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Abstract The problem of mining correlated heavy hitters (CHH) from a two-
dimensional data stream has been introduced recently, and a deterministic algorithm
based on the use of the Misra–Gries algorithm has been proposed by Lahiri et al. to
solve it. In this paper we present a new counter-based algorithm for tracking CHHs,
formally prove its error bounds and correctness and show, through extensive experi-
mental results, that our algorithm outperforms the Misra–Gries based algorithm with
regard to accuracy and speed whilst requiring asymptotically much less space.

Keywords Data stream mining · Correlation · Heavy hitters

1 Introduction

Mining heavy hitters (also called frequent items), is a well known and studied data
mining task. Algorithms for detecting heavy hitters in a data stream can be classified as
being either counter or sketch based, depending on their main data structure. Counter-
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based algorithms rely on a fixed number of counters in order to keep track of stream
items.

Sketch-based algorithms, as their name suggests, monitor the input data stream
by using a set of counters which are stored in a sketch data structure, typically a
two-dimensional array. In this case, hash functions map items to their corresponding
sketch cells. Counter-based algorithms are deterministic and sketch-based ones are
randomized, thus providing a probabilistic guarantee.

Regarding the counter-based algorithms, the first sequential algorithm has been
designed by Misra and Gries (1982). About twenty years later, the same algorithm
was rediscovered independently by both Demaine et al. (2002) (the so-called Frequent
algorithm) and by Karp et al. (2003). Among the recently developed counter-based
algorithms we recall here Sticky Sampling, Lossy Counting (Manku and Motwani
2002) and Space Saving (Metwally et al. 2006). Notable examples of sketch-based
algorithms are provided by CountSketch (Charikar et al. 2002), Group Test (Cormode
and Muthukrishnan 2005b), hCount (Jin et al. 2003) and Count-Min (Cormode and
Muthukrishnan 2005a).

In some applications, frequent itemsmust be detected with the additional constraint
that recent itemsmust beweightedmore than former items. The underlying assumption
is that, in these applications, recent data is more useful and valuable than older, stale
data. Therefore, each item in the stream has an associated timestamp that will be used
to determine its weight. In practice, instead of estimating frequency counts, we are
required to estimate decayed counts. Two different models have been proposed in the
literature: the sliding window and the time fading model.

In the sliding window model (Datar et al. 2002), freshness of recent items is
captured by a time window, i.e., a temporal interval of fixed size in which only the
most recent N items are taken into account; detection of frequent items is strictly
related to those items falling in the window. The items in the stream become stale over
time, since the window periodically slides forward. In the time fading model (Manjhi
et al. 2005; Cormode et al. 2008; Chen and Mei 2014; Cafaro et al. 2016a) there is
no window sliding over time; freshness of more recent items is instead emphasized
by fading the frequency count of older items. This is achieved by using a decaying
factor 0 < λ < 1 to compute an item’s decayed count (also called decayed frequency)
through decay functions that assign greater weight to more recent elements. The older
an item, the lower its decayed count is: in the case of exponential decay, the weight of
an item occurred n time units in the past is e−λn , which is an exponentially decreasing
quantity.

Regarding parallel algorithms, message-passing based parallel versions of the Fre-
quent and Space Saving algorithms are provided by Cafaro and Tempesta (2011),
Cafaro and Pulimeno (2016) and Cafaro et al. (2016b). Shared-memory algorithms
have been designed as well, and we recall here the parallel version of Frequent (Zhang
et al. 2014), the parallel version of Lossy Counting (Zhang 2012) and the parallel
versions of Space Saving (Cafaro et al. 2017; Roy et al. 2012; Das et al. 2009). Novel
shared-memory parallel algorithms for frequent itemswere recently proposed in Tang-
wongsan et al. (2014). Accelerator based algorithms for frequent items exploiting a
GPU (Graphics Processing Unit) include Govindaraju et al. (2005); Erra and Frola
(2012).
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The problem of mining correlated heavy hitters has been introduced recently by
Lahiri et al. (2016). Data mining problems that require to compute correlated heavy
hitters may be found in the context of network monitoring and management, as well as
anomaly and intrusion detection. As an example, consider the stream of pairs (source
address, destination address) of IP packets passing through a router. Identifying the
nodes that are responsible for the majority of the traffic through that router (frequent
items over a single dimension) could be useful, but it is also interesting to discover,
for all of the frequent sources, what are the destinations that receive the majority of
connections by the same source. Important sources are detected as frequent items over
the first dimension, then we search for the frequent destinations in the context of each
one of those sources, i.e., the correlated heavy hitters of the stream. In order to formally
state the problem, we recall here preliminary notation and definitions.

Definition 1 The frequency fxy of the tuple (x, y) in the stream

σ =< (x1, y1), (x2, y2), . . . , (xn, yn) >

is given by fxy = |{i : (x = xi ) ∧ (y = yi )}|.
Definition 2 The frequency fx of an item which appears as first element in the tuple
(x, y) in the stream σ is given by fx = |{i : (x = xi )}|.

The frequency fx refers to the frequency of the item x disregarding the second item
belonging to the tuple, i.e., the frequency computed when considering the sub-stream
induced by the projection of the tuples on the first dimension, which is also referred
to as the primary dimension (whose items are referred to as primary items). We are
now ready to state the exact correlated heavy hitters problem.

Problem 1 Exact correlated heavy hitters problem.
In the online setting, given a data stream σ of length N made of (x, y) tuples in

which the item x is drawn from the universe U1 = {1, . . . ,m1} and the item y is drawn
from the universe U2 = {1, . . . ,m2}, two user-defined thresholds φ1 and φ2 such that
0 < φ1 < 1 and 0 < φ2 < 1, the exact correlated heavy hitters (ECHH) problem
requires determining all of the (x, y) tuples such that:

fx > φ1N (1)

and
fxy > φ2 fx . (2)

The exact correlated heavy hitters problem can not be solved using limited space
and only one pass through the input stream, hence the approximate correlated heavy
hitters problem (ACHH) is introduced by Lahiri et al. (2016). We state the problem as
follows.

Problem 2 Approximate correlated heavy hitters problem.
Given a data stream σ of length N made of (x, y) tuples in which the item x is

drawn from the universe U1 = {1, . . . ,m1} and the item y is drawn from the universe
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U2 = {1, . . . ,m2}, two user-defined thresholds φ1 and φ2 such that 0 < φ1 < 1 and
0 < φ2 < 1 and two error bounds ε1 and ε2 such that 0 < ε1 < φ1 and 0 < ε2 < φ2,
the Approximate Correlated Heavy Hitters (ACHH) problem requires determining all
of the primary items x such that

fx > φ1N (3)

and no items with
fx ≤ (φ1 − ε1)N (4)

should be reported; moreover, we are required to determine for each frequent primary
candidate x , all of the tuples (x, y) such that

fxy > φ2 fx (5)

and no tuple (x, y) such that
fxy ≤ (φ2 − ε2) fx (6)

should be reported.

In this paper we present CSSCHH (cascading space saving correlated heavy hitters)
a new counter-based algorithm for tracking CHHs in a two-dimensional data stream
and solving the ACHH problem, formally prove its error bounds and correctness
and show, through extensive experimental results, that our algorithm outperforms the
Misra–Gries based algorithm proposed by Lahiri et al. (2016) (from now on called
MGCHH) with regard to accuracy and speed whilst requiring asymptotically much
less space.

The rest of thismanuscript is organized as follows. In Sect. 2weprovide an overview
of related work, we recall in Sect. 3 the MGCHH algorithm introduced by Lahiri et al.
(2016) and present our algorithm in Sect. 4. Then, we formally prove its error bound
and correctness in Sect. 5. Next, we analyze our algorithm’s worst case time and
space complexity in Sect. 6. We compare, from a theoretical perspective, CSSCHH
against MGCHH in Sect. 7. Extensive experimental results are reported and discussed
in Sect. 8. We draw our conclusions in Sect. 9.

2 Related work

The problem of efficiently analyzing two-dimensional data streams in order to gain
insights and compute significant statistics has been largely investigated in many
forms.

Gehrke et al. (2001), Ananthakrishna et al. (2003) andCormode et al. (2009) refer to
the notion of correlated aggregates and present solutions tailored to different contexts.
On a two-dimensional stream, i.e., a stream of items’ pairs, a correlated aggregate is
an aggregate value computed along the second dimension on a set of pairs defined
by a particular constraint on the first dimension. A typical correlated aggregate is,
for instance, the average value of the items on the second dimension computed for
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those pairs such that the frequency of the first dimension item is above a fixed thresh-
old.

Mining heavy hitters can also be applied to streams of pairs, when a pair is regarded
as a single item. The problem requires finding all of the items which appear in the
stream with a frequency greater than a threshold. Manerikar and Palpanas (2009)
and Cormode and Hadjieleftheriou (2009) present an overview and comparison of
the most common frequent items algorithms, while Zhang et al. (2004) treat the case
of multidimensional and hierarchical heavy hitters in the context of network traffic
analysis.

A stream of tuples consisting of items can also be processed in order to find frequent
itemsets, i.e., sets of items appearing together in a number of tuples above a fixed
threshold. In the context of streams of pairs we are interested in finding the frequent
two-itemsets, i.e., itemsets consisting of pairs of items. Also, strictly correlated is the
notion of association rules, which are implications of the type first item �⇒ second
item. Given an association rule x �⇒ y, with (x, y) ∈ σ , the support of the rule is
defined as the ratio fxy

N , and the confidence of the rule is defined as the ratio fxy
fx
. The

problem of mining association rules entails searching for pairs of items such that their
support and confidence are above fixed thresholds. We note here that the confidence
constraint as defined for association rules is fully equivalent to the CHH constraint
shown in Eq. (2). The difference between mining association rules involving tuples
(x, y) and CHHs lies in the support constraint, that is, in the case of association rules
we select all of the tuples (x, y) which are frequent, i.e., with support above a fixed
threshold whilst for CHHs we select all of the tuples (x, y) in which x is frequent, i.e.,
its support fx

N is above a fixed threshold, as in Eq. (1).
Several frequent itemsets algorithm in the offline setting have been proposed, we

recall here Apriori (Agrawal et al. 1993), Eclat (Zaki 2000) and FPGrowth (Han et al.
2000), while an overview of streaming algorithms that solve the frequent itemsets
problem is given in Cheng et al. (2008).

Mirylenka et al. (2015) introduce the notion of Conditional Heavy Hitters and
compare it with other related problems, such as association rules and correlated heavy
hitters, highlighting how solving these problems actually leads to different outputs,
each emphasizing particular aspects of the input data stream. A group of algorithms
is proposed and experimentally evaluated with respect to the approximate mining of
Conditional Heavy Hitters. One of these, FamilyHH, is based on the same approach
we use in our algorithm, but the authors conclude that the algorithm is not particularly
suitable for that problem.

Lahiri et al. (2016) introduced the notion of correlated heavy hitters and proposed
an approximate solution based on the Misra–Gries algorithm. We will refer to the
Misra and Gries algorithm as MG, and to their CHH algorithm as MGCHH. In this
paper, we present a new counter-based algorithm for tracking CHHs, with reference
to the original problem formulation introduced in Lahiri et al. (2016). Therefore, we
compare our solution against MGCHH. In the next section, we recall the MGCHH
algorithm.
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3 The Misra–Gries based CHH algorithm

This CHH algorithm, recently introduced in Lahiri et al. (2016), is based on a nested
application of the Misra and Gries algorithm (Misra and Gries 1982). Before delving
into the details of MGCHH, we recall first how MG works. Being counter-based, MG
keeps track of stream items by using a data structure holding k counters, i.e., pairs
(item, frequency). In particular, given a stream σ of length N , a support threshold φ to
determine frequent items (i.e., those items whose frequency exceeds φN ), and an error
threshold 0 < ε < 1, MG requires at least k = 1

ε
counters to estimate the frequencies

of the items with an error less than or equal to εN .
The MG algorithm works as follows. Upon receiving an item from the stream, if

one of the counters is already monitoring the item, then the counter is updated by
increasing by one the frequency of the item. If none of the counters is monitoring the
item but there is a counter available in the data structure (i.e., a counter which is not
monitoring any item), this counter is then assigned the responsibility of monitoring
the received item and its corresponding frequency is set to one. Otherwise, all of the
counters in the data structure are already in charge of monitoring an item. In this case,
since the number of counters can not exceed k, all of the counters’ frequencies are
decremented by one. As a result, the counters whose frequencies after the decrement
are reset to zero become available to monitor incoming items (since their items are
discarded). It is worth recalling here that MG underestimates the frequency of an
item; therefore, a single pass of the algorithm over the stream is not enough for exact
identification of frequent items.

MGCHH is a single-pass algorithm solving Problem 2 as follows. Basically, the
algorithm estimates the frequencies of the items occurring in the stream along the
primary dimension using a set of counters (primary counters) updated as in the MG
algorithm;moreover, another set of counters (secondary counters) is associated to each
primary counter to keep track of the frequent items occurring along the secondary
dimension and correlated to the primary item. In other words, for each distinct item d
along the primary dimension, the algorithm maintains its frequency estimate f̂d and
an embedded MG set of secondary counters related to the sub-stream σd induced by
d: σd = {y|(d, y) ∈ σ }. The embedded secondary counters are a set of pairs (s, f̂d,s),
where s is an item occurring in σd and f̂d,s estimates the frequency of the tuple (d, s)
in σ . Alternatively, f̂d,s can be seen as the frequency estimate of s in σd . Therefore,
the MGCHH actions on f̂d are driven by the item d occurring in σ whilst the actions
on f̂d,s depend instead on the item s occurring in σd .

TheMGCHHmain data structure is a table H , a set of tuples of the form (d, f̂d , Hd),
where d is an item along the primary dimension, f̂d is its estimated frequency and
Hd is a secondary table which stores the secondary items occurring with d. The Hd

table maintains a set of counters (item, frequency) monitoring items occurring along
the secondary dimension; for each secondary item s, its frequency is determined with
regard to σd and denoted by f̂d,s .

Let s1 and s2 be respectively the maximum number of primary counters in H and
the maximum number of secondary counters in each Hd . InMGCHH s1 and s2 depend
on the parameters φ1, φ2, ε1, ε2, and are set at the beginning of the algorithm.
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When the algorithm starts, its data structures are initialized. The number of counters
s1 (for tracking the primary items) and s2 (for tracking correlated items) is selected in
order to solve the ACHH problem within the ε1 and ε2 error bounds; moreover, s1 and
s2 are also chosen to minimize the total space required, as discussed in Lahiri et al.
(2016). In practice, letting α = 1+φ2

φ1−ε1
, if ε1 ≥ ε2

2α , then MGCHH initializes s1 = 2α
ε2

counters in order to keep track of the primary frequent items and s2 = 2
ε2

counters to

track correlated frequent items; otherwise, if ε1 < ε2
2α , then MGCHH sets s1 = 1

ε1
and

s2 = 1
ε2−αε1

.
Upon receiving a tuple (x, y) from the stream, the data structures are updated as

needed. Depending on the tuple (x, y), the update process works as follows:

1. If x is in H (i.e., it is already monitored), and y is in Hx as well, then both f̂x and
f̂x,y are incremented.

2. If x is in H , but y is not in Hx (i.e., it is not monitored) and there is an available
counter, then y is added to Hx and its frequency is initialized to one. If no counter
is available (i.e., |Hx | = s2), then each counter in Hx is decremented by one. If
the frequency of any monitored item goes to zero, the item is evicted from Hx .
After this operation, the size of Hx is such that |Hx | ≤ s2.

3. If x is not in H , and |H | < s1 then a counter is created for x in H setting its
frequency f̂x to one, and initializing Hx with the counter (y, 1). If |H | = s1, then
for each monitored item d ∈ H , its frequency f̂d is decremented by one; if this
decrement causes f̂d to become zero, then the counter monitoring d is discarded
and removed from H . Otherwise, an arbitrary item s is randomly selected from
Hd such that f̂d,s > 0 and f̂d,s is decremented by one. If f̂d,s goes to zero, the
item s is discarded from Hd . This further decrement guarantees that the sum of
the f̂d,s frequencies within Hd is less than or equal to f̂d .

Finally, in order to report the CHHs in the stream, a query can be posed to the data
structures as follows. For each primary item d ∈ H , if f̂d ≥ (φ1 − 1

s1
)N then the

algorithm searches for the secondary items s ∈ Hd such that f̂d,s ≥ (φ2 − 1
s2

) f̂d − N
s1

and returns the corresponding (d, s) tuples.

4 A Space Saving based algorithm

Our cascading space saving correlated heavy hitters (CSSCHH) algorithm exploits
the basic ideas of the Space Saving algorithm (Metwally et al. 2006), combining two
Space Saving stream summaries for tracking the primary item frequencies and the tuple
frequencies. We refer to our algorithm as Cascading Space Saving since it is based
on the use of two distinct and independent applications of Space Saving. Therefore,
we use two independent Space Saving stream summaries as data structures. The first,
denoted by S p, and referred to as the primary stream summary, monitors a subset of
primary items which appears in the stream through the use of k1 distinct counters. The
second, denoted by S t , includes k2 counters and monitors a subset of the tuples which
appear in the stream.

The counters are updated in order to accurately estimate the items’ frequencies and
a lightweight data structure is exploited to keep the elements sorted by their estimated
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frequencies. A detailed description of the Space Saving algorithm is given inMetwally
et al. (2006). Here, we briefly recall how Space Saving works and its main properties.

A stream summaryS is a data structure used tomonitor k distinct items and includes
k counters. We denote with c j the j th counter and by c j .i and c j . f respectively the
item monitored by the j th counter and its corresponding estimated frequency. When
processing an item which is already monitored by a counter, its estimated frequency is
incremented by one. When processing an item which is not monitored, there are two
possibilities. If a counter is available, it will be in charge of monitoring the item and its
estimated frequency is set to one. Otherwise, if all of the counters are already occupied
(their frequencies are different from zero), the counter storing the item with minimum
frequency is incremented by one. Then the monitored item is replaced by the new
item. This is because an item which is not monitored can not have a frequency greater
than the minimal frequency. The complexity of the Space Saving update procedure is
O(1) in the worst case, as proved by its authors.

Let N be the length of the input stream,
∑

ci∈S ci . f the sum of the counters in

S, k = |S| the number of counters in S, fv the exact frequency of an item v, f̂v
its estimated frequency and f̂ min the minimum frequency in S. Then, the following
relations hold for Space Saving:

∑

ci∈S
ci . f = N ,

f̂v − fv ≤ f̂ min ≤ N

k
. (7)

Our CSSCHH algorithm starts by initializing the S p primary stream summary data
structure allocating k1 counters and the correlated S t stream summary allocating k2
counters. We shall explain in Sect. 5 how exactly the values of k1 and k2 are derived.
Algorithm 1 presents the pseudocode related to the initialization phase of CSSCHH.

Algorithm 1 CSSCHH Init
Require: Threshold for primary items φ1; threshold for correlated items φ2; tolerance for primary items

ε1; tolerance for correlated items ε2.
Ensure: Properly initialized S p and S t stream summaries
1: procedure CSSCHH- Init(φ1, φ2, ε1, ε2)
2: β ← 1

ε2φ1

3: γ ← ε2+φ2
ε2φ1

4: k1 ← max
{

1
ε1

, γ + √
βγ

}

5: k2 ← β
k1

k1−γ

6: Allocate k1 counters for S p

7: Allocate k2 counters for S t

8: return S p and S t

9: end procedure

In CSSCHH algorithm, a tuple (x, y) is processed by updating two stream sum-
maries, S p and S t . The primary item x is used to update the primary stream summary
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S p; the tuple (x, y) is also considered as a single item and it is used to update the cor-
related stream summary S t . Since for each tuple in the stream both stream summaries
are updated by means of the Space Saving update procedure, we inherit its properties.
Let fx and f̂x denote the exact and estimated frequency of the primary item x , and let
fxy and f̂xy denote the exact and estimated frequency of the tuple (x, y); moreover,
denoting by cpi and cti the i th counter in the primary and in the correlated stream

summary, and denoting by ˆf pmin
and f̂ t

min
the minimum frequency in the primary

and correlated stream summary, the following relations hold:

∑

cpi ∈S p

cpi . f = N ,

f̂x − fx ≤ ˆf pmin ≤ N

k1
,

(8)
∑

cti∈S t

cti . f = N ,

f̂xy − fxy ≤ f̂ t
min ≤ N

k2
. (9)

The update procedure of CSSCHH is presented in Algorithm 2.

Algorithm 2 CSSCHH Update
Require: x, y, the items of a tuple.
Ensure: Update of S p and S t stream summaries.
1: procedure CSSCHH- Update(S p,S t , x, y)
2: SpaceSavingUpdate(S p , x)
3: SpaceSavingUpdate(S t , (x, y))
4: end procedure

In order to retrieve the correlated heavy hitters, a query is posed to both stream
summaries. The query procedure internally uses two lists, F and C . The former stores
primary items and their estimated frequencies (r, f̂r ). The latter stores CHHs (r, s, f̂rs)
in which r is a primary frequent item, s the correlated frequent item candidate and f̂rs
the estimated frequency of the tuple (r, s).

The query algorithm inspects all of the k1 counters in the S p stream summary.
If the frequency of the monitored item is greater than the selection criterion (i.e.,
cpj . f > φ1N ), then we add the monitored item r = cpj .i and its estimated frequency

f̂r = cpj . f to F .
The algorithm inspects now all of the k2 counters of the S t stream summary. The

monitored items in S t are the tuples (r, s). We check if the primary item r is a primary
frequent item candidate (i.e., if r ∈ F); if this condition is true and the tuple estimated
frequency is greater than the selection criterion (i.e., ctj . f > φ2( f̂r − N

k1
)), then the

triplet (r, s, f̂rs) is added to C . The Query procedure is presented as Algorithm 3.
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Algorithm 3 CSSCHH Query
Require: S p and S t stream summaries.
Ensure: Set of correlated frequent items C
1: procedure CSSCHH- Query(S p , S t )
2: F ← ∅
3: for each cpj ∈ S p do

4: r ← cpj .i ; f̂r ← cpj . f

5: if f̂r > φ1N then
6: F ← F ∪ {(r, f̂r )}
7: end if
8: end for
9: for each ctj ∈ S t do

10: (r, s) ← ctj .i ; f̂r s ← cpj . f

11: if r ∈ F ∧ ( f̂r s > φ2( f̂r − N
k1

)) then

12: C ← C ∪ {(r, s, f̂r s )}
13: end if
14: end for
15: return C
16: end procedure

5 Correctness

We are going to formally prove the correctness of our algorithm. The main results of
this section are the following two theorems.

Theorem 1 The CSSCHH algorithm reports all of the primary items x whose exact
frequency fx is greater than the threshold, i.e., fx > φ1N and no items whose exact
frequency is such that fx ≤ (φ1 − 1

k1
)N.

Proof The algorithm determines all of the primary frequent candidates through the
selection criterion f̂x > φ1N . Since the stream summary provides an overestimation
of the frequency f̂x ≥ fx , if the exact frequency of an item is greater than the threshold,
its estimated frequency will be greater as well: f̂x ≥ fx > φ1N , hence the item will
be selected and this proves the first part of the theorem.

The second part of the theorem states that, given an item x , if its exact frequency
is fx ≤ (φ1 − 1

k1
)N , which can be rewritten as

fx + 1

k1
N ≤ φ1N , (10)

then the item will not be selected; hence we must prove that its estimated frequency is
less than f̂x ≤ φ1N . By using the Space Saving properties we know that the estimate
error provided by the stream summary S p is bounded by N

k1
:

f̂x − fx ≤ 1

k1
N ⇒ f̂x ≤ fx + 1

k1
N , (11)
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hence, by using Eq. (10) we have

f̂x ≤ fx + 1

k1
N ≤ φ1N , (12)

which proves the theorem. Moreover, this theorem also implies that for all of the
primary frequent candidates it holds that:

fx >

(

φ1 − 1

k1

)

N . (13)

�
Theorem 2 All of the tuples (x, y) with the item x reported as primary frequent
candidate and with exact frequency fxy greater than the threshold ( fxy > φ2 fx )
are reported as correlated heavy hitter candidate. No tuple with a primary item x
reported as frequent primary candidate and with exact frequency less than fxy ≤
(φ2 − k2φ2+k1

k2(k1φ1−1) ) fx is reported as correlated heavy hitter candidate.

Proof The algorithm determines a correlated heavy hitter candidate (x, y) only if the
primary item x as been reported as primary frequent item candidate and if its estimated
frequency is greater than the selection criterion f̂xy > φ2( f̂x − N

k1
). We must prove

that those tuples whose exact frequency is greater than the threshold fxy > φ2 fx
are reported by the algorithm and hence their estimated frequency is greater than the
selection criterion f̂xy > φ2( f̂x − N

k1
). If fxy > φ2 fx is true, then f̂xy > φ2 fx is also

true since the stream summary S t provides an overestimation of the tuple frequency.
Now, since x is reported as primary frequent candidate, from Theorem 1 we have that
fx ≥ f̂x − N

k1
and it holds that

f̂xy > φ2 fx ≥ φ2

(

f̂x − N

k1

)

. (14)

Since the frequency estimate is greater than the selection criterion, the tuple will
be reported and this proves the first part of the theorem.

The second part of the theorem states that those items with an exact frequency such
that fxy ≤ (φ2 − k2φ2+k1

k2(k1φ1−1) ) fx will not be reported, hence we must prove that their

estimate frequency is less than or equal to the selection criterion i.e., f̂xy ≤ φ2( f̂x− N
k1

).
Since the algorithm first filters the tuples retaining only the ones whose primary item
belongs to the primary frequent item candidates, from Theorem 1 it follows that for
all of the primary frequent candidates it holds that:

fx >

(

φ1 − 1

k1

)

N ⇒ fx >
φ1k1 − 1

k1
N . (15)

To prove the theorem we start assuming the exact frequency is such that

fxy ≤
(

φ2 − k2φ2 + k1
k2(k1φ1 − 1)

)

fx . (16)
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Due to the S t stream summary properties, the error of the tuple frequency estimate
is bounded by N

k2
, so that f̂xy − N

k2
≤ fxy and it holds that:

f̂xy − N

k2
≤ fxy ≤ φ2 fx − k2φ2 + k1

k2(k1φ1 − 1)
fx . (17)

Since the frequency estimate is an overestimation (i.e., fx ≤ f̂x ),

f̂xy − N

k2
≤ φ2 f̂x − k2φ2 + k1

k2(k1φ1 − 1)
fx ; (18)

using Eq. (15) we can write:

f̂xy − N

k2
≤ φ2 f̂x − k2φ2 + k1

k2(k1φ1 − 1)

φ1k1 − 1

k1
N ,

f̂xy − N

k2
≤ φ2 f̂x − k2φ2 + k1

k2k1
N ,

f̂xy − N

k2
≤ φ2 f̂x − φ2

k1
N − N

k2
,

f̂xy ≤ φ2

(

f̂x − N

k1

)

. (19)

Taking into account that the estimated frequency is less than the selection criterion,
the corresponding tuple will not be reported, proving the theorem. Moreover, this
theorem also implies that for all of the correlated heavy hitter candidates it holds that:

fxy >

(

φ2 − k2φ2 + k1
k2(k1φ1 − 1)

)

fx . (20)

�
Theorems 1 and 2 can be used for tuning the stream summary sizes k1 and k2. The

ACHH problem poses a constraint about the tolerance ε1 on the number of primary
frequent false positives and a corresponding constraint about the tolerance ε2 on the
number of correlated heavy hitter false positives. Therefore, k1 and k2 are also subject
to the following constraints:

C1 The ACHH problem does not admit false negatives, hence all of the real primary
frequent itemsmust be reported. Themaximum number of primary frequent items
is 1

φ1
hence

k1 ≥ 1

φ1
. (21)

C2 The ACHH problem allows primary false positives only with a tolerance given by
ε1N , hence for all of the primary frequent candidates it must be fx ≥ (φ1−ε1)N .
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Using Theorem 1 we need to impose:

1

k1
≤ ε1 ⇒ k1 ≥ 1

ε1
. (22)

C3 TheACHHproblem does not admit false negatives, hence all of the real correlated
heavy hitters must be reported. The maximum number of correlated heavy hitters
is 1

φ1φ2
, hence

k2 ≥ 1

φ1φ2
. (23)

C4 The ACHH problem allows correlated false positives only with a tolerance given
by ε2 fx , hence for all of the correlated heavy hitter candidates it must be fxy ≥
(φ2 − ε2) fx . Using Theorem 2 we need to impose:

k2φ2 + k1
k2(k1φ1 − 1)

≤ ε2. (24)

Solving Eq. (24) w.r.t. k2, we have

k2(ε2k1φ1 − ε2 − φ2) ≥ k1 (25)

Since k2 and k1 represent the sizes of the stream summaries, both are positives
integers. Therefore, a solution to Eq. (25) is feasible only when the left hand
side term is positive. To summarize, the current constraint is expressed by the
following equations:

ε2k1φ1 − ε2 − φ2 > 0 ⇒k1 >
ε2 + φ2

ε2φ1
,

k2 ≥ k1
ε2k1φ1 − ε2 − φ2

. (26)

Constraint C1 can be ignored since it is already embodied by constraint C2; indeed,
the problem requires that ε1 < φ1. Constraint C3 can be ignored as well since it can
be easily proved that k1

ε2k1φ1−ε2−φ2
> 1

φ1φ2
for any value of the input parameters.

Introducing the terms β = 1
ε2φ1

and γ = ε2+φ2
ε2φ1

, we have to determine k1 and k2
such that their sum is minimized subject to the following constraints:

k1 ≥ 1

ε1
,

k1 > γ,

k2 ≥ β
k1

k1 − γ
. (27)

The optimal values for k1 and k2 are obtained by solving a constrainedminimization
problem. Introducing a variable substitution r = k1 + k2 and s = k1 the constrained
minimization problem is formulated as follows:
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minimize r
subject to s ≥ 1

ε1
,

s > γ,

r ≥ s + β s
s−γ

.

(28)

From the last constraint we can deduce that the minimum value of r must belong
to the curve r = s + β s

s−γ
which attains its minimum for s = γ + √

βγ . Taking into
account both constraints on s, the minimum is reached when

s = max

{
1

ε1
, γ + √

βγ

}

,

r = s + β
s

s − γ
. (29)

Therefore, the corresponding k1 and k2 values are

k1 = max

{
1

ε1
, γ + √

βγ

}

,

k2 = β
k1

k1 − γ
. (30)

These are the values set by Algorithm 1 in order to initialize the CSSCHH stream
summaries data structure by using the minimum number of counters, and, conse-
quently, of space required to solve the ACHH problem.

6 Space and time complexity

In this section, we analyze the worst case time and space complexity of our algorithm.
Regarding the initialization phase (Algorithm 1), the worst case complexity is clearly
O(1) since initialization consists of just a few assignments, each one requiring at most
O(1) time.

The update procedure (Algorithm 2) requires constant time as well. Indeed, each
one of the two calls to SPACESAVINGUPDATE requires at most O(1).

Finally, a query (Algorithm 3) requires time at most O(k1 + k2). Indeed, the first
part of the query is just a linear scan of the k1 counters related to the primary stream
summary S p, in which we check, for each counter, if the corresponding monitored
item’s frequency exceed the selection criterion.When the check succeeds, the item and
its estimated frequency are added to the hash table F . Since checking the condition
can be done in constant time, this part of the query requires time at most O(k1).

Next, we inspect the correlated stream summary S t . Again, this is just a linear
scan. For each counter, we retrieve the stored tuple (r, s), and its estimated frequency.
Then, we search for the primary item r in F ; if the item belongs to F and if the
condition required for the tuple (r, s) to be considered a CHH is verified, then we
update the list C holding the CHHs that shall be returned to the user. Searching in F
requires constant time (since F is implemented as an hash table), and verifying the
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CHH condition requires constant time as well, the second part of the query requires
time at most O(k2). It follows that, overall, the query requires in the worst case time
at most O(k1 + k2).

Regarding the space complexity, it is clear that the total space required is at most
O(k1 +k2), since we use k1 counters for S p and k2 counters for S t . More specifically,
in order to express the space complexity with regard to the input parameters, we
distinguish two cases as in Eq. (30). When 1/ε1 ≤ γ + √

βγ , we have

k1 + k2 = 2
√

ε2 + φ2 + ε2 + φ2 + 1

ε2φ1
= O

(
1

ε2φ1

)

; (31)

otherwise, for 1/ε1 > γ + √
βγ , it holds that

k1 + k2 = 1

ε1
+ 1

ε1ε2φ1

(
1
ε1

− ε2+φ2
ε2φ1

) <
1

ε1
+ 1

ε1
√

ε2 + φ2
= O

(
1

ε1
√

ε2

)

. (32)

7 Theoretical comparison

In this section we compare MGCHH and our algorithm CSSCHH from a theoretical
perspective, before presenting the results of the experiments that we have carried out.
We begin by comparing the space complexity and how many counters are required by
both algorithms to guarantee their error bounds.

Let α = 1+φ2
φ1−ε1

, then, if ε1 ≥ ε2
2α , MGCHH requires s1 = 2α

ε2
counters in order to

keep track of the primary frequent items, and s2 = 2
ε2

counters to track correlated

frequent items; otherwise (if ε1 < ε2
2α ), s1 = 1

ε1
and s2 = 1

ε2−αε1
.

In the former case the space complexity of MGCHH is O( 1
(φ1−ε1)ε

2
2
), and in the

latter case its space complexity is O( 1
ε1ε2

) (Lahiri et al. 2016).
MGCHH requires a total of s1 + (s1s2) counters, since the algorithm consists of

a nested application of the Frequent algorithm: besides the s1 counters for primary
frequent items, there are s1s2 counters for correlated items. Indeed, for each primary
counter there is an entire summary consisting of s2 counters.

Our CSSCHH algorithm requires k1 = max
{

1
ε1

, γ + √
βγ

}
counters for the pri-

mary frequent items and k2 = β k1
k1−γ

for the correlated frequent items,whereβ = 1
ε2φ1

and γ = ε2+φ2
ε2φ1

.

As shown in the previous section, the space complexity of our algorithm is O
(

1
ε2φ1

)

when 1/ε1 ≤ γ + √
βγ , and it is O

(
1

ε1
√

ε2

)
when 1/ε1 > γ + √

βγ . It is immediate

verifying that our algorithm requires asymptotically less space than MGCHH. From
a practical perspective, it’s worth noting here that MGCHH is also subject to the
constraint ε1 < φ1/2, whilst our algorithm is not.
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Fig. 1 Counters required by MGCHH and CSSCHH

Figure 1 depicts the number of counters required byMGCHH and CSSCHH (using
a logarithmic scale on the z axis) fixing φ1 = 0.01, φ2 = 0.01 and letting ε1 varying
up to φ1/2, ε2 varying up to φ2.

As shown by the two surfaces, CSSCHH requires several orders of magnitude less
counters than MGCHH. Moreover, we expect MGCHH to be slower with regard to
CSSCHH. Indeed, every update step, in which the incoming primary stream item is not
monitored and all of the s1 counters are full, requires not only decrementing all of the s1
counters (as in the Frequent algorithm), but also, for each one of them, MGCHHmust
randomly select a correlated item and decrease its frequency as well. Now, we consider
and discuss the accuracy ofMGCHH.Being based on the Frequent algorithm,we know
that, overall, its accuracy shall be lower than the accuracy provided by CSSCHH
which is, instead, based on the Space Saving algorithm. Indeed, it is well known that
Space Saving is more accurate than Frequent (Cormode and Hadjieleftheriou 2009;
Manerikar and Palpanas 2009). In the next section we shall experimentally see how
much faster and accurate CSSCHH is with regard to MGCHH.

8 Experimental results

In order to compare and evaluate our CSSCHH algorithm against MGCHH we have
implemented them in C++. The source code has been compiled using the clang c++
compiler v8.0 on Mac OS X v10.12 with the following flags: -Os -std=c++14. We
recall here that, on Mac OS X, the optimization flag -Os provides better optimization
than the -O3 flag and is the standard for building the release build of an application.
The tests have been carried out on a machine equipped with 16 GB of RAM and a 3.2
GHz quad-core Intel Core i5 processor with 6 MB of cache level 3. The source code is
freely available for inspection and for reproducibility of results contacting the authors
by email.
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Table 1 Experiments carried out (synthetic datasets)

Items (n, millions) Skew (ρ) Space used
(MBytes)

Threshold (φ1)

{5, 50, 500, 1000} {1, 1.4, 1.8, 2.2} {1.009, 3.941,
15.573, 61.908}

{0.1, 0.01, 0.001}

Table 2 Counters
corresponding to the space used
(synthetic datasets)

Space (MB) k1 = s1 k2 s2

1.009 4200 63,000 20

3.941 8400 252,000 40

15.573 16,800 1,008,000 80

61.908 33,600 4,032,000 160

The items in the synthetic datasets used in our experiments are distributed according
to the Zipf distribution. In each one of the experiments, the execution have been
repeated 10 times using a different seed for the pseudo-random number generator
used for creating the input data stream (using the same seeds in the corresponding
executions of different algorithms). For each input distribution generated, the results
have been averaged over all of the runs. The input items are 32 bits unsigned integers.
Table 1 reports all of the experiments on synthetic datasets that have been carried out.

We have also experimented using a real dataset, namely Worldcup’98. This dataset
is publicly available1 and stores information related to the requests made to the World
Cup web site during the 1998 tournament. For each request, the dataset includes a
ClientID (which is a unique integer identifier for the client that issued the request)
and an ObjectID (again, a unique integer identifier for the requested URL). In this
experiment we determine correlated heavy hitters between ClientID and ObjectID
pairs, treating ClientID as the primary items, and ObjectID as the secondary item.
Owing to the huge size of the full dataset, we used a subset of the available data,
i.e., the data from day 41 to day 46 of the competition. Table 3 reports the statistical
characteristics of the real dataset.

Regarding synthetic datasets, we vary the input data stream size (n, in millions),
the skew of the zipfian distribution (ρ), the total space used (measured in MegaBytes)
and the φ1 and φ2 support thresholds. The value of the remaining parameters are fixed
and reported in each individual plot. Regarding the total space used, it is worth noting
here that, for MGCHH, a counter (related to either a primary or a correlated item)
requires 4 bytes to store the monitored item (an unsigned int) and 8 bytes to store
its estimated frequency (a long int), for a total of 12 bytes. On the other hand, for
CSSCHH a counter related to primary items requires 12 bytes as well, but a counter
monitoring a tuple (x, y) requires instead 4 bytes for x , 4 bytes for y and 8 bytes
to store the estimated frequency, for a total of 16 bytes. Therefore, the total space
used by MGCHH is 12(s1 + s1s2) bytes, whilst the total space used by CSSCHH is

1 http://ita.ee.lbl.gov/html/contrib/WorldCup.html
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Table 3 Statistical
characteristics of the real dataset
(Worldcup’98)

Primary Secondary

Count 104,271,758 104,271,758

Distinct items 539,464 21,605

Min 1 0

Max 1,375,004 40,317

Mean 549,924 9774.51

Median 578,870 887

SD 427,859 11,094.8

Skewness 0.146792 0.449196

Table 4 Counters
corresponding to the space used
(Worldcup’98)

Space (MB) k1 = s1 k2 s2

11.558 10,000 750,000 100

36.048 25,000 2,343,750 125

86.402 50,000 5,625,000 150

230.026 100,000 15,000,000 200

(a) (b) (c)

(d) (e) (f)

Fig. 2 Synthetic datasets: Precision (mean and confidence interval), a varying n, b varying ρ, c varying
the space used, d φ1 = 0.1, e φ1 = 0.01, f φ1 = 0.001
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Synthetic datasets: Absolute error (mean and confidence interval), a varying n, b varying ρ, c
varying the space used, d φ1 = 0.1, e φ1 = 0.01, f φ1 = 0.001

12k1+16k2 bytes. The test related to the space used is carried out by assigning to both
algorithm exactly the same space (measured in MegaBytes) in order to fairly compare
both algorithms and to understand how the algorithms behave when performing under
exactly the same conditions (with regard to the space used). Therefore, the allocated
space determines the number of counters to be used correspondingly by the algorithms.
In all of the other tests, we preserved this property choosing s1, s2, k1 and k2 such that
12k1 + 16k2 = 12(s1 + s1s2) and k1 = s1. Table 2 reports the counters corresponding
to the space used in the experiments.

We begin our analysis discussing the results for synthetic datasets. The recall is the
total number of true frequent items reported over the number of frequent items given
by an exact algorithm. Therefore, an algorithm is correct iff its recall is equal to one.
Since the algorithms under test are based respectively on Frequent (MGCHH) and on
Space Saving (CSSCHH), their recall is always one if they are allowed to use enough
counters. In all of the test we used a number of counters s1 and k1 greater than 1

φ1
for

the primary items and a number of counters for correlated items greater that 1
φ2

for s2
and greater than 1

φ1φ2
for k2. This guarantees both algorithms to reach a recall equal

to one in every case. The plots on the recall have not been reported in the paper.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Synthetic datasets: Relative error (mean and confidence interval), a varying n, b varying ρ, c varying
the space used, d φ1 = 0.1, e φ1 = 0.01, f φ1 = 0.001

Next, we analyze the accuracy, beginning with the precision attained (with regard
to the CHHs). Since precision is defined as the total number of true frequent items
reported over the total number of items reported, this metric quantifies the number
of false positives outputted by an algorithm. It follows that, from this point of view,
the algorithm’s precision should ideally be one. As shown in Fig. 2, CSSCHH clearly
outperforms MGCHH with regard to the precision. Indeed, CSSCHH is consistently
able to provide one or near one precision in all of the tests carried out, whilst MGCHH
lags far behind.

Accuracy is also related to the absolute and relative errors on the frequency estimate
committed by the algorithms. Denoting with f the exact frequency of a CHH and with
f̂ the corresponding frequency reported by an algorithm, then the absolute error is,

by definition, the difference
∣
∣
∣ f − f̂

∣
∣
∣.

Similarly, the relative error is defined as

∣
∣
∣ f − f̂

∣
∣
∣

f and the average relative error
is derived by averaging the relative errors over all of the measured frequencies.
Figures 3 and 4 depict respectively absolute and relative errors committed by the
algorithms (with regard to CHHs). Each single plot reports both the maximum and the
mean values attained by both algorithms. Again, it is immediate verifying that CSS-
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Synthetic datasets: Updates/ms (mean and confidence interval), a varying n, b varying ρ, c varying
the space used, d φ1 = 0.1, e φ1 = 0.01, f φ1 = 0.001

CHH is extremely accurate in all of the cases, with absolute and relative errors always
equal to zero. On the contrary, MGCHH estimates are clearly affected by significant
error.

Finally, we evaluated the algorithm with regard to their speed in processing stream
items. Figure 5 shows the speed attained, reported as updates per millisecond. Again,
CSSCHH outperforms MGCHH, being consistently much faster in all of the cases. In
particular, CSSCHH is more than three times faster in all of the tests that have been
carried out, except the tests in which we vary the skew of the input distribution and
the space we allow to be used. Anyway, as shown by the plots, CSSCHH is always
faster than MGCHH.

Next, we compareMGCHH and CSSCHH using the real datasetWorldcup’98. Fig-
ures 6 and 7 depict the results obtained respectively when varying the space allowed
and the φ2 threshold (fixing the φ1 threshold). Table 4 reports the counters correspond-
ing to the space used. It is worth noting here that, owing to the skewness of the dataset
being really low (see Table 3), we fixed φ1 to a low value (0.001) and φ2 varying
from 0.001 to 0.01, since otherwise no (or just a few) correlated heavy hitters exist.
As shown, both algorithms exhibit the same behaviour already observed on synthetic
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(a) (b)

(c) (d)

Fig. 6 Worldcup’98 results obtained varying the space allowed (mean and confidence interval), a precision,
b updates/ms, c relative error, d absolute error

datasets, with CSSCHH clearly outperforming MGCHH with regard to every metric
under consideration.

We conclude by noting that the experimental results fully confirm our theoretical
expectations reported in the previous section. CSSCHH is more accurate in terms of
both precision, absolute and relative error committed. Our algorithm is also faster
than MGCHH. Therefore, CSSCHH is a better alternative to MGCHH for mining
correlated heavy hitters.
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37500000

3750000037500000

37500000

(a) (b)

(c) (d)

Fig. 7 Worldcup’98 results obtained varying the φ2 threshold (mean and confidence interval), a precision,
b updates/ms, c relative error, d absolute error

9 Conclusions

In this paper, we have studied the problem of mining correlated heavy hitters from
a two-dimensional data stream. We have presented CSSCHH, a new counter-based
algorithm for trackingCHHs, and formally proved its error bounds and correctness.We
have compared our algorithm toMGCHH, a recently designed deterministic algorithm
based on the Misra–Gries algorithm both from a theoretical point of view and through
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extensive experimental results, and we have shown that our algorithm outperforms it
with regard to accuracy and speed whilst requiring asymptotically much less space.
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