem of community detection in a multilayer network can effec-
tively be addressed by aggregating the community structures separately generated for
each network layer, in order to infer a consensus solution for the input network. To this
purpose, clustering ensemble methods developed in the data clustering field are natu-
rally of great support. Bringing these methods into a community detection framework
would in principle represent a powerful and versatile approach to reach more stable
and reliable community structures. Surprisingly, research on consensus community
detection is still in its infancy. In this paper, we propose a novel modularity-driven
ensemble-based approach to multilayer community detection. A key aspect is that it
finds consensus community structures that not only capture prototypical community
memberships of nodes, but also preserve the multilayer topology information and
optimize the edge connectivity in the consensus via modularity analysis. Empirical
evidence obtained on seven real-world multilayer networks sheds light on the effec-
tiveness and efficiency of our proposed modularity-driven ensemble-based approach,
which has shown to outperform state-of-the-art multilayer methods in terms of mod-
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ularity, silhouette of community memberships, and redundancy assessment criteria,
and also in terms of execution times.

Keywords Community detection · Ensemble clustering · Consensus clustering ·
Multilayer networks · Modularity optimization

1 Introduction

Multilayer networks are increasingly used as a powerful model to represent the orga-
nization and relationships of complex data in a wide range of scenarios (Dickison et al.
2016; Kivela et al. 2014).

A great deal of attention has recently been devoted to the problem of community
detection in a multilayer network (Mucha et al. 2010; Kim and Lee 2015). Solving this
problem is important in order to unveil meaningful patterns of node groupings into
communities, by taking into account the different interaction types that involve all the
entity nodes in a complex network. Existing approaches can broadly be classified into
three main categories: flattening methods, aggregation methods, and direct methods.
Flattening methods determine a single-layer network from the multilayer one, where-
upon any conventional community detection algorithm is applied on that network.
Aggregation methods detect a community structure separately for each network layer,
after that an aggregation mechanism is used to obtain the final community structure.
Finally, direct methods aim to compute a community structure directly on the input
multilayer network, by optimizing some multilayer quality-assessment criterion.

In this work, we focus on the aggregation approach to multilayer community detec-
tion, however from a perspective still poorly explored in the literature, where the
aggregation of layer-specific community structures is performed by resorting to a
clustering ensemble approach. Clustering ensemble methods have been successfully
used as an advanced clustering tool to exploit the availability of a set, or ensemble, of
multiple clustering solutions generated on the same set of objects, by using different
clustering algorithms or settings (Fred 2001; Strehl and Ghosh 2003; Li et al. 2007;
Nguyen and Caruana 2007; Gullo et al. 2009). Given an ensemble of clusterings,
the goal is to compute a consensus clustering, i.e., a single, prototypical clustering
solution that optimizes a certain objective function properly defined over information
available from the clusterings in the ensemble. Intuitively, this allows the generation
of a stable and more reliable solution out of a set of clusterings, each of which has
its own bias and might have been delivered by non-deterministic and parametric pro-
cesses. In a sense, an available ensemble is a source of knowledge from which one
tries to infer a single, meaningful solution that is representative of the initially gained
knowledge.

Our motivations for this work stem from the opportunity of bringing the clustering
ensemble paradigm into the problem ofmultilayer community detection. This way, not
only the requirement for a unique method or setting for determining a multilayer com-
munity structure is relaxed, but also the availability of multiple community structures
can be profitably exploited to learn a consensus for the multilayer network.
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We believe that adopting a consensus-clustering-based aggregation approach to
address the community detection problem in multilayer networks provides a number
of benefits compared to direct approaches. Direct methods for multilayer community
detection need to find a community structure in the multilayer network from scratch,
using information from the multiple layers while inferring the communities, which is
likely to bemore difficult than inferring a community structure from a single graph. By
contrast, an aggregation approach based on consensus clustering, like the one proposed
in this work, will benefit from exploiting an available set of solutions (perhaps from the
same method) each focused on a particular relation/dimension/layer, then will infer a
final structure at a certain “degree of consensus”.

It should also be noted that the idea of using consensus clustering to solve the
problem of multilayer community detection is not novel in the literature (Tang et al.
2012; Lancichinetti and Fortunato 2012); however, to the best of our knowledge,
the concept of consensus community structure has never been formally defined and
exploited so far, neither has been embedded in a modularity optimization problem.

In this paper, we address the problem of community detection on multilayer net-
works by proposing a novelmodularity-driven ensemble-based framework. The input
is a multilayer network and an ensemble of community structures over it. Each of the
community structures in the ensemble is a non-overlapping partition of a particular
layer graph of the network, and obtained by applying any (single-graph) community
detection algorithm. The general objective is to compute a community structure solu-
tion that, by optimizing some property (i.e., modularity) based on information from
all of the layer-specific community structures, is inferred as a consensus community
structure for the multilayer network. The proposed approach follows the clustering
ensemble paradigm as the consensus solution is computed by ignoring any prior
knowledge about the community detection method(s) that originally determined the
layer-specific community structures; in other terms, the communities in the ensemble
are considered as they are. However, our problem differs from the conventional clus-
tering ensemble one, whereby the consensus partition is derived without accessing
the original features of the objects in the data collection, thus not preserving the rela-
tionships among the objects. Our notion of consensus community structure, instead, is
designed to preserve themultilayer network topology, thus taking into account not only
the community memberships of nodes but also the amount and types of links among
nodes. Moreover, the consensus solution in our modularity-driven ensemble-based
problem (i) complies with the community structures in the input ensemble, because it
is discovered from a space of candidates delimited by two community structures that
are designed to be representative of the ensemble, and (ii) it is optimal w.r.t. a quality
criterion that holds independently of the particular ensemble in input.

Our first contribution is the definition of two baseline methods that rely on a co-
association-based consensus clustering scheme (Fred 2001; Strehl and Ghosh 2003;
Gullo et al. 2009),1 suitably defined over the multiple layers of a network. Our defined
baseline methods have the property of discovering a consensus community structure
whose underlying graph can be seen as a topological upper-bound and a topological

1 Consistently with classic literature on ensemble clustering, in this paper we will use term co-association
rather than, perhaps, a more intuitive co-occurrence.
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lower-bound, respectively, of the input multilayer network, for a given co-association
threshold. However, if we consider the general desiderata for community detection
tasks, i.e., high within-community connectivity and low inter-community connectiv-
ity, the solutions of both baseline methods are in principle not optimal: in fact, the
“topological-lower-bound” solution may be poorly descriptive in terms of multilayer
edges that characterize the internal connectivity of the communities, whereas the
“topological-upper-bound” solution may be redundant in terms of multilayer edges
connecting different communities.

To overcome these issues, we define awell-principled theoretical framework by for-
mulating the problem of modularity-optimization-driven ensemble-based multilayer
community detection. Our defined consensus objective function is optimized to dis-
cover a consensus solution with maximum modularity, subject to the constraint of
being searched over a hypothetical space of consensus community structures that are
valid w.r.t. the input ensemble and topologically bounded by the baseline solutions.

We have developed a hill-climbing algorithm for the modularity-based multi-
layer community detection problem. The algorithm starts with the consensus solution
provided by the topological-lower-bounded baseline, then iteratively seeks a better
solution in terms of modularity by incrementally refining the within-community con-
nectivity and the inter-community connectivity, until no further improvements can be
found.

We evaluated our proposed methods over seven real-world multilayer networks.
Results have shown that our modularity-driven approach to multilayer community
detection produces consensus communities that have far better multilayer modularity
and quality of community memberships w.r.t. the ensemble-based baseline methods.
Our main method also outperforms the competitors in terms of both effectiveness and
efficiency aspects.

The rest of the paper is organized as follows. Section 2 briefly overviews related
work. Section 3 introduces background concepts for the proposed approach, which is
described in Sect. 4. Sections 5 and 6 present experimental methodology and results.
Section 7 concludes the paper and outlines future research directions.

2 Related work on multilayer community detection

2.1 Flattening methods

These methods first flatten the input multilayer network into a single-layer one, then
apply any conventional community detection method. Berlingerio et al. (2011) derive
a single-layer network from a multilayer one by drawing an edge between any two
vertices that are connected in at least one layer, and assigning a proper weight to each
edge. Edge weights are defined according to criteria defined over structural multilayer
properties of edges.Rocklin andPinar (2013) focus on theproblemof deriving themore
appropriate function to aggregate edge weights coming from different layers given a
predefined community structure. Tang et al. (2012) define a general framework for
community detection on amultilayer network that relies on four blocks of aggregation,
so that the multilayer communities are computed by aggregating the output of any of
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these blocks. The categorization of the method by Tang et al. therefore depends on the
block at the end of which aggregation is performed. Performing aggregation on the
first block (i.e., network aggregation) gives a flattening method (Tang et al. 2012).

2.2 Aggregation methods

These methods adopt an opposite approach w.r.t. flattening methods, thus avoiding to
loose useful information fromeach of the layers: theyfirst detect a community structure
for each layer separately, then aggregate information from such structures. Methods
falling into this category differ from each other by the way how community-structure
aggregation is performed.

Berlingerio et al. (2013) propose ABACUS, an aggregation method based on fre-
quent pattern mining. Each vertex is associated with a transaction as a list of pairs
given by layer identifier and identifier of the community which that vertex belongs to
in that layer. The aggregate community structure is found by applying frequent closed
itemset mining on the set of transactions.

PrincipalModularityMaximization (PMM) (Tang et al. 2009) aims to find a concise
representation of features from the various layers (dimensions) through twomain steps:
structural feature extraction and cross-dimension integration. Structural features from
each dimension are first extracted via modularity maximization, then concatenated
and subjected to PCA to select the top eigenvectors, which represent possible commu-
nity partitions. Using these eigenvectors, a low-dimensional embedding is computed
to capture the principal patterns across all the dimensions of the network, finally a
simple k-means on this embedding is carried out to find out the discrete community
assignment.

The aforementioned framework by Tang et al. (2012) introduces the utility integra-
tion criterion for computing utility matrices of a community detectionmethod for each
layer separately. Then it optimizes an objective function for the aggregated multilayer
utility matrix. Also, the framework includes a partition integration block, which con-
sists in applying a clustering ensemble based approach (cf. Sect. 3.2) over the set of
clusterings of the set of nodes identified in each layer. Analogously, Lancichinetti and
Fortunato (2012) introduce a framework that combines multiple solutions of the same
clustering algorithm into a consensus matrix, then iteratively applies the clustering
algorithm over it until the matrix turns into a block diagonal one. The obtained blocks
correspond to the final community solution. Burgess et al. (2016) adopt a similar
approach upon recovering missing information on networks.

The latter two methods are examples of ensemble based approaches for multilayer
community detection. However, unlike our proposed approach, they use a clustering
ensemble method as a black-box tool for the problem at hand, mainly focusing on the
community membership of nodes, and in some cases trying to refine inter-community
connectivity based on pruning to unveil connected components for the consensus
generation; furthermore, they do not generate the consensus by optimizing modularity
or any other quality criterion.
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2.3 Direct methods

These are methods that work directly on the input multilayer network. They usually
define ad-hoc community-quality assessment criteria, and search for multilayer com-
munity structures that optimize such criteria (Mucha et al. 2010; Dong et al. 2012;
Amelio and Pizzuti 2014b; De Domenico et al. 2015; Hmimida and Kanawati 2015;
Kuncheva and Montana 2015). We focus the following discussion on representative
methods that use modularity optimization.

Generalized Louvain (GL) (Mucha et al. 2010) extends the classic Louvain method
using multislice modularity, so that each node-layer tuple is assigned separately to a
community.

MultiGA (Amelio and Pizzuti 2014a) andMultiMOGA (Amelio and Pizzuti 2014b)
are bothbasedongenetic algorithms.MultiGAexploits afitness function that combines
the modularity values computed for each layer. The best-fit individual is selected
from the final population, and the community structure of layer corresponding to the
maximum modularity is returned. Upon this solution, a label assignment and a local
search strategy are employed to refine the community structure in terms of modularity.
MultiMOGAutilizes amultiobjective genetic approach, depending on a predetermined
ordering of the layers, which optimizes the modularity for the current layer and the
similarity with the solution found on previously considered layers.

Locally Adaptive Random Transitions (LART) (Kuncheva and Montana 2015) is a
random-walk based method. It first runs a different random walk for each layer, then
a dissimilarity measure between nodes is obtained leveraging the per-layer transition
probabilities. Finally, a hierarchical clustering method is used to produce a hierarchy
of communities which is eventually cut at the level corresponding to the best value of
multislice modularity (Mucha et al. 2010).

Multiplex-Infomap (DeDomenico et al. 2015) is an extension tomultiplex networks
of the classic Infomap algorithm (Rosvall and Bergstrom 2008). Infomap is a search
algorithm that minimizes the flow-based map equation model, which relies on the
principle that communities are detected as groups of nodes among which the flow,
based on a random walk model, persists for a long time once entered.

In Sects. 5–6,we shall includeGL, LART, Multiplex-Infomap,MultiGAandMulti-
MOGA, alongwith the aggregationmethods PMMand ABACUS, in our experimental
evaluation.

3 Background

3.1 Modularity

Modularity quantifies the difference between the expected number of edges linking
nodes inside a community and the actual number of edges linking nodes inside a
community. Given a set of nodes V , for any v ∈ V we use symbol d(v) to denote the
degree of v, and symbol d(V) to denote the total degree of nodes over the entire graph,
i.e., d(V) = ∑

v∈V d(v). Let C denote a community structure, which corresponds to
a partition of the input graph into disjoint sets of nodes. For any community C ∈ C,
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1512 A. Tagarelli et al.

we denote with d(C) the sum of degrees of nodes within C ; moreover, we use symbol
dint (C) to denote the internal degree of C , i.e., the portion of d(C)which corresponds
to the number of edges that link nodes in C to other nodes in C (i.e., twice the number
of links internal to C). Modularity is defined as follows (Newman and Girvan 2004;
LaSalle and Karypis 2015):

Q(C) = 1

d(V)

∑

C∈C

(

dint (C) − d(C)2

d(V)

)

(1)

The value of Q varies from −0.5 to 1.0. In particular, it reaches the minimum of
−0.5 when all edges link nodes in different communities, and the maximum of 1.0
when all edges link nodes in the same community.

3.2 Ensemble clustering

Given a set of objects D, a clustering solution C = {C1, . . . ,Ck} defined over D is
a partition of D into k disjoint groups (clusters). An ensemble of clustering solutions
is a set E = {C1, . . . , Cm}, where each Ci (with i = 1..m) is a clustering solution
defined over D. Intuitively, an ensemble can be obtained in various ways, such as
applying different clustering methods over the same set D, varying one or more model
parameters of the clustering method(s), using different subspaces of object features,
or varying the measure of distance/similarity used in the clustering method(s). Given
a clustering ensemble E , a consensus clustering derived from E is a clustering solution
C∗ that optimizes a given consensus function by exploiting information available from
E .

Main approaches to clustering ensemble are divided into three main categories:
instance-based, cluster-based, and hybrid clustering (Strehl and Ghosh 2003; Gullo
et al. 2009). The instance-based approach is the basic one, since the hybrid approach is
a combination of the other two, and the cluster-based approach employs instance-based
schemes upon meta-clusters, i.e., clusters of clusters that compose each clustering of
the ensemble.

In this work, we follow an approach tomultilayer community detection that exploits
the instance-based clustering ensemble scheme, which is here briefly recalled. An
instance-based clustering ensemble method takes as input a co-occurrence (or co-
association) matrixM defined over D and E , such that the (i, j)-th entry of the matrix
stores the number of clustering solutions in E in which the i-th and j-th objects
appear in the same cluster, divided by the size of E . Following a majority voting
approach, M is pruned, such that all the objects whose corresponding entry in the
matrix is above a certain threshold θ are joined into the same cluster. This approach
has been proved to be equivalent to an agglomerative hierarchical clustering with
single-linkage on M, cutting the resulting dendrogram according to θ (Fred 2001;
Gullo et al. 2009).
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4 Ensemble-based multilayer community detection

4.1 Problem statement

We are given a multilayer network graph GL = (VL, EL,V,L), with set of layers
L = {L1, . . . , L�} and set of entities V . Each layer corresponds to a given type of
entity relation, or edge-label. According to the general multilayer network model
described in Kivela et al. (2014), for each choice of entity in V and layer in L, we
denote with VL ⊆ V × L the set containing the entity-layer combinations in which
an entity is present in the corresponding layer. The set EL ⊆ VL × VL contains
the undirected links between such entity-layer tuples. For every layer Li ∈ L, let
VLi = {v ∈ V | (v, Li ) ∈ VL} ⊆ V be the set of nodes in the graph of Li , and
ELi ⊆ VLi × VLi be the set of edges in Li . To simplify notations, we will also refer
to VLi and ELi as Vi and Ei , respectively. Note that while entities (i.e., elements of
V) are not required to participate in all layers, each entity has to appear in at least
one layer, i.e.,

⋃
i∈1..� VLi = V . Moreover, the only inter-layer edges are regarded as

“couplings” of nodes representing the same entity between different layers. Table 1
summarizes main notations used throughout this paper.

A key concept in this work is the community structure ensemble for a given multi-
layer network.

Definition 1 (Ensemble of community structures) Given a multilayer network GL =
(VL, EL,V,L), with � = |L| layers, an ensemble of layer-specific community struc-
tures for GL is a set E = {C1, . . . , C�}, such that each Ch (with h = 1..�) is a
partitioning of the layer graph Gh (i.e., a community structure for Gh). ��

We assume the availability of an ensemble of community structures for any given
multilayer network. The community structures in the ensemble might be obtained by
applying any community detection algorithm to each layer graph. We do not require
dependency or correlation between the layer-specific community structures.Moreover,
we ignore any information relating to the particular community detection method or
configuration thatwas employed to produce the community structures.Also, according
to the above definition, we remark that each community structure in the ensemble is
regarded as a partitioning of a layer-specific graph, i.e., communities are disjoint in
terms of node membership.

Given an ensemble of community structures for a multilayer network, our general
objective is to compute a consensus community structure as a set of communities that
are representative of how nodes were grouped and topologically-linked together over
the layer community structures in the ensemble.

Definition 2 (Consensus community structure (meta-definition)) Given a multilayer
network GL = (VL, EL,V,L) and an ensemble of community structures E =
{C1, . . . , C�} (with � = |L|) defined over GL, a consensus community structure for E
is a partitioning of a graph with nodes in V and edges in EL, which is representative
of the community structures in E . ��
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Table 1 Main symbols

Symbol Description

V Set of entities

L; L; � Layer; set of layers; number of layers

GL Multilayer graph

VL, EL Set of nodes and set of edges in GL
C ; C Community; community structure

E Ensemble of community structures

M; θ Co-association matrix; co-association threshold

C∗ Consensus community structure

Q Modularity function

d(VL) Total degree of GL
dL (C), dintL (C) Degree of C and internal degree of C in graph of layer L

dextL ,L ′ (C) External degree of C (i.e., twice the sum of inter-layer edges) between
graphs of layers L and L ′

γL Resolution factor (specific for layer L)

β Bit to enable inter-layer coupling factor

Vi , Ei Set of nodes and set of edges of the i-th layer graph (Gi )

Ci Community structure of the i-th layer graph (Gi )

E(C) Set of edges from the multilayer graph underlying consensus C
Ei (C) Set of edges of the subgraph of layer Li induced from the set of nodes in

community C

Ei,C(C) Set of edges of layer Li from the multilayer graph underlying consensus C
that are internal to C

Ei (C j ,Ch) Set of edges of the subgraph of layer Li induced from the set of nodes in
communities C j ,Ch that link C j to Ch

Ei,C(C j ,Ch) Set of edges of layer Li from the multilayer graph underlying consensus C
that link C j to Ch

Q+ne
i, j (C) Update-modularity function for adding ne edges of layer Li within

community C j ∈ C
Q+ne
i, jh (C) Update-modularity function for adding ne edges of layer Li to link

communities C j and Ch

Q−ne
i, jh (C) Update-modularity function for removing ne edges of layer Li that link

communities C j and Ch

Definition 3 (Ensemble-based multilayer community detection (EMCD) (meta-
problem)) Given a multilayer network and an ensemble of layer-specific com-
munity structures for it, determine a consensus community structure from the
ensemble. ��

Note that the above meta-definition captures only the intuition that the consensus
should agree with the community structures in the ensemble, but no hint is provided
about the quality the consensus should have. In fact, according to the general desiderata
in community detection, each community in the consensus should have high internal
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connectivity and low external connectivity. Moreover, given the multiplexity of the
input graph, we seek to identify communities whose nodes are internally connected
by many edges possibly of different types, and are externally connected by few edges
of different types.

Nevertheless, we first need to define how to determine the community membership
of nodes in the consensus structure. For this purpose, our general approach is to start
from a co-association-based scheme defined over the layers, which resembles a major
strategy in research on ensemble clustering (cf. Sect. 3.2) to infer a clustering solution
(i.e., the consensus) that agrees most with the input clusterings. In the following
Sect. 4.2, we describe two baseline approaches that rely on the co-association of
nodes over the layer-specific community structures.; these baselines are called cluster-
induced EMCD since they use co-association to derive a consensus clustering of nodes
which is eventually used to compute a consensus community structure. Subsequently,
in Sect. 4.3, we provide our main formulation of the EMCD problem, whereby we
refine the definition of consensus community structure by integrating the requirement
of quality of consensus via modularity optimization.

4.2 Baseline approaches

4.2.1 Direct cluster-induced EMCD

Given a multilayer network GL and an ensemble E for it, we define the co-association
matrix M, with size |V| × |V|, such that the (i, j)-th entry stores the number of
communities sharedbyvi , v j ∈ V , subject to the condition that the twonodes are linked
to each other, divided by the number of layers (i.e., the size of the ensemble):M(i, j) =
|mi j |

�
, where mi j = {h | Lh ∈ L∧∃C ∈ Ch, Ch ∈ E, s.t. vi , v j in C ∧ (vi , v j ) ∈ Eh}.

Note that, since each node in a layer is assigned to only one community, the number of
communities shared by any two nodes corresponds to the number of layers in which
the two nodes are assigned the same community.

Moreover, in the definition ofM, we have introduced a constraint of linkagebetween
nodes sharing a community in order to ensure that consensus communities will not
contain disconnected components in the multilayer graph. It should be noted the
linkage constraint is consistent with the requirement of having as high density as
possible within any (consensus) community.

Our first proposed baseline, called direct cluster-induced EMCD (C-EMCD),
requires matrix M to infer a clustering of V , denoted as S. More specifically, we
wish to retain only meaningful co-association values, by dropping the lowest ones
which reflect unlikely consensus memberships, and hence are due to noise. Therefore,
M is subjected to a filtering step based on a user-specified parameter of minimum
co-association θ ∈ [0, 1]. It should also be noted that, without this pruning,M would
be a very dense matrix, which would make any clustering process computationally
expensive.

By “cutting” M according to θ , the row (or column) projections corresponding to
the entries greater than or equal to θ , identify a clustering of V , where each cluster
contains nodes that are ensured to be (directly or indirectly) linked together in GL.
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Fig. 1 Example multilayer network (with layer-specific community structures marked by dashed curves)
and corresponding co-association matrix and consensus community structure without (on the left) and with
(on the right) the constraint of node linkage

Finally, a consensus community structure, C∗, is obtained where each community
corresponds to the multilayer subgraph of GL induced from each of the clusters in S.
Note that any consensus community will correspond to a connected subgraph, but not
necessarily to a maximal complete subgraph of the multilayer network.

Example 1 Figure 1 shows how the co-association matrix M would vary if the con-
straint of linkage between nodes was not considered. We set θ ≥ 2/3 to derive the
consensus communities. If the constraint of linkage is discarded, then nodes 1 and 2
are included in the same consensus community C1, because they belong to the same
community in two out of three layers. On the contrary, when the constraint is con-
sidered, nodes 1 and 2 are assigned to different consensus communities C1 and C2,
because they are disconnected in the graph. This occurs since, in their communities
shared in the first and in third layer, nodes 1 and 2 were connected to nodes (i.e., 3
in the first layer, and 4 in the third layer) that will be assigned to different consensus
communities as well. By contrast, nodes 5 and 6 belong to the same consensus com-
munity also in the case of linkage constraint enabled, even though they were never
connected in the layer graphs. ��

4.2.2 Constrained cluster-induced EMCD

Each of the consensus communities produced by C-EMCD corresponds to the sub-
graph ofGL induced from the set of nodes belonging to that community. This method,
however, discards the actual contribution of the different layers in determining the node
co-associations, as specified in mi j , for every vi , v j ∈ V . This limitation is overcome
by the following alternative method, we call cluster-induced EMCD method with co-
association constraints, for short constrained cluster-induced EMCD, and hereinafter
denoted as CC-EMCD.

In CC-EMCD, the computation of consensus communities is refined in such a way
that the structure of a consensus community accounts only for those specific layers
that allow any two nodes to be linked in the shared community. Specifically, for each
cluster S ∈ S, we derive a community as the subgraph C = 〈V, E〉 of GL with a set
of nodes V = S and a set of edges E = {(vi , v j , h) ∈ EL | vi , v j ∈ V ∧ h ∈ mi j }.
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CC-EMCD also differs from C-EMCD in the definition of the inter-community
link structure of the consensus solution. Analogously to the approach used in the
within-community link structure formation, the idea is to link any two consensus
communities by using only the fraction of the multilayer graph that actually involves
the connection of nodes from one community to another. In this case, however, we
account for the layer contribution in an inverse way w.r.t. the within-community link
structure. Specifically, we select only edges that correspond to those layers in which
any two nodes do not appear in the co-association matrix, i.e., given two communities
C (1),C (2) ∈ C∗, with node sets V (1), V (2), we compute the set of edges connecting
them as E(C (1),C (2)) = {(vi , v j , h) ∈ EL | vi ∈ V (1), v j ∈ V (2) ∧ h /∈ mi j }.
Example 2 Consider a network with ten layers, and two nodes vi , v j linked to each
other through six edges inGL. Also, the two nodes co-occur in four layer communities,
thusM(i, j) = 4/10. Suppose θ = 0.5, then the two nodeswill be assigned to different
communities in the consensus structure; moreover, vi will be linked to v j through 6-
4=2 inter-community edges in the consensus structure. By contrast, in the case the two
nodes are not directly connected in GL, then regardless of θ , they will be assigned to
different clusters and will not be linked to each other. ��

4.3 Modularity-driven EMCD

In this sectionwe formulate ourmain proposal to solve the EMCDproblem. This stems
from the observation that the previously discussedbaselinesC-EMCD andCC-EMCD
produce a consensus community structure whose underlying graph can be seen as a
topological upper-bound and a topological lower-bound of GL, respectively, for a
given co-association threshold θ . Intuitively, while being a topological upper-bound,
the solution provided by C-EMCD is not necessarily optimal in the sense that it
might be redundant in terms of multilayer edges connecting different communities;
by contrast, the solution provided byCC-EMCD is topologically minimal forGL, but
it may loose important layer information, i.e., theCC-EMCD consensus communities
may be poorly descriptive in terms of multilayer edges that characterize their internal
connectivity.

In the respect of the general desiderata for community detection tasks, i.e., high
within-community connectivity and low inter-community connectivity, our key idea is
to formulate the EMCD problem as an optimization problem in which the consensus
solution is optimal in terms ofmodularity, and is to be discoveredwithin a hypothetical
space of consensus community structures topologically bounded by CC-EMCD and
C-EMCD solutions.

Definition 4 (Modularity-driven ensemble multilayer community detection problem)
Given a multilayer network GL = (VL, EL,V,L), an ensemble of community struc-
turesE = {C1, . . . , C�} forGL, and a co-association threshold θ , themodularity-driven
ensemble multilayer community detection problem (M-EMCD) is to find a consensus
community structure C∗ for GL by solving the following:
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C∗ = argmax
Ĉ

Q(Ĉ)

subject to C⊥ � Ĉ � C�

with C⊥ := CC-EMCD(GL, E, θ)

C� := C-EMCD(GL, E, θ)

(2)

where, for any community structures C′, C′′ of GL, C′ � C′′ holds iff E(C′) ⊆ E(C′′),
and Q(·) is the modularity function for multilayer networks. ��

In the above definition, the relation of community structure “containment” (denoted
by symbol�) hints at searching for a consensus community structure over amultilayer
graph whose topology might be refined to ensure better modularity of the community
structure, paying particular attention to the enrichment ofwithin-community structures
and possibly to the simplification of the inter-community structures. As stated in the
problem, the structure refinement is to be accomplished to preserve the topology of
the input multilayer graph, according to the lower-bound and upper-bound consensus
solutions.

It is worth emphasizing that the solution of the M-EMCD problem satisfies the two
expected requirements. In fact, (i) the consensus C∗ complies with the community
structures in the input ensemble, because it is discovered from a space of candidates
delimited by two community structures that are designed to be representative of the
ensemble, and (ii) the consensus C∗ is optimal w.r.t. a quality criterion that holds
independently of the particular ensemble in input.

4.3.1 Multilayer modularity

Here we formally specify the modularity function, Q, required in our previously
defined M-EMCD problem.

We propose an extension of modularity to multilayer networks by accounting for
the layer-specific contributions of edges in the internal and external connectivity of
the communities. Two key ingredients in multilayer modularity are the resolution and
inter-layer coupling factors. The former models a notion of layer-specific relevance,
thus helps mitigating the effect on the size distribution of community due to the
resolution limit known in modularity (Fortunato and Barthelemy 2007). The inter-
layer coupling factor quantifies the strength of linkage between layers. In order to deal
with scenarios in which a particular ordering among layers is required, we generalize
the inter-layer coupling factor by admitting a partial order relation≺L over the layers.

Definition 5 (Modularity of multilayer network) Let GL = (VL, EL,V,L) be a
multilayer network graph and, optionally, let ≺L be a partial order relation over the
set of layers L. Given a community structure C for GL, we define the multilayer
modularity of C as follows:
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Q(C) =
∑

C∈C
Q(C) = 1

d(VL)

∑

C∈C

∑

L∈L

⎛

⎝dintL (C) − γL
(dL(C))2

d(VL)
+ β

∑

L ′∈P(L)

dextL ,L ′(C)

⎞

⎠

(3)

where, for any community C ∈ C, dL(C) and dintL (C) are respectively the degree of
C and the internal degree of C , by considering only the edges of layer L , d(VL) is the
total degree of the entire graph, i.e., d(VL) = ∑

L∈L
∑

v∈VL
d(v), γL is a resolution

parameter for edges of layer L , dextL ,L ′(C) is the external degree of C , i.e., twice the
sum of inter-layer edges involving nodes that belong to C , β ∈ {0, 1}, and P(L) is the
set of valid pairings with L defined as:

P(L) =
{

{L ′ ∈ L | L ≺L L ′}, if ≺L is defined

L \ {L}, otherwise

��
Throughout the rest of this work we set the value of γL (for each L ∈ L) to the

default one. Note this is a reasonable choice, which avoids introducing any bias in
the evaluation of how far the actual amount of interactions deviates from the expected
random connections, over each layer. In particular, setting each γL to a value different
from onewill affect not only themodularity value but, more importantly in our context,
also the rate of refinement of thewithin-community and inter-community connectivity,
which will be discussed next. Concerning the dext (C) term, we expect that accounting
for inter-layer edges would lead to complex forms of consensus communities, which
deserve attention that cannot be ensured in this paper due to space limitations; there-
fore, we shall omit the inter-layer edges contribution by setting β = 0. We will leave
the study of both types of parameters as future work (cf. Sect. 7).

4.3.2 An approximation algorithm for the M-EMCD problem

Overview of the algorithm. Figure 2 sketches an overview of the proposedM-EMCD
method. Given an input multilayer graph GL and an ensemble E for it, and a co-
association threshold θ , the CC-EMCD method is first employed to produce the
“lower-bound” consensus community structure. In the core execution of theM-EMCD
method, this consensus is iteratively refined through two main steps, respectively
within-community and across-community, until modularity is optimized to return the
final consensus community structure. Note that the refinement is performed to preserve
the topology of GL, according to the “upper-bound” consensus.

Modularity update functions. As above anticipated, the M-EMCD method requires
a stage of refinement over an initial structure of consensus communities (which corre-
sponds to the θ -based lower-bound consensus over the inputGL and E). In operational
terms, this refinement is accomplished by insertion/removal of edges, possibly from
different layers, inside a community and/or between communities. Each step of refine-
ment requires evaluation of the update occurring in our multilayer modularity. In this
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Fig. 2 Overview of the modularity-based EMCD framework

regard, we manipulate Eq. 3 in order to formulate modularity update functions that
reflect the change to the community structure due to some structural modifications in
a particular community (or pairs of communities) and for a particular layer. Let us
first rewrite Eq. 3 as follows:

d2(VL)Q(C) =
∑

C∈C

∑

L∈L
d(VL)dintL (C) − (dL(C))2 =

= d(VL)
∑

C∈C

∑

L∈L
dintL (C)

︸ ︷︷ ︸
Dint
L ,C

−
∑

C∈C

∑

L∈L
(dL(C))2

︸ ︷︷ ︸
D2
L ,C

⇒

⇒ Q(C) = 1

d(VL)
Dint

L ,C − 1

d2(VL)
D2

L ,C (4)

Insertion of edges within a community. Suppose ne edges of type corresponding
to layer Li are added between nodes (i.e., 2ne nodes) belonging to community C j .
The resulting modularity, denoted as Q+ne

i, j (C), is expressed by the following update
function:

Q+ne
i, j (C) = Dint

L ,C + 2ne

d(VL) + 2ne
− D2

L ,C + 4ne × (ne + dLi (C j ))

(d(VL) + 2ne)2
(5)

It follows that, to calculate modularity of a community structure C subject to an update
involving the structure of any C j according to edges of Li , it is enough to store the
quantities dLi (C j ) (∀Li ∈ L,C j ∈ C), and the cumulated counts Dint

L ,C and d(VL).
Note that we do not consider removal of within-community edges: this is explained

since, as it will be clarified later in this section, M-EMCD exploits the consensus
solution generated by CC-EMCD, which represents the topological lower-bound for
a given θ , and as such it does not require further pruning of within-community edges.

Insertion of edges between communities. Suppose Ne = ne1 + . . .+ neK edges of a
selected type Li ∈ L are added to link a selected communityC j to any of its neighbors
in the set N (C j ) = {C j1, . . . ,C jK }, i.e., nek edges are inserted between nodes in C j

and nodes in any of C jk . The resulting modularity, denoted as Q+Ne
i, j (C), is expressed

by the following update function:
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Q+Ne
i, j (C) = Dint

L ,C

d(VL) + 2Ne
− D2

L ,C + N 2
e + ∑

k n
2
ek + 2NedLi (C j ) + 2

∑
k nek dLi (C jk )

(d(VL) + 2Ne)2

(6)

In case of insertion of ne edges to link communityC j with only one of its neighbors,
say Ch , the above equation is rewritten as:

Q+ne
i, jh(C) = Dint

L ,C

d(VL) + 2ne
− D2

L ,C + 2n2e + 2ne(dLi (C j ) + dLi (Ch))

(d(VL) + 2ne)2

(7)

Removal of edges between communities. Analogously, in case of removal of Ne

edges from a selected community C j and any of its neighbors in the set N (C j ) =
{C j1, . . . ,C jK }, the resulting modularity, denoted as Q−Ne

i, j (C), is expressed by the
following update function:

Q−Ne
i, j (C) = Dint

L ,C

d(VL) − 2Ne
− D2

L ,C + N 2
e + ∑

k n
2
ek − 2NedLi (C j ) − 2

∑
k nek dLi (C jk )

(d(VL) − 2Ne)2

(8)
In case of removal of ne edges linking communityC j and only one of its neighbors,

say Ch , the above equation is rewritten as:

Q−ne
i, jh(C) = Dint

L ,C

d(VL) − 2ne
− D2

L ,C + 2n2e − 2ne(dLi (C j ) + dLi (Ch))

(d(VL) − 2ne)2
(9)

TheM-EMCD algorithm.Algorithm 1 shows our proposed algorithmic solution for
theM-EMCD problem. According to the previously presented overview, Algorithm 1
is a a hill-climbing algorithm for themodularity-basedmultilayer community detection
problem. The algorithm starts with the consensus solution provided by the topological-
lower-bounded baseline, then iteratively seeks a better solution in terms of modularity
by incrementally refining thewithin-community connectivity and the inter-community
connectivity, until no further improvements can be found.

The algorithm starts by invoking the CC-EMCD method to obtain an initial con-
sensus community structure (lines 1–2), then the optimization is performed in two
main stages, by examining one layer at a time:

– In the first stage (lines 6–12), the algorithm seeks the community C j in the current
consensus whose refinement C ′

j corresponds to the maximum modularity in the
consensus if this would contain C ′

j in place of C j ; moreover, if this leads to an
increment in the current value of modularity, the consensus is actually updated
with C ′

j (lines 10–12).
– In the second stage (lines 13–20), the algorithm attempts to refine the connectivity
between C ′

j and any its neighbor communities, updating the consensus at each
step of modularity improvement.
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Algorithm 1Modularity-based Ensemble Multilayer Community Detection
Input: Multilayer graph GL = (VL, EL,V,L), ensemble of community structures E = {C1, . . . ,C�}

(with � = |L|), co-association threshold θ ∈ [0, 1].
Output: Consensus community structure C∗ for GL.
1: Clb ← CC-EMCD(GL,E, θ)

2: C∗ ← Clb
3: repeat
4: for Li ∈ L do
5: Q ← Q(C∗)

{Refine intra-community connectivity of C j }
6: for C j ∈ C∗ do
7: 〈C ′

j , Q
′
j 〉 ← update_community(C∗,C j , Li )

8: end for
9: j∗ ← argmaxQ′

j
10: if Q′

j∗ > Q then

11: C∗ ← C∗ \ C j ∪ C ′
j∗

12: end if
{Refine inter-community connectivity between C j∗ and each of its neighbors}

13: for Ch ∈ N (C j∗ ) do
14: 〈C′

h , Q′
h〉 ← update_community_structure(C∗,C j∗ ,Ch , Li )

15: end for
16: h∗ ← argmaxQ′

h
17: if Qh∗ > Q then
18: C∗ ← C′

h∗
19: Q ← Qh∗
20: end if
21: end for
22: until Q(C∗) cannot be further maximized
23: return C∗

24: function update_community(C,C j , Li )
25: E ← Ei (C j ) \ Ei,C(C j )

26: C ′
j ← addEdges(E,C j )

27: Q′
j ← Q+|E |

i, j (C) {Update modularity through Eq. (5)}

28: return 〈C ′
j , Q

′
j 〉

29: function update_community_structure(C,C j ,Ch , Li )
30: E ← Ei,C(C j ,Ch)

31: Q− ← Q−|E |
i, jh (C) {Update modularity through Eq. (9)}

32: E ′ ← Ei (C j ,Ch) \ E

33: Q+ ← Q+|E ′|
i, jh (C) {Update modularity through Eq. (7)}

34: C+ ← addEdges(E ′,C)

35: C− ← delEdges(E,C)

36: Q± ← Q−|E |
i, jh (C+) {Update modularity through Eq. (9)}

37: C± ← delEdges(E,C+)

38: 〈C, Q〉 ← argmax{Q+, Q−, Q±}
39: return 〈C, Q〉
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The two stages are repeated iteratively until amaximumofmodularity is reached (lines
3-22) and a final consensus community structure is produced.

The within-community refinement is carried out by function update_community
(line 7). For any layer Li and community C j , selected from the current consensus C, it
adds to C j as many edges from the graph of Li as possible, i.e., the set obtained from
the difference between the set of edges of the subgraph of layer Li induced from the
set of nodes in community C (denoted as Ei (C j ) in line 25) and the set of edges of
layer Li from the multilayer graph underlying C that are internal to C (i.e., Ei,C(C j )

in line 25). The modified C j and its modularity are returned.
The inter-community refinement is carried out by function update_community_

structure (line 14). For any layer Li and adjacent communities C j ,Ch , selected
from the current consensus C, it performs the following operations and evaluates the
corresponding modularity: (i) it removes all edges of layer Li from the multilayer
graph underlying consensus C that link C j to Ch (denoted as Ei,C(C j ,Ch) in line 30);
(ii) it adds all edges between nodes inC j and nodes inCh fromGi that are not contained
in the set previously removed (line 32); (iii) it performs the previous operations jointly.
The bestmodularity over the three contingencies and the correspondingmodified inter-
connectivity between C j ,Ch are returned.

4.4 Example of execution of EMCD methods

Figures 3–4 illustrate an exampleofmultilayer community detectionwith theoutcomes
of our proposed EMCD methods. Given the network with 10 nodes, 31 total edges
and 3 layers shown in Fig. 3 (left), suppose the layer-specific community structures
shown in Fig. 3 (right) have been separately provided by some community detec-
tion scheme. Starting from this ensemble of community structures, Fig. 4 shows the
consensus community structures computed by C-EMCD, CC-EMCD and M-EMCD
methods on the example network for three settings of parameter θ—note that these
correspond to regimes within which the assignment of nodes to communities do not
change.While the lower range of θ is not meaningful (since all three methods generate

Fig. 3 Example multilayer network (on the left) and community structures identified on each layer graph
(on the right). Communities are marked by dashed polygons
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Fig. 4 Consensus community structures obtained by EMCD methods (from top C-EMCD, CC-EMCD,
M-EMCD) for three settings of θ : a θ ∈ [0, 1

3 ], b θ = 0.5, and c θ ∈ [ 23 , 1]. Numbers on the edges
correspond to the layers on which two nodes are linked together

a single community), it is interesting to note that edges from some layer are discarded
in CC-EMCD, whereas they are partially recovered by M-EMCD for improving the
modularity of the solution. In the case of θ = 0.5, M-EMCD and C-EMCD produce
three communities, whereas in theCC-EMCD solution the singleton community com-
posed by node 10 is added. Note that nodes 1, 2, 3 are assigned to the same community,
which is expected since they were originally located in the same community in the
ensemble community structure of two layers out of three; the same happens for nodes
4, 5, 6 and for 7, 8, 9. Again, the same assignment of nodes is provided byCC-EMCD
andM-EMCD, however the former solution is composed of a lower number of edges;
part of them are recovered in the solution byM-EMCD, while other edges disappear,
which result in an increase in modularity. Finally, for the highest range of θ ∈ [2/3, 1],
as expected the methods tend to produce more and smaller consensus communities.
This is particularly evident in theM-EMCD solution, in which a quite severe pruning
in the edge structure is performed in order to reach a consensus that reflects the tough
constraint of co-association imposed by θ . Comparing the consensus community struc-
ture found byM-EMCD andC-EMCD, we observe thatM-EMCD performs a pruning
of the inter-community edges, while it mostly preserves the within-community edges,
eventually increasing the modularity of the consensus structure; this is particularly
evident in the comparison of M-EMCD and C-EMCD solutions corresponding to
θ = 0.5 and θ ∈ [0, 1/3]. ��

4.5 Computational complexity aspects

We discuss here the computational complexity of our proposed EMCD methods.
Let us first consider the C-EMCD and CC-EMCD methods. The computational

cost of C-EMCD is mainly due to the construction of the co-association matrix M.
This can be incrementally performed, by requiring a single scan of the adjacency list
of the multilayer graph. More in detail, we maintain a consensus structure index to
store the consensus community membership of each entity in V , and, for one layer at a
time, the corresponding adjacency list and community structure. For every entity, we
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iterate over its neighbors on each layer graph to check if the two nodes belong to the
same community in that layer, and to update the count of communities shared by the
two nodes. The cost of update of this count is constant as it requires direct accesses to
the consensus index. Therefore, the time complexity of C-EMCD is O(|EL|).

The CC-EMCD method has the same time and spatial complexity as C-EMCD,
with one difference. This corresponds to a hash index on a data structure that stores,
for every pair of entities, the set of layers on which the two entity-nodes are adjacent
and assigned to the same community and the set of layers the two entity-nodes are
adjacent but not assigned to the same community. Since accessing this hash table has
cost O(1), the time complexity of CC-EMCD is O(|EL|).

Let us now discuss the complexity of the main method,M-EMCD. This has at least
the same complexity asCC-EMCD, because the latter is performed in the initial step of
Algorithm 1 (line 1). The cost of the execution of themain loop depends on the number
I of iterations needed to converge at a local optimum. In every iteration, M-EMCD
searches for the best community to refine internally and externally (with its neigh-
bors), through the routinesupdate_community andupdate_community_structure,
respectively; recall that both routines exploit appropriate modularity-update rules,
which are performed efficiently with spatial cost O(� × |C∗|), since they require to
store the quantities dLi (C j ), plus fewmore global counts (e.g., d(VL), Dint

L ,C ). The cost
of a single evaluation of update_community is comprised of the cost of two manipu-
lations in the community structure (line 25 and line 26), both bounded by the number
of edges within a particular community and of a particular layer, plus theO(1) cost of
modularity update (line 27). Therefore, performing update_community over all lay-
ers and communities (lines 4–8) isO(|EL| + � × |C∗|). Selecting the best-modularity
community takesO(�×|C∗|), over all layers and communities (lines 9–11). The inter-
community refinement stage (lines 13–21) also costs O(|EL| + � × |C∗|). In fact, a
single evaluation of update_community_structure requires operations whose cost
is either bounded by the number of layer-specific internal edges (lines 30, 32, 34, 35,
37) or constant (lines 31, 33, 36, 38). Overall, the time complexity of M-EMCD is
O(I × (|EL| + � × |C∗|)).

5 Experimental evaluation

5.1 Datasets

Our experimental evaluation was mainly conducted on seven real-world multilayer
network datasets. This selection is motivated by (i) diversification in terms of data
domain (i.e., transportation networks, mixed online/offline relations, single-platform
andmulti-platform relations in social media, co-authorships, classroom relations), and
(ii) public availability, which enables reproducibility.

AUCS (Kim and Lee 2015) describes relationships among university employees:
work together, lunch together, off-line friendship, friendship on Facebook, and coau-
thorship. DBLP (Kim and Lee 2015) represents co-authorships over different time
slices, which correspond to the publication years in the period 1971–2014. EU-Air
transport network (Kim and Lee 2015) (EU-Air, for short) represents European air-
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port connections considering different airlines. FF–TW–YT (stands for FriendFeed,
Twitter, and YouTube) (Dickison et al. 2016) was built by exploiting the feature of
FriendFeed as social media aggregator to align registered users who were also mem-
bers of Twitter andYouTube.Higgs-Twitter (Kim and Lee 2015) represents friendship,
reply, mention, and retweet relations among Twitter users. London transport net-
work (Zhang et al. 2017) (London, for short) models three types of connections of
train stations in London: underground lines, overground, andDLR. 7thGraders (Zhang
et al. 2017) (VC-Graders, for short) represents students involved in three relationships:
friendship, work together, and affinity in the class.

Table 2 reports for eachdataset, the size of setV , the number of edges in all layers, the
average coverage of node set (i.e., 1/|L|∑Li∈L(|Vi |/|V|)), and the average coverage
of edge set (i.e., 1/|L|∑Li∈L(|Ei |/∑

Li
|Ei |)). The table also shows basic, monoplex

structural statistics, such as degree, average path length, and clustering coefficient, for
the layer networks of each dataset.

We also resorted to a synthetic multilayer network generator, mLFR Benchmark,2

mainly for our evaluation of efficiency of theM-EMCDmethod (cf. Sect. 6.1.5).mLFR
extends the tool proposed in Lancichinetti et al. (2008) for multilayer networks. We
used mLFR to create a multilayer network with 1 million of nodes, setting other
available parameters as follows: 10 layers, average degree 30, maximum degree 100,
mixing at 20% , layer mixing 2. We hereinafter refer to this synthetic network as
mLFR-1M.

5.2 Competing methods

We resorted to state-of-the-art methods for community detection, which cover all of
the main categories of existing approaches, namely flattening, aggregation and direct
methods (cf. Sect. 2).

As representative of the category of flatteningmethods, we define a baselinemethod
that applies a community detection method on the flattened graph of the input multi-
layer network, that is, a weighted multigraph having V as set of nodes, the set of edges
{(u, v) | ∃u, v ∈ V ∧ L ∈ L ∧ ((u, L), (v, L)) ∈ EL}, and edge weights that express
the number of layers on which two nodes are connected. In this work, we chose to
use the serial version of the Nerstrand algorithm, recently developed by LaSalle and
Karypis (2015). Our choice is motivated since Nerstrand has shown to be both an
extremely efficient and effective method to discover non-overlapping communities in
(single-layer) weighted graphs via modularity optimization based on the multilevel
paradigm coarsening-initial clustering-uncoarsening.

We also comparatively evaluate our approach with the following multilayer com-
munity detectionmethods, previously discussed in Sect. 2: ABACUS (Berlingerio et al.
2013), Principal Modularity Maximization (PMM) (Tang et al. 2009),3 Generalized

2 http://www.ii.pwr.edu.pl/?brodka/mlfr.php.
3 http://leitang.net/heterogeneous_network.html.
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Louvain (GL) (Mucha et al. 2010),4 Multiplex-Infomap (De Domenico et al. 2015),5

MultiGA (Amelio and Pizzuti 2014a), MultiMOGA (Amelio and Pizzuti 2014b), and
Locally Adaptive Random Transitions (LART) (Kuncheva andMontana 2015). Recall
that PMM and ABACUS are representative methods of the category of aggregation
approaches (the same to which our EMCD methods belong), while the latter five are
direct methods. Apart from ABACUS, all methods were selected because, while hav-
ing different characteristics, they all use modularity either as optimization criterion or
as evaluation criterion (LART) to produce the final community structure.

5.3 Assessment criteria

Weuse both internal and external validation criteria to assess the consensus community
structure solution provided by EMCD methods.

Internal criteria include, besides evaluation of the multilayer modularity, the redun-
dancymeasure and our definedmultilayer silhouette. The redundancymeasure is based
on the assumption that a high quality community should have many “redundant” con-
nections, i.e., pairs of nodes connected through edges of different layers (Berlingerio
et al. 2011). For each community, it is defined as the actual number of redundant con-
nections divided by the theoretical maximum (i.e., total number of layers times total
number of node pairs in the community); a global redundancy is finally obtained aver-
aging the redundancy values over all communities. Note that, while ranging between
0 and 1, redundancy is not defined for singleton communities.

While the redundancy accounts for the coverage of layers within each community,
we also consider the quality of cluster assignment, i.e., how well each node fits its
assigned community. In this respect, silhouettemeasure (Rousseeuw1987) is a suitable
criterion, however it is originally designed for single-layer graphs. We introduce a
twofold modification in the definition, in that (i) the distance computation terms are
linearly combined over all layers, and (ii) the distance between two nodes is computed
as one minus the Jaccard coefficient defined over the layer-specific sets of neighbors.
Silhouette may range from -1 to 1 (the higher, the better).

As for the external criteria, we use the normalized mutual information (NMI), in its
two versions by Strehl and Ghosh (2003) and Dhillon et al. (2004). NMI determines
the alignment in terms of community memberships of nodes between a community
structure and another one used as reference, so that the higher the NMI value the
better the alignment—NMI ranges between 0 and 1. In our setting, for any given
multilayer network, the referencewill correspond to the solution obtained byNerstrand
on the flattened multilayer graph (cf. Sect. 5.2), or alternatively to the layer-specific
community structure solutions obtained by Nerstrand on each of the layer graphs.

5.4 Experimental settings

The main parameter of EMCD methods, θ , was varied in its full range of admissible
values, at a fine-grain step (0.001). We shall present results corresponding to values

4 http://netwiki.amath.unc.edu/GenLouvain/GenLouvain.
5 http://muxviz.net/.
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of θ that determined meaningful variations in terms of multilayer modularity (Eq. 3),
specifically the values in the set {0.01, 0.03, 0.05, 0.07} and from0.1 to 0.9with step of
0.1. Moreover, to generate the ensemble from each of the evaluation network datasets,
we applied Nerstrand on the individual layer-specific graphs—note that, by default, it
does not require an input number of communities.

As far as the competing methods, GL determines a community structure for each
layer of a network, therefore a final solution was derived by assigning each node to
the community which lays on most of the layers. PMM requires an input number of
communities. We devised two configurations for this method: the one in which we
conducted an exhaustive search for the number of communities corresponding to the
best performance in terms of modularity, on every dataset; and the other one in which
the input parameter was set to the number of communities determined by our method;
we will use notation PMMk∗

to refer to the latter configuration of PMM. Moreover,
we set to 50 the number of runs of the k-means clustering method, whose application
is required by PMM to obtain the consensus solution. As concerns ABACUS, this
method utilizes the eclat frequent-pattern mining method to generate the transactional
representation of the ensemble. As by default configuration, themainmodel parameter
in ABACUS (i.e., the minimum support threshold) was kept quite low on each dataset,
typically in the range from three to ten. For the genetic approaches (i.e., MultiGA and
MultiMOGA), LART, and Multiplex-Infomap, we referred to the default parameters
as specified in their respective works.

6 Results

6.1 Evaluation of EMCD methods

6.1.1 Modularity

Figures 5 and 6 show themodularity and the size of the consensus community structure,
respectively, obtained by each of the EMCD methods, by varying θ . The methods
generate consensus solutions of the same size, for anyparticular dataset and θ , therefore
the number of consensus communities is plotted once; also, the number of nodes for
each network graph is reported as a constant, blue dashed line, which corresponds to
the upper bound of the community number.

First, the modularity value, for all methods, tends to follow a non-increasing trend
as the threshold value increases. On the contrary, the number of communities tends to
increase as the threshold value becomes higher (until it eventually reaches the number
of nodes in the graph); this is expected, since it is clear that a high θ value will penalize
the assignment of two nodes to the same community.

Among the three methods,M-EMCD turns out to be the absolute winner, reaching
the highest modularity over all datasets. Moreover, theM-EMCD solution has as good
as or better modularity than that obtained by the other two methods for the same θ .

Table 3 summarizes the M-EMCD consensus configurations corresponding to the
best modularity performances for each dataset, focusing on non-trivial solutions (i.e.,
consensus structures with at least two communities but less than the total number of
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Fig. 5 Consensus solutions obtained by EMCD methods, for varying θ : modularity values. a AUCS, b
DBLP, c EU-Air, d FF–TW–YT, e Higgs-Twitter, f London, g VC-Graders (Color figure online)
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Fig. 6 Consensus solutions obtained by EMCDmethods, for varying θ : number of communities. a AUCS,
b DBLP, c EU-Air, d FF–TW–YT, e Higgs-Twitter, f London, g VC-Graders (Color figure online)

nodes). It highlights the evident superiority of M-EMCD against the other EMCD
methods. Note also that, with the exception of Higgs-Twitter and DBLP, CC-EMCD
tends to prevail against C-EMCD in terms of modularity.

The table also provides indications about the fraction of singleton communities in
the consensus, i.e., disconnected components comprised of a single node of the graph.
Since these communities correspond to nodes that did not satisfy the θ -based co-
association constraint, this can be seen as related to the ability of M-EMCD to detect
outliers in the consensus solution. We observe that, with the exception of EU-Air,
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Table 3 Best-modularity consensus solutions obtained byM-EMCD: modularity valuewith corresponding
θ regime and number of communities (with percentage of singletons), and gains in modularity w.r.t. the
other EMCD methods

Network θ range Modularity #communities
(% singletons)

Gain w.r.t.
CC-EMCD

Gain w.r.t.
C-EMCD

AUCS [0.2, 0.4) 0.863 14 (21.4%) +0.15 +0.33

DBLP [0.01, 0.03) 0.952 64779 (4.0%) +0.46 +0.46

EU-Air [0.027, 0.07) 0.910 274 (76.6%) +0.17 +0.38

FF–TW–YT (0, 0.34) 0.620 86 (3.5%) +0.14 +0.18

Higgs-Twitter (0, 0.01) 0.625 86 (0%) +0.39 +0.37

London (0, 0.34) 0.895 45 (0%) +0.01 +0.10

VC-Graders [0.67, 1) 0.340 11 (0%) +0.12 +0.18

the best-modularity consensus includes zero or a small fraction of singletons, which
indicates that results are not biased by the presence of a large number of singleton
communities.

6.1.2 Community membership

We evaluated the quality of EMCD consensus solutions also from the viewpoint of
community membership of nodes. In this regard, we took two perspectives, corre-
sponding to an internal criterion approach, based on silhouette, and to an external
criterion approach, based on NMI, respectively.

Silhouette evaluation. The M-EMCD method behaves substantially better than the
other EMCD methods also in terms of silhouette. As shown in Table 4, M-EMCD
gains 0.32 (up to 1.03 on FF–TW–YT) w.r.t. CC-EMCD and 0.28 (up to 0.81 on
AUCS) w.r.t. C-EMCD—recall that silhouette may range from −1 to 1. Figure 7
provides details on the silhouette of the consensus community structure obtained by
EMCD methods, for varying θ . We observe that the silhouette of M-EMCD is higher
(i.e., better) thanCC-EMCD andC-EMCDover the various θ values, and inmost cases
M-EMCD outperforms the other methods. Interestingly, the latter occurs consistently
with the best-modularity performance, i.e., the largest gain in silhouette is obtained
by M-EMCD over the same θ range that leads to the best modularity.

NMI evaluation. Figure 8 shows the NMI performances obtained by comparing the
EMCD consensus solutions with the corresponding ones by Nerstrand on the flat-
tened graph, by varying θ , for some selected datasets. Note that since EMCDmethods
obtained very similar values of NMI, a single series, which corresponds toM-EMCD,
is reported for each of the NMI measures. We first observe that the two NMI mea-
sures behave similarly, possibly by a scaling factor, on most θ regimes. One general
remark relevant for the comparison between M-EMCD and the baseline is that the
highest NMI values do not necessarily correspond to the θ value by which the best-
modularity consensus was obtained (indicated with a colored vertical line in each of
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Table 4 Silhouette and global redundancy corresponding to the best consensus solutions obtained by
M-EMCD, and gains w.r.t. the other EMCD methods

Network Silhouette Redundancy

M-EMCD Gain w.r.t. Gain w.r.t. M-EMCD Gain w.r.t. Gain w.r.t.
CC-EMCD C-EMCD CC-EMCD C-EMCD

AUCS 0.366 +0.13 +0.81 0.910 ± 0.097 +0.04 0.0

DBLP 0.084 +0.20 +0.10 0.512 ± 0.290 0.0 −0.001

EU-Air 0.093 +0.44 +0.44 0.620 ± 0.103 +0.02 0.0

FF–TW–YT 0.041 +1.03 +0.04 0.615 ± 0.282 +0.03 0.0

Higgs-Twitter 0.052 +0.33 +0.36 0.658 ± 0.247 +0.40 0.0

London 0.179 +0.03 +0.03 0.533 ± 0.328 +0.03 0.0

VC-Graders 0.288 +0.05 +0.18 0.945 ± 0.064 +0.03 0.0
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Fig. 7 Silhouette by EMCDmethods for varying θ , on AUCS (left) and FF–TW–YT (right) (Color figure
online)
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Fig. 8 NMI03 (Strehl and Ghosh 2003) and NMI04 (Dhillon et al. 2004) performances byEMCDmethods
w.r.t. Nerstrand on the flattened graphs, for varying θ . The vertical colored line on each plot refers to the θ

value corresponding to the best-modularity consensus byM-EMCD. a AUCS, b London, c FF–TW–YT, d
Higgs-Twitter (Color figure online)

the plots): in fact, while on AUCS and London the maximum NMI (about 0.8 and
0.75, respectively) is reached for their respective best-modularity θ , on Higgs-Twitter
and FF–TW–YT (along with the remaining datasets, not shown), the best-performing
θ does not match the θ corresponding to the best NMI for the particular dataset. In
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general, this result indicates that the community membership in the solution by Ner-
strand on the flattened graph can be quite different from that in the modularity-based
optimal structure of consensus obtained by M-EMCD. Note also that the average
NMI values over θ are usually in mid-low ranges, which means that the similar-
ity between M-EMCD and Nerstrand-flattened community structures is moderately
low. Overall, taking into account the joint contribution of the layers for the modular-
ity optimization in the consensus solution differentiates from a community structure
solution on the flattened graph where the relative contribution of each of the layers is
discarded.

The above remarks on the community membership alignment between the solu-
tions of the two methods complement with results shown in Table 5. This reports on
NMI values between the best-modularity consensus byM-EMCD and the community
structure that Nerstrand obtained on each layer graph; finally, the NMI values were
averaged over the various layers. In the table, we observe indeed that NMI (mean)
values range from about 0.3 on Higgs-Twitter to 0.85 on EU-Air, with averages over
all datasets of 0.62 NMI03 and 0.59 NMI04. This indicates that the community mem-
bership of nodes in the consensus keeps a moderate similarity with the community
memberships over each layer on average.

6.1.3 Layer coverage

Table 4 summarizes the global redundancy associated with the best consensus solution
obtained by M-EMCD. Two main remarks stand out here. First, M-EMCD is able to
produce consensus communities whose internal connectivity is, on average, charac-
terized by most of the layers. Second, M-EMCD has also the same ability in terms
of redundancy as C-EMCD, whose solution indeed represents the topological upper
bound, for a given θ , of the communities being identified.

To deepen our understanding on the impact of the different layers on the structure
of the consensus communities, we also analyzed the per-layer distributions of the
fraction of edges specific of any particular layer, over the consensus communities,
as shown in Fig. 9. In the Nerstrand case, for each dataset the algorithm is applied
on the flattened graph, then information on the community membership is projected
over the multilayer network, finally the redundancy distribution is computed over the
multilayer-projected communities. The figure also shows, for each layer in a network,
the number of communities that only contain edges from that layer. At a first glance,
we observe that the per-layer boxplots for M-EMCD are quite similar to those for
C-EMCD. This result is indeed consistent with what we observed in the redundancy
evaluation. Furthermore, coupling redundancy results from Table 4 and results shown
in this figure, it should be noted that the highest values of redundancy of M-EMCD,
observed in AUCS (0.91) and VC-Graders (0.95), correspond to situations in which
the distribution of layer-characteristic communities is more uniform. However, unlike
redundancy, evaluating the per-layer edge distribution allows us to know more about
the role taken by each layer in the composition of the consensus communities. For
instance, on Higgs-Twitter (results not shown), there is one layer predominant on
the others; Conversely, on DBLP (results not shown), all layers participated almost
equally in the edge distribution of the consensus communities. Yet, on London, the
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Fig. 9 Per-layer distribution of edges over the consensus communities obtained by EMCDmethods. Each
EMCD solution is taken at the θ value for which M-EMCD reaches the maximum modularity. The bottom
x-axis indicates, for each layer, the number of communities which contain only edges from that layer. a
M-EMCD, AUCS, b CC-EMCD, AUCS, c C-EMCD, AUCS, d M-EMCD, FF–TW–YT, e CC-EMCD,
FF–TW–YT, f C-EMCD, FF–TW–YT, g M-EMCD, Higgs-Twitter, h CC-EMCD, Higgs-Twitter, i C-
EMCD, Higgs-Twitter, j M-EMCD, London, k CC-EMCD, London, l C-EMCD, London, m M-EMCD,
VC-Graders, n CC-EMCD, VC-Graders, o C-EMCD, VC-Graders (Color figure online)

mid value of redundancy (0.533) should be reconsidered as actually all three layers
participate well in the composition of the communities (the first and third layers
are highly characteristic for all communities, and the second one corresponds to a
distribution with median of 0.6; cf. Fig. 9-j).
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6.1.4 Robustness against ensemble perturbations

Our methods are parametric to a single parameter, θ , for any input multilayer network
and ensemble for it. Here we investigate how robust the M-EMCD method is against
perturbations in the ensemble used as input.

To this purpose, while maintaining Nerstrand as core method to generate the com-
munities in the ensemble, we configured it by specifying the number of desired
communities as input parameter, rather than leaving Nerstrand free to automatically
determine the number of communities. For a given dataset network, we generated
multiple (e.g., 50) ensembles, by varying each time the setting of the number of
communities to obtain on each layer of the network. More in detail, if we indicate
with k1, . . . , k� the number of communities Nerstrand would automatically detect, we
selected the number of communities to obtain at the i-th layer graph (i = 1..�) by
picking it in the interval [ki − ε, ki + ε] uniformly at random, where ε is an offset
selected empirically.

For this analysis, here we report results on EU-Air. We selected this dataset to
appreciate at best the effect of ensemble perturbations in the performance of M-
EMCD—this choice is justified since it has much more layers than the other datasets
but DBLP, however unlike the latter, there is no excessive proliferation in the number
of consensus communities (cf. Table 3). We carried out 50 runs and the analyzed the
distribution of performance scores corresponding to the 50 ensembles. We perturbed
the size of each layer in the ensemble at 5% of the size of the consensus solution
obtained by M-EMCD (with the default configuration of Nerstrand), i.e., we set ε =
0.05 × |C∗| ≈ 15.

Results revealed a good robustness of M-EMCD to variations in the size of the
ensemble clusterings available for a given dataset network. The resulting boxplots
of the distributions of modularity, silhouette, redundancy and average per-ensemble
number of consensus communities were all very short. In particular, the size of the
consensus solutions obtained by M-EMCD varied from 359 to 365 (with mean 362)
over the 50 runs; more interestingly, modularity further increased w.r.t. the perfor-
mance reported in Table 3, with the following summary: 0.942 (min), 0.962 (mean),
0.964 (median), 0.963 (1st quartile), 0.965 (3rd quartile), 0.968 (max), with standard
deviation of just 0.0048.

6.1.5 Efficiency evaluation

We analyzed the time performance of M-EMCD,6 mainly to investigate how well the
method scales over networks as they increase in size.

To this purpose, we focused our evaluation on two networks: EU-Air (already
selected for the previously reported analysis on robustness) and mLFR-1M (cf.
Sect. 5.1). For each of the two network datasets, we ordered the layer graphs by
increasing size, then we derived several subsets by grouping the layer graphs accord-
ing to their size order. More specifically, the first subset contained the smallest layer

6 Experiments were run on an Intel Core i7-3960X CPU @3.30GHz, 64GB RAM machine.
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Fig. 10 Time performance of M-EMCD on a EU-Air and b mLFR-1M (Color figure online)

graph, and the n-th subset (n > 1) contained the portion of the original network
that corresponds to the first n smallest layer graphs. For every subset considered, the
ensemble corresponded to the community structures of the layer graphs belonging to
the subset.

Figure 10 shows execution times obtained by M-EMCD in the two evaluation
scenarios. In the EU-Air case, we reported for each subset the execution time cor-
responding to the best-modularity θ setting, whereas in the mLFR-1M scenario, we
reported execution times for three selected settings of θ , keeping one value of θ at a
time fixed over the various subsets. From the figure, we observe clear evidence in both
scenarios that the time performance trend grows linearly with the size (in terms of
layers, hence edge set) of the network under consideration. Therefore, our M-EMCD
method scales well by increasing the size of the network. Note also that in Fig. 10b
the slope of the trend line tends to increase with θ , which might imply an increase in
the number of consensus communities.

All the above remarks are consistent with our findings from the computational
complexity analysis discussed in Sect. 4.5. To complete our understanding on this, it
should also be noted that the number of iterations, required byM-EMCD to converge,
turns out to be small. For instance, considering the best-performing runs of M-EMCD,
the number of iterations varied from few units (less than ten on London, VC-Graders
and AUCS) to few tens (23 on EU-Air, 38 on FF–TW–YT, 70 on DBLP, 75 on Higgs-
Twitter).

6.2 Comparison with competing methods

In this section we present performance results obtained by the competing methods,
and compare them w.r.t.M-EMCD (Table 6).

Looking at modularity results, M-EMCD outperformed all competing methods,
with the following gains averaged over the datasets: 0.63 versus LART, 0.60 versus
PMMk∗

, 0.36 versus Infomap, 0.32 versus GL, 0.30 vs PMM, 0.27 versus Multi-
MOGA, 0.23 versus Nerstrand, 0.17 versus MultiGA, and 0.07 versus ABACUS.
This remarkably hints that our approach is able to produce multilayer communities
that are substantially better in modularity than those obtained by existing flattening,
aggregation, or direct methods.
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Also in terms of silhouette,M-EMCD tends to outperform all competing methods,
with the following average gains: 0.48 versus Multiplex-Infomap, 0.37 versus Mul-
tiMOGA, 0.36 versus PMM, 0.29 versus LART, 0.23 versus MultiGA, 0.12 versus
PMMk∗

, 0.11 versus GL, 0.05 versus ABACUS, and 0.04 versus Nerstrand. Note that
the least gains by M-EMCD are those against Nerstrand, which is not surprising as
M-EMCD consensus solutions are derived by an ensemble of community structures
obtained by using Nerstrand on each of the layers in a network. Overall, the consensus
solutions by M-EMCD show better quality of community memberships of the nodes
in a network.

Considering global redundancy values, M-EMCD generally shows higher values
than those of competitors over the various networks, with average gains of 0.34 versus
ABACUS, 0.27 versus LART, 0.16 versus PMM, 0.11 versus MultiGA, 0.09 ver-
sus MultiMOGA, 0.07 versus GL, and 0.003 versus Nerstrand. While consistently
yielding higher global redundancy w.r.t. ABACUS and LART, M-EMCD consensus
communities may have lower redundancy than communities produced by the other
methods (e.g., Multiplex-Infomap and PMMk∗

). Nevertheless, coupled with modular-
ity and silhouette results, this suggests thatM-EMCD can utilize less information from
the various layers than other methods to obtain higher quality consensus community
structures.

We also observe that M-EMCD tends to produce much more communities than
Nerstrand, ABACUS, PMM, MultiGA and MultiMOGA, while different relative
behaviors correspond to comparison with the other methods on some networks.

On the efficiency viewpoint, one remark that stands out from the table is that
all methods but Nerstrand incurred memory issues on some datasets. (Experimental
platform corresponded to the same as specified in Sect. 6.1.5.) In this regard, it should
be noted that some of our competitors methods inherently suffer from efficiency and
scalability issues. For instance, the two genetic methods MultiGA and MultiMOGA
have high computational complexity, which not only depends on the (high) numbers
of generations and of individuals, but it is also at least quadratic in the number of nodes
in the networks. Also, LART requires the computation of similarity matrix from the
pair-wise transition probabilities, and hence could not scale well with large multilayer
networks.

In general, by comparing the runtimes obtained by the competing methods with
those obtained by M-EMCD, we found that M-EMCD outperforms the competing
methods in terms of efficiency as well. For instance, on EU-Air, our method took about
0.190 seconds to produce the consensus solution (cf. Fig. 10a), while the following
runtimes were achieved by the competingmethods (in seconds): 2 by PMM, 23 byGL,
20 by Multiplex-Infomap, 475 by LART, 1026 by MultiGA, 12375 by MultiMOGA.
Overall, the following orders of magnitude of percentage increase, averaged over the
evaluation datasets, were obtained by the competing methods: about 1000% by PMM,
1.0E+4 % by Multiplex-Infomap, GL, and ABACUS, 1.0E+5 % by LART, 5.0E+5 %
by MultiGA, and 5.0E+6 % by MultiMOGA.
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6.3 Summary of findings

Several remarks stand out from our evaluation of EMCDmethods in terms of different
assessment criteria. A first important finding is that the modularity-based approach
to the EMCD problem is highly effective in producing consensus communities with
improved modularity w.r.t. the CC-EMCD and C-EMCD methods. M-EMCD also
outperformsCC-EMCD and C-EMCD in terms of silhouette of community member-
ship, whereby inmost cases the highest gain occurs for the same θ range corresponding
to the highest modularity value. Internal connectivity of theM-EMCD consensus com-
munities is characterized by the presence of most of the layers, in general retaining
the same ability in terms of redundancy asC-EMCD, whose consensus represents the
topological upper bound for the communities being identified, for a given θ .M-EMCD
has shown to be relatively robust to the presence of disconnected components in amul-
tilayer graph, as its solutions tend to have a small number of singleton communities.
Our method has also shown to be relatively robust against perturbations in the input
ensemble, in terms of size of its constituting clusterings. Yet, M-EMCD scales well
with the size of a multilayer network, in accordance to its computational cost that is
linear in the number of edges.

M-EMCD was compared with state-of-the-art methods for community detection,
which cover all of the main categories of existing approaches for multilayer networks,
namely flattening, aggregation and direct methods. In our evaluation, the first category
was represented by Nerstrand on the flattened graph, the second by PMM and ABA-
CUS, and the third by GL, LART, Multiplex-Infomap, MultiGA, and MultiMOGA.
Remarkably, M-EMCD consensus communities have shown to be substantially bet-
ter than those generated by the competing methods, in terms of both modularity and
silhouette of community membership. This outperforming behavior of M-EMCD is
further strengthened by the fact the method tends to use less information from the
layers of the network than the competing methods, while producing better consensus
community structures.

7 Conclusion

We presented the first well-principled formulation of the ensemble-based problem
for multilayer community detection. The main innovation aspect of our framework is
that, unlike the few existing ensemble-based community detection approaches, both
the aggregation and consensus inference steps are not naive: our discovered consensus
community structures are not only designed to capture prototypical community mem-
berships of nodes, but they also account for intra-community and inter-community
connectivity, whereas the consensus function is learned via modularity-based opti-
mization instead of being simply based on the sharing of a certainminimumpercentage
of clusters in the ensemble. Results have shown significance as well as outperform-
ing behavior of our approach over state-of-the-art methods in terms of modularity,
silhouette of community memberships, and redundancy assessment criteria. To sup-
port reproducibility, we have made source code and evaluation data available at http://
people.dimes.unical.it/andreatagarelli/emcd/.
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7.1 Limitations and future work

Our ensemble-based approach to multilayer community detection has one main model
parameter, i.e., the co-association threshold. This is typical in the ensemble clustering
paradigm and allows the user to control the level of consensus in the output community
structure. However, since the parameter is data-dependent, choosing a fixed value is
not recommended for networks with different characteristics. In this regard, it would
be worth investigating a way for automatically determine the “best” or “preferred”
co-association setting for an input multilayer network.

Concerning the ensemble, while this is regarded as an input data, in this study
we have considered only the scenario of non-overlapping community detection. It is
certainly of interest to extend our approach to handle overlapping consensus solutions
as well.

Our defined multilayer modularity measure involves two important terms, i.e., the
layer-specific resolution factors and the inter-layer coupling factors.We plan to empir-
ically evaluate the impact of the two terms on the modularity optimization of the
consensus. In this respect, one major direction of future research is the evaluation of
the EMCD problem in time-evolving network scenarios; in particular, the implica-
tions of enabling the time-aware inter-layer coupling factor in the computation of our
defined multilayer modularity, and hence in the discovery of the consensus commu-
nities, deserve attention.

It will be furthermore interesting to push forward our research to address ensemble-
based community evolution problems under a dynamic or online learning framework,
by leveraging recent literature on online consensus clustering (e.g., Yu et al. 2016;
Khan et al. 2016; Katselis et al. 2014).

On another side, our modularity-optimization-based approach would allow for an
integration with a direct method for multilayer community detection; in effect, our
approach could be seen as a refinement for any direct approach, since M-EMCD can
in principle take as input a multilayer community structure, possibly provided by one
of the existing direct methods. Within this view, our approach might be referred to as a
“hybrid” approach to solving themultilayer community detection problem. Thiswould
further pave the way for the development of novel community detection frameworks
for multilayer networks.

References

Amelio A, Pizzuti C (2014a) A cooperative evolutionary approach to learn communities in multilayer
networks. In: Proceedings of PSSN, pp 222–232

AmelioA, Pizzuti C (2014b)Community detection inmultidimensional networks. In: Proceedings of ICTAI,
pp 352–359

Berlingerio M, Coscia M, Giannotti F (2011) Finding and characterizing communities in multidimensional
networks. In: Proceedings of ASONAM, pp 490–494

BerlingerioM, Pinelli F, Calabrese F (2013)ABACUS: frequent patternmining-based community discovery
in multidimensional networks. Data Min Knowl Discov 27(3):294–320

Burgess M, Adar E, Cafarella M (2016) Link-prediction enhanced consensus clustering for complex net-
works. PLoS ONE 11(5):e0153384

De Domenico M, Lancichinetti A, Arenas A, Rosvall M (2015) Identifying modular flows on multilayer
networks reveals highly overlapping organization in interconnected systems. Phys Rev X 5:011027

123



Ensemble-based community detection in multilayer networks 1543

Dhillon IS,GuanY,Kulis B (2004)Kernel k-means: spectral clustering and normalized cuts. In: Proceedings
of ACM KDD, pp 551–556

Dickison ME, Magnani M, Rossi L (2016) Multilayer social networks. Cambridge University Press, UK
Dong X, Frossard P, Vandergheynst P, Nefedov N (2012) Clustering with multi-layer graphs: a spectral

perspective. IEEE Trans Signal Process 60(11):5820–5831
Fortunato S, BarthelemyM (2007) Resolution limit in community detection. Proc Natl Acad Sci 104:36–41
Fred A (2001) Finding consistent clusters in data partitions. In: Proceedings of work. on multiple classifier

systems, pp 309–318
Gullo F, Tagarelli A, Greco S (2009) Diversity-based weighting schemes for clustering ensembles. In:

Proceedings of SDM, pp 437–448
Hmimida M, Kanawati R (2015) Community detection in multiplex networks: a seed-centric approach.

Netw Heterog Media 10(1):71–85
Katselis D, Beck CL, van der Schaar M (2014) Ensemble online clustering through decentralized observa-

tions. In: Proceedings of IEEE conference on decision and control, pp 910–915
Khan I, Huang JZ, Ivanov K (2016) Incremental density-based ensemble clustering over evolving data

streams. Neurocomputing 191:34–43
Kim J, Lee J-G (2015) Community detection in multi-layer graphs: a survey. SIGMOD Rec 44(3):37–48
Kivela M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J

Complex Netw 2(3):203–271
Kuncheva Z, Montana G (2015) Community detection in multiplex networks using locally adaptive random

walks. In: Proceedings of ASONAM, pp 1308–1315
Lancichinetti A, Fortunato S (2012) Consensus clustering in complex networks. Sci Rep 2:336
Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algo-

rithms. Phys Rev E 78(4):046110
LaSalle D, Karypis G (2015) Multi-threaded modularity based graph clustering using the multilevel

paradigm. J Parallel Distrib Comput 76:66–80
Li T, Ding C, Jordan MI (Oct 2007) Solving consensus and semi-supervised clustering problems using

nonnegative matrix factorization. In: Proceedings of ICDM, pp 577–582
Mucha PJ, Richardson T,Macon K, PorterMA, Onnela J-P (2010) Community structure in time-dependent,

multiscale, and multiplex networks. Science 328(5980):876–878
Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E

69(2):026113
Nguyen N, Caruana R (2007) Consensus clusterings. In: Proceedings of ICDM, pp 607–612
Rocklin M, Pinar A (2013) On clustering on graphs with multiple edge types. Internet Math 9(1):82–112
Rosvall M, Bergstrom CT (2008) Maps of randomwalks on complex networks reveal community structure.

Proc Natl Acad Sci USA 105:1118–1123
Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J

Comput Appl Math 20:53–65
Strehl A, Ghosh J (2003) Cluster ensembles: a knowledge reuse framework for combining multiple parti-

tions. J Mach Learn Res 3:583–617
Tang L, Wang X, Liu H (2009) Uncovering groups via heterogeneous interaction analysis. In: Proceedings

of ICDM, pp 503–512
Tang L, Wang X, Liu H (2012) Community detection via heterogeneous interaction analysis. Data Min

Knowl Discov 25:1–33
Yu Z, Luo P, You J, Wong H-S, Leung H, Wu S, Zhang J, Han G (2016) Incremental semi-supervised

clustering ensemble for high dimensional data clustering. IEEE Trans Knowl Data Eng 28(3):701–
714

Zhang H, Wang C-D, Lai J-H, Yu PS (2017) Modularity in complex multilayer networks with multiple
aspects: a static perspective. Appl Inform 4:7

123


	Ensemble-based community detection in multilayer networks
	Abstract
	1 Introduction
	2 Related work on multilayer community detection
	2.1 Flattening methods
	2.2 Aggregation methods
	2.3 Direct methods

	3 Background
	3.1 Modularity
	3.2 Ensemble clustering

	4 Ensemble-based multilayer community detection
	4.1 Problem statement
	4.2 Baseline approaches
	4.2.1 Direct cluster-induced EMCD
	4.2.2 Constrained cluster-induced EMCD

	4.3 Modularity-driven EMCD
	4.3.1 Multilayer modularity
	4.3.2 An approximation algorithm for the M-EMCD problem

	4.4 Example of execution of EMCD methods
	4.5 Computational complexity aspects

	5 Experimental evaluation
	5.1 Datasets
	5.2 Competing methods
	5.3 Assessment criteria
	5.4 Experimental settings

	6 Results
	6.1 Evaluation of EMCD methods
	6.1.1 Modularity
	6.1.2 Community membership
	6.1.3 Layer coverage
	6.1.4 Robustness against ensemble perturbations
	6.1.5 Efficiency evaluation

	6.2 Comparison with competing methods
	6.3 Summary of findings

	7 Conclusion
	7.1 Limitations and future work

	References




