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Abstract The problem of local community detection in graphs refers to the identifi-
cation of a community that is specific to a query node and relies on limited information
about the network structure. Existing approaches for this problem are defined to work
in dynamic network scenarios, however they are not designed to deal with complex
real-world networks, in which multiple types of connectivity might be considered. In
this work, we fill this gap in the literature by introducing the first framework for local
community detection in multilayer networks (ML-LCD). We formalize the ML-LCD
optimization problem and provide three definitions of the associated objective func-
tion, which correspond to different ways to incorporate within-layer and across-layer
topological features.We also exploit our framework to generatemultilayer global com-
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munity structures. We conduct an extensive experimentation using seven real-world
multilayer networks, which also includes comparisonwith state-of-the-art methods for
single-layer local community detection and for multilayer global community detec-
tion. Results show the significance of our proposed methods in discovering local
communities over multiple layers, and also highlight their ability in producing global
community structures that are better in modularity than those produced by native
global community detection approaches.

Keywords Node-centric community detection · Personalized community detection ·
Complex systems · Multiplex networks

1 Introduction

Community detection is a classic problem in network science and related fields, which
has been traditionally addressedwith the aim of determining an organization of a given
network into subgraphs that express dense groups of nodes well-connected to each
other (Newman and Girvan 2004). This corresponds to an optimization problem that
is global as it requires knowledge on the whole network structure. The problem is
known to be computationally difficult to solve, while its approximate solutions have
to cope with both accuracy and efficiency issues that become more severe as the net-
work increases in size. Large-scale, web-based environments have indeed traditionally
represented a natural scenario for the development and testing of effective community
detection approaches. Further challenges correspond to the emergence of processing
complex real-world network systems, which are indeed pervasive in many fields of
science (Mucha et al. 2010; Carchiolo et al. 2010; Tang et al. 2012; Kivela et al. 2014;
Loe and Jensen 2015; Kim and Lee 2015). In this regard, multilayer network models
provide a powerful and more realistic tool for the analysis of such complex systems,
enabling an in-depth understanding of the characteristics and dynamics of multiple,
interconnected types of node relations and interactions (Cai et al. 2005; Berlingerio
et al. 2013; Dickison et al. 2016).

However, one important aspect to consider is that we might often want to identify
the personalized network of social contacts of interest to a single user only: to this aim,
we would seek to determine the expanded neighborhood of that user which forms a
densely connected, relatively small subgraph. This is known as local, or node-centric,
community detection problem (Clauset 2005; Chen et al. 2009), whose general objec-
tive is, given limited information about the network, to identify a community structure
which is centered on one or few seed users. The development of methods that can
identify query-dependent local communities is beneficial for any scenario in which
computing a global community structure is not feasible (e.g., because the whole net-
work information is not available at processing time), or it is not required (e.g., the
communities are to be computed only for a subset of target users). As an intuitive
practical example, if we want to simply check whether two users in a network belong
to the same community, a global community detection method would process the
whole network, while a local approach can efficiently discover the two communities
of interest by accessing and manipulating only a relatively small portion of the net-
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work. This reduction of memory-footprint requirements by local community detection
methods also enables an efficient processing of dynamic networks, whose structure
may change over time (e.g., the insertion of new nodes and edges can be handled at
each step of exploration); yet, local approaches can be useful to cope with privacy
and access restriction issues that typically arise from policies adopted in most online
social networks (e.g., limitation in the number of queries per day, permission to extract
only the ego network of a limited number of seed nodes, and so on).

In the last few years, we have been witnessing an increasing interest towards the
local community detection problem (Chen et al. 2009; Branting 2012; Fagnan et al.
2014; Zakrzewska and Bader 2015; Li et al. 2015). Surprisingly, the problem has been
mainly investigated by focusing on networks that are built on a single node-relation
type or context. However, this is not the case in many situations. For instance, in social
computing, an individual often has multiple accounts across different social networks,
and in fact it has nowadays become important to link distributed user profiles belonging
to the same user from multiple platforms (Kim and Lee 2015; Loe and Jensen 2015).
An alternative scenario is obtained by considering that relations of different types can
be available for the same population of a social network (Dickison et al. 2016); these
might include online as well as offline (i.e., real-life) relations, such as followship,
like/comment interactions, working relationship, lunch relationship, etc. Both sce-
narios can effectively be represented using a multilayer network model. Dealing with
multiple graph-relation dimensions for a set of entities makes the previously discussed
emergence of using a local community detection approach, as well as the reduction of
memory requirements, even more evident and important. In general, several questions
may arise, such as:

– How can we profitably use the various relations in which an individual is involved
to discover her/his own community?

– How do the different relations affect the size and form of a multilayer local com-
munity being discovered?

– What advantages does the development of amethod formultilayer local community
detection may bring with respect to single-layer local community detection as well
as to multilayer global community detection?

Contributions. In this work we aim to answer the above questions, by contributing a
framework for the novel problemof local community detection in amultilayer network.
To the best of our knowledge, we are the first to bring the local community detection
problem into the context of multilayer networks since all previous works address the
multilayer community detection task from a global point of view (e.g., (Mucha et al.
2010; Tang et al. 2012; Papalexakis et al. 2013; Kuncheva and Montana 2015; Kim
and Lee 2015; Loe and Jensen 2015)). More in detail, we summarize our contributions
as follows.

– We introduce and formalize the problem of local community detection for multi-
layer networks (ML-LCD), following an unsupervised paradigm.

– We provide three definitions of the objective function in the ML-LCD problem,
which correspond to different ways to incorporate within-layer and across-layer
topological features.
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– To enable comparative evaluation with global community detection methods in
multilayer networks, we exploit our ML-LCD framework to generate multilayer
global community structures.

– We present an extensive experimentation ofML-LCD, using seven real-worldmul-
tilayer networks. We assess the meaningfulness of our methods and analyze their
different behaviors in identifyingmultilayer local communities.Moreover,wehave
conducted two stages of comparative evaluation with state-of-the-art methods for
(single-layer) local community detection as well as for global community detec-
tion in multilayer networks; remarkably, in the latter case, ML-LCD has shown to
produce communities with comparable or even better multilayer modularity.

Remarkably, the proposed ML-LCD methods are designed to provide community
solutions that can meet several criteria of significance and quality. More specifically,
under the classification framework discussed in the survey work on multilayer com-
munity detection methods by Kim and Lee (2015), our methods meet all (but one, i.e.,
algorithm insensitivity) of the desired properties for multilayer community detection
methods, namely: multiple layer applicability; consideration of each layer’s impor-
tance (this is in particular embedded in the first of our methods, but it can in principle
be brought to the other methods as well); flexible layer participation (every local com-
munity has in general a different coverage of the layers’ structure); no-layer-locality
assumption (our local communities do not depend on initializations steps biased by a
particular layer); independence from the order of layers; and overlapping layers (two
or more local communities can share substructures over different layers).

The rest of the paper is organized as follows. Sect. 2 overviews related work,
Sect. 3 describes our proposed local community detection methods for multilayer
networks, Sects. 4 and 5 present experimental evaluation, Sect. 6 concludes the paper
and provides pointers for future research.

2 Related work

We organize a brief discussion on related work into two parts: the first is devoted to
community detection in multilayer networks, the second concerns local community
detection methods.

Community detection in multilayer networks. Identifying a community structure in
multilayer networks is a research topic that has gained considerable attention in the
last few years (Kim and Lee 2015; Loe and Jensen 2015; Kivela et al. 2014). Early
studies have focused on adaptations of the notion of modularity (Newman and Girvan
2004) to multilayer networks (Mucha et al. 2010; Carchiolo et al. 2010). Alternatively,
new evaluation criteria have been designed specifically for multilayer networks (e.g.,
redundancy (Berlingerio et al. 2011)).

Tang et al. (2009) utilize structural feature extraction and cross-dimension integra-
tion to find a concise representation of features from the various layers (dimensions).
A basic k-means clustering method is applied on the computed embedding to produce
a community structure over the multilayer graph. In a subsequent work of the same
authors (Tang et al. 2012), a utility integration criterion is introduced for computing
utility matrices of a community detection method for each layer separately. Then it
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optimizes an objective function for the aggregated multilayer utility matrix. Kuncheva
and Montana (2015) propose a community detection method for multilayer networks
based on amultilayer randomwalkmodel. It first runs a different randomwalk for each
layer, then a dissimilarity measure between nodes is obtained leveraging the per-layer
transition probabilities, finally a hierarchical clustering method is used to produce the
communities. The approach proposed by Hmimida and Kanawati (2015) leverages
the concept of leaders in a network (Yakoubi and Kanawati 2014), i.e., nodes having
higher degree centrality than most of their direct neighbors. These nodes, which first
need to be identified over the whole network, form their own communities. An iter-
ative local preference-merging method is then performed to compute and update the
membership-preference vector of each node in function of preferences of its neighbors,
so that each node will be assigned to the community defined by the leader ranked first
in its preference vector. Other works have resorted to representation models such as
third-order tensors (Papalexakis et al. 2013), hypergraphs (Michoel and Nachtergaele
2012), or transactional representation to support frequent pattern mining (Berlingerio
et al. 2013).

Note that, by definition, all the above approaches address the problemof community
detection from the conventional, global perspective, i.e., they assume to access the
entire network structure in order to produce a partitioning of the network graph into a
set of communities.

Local community detection. One of the earliest contribution to local community
detection is the Clauset’s framework (Clauset 2005), which is designed to explore the
graph through local expansion starting from a seed node. Chen et al. (2009) exploit the
Clauset framework to determine the quality of a community by comparing its inter-
nal versus external connectivity. Branting (2012) compares different local community
detection methods, which are organized into two broad categories, namely xenopho-
bic and non-xenophobic approaches: the former try to maximize (resp. minimize) the
internal (resp. external) connectivity, while the non-xenophobic algorithms discard
the external connectivity. Fagnan et al. (2014) propose a local community strategy
that accounts for the number of internal and external triads. While still exploiting the
Clauset framework, it finally produces a non-overlapping global community structure.
The approach presented by Zakrzewska and Bader (2015) employs a seed set expan-
sion procedure that incrementally updates the community as the underlying graph
changes. Kanawati (2015) evaluates the impact of applying different ways of combin-
ing multiple local community functions to identify the node-centric communities. The
Lemon algorithm proposed by Li et al. (2015) exploits truncated random walks and
approximate invariant subspace to discover a local community for any given seed set.
The number of randomwalk steps is a key parameter, which should be set high enough
to reach all the nodes in the target community, and at the same time low enough to not
spread to an unnecessary bigger graph.

It should be emphasized that none of the above works is designed to deal with mul-
tilayer networks. Different mention concerns the work by Jeub et al. (2015), where the
solution of a personalized PageRank is approximated for a local partition of the multi-
layer network in order to find communities. However, the approach assumes complete
knowledge about the network structure, and the local perspective is intended as the
way the random walk is personalized, which differs from identifying local communi-
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ties using multilayer features. In this work, we aim to fill this gap in the literature by
contributing the first framework for multilayer local community detection.

3 Multilayer local community detection

In this section,wefirst describe the graphmodel used to represent amultilayer network.
We formally state the Multilayer Local Community Detection (ML-LCD) problem.
Then, we formulate the multilayer local community functions and describe the algo-
rithmic framework for identifying a local community centered around an input seed
node. We finally discuss computational complexity aspects of the proposed ML-LCD
methods.

3.1 Multilayer network model

We refer to the multilayer network model described in (Kivela et al. 2014). Let
L = {L1, . . . , L�} be a set of layers. Each layer corresponds to a given type of
entity relation, or edge-label. Consider a set V of entities (e.g., users), then for each
choice of entity in V and layer in L, we need to indicate whether the entity is present
in that layer. We denote with VL ⊆ V ×L the set containing the entity-layer combina-
tions in which an entity is present in the corresponding layer. The set EL ⊆ VL × VL
contains the undirected links between such entity-layer pairs. We hence denote with
GL = (VL, EL,V,L) the multilayer network graph with set of nodes V .

For every layer Li ∈ L, let VLi = {v ∈ V | (v, Li ) ∈ VL} ⊆ V be the set of nodes in
the graph of Li , and ELi ⊆ VLi × VLi be the set of edges in Li . To simplify notations,
we will also refer to VLi and ELi as Vi and Ei , respectively. Note that while entities
(i.e., elements of V) are not required to participate to all layers, however each entity
has to appear in at least one layer, i.e.,

⋃
i∈1...� VLi = V . Moreover, the only inter-

layer edges are regarded as “couplings” of nodes representing the same entity between
different layers; in other terms, EL can be seen as partitioned into the set of intra-layer
edges and the set of inter-layer coupling edges, i.e., EL = {((u, Li ), (v, L j )) | u, v ∈
V ∧ Li , L j ∈ L ∧ i = j} ∪ {((v, Li ), (v, L j )) | v ∈ V ∧ Li , L j ∈ L ∧ i �= j}.

3.2 Problem statement

Local community detection approaches generally implement some strategy that at
each step considers a node from one of three sets, namely: the community under
construction (initialized with the seed node), the shell of nodes that are neighbors
of nodes in the community but do not belong to the community, and the unexplored
portion of the network. Figure 1 illustrates an example of multilayer local community
identified over a multilayer network; in the figure, we also utilize terms boundary and
core nodes to differentiate between the within-community nodes that have and do not
have neighbors, respectively, in the shell set.

A key aspect in the task at hand is how to select the best node in the shell to add to the
community to be identified. Most algorithms, which are designed to deal with simple
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1450 R. Interdonato et al.

Fig. 1 A local community identified over an example 3-layer network. The local community (delimited
by a rounded rectangle) is centered on a seed node s, while core nodes, boundary nodes, and shell nodes
are denoted with filled, empty, and dotted circles, respectively. Dotted edges starting from the shell nodes
point to unknown portions of the network. (Best viewed in color version, available in electronic format)

(i.e., single-layer) network graphs, try to maximize a function in terms of the internal
edges, i.e., edges that involve nodes in the community, and to minimize a function in
terms of the external edges, i.e., edges to nodes outside the community. By accounting
for both types of edges, nodes that are candidates to be added to the community being
constructed are penalized in proportion to the amount of links to nodes external to the
community (Clauset 2005; Chen et al. 2009; Branting 2012; Fagnan et al. 2014).

In this work we follow the above general approach and extend it to identify local
communities over amultilayer network as presented in the problem statement reported
next.

Definition 1 (Multilayer local community detection problem) Given a multilayer
graph GL = (VL, EL,V,L) with set of nodes V , and a seed node v0 ∈ V , find a
subgraph Gv0

L ⊆ GL that contains v0 and maximizes the multilayer local community
function LC :

Gv0
L = argmax

G=(V,E,V,L)⊆GL∧ v0∈V
LC(G) = argmax

G=(V,E,V,L)⊆GL∧ v0∈V

LCint (G)

LCext (G)
(1)

where LCint (G) is a function proportional to the density of links among nodes within
G, and LCext (G) is a function proportional to density of links between nodes within
G and nodes outside G.
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It should be emphasized that our formulation accounts for the internal-to-external
connection density ratio rather than the absolute amount of internal and external links
to the community. This is an important aspect since, as first analyzed in (Chen et al.
2009), it allows for alleviating the issue of inserting many weakly-linked nodes (i.e.,
outliers) into the local community being discovered.

In our setting, we also have to cope with the complexity of a multilayer network
model. In this regard, in the following section we shall provide different definitions of
our multilayer local community functions LCint (G) and LCext (G).

3.3 Multilayer local community functions

Given GL = (VL, EL,V,L) and a seed node v0, we denote with C ⊆ V the node set
andwith EC ⊆ EL the edge set of subgraphGv0

L corresponding to the local community
built around node v0; moreover, when the context is clear, we will use C to refer to
the local community subgraph. Symbol EC

i = {(u, v)|∃((u, Li ), (v, Li )) ∈ EC } will
be used to specialize EC for edges in the community that correspond to a given layer
Li .

As discussed in the previous section, for a local community being constructed, the
shell set refers to nodes external to the community that are neighbors of nodes in
the community, and these within-community neighbors of shell nodes are also called
boundary nodes. We define the shell set of C as:

S = {v ∈ V \ C | ∃((u, Li ), (v, L j )) ∈ EL ∧ u ∈ C}

and the boundary set of C as:

B = {u ∈ C | ∃((u, Li ), (v, L j )) ∈ EL ∧ v ∈ S}.

Moreover, we denote with EB = {(u, v) | ((u, Li ), (v, L j )) ∈ EL ∧ u ∈
B ∧ v ∈ S} the set of edges outgoing from C , and for any layer Li , EB

i =
{(u, v)|∃((u, Li ), (v, Li )) ∈ EB} as the portion of EB corresponding to edges of
layer Li .

We devise different ways for completely specifying the internal-to-external con-
nection density ratio expressed in the objective function of the problem in Def. 1. In
particular, we will consider two intuitive criteria:

– Extension of the local community functions to handlemultiple layers. In Sect. 3.3.1,
we accomplish this by linearly combining the layer-specific contributions to the
connection density ratio.

– Integration of multilayer-aware, “homophilic” bias to control the community
expansion. Homophily explains the tendency of individuals to associate and bond
with similar others. Therefore, we might also want to make the evaluation of a
candidate node sensitive to the affinity of the node with some of the commu-
nity members. The rationale here is to bias the choice of a node in terms of its
(direct or indirect ) homophily with the community, rather than only considering
its contribution to the internal-to-external connection density ratio. In Sects. 3.3.2
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and 3.3.3, we pursue this goal by modeling a within-layer similarity-based factor
and a cross-layer similarity-based factor, respectively, into the objective function.

3.3.1 Layer-weighting-based local community functions

In our first specification of the problem in Def. 1, we incorporate multilayer features
in the local community functions. One intuitive way to do this is to account for the
relevance of each of the layers, which brings to the following definition of layer-
weighting-based local community functions.

Definition 2 (Layer-weighted local community functions) Given GL = (VL,

EL,V,L) and a local communityC , the layer-weighting-based local community inter-
nal function is defined as:

LCint (C) = 1

|C |
∑

v∈C

∑

Li∈L
ωi |EC

i (v)| (2)

The layer-weighting-based local community external function is defined as:

LCext (C) = 1

|B|
∑

v∈B

∑

Li∈L
ωi |EB

i (v)| (3)

where ωi (for every Li ∈ L) are non-negative real-valued coefficients, with∑
Li∈L ωi = 1, which define a weighting scheme over the layers.

The layer weighting scheme based on coefficients ωi is set by default to a uniform
distribution. Alternatively, it can be specified following either in an unsupervised or
a supervised way. For instance, assuming to have some external knowledge on the
relevance of the layers, the weights would be defined proportionally, thus follow-
ing a supervised criterion. On the other hand, using any other distribution reflecting
some known or computable graph property of the nodes/edges in each layer, would
correspond to an unsupervised approach.

3.3.2 Within-layer similarity-based local community functions

While accounting for the presence of multiple layers, we believe it is also important
to control the community expansion based on a notion of similarity in the node link-
age, which might express a homophilic factor in the definition of multilayer local
community functions.

To this end, twomajor requirements are: (1) how to choose the analytical form of the
similarity function, and (2) how to deal with the different, layer-specific connections
that any two nodes might have in the multilayer graph. We address the first point
in an unsupervised fashion, by resorting to any similarity measure that can express
the topological affinity of two nodes in the graph. Concerning the second point, one
straightforward solution is to determine the similarity between any two nodes focusing
on each layer at a time. The above points are formally captured by the following
definition.
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Definition 3 (Within-layer similarity-based local community functions) Given
GL = (VL, EL,V,L) and a local community C , the within-layer similarity-based
community internal relation is defined as:

LCint (C) = 1

|C |
∑

v∈C

∑

Li∈L

∑

(u,v)∈EC
i∧u∈C

simi (u, v) (4)

The within-layer similarity-based community external relation is defined as:

LCext (C) = 1

|B|
∑

v∈B

∑

Li∈L

∑

(u,v)∈EB
i∧u∈S

simi (u, v) (5)

where simi (u, v) denotes the similarity between nodes u, v contextually to layer Li .

As previously mentioned, we adopt an unsupervised approach to the evaluation
of the similarity between two nodes u, v, by measuring the topological affinity of u
and v. We choose to accomplish this by resorting to any topology-based similarity
measure between two node sets, or more generally, between their induced subgraphs.
In this work, we regard the generic form of simi (u, v) as f(Ni (u), Ni (v)), where f
denotes a function proportional to the similarity of two node sets Ni (u), Ni (v), with
Ni (x) = {y ∈ V|(y, x) ∈ Ei } as the set of neighbors of a node x in layer Li . In Sect. 4
we will discuss similarity measures used in our experimental evaluation.

3.3.3 Cross-layer similarity-based local community functions

One evident simplification in the previous definition is that it expresses the homophily
between two nodes by quantifying the strength of their connections considering the
layers on which they lay as separately to each other. This might also be a limitation in
that the within-layer similarity-basedmethod is not able to capture indirect homophily,
i.e., ties between nodes that are not directly connected through the network: neverthe-
less, two nodes can still have some topological affinity even without the presence of
an explicit edge in the network (e.g., having lots of friends in common while being
unknown to each other). Based on this simple intuition, we provide our definition of
cross-layer similarity-based local community functions.

Definition 4 (Cross-layer similarity-based local community functions) Given
GL = (VL, EL,V,L) and a local community C , the cross-layer similarity-based
community internal function is defined as:

LCint (C) = 1

|C |
∑

u,v∈C

∑

Li ,L j∈L
∧u∈Vi ,v∈Vj

simi, j (u, v) (6)
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The cross-layer similarity-based community external relation is defined as:

LCext (C) = 1

|B|
∑

v∈B,u∈S

∑

Li ,L j∈L
∧u∈Vi ,v∈Vj

simi, j (u, v) (7)

where simi, j (u, v) denotes the similarity between u in layer Li and v in layer L j .

Analogously to the previous definition, simi, j (u, v) corresponds to a topology-
based similarity measure between the sets of neighbors of u and v, which however in
this case are located in different layers.

3.4 Multilayer local community identification algorithm

Algorithm 1 reports the pseudo-code of the general scheme of our proposed
MultiLayer Local Community Detection (ML-LCD) methods.

The scheme takes as input themultilayer graphGL and a seednodev0, and computes
the local community C associated to v0. Recall that knowledge on the topology of the
multilayer graph is only partial in our setting; precisely, at any give time step, only the
direct neighbors of a node are known in advance. Note also that the general scheme is
actually instantiated in three algorithms, according to Def. 2, Def. 3, or Def. 4. We will
use notation ML-LCD-lw, ML-LCD-wlsim, and ML-LCD-clsim to refer to the ML-
LCD algorithm equipped with layer-weighting-based, within-layer similarity-based,
and cross-layer similarity-based local community functions, respectively.

At the beginning, the boundary set (B) and the community (C) are initialized with
the starting seed, while the shell set (S) is initialized with the neighborhood set of v0
considering all the layers in L. The initial value of LC(C) is computed (lines 3–4)
according to one of the three approaches for the definition of the local community
functions. The algorithm then starts expanding the node set C (lines 5–19). First, it
evaluates nodes v belonging to the current shell set S, and selects the vertex v∗ that
corresponds to the maximum value of objective function LC if the node would be
added to C (line 6). The choice of candidate node v∗ impacts on both S and B (lines
7–8): node v∗ is removed from S (since it has been examined), whereas all nodes in B
that have no other neighbors in S than v∗ are removed from B. Since adding node v∗ to
C might not increase the current value of the objective function, the algorithm checks
if (1) v∗ actually increases the quality of C (i.e., LC(C ∪{v∗}) > curr LC) and (2) v∗
helps to strength the internal connectivity of the community (i.e., LCint (C ∪ {v∗}) >

curr LCint ). If both conditions are satisfied (line 9), node v∗ is added to C and the
following actions are taken: (1) v∗ is added to B as long as it has neighbors that are not
inC (line 13) , and the shell set is updated to contain these nodes (line 14); (2) a further
update to B might be requested in case there are nodes inC that now have neighbors in
S (line 15); (3) LC(C ∪ {v∗}) becomes the new value of curr LC . Otherwise, if node
v∗ is not added to C , only LCext (C) is updated according to the changes in S and B
(performed at lines 7–8). The algorithm terminates when no further improvement in
LC(C) is possible.
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Algorithm 1Multilayer Local Community Detection (ML-LCD) scheme
Input: Multilayer graph GL = (VL, EL,V,L) (only partially known),

seed node v0 ∈ VL.
Output: Local community C for v0.
1: B ← {v0}, C ← B
2: S ← {v|(v, v0) ∈ EL ∀L ∈ L}
3: curr LCint ← LCint (C), curr LCext ← LCext (C) //using Def. 2, Def. 3, or Def. 4
4: curr LC ← LC(C) = curr LCint/curr LCext

5: repeat
6: v∗ ← argmaxv∈S LC(C ∪ {v}) //using update rules in Eq. 8–11
7: S ← S \ {v∗}
8: B ← B \ {u ∈ B|v∗ ∈ N (u) ∧ �(u, v) : v ∈ S}
9: if LC(C ∪ {v∗}) > curr LC ∧ LCint (C ∪ {v∗}) > curr LCint

10: C ← C ∪ {v∗}
11: N¬C ← N (v∗) \ C
12: if N¬C �= ∅
13: B ← B ∪ {v∗}
14: S ← S ∪ N¬C
15: B ← B ∪ {u ∈ C \ B|N (u) ⊆ S}
16: curr LCint ← LCint (C), curr LCext ← LCext (C),

curr LC ← curr LCint/curr LCext

17: else
18: curr LCext ← LCext (C)

19: until LC(C) cannot be further maximized
20: return C

LCint and LCext update formulas. Testing a candidate node v ∈ S for possible
insertion into C (line 6) requires evaluation of LC for an updated community C ∪{v}.
To do this, we can avoid computing LCint and LCext from scratch by using the
incremental update formulas reported next; in this regard, we use symbols Bv and Sv ,
where Bv ⊆ B contains neighbors of v in B that have no other neighbors in S, and
Sv = N (v) \ C contains neighbors of v that are not in C .

– ML-LCD-lw and ML-LCD-wlsim:

LCint
v = |C |LCint +

∑

u∈C

∑

Li∈L
∧(u,v)∈EC

i

� (8)

LCext
v = |B|LCext +

∑

u∈Sv

∑

Li∈L∧((u,Li ),(v,Li ))∈EL

� −
∑

u∈Bv

∑

Li∈L
∧(u,v)∈EB

i

� (9)

where � is a reference such that � ≡ ωi in the case of ML-LCD-lw and � ≡
simi (u, v) in the case of ML-LCD-wlsim.

– ML-LCD-clsim:

LCint
v = |C |LCint +

∑

u∈C

∑

Li ,L j∈L
∧((u,Li ),(v,L j ))∈EL

simi, j (u, v) (10)
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LCext
v = |B|LCext +

∑

u∈Sv

∑

s∈S

∑

Li ,L j∈L
∧((u,i),(s, j))∈EL

simi, j (u, s) +

−
∑

u∈Bv

∑

s∈S

∑

Li ,L j∈L
∧((u,i),(s, j))∈EL

simi, j (u, s) (11)

3.5 Computational complexity aspects

We discuss here computational complexity aspects of ML-LCD. We introduce symbol
� to denote the computational cost of any of the proposed local community functions,
and symbol d to indicate the maximum degree of a node in the network. We recall
that � = |L| denotes the number of layers and |C | denotes the size of the community
being discovered.

In Algorithm 1, at each iteration the community size increases by one node until it
reaches a certain size |C |, whereas the shell set S size may vary over the iterations. In
this regard, we introduce the quantity (k × d) as an upper bound of the size of S at the
current iteration, where k corresponds to the size of the current community (propor-
tional to the number of the current iteration). Note that this upper bound corresponds
to the worst case in which all nodes in the current community are assumed to belong
to the boundary set B and all of the neighbor sets are disjoint.

Since the algorithm terminates in a number of iterations which is proportional to
the size of the generated community, we state the following upper bound of the overall
computational complexity ofAlgorithm1:O(d×�×∑|C|

k=1 k), which can be rewritten
as O(|C |2 × d × �).

Considering ML-LCD-lw, the characteristic operation has a cost proportional to
the neighbors of any node v in C and the number of layers �, since the weights ω

are known at constant time. Therefore, � = O(� × d), which leads to the cost of
O(|C |2 × d2 × �) for ML-LCD-lw.

While following the same strategy as ML-LCD-lw, method ML-LCD-wlsim also
requires the computation of similarity between any node v and its neighbors. This
implies at least comparison between the set of (direct) neighbors of v and the set of
(direct) neighbors of u. If we assume that the neighborhood lists are always ordered
(based on their identifiers), the cost of set comparison becomesO(d log d)—checking
if an element is present in an ordered list costs O(log d) and this basic operation is
repeated d times. In this case, � = O(�×d2 log d). Therefore, the cost forML-LCD-
wlsim is O(|C |2 × d3 log d × �).

The topology-unawareness of ML-LCD-clsim leads to an increase in the cost �.
Specifically, the cost becomes proportional to |C |2 multiplied by the sum of the costs
of functions LCint and LCext . The latter is expressed in terms of size of S, which, in
turn, is expressed in terms of size of the current community; therefore, in the worst
case the cost of LCext is predominant over LCint , thus we focus on LCext . At each
iteration of Algorithm 1, we might compare each node in the boundary B (in the worst
case, the whole C), to each node in the shell set S. Therefore, for ML-LCD-clsim, the
overall cost is given by: O(

∑|C|
k=1 k × d × k × d × �2 × d log d), where the first term
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(k × d) is related to the basic cost, while the second term (k × d) refers to the specific
topology-unawareness characteristic of ML-LCD-clsim. Rearranging the terms in the
previous formula results in O(|C |3 × d3 log d × �2).

4 Experimental evaluation

In the following, Sect. 4.1 summarizes the evaluation datasets, Sect. 4.2 introduces
competing methods, and Sect. 4.3 describes the experimental settings1.

4.1 Data

We used seven real-world multilayer network datasets, namely Airlines (Cardillo et al.
2013), AUCS (Dickison et al. 2016), BIOGRID (Bonchi et al. 2014), DBLP (Boden
et al. 2012), Reality Mining (Kim and Lee 2015; Bourqui et al. 2016), RemoteSensing,
and TW-YT-FF (Dickison et al. 2016). Airlines describes airline companies operating
in Europe. Nodes and edges represent airport locations and routes, respectively, and
each layer corresponds to a different airline company. AUCS models relationships
between employees of a University department considering five different aspects:
coworking, having lunch together, Facebook friendship, offline friendship, and coau-
thorship. Biogrid is a protein-protein interaction network, where layers correspond to
seven different types of interactions between proteins. In DBLP, nodes correspond to
authors and layers represent the top-50 Computer Science conferences. Two authors
are connected on a layer if they co-authored at least two papers together in a par-
ticular conference. Reality Mining contains human interaction data collected by the
MIT Media Lab, where layers represent different media employed to communicate:
subjects calling each other, friendship claims, and text message exchanges. Remote-
Sensing is a network derived from a remote sensing satellite image obtained from the
SWH website.2 Nodes correspond to segments of the image and edges of a certain
type exists between two segments if they are adjacent and have the same value for a
certain radiometric attribute (layer). TW-YT-FF is a cross-platform network built by
exploiting the feature of FriendFeed as social media aggregator to align registered
users who were also members of Twitter and YouTube. Nodes correspond to users and
edges to friendships over the three different platforms as layers.

Table 1 summarizes main characteristics of our evaluation datasets. Node relations
in all datasets are treated as symmetric. We denote with Adeg the average degree of
a node considering multiple edges, and with Alayer the average number of layers in
which a node is present. Note that Airlines and DBLP are rich in number of layers
(resp. 37 and 50), and that Airlines, RemoteSensing, AUCS and RealityMining have
nodes, on average, involved in more than two layers (resp. 4.88, 4.19, 3.67 and 2.42).

1 Source code and evaluation data are available at http://people.dimes.unical.it/andreatagarelli/mllcd/
2 https://www.theia-land.fr/en/products/spot-world-heritage
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Table 1 Main characteristics of the multilayer network datasets

Dataset # Nodes # Edges #Layers Density Adeg Alayer

Airlines 417 3588 37 0.056 17.21 4.88

AUCS 61 620 5 0.114 20.33 3.67

Biogrid 38, 936 342, 599 7 4.8e–4 17.60 1.90

DBLP 83, 901 159, 302 50 8.9e–4 3.80 1.35

RealityMining 88 355 3 0.047 8.07 2.42

RemoteSensing 642 4341 5 0.006 13.52 4.19

TW-YT-FF 6407 74, 862 3 2.35e–3 23.37 1.86

4.2 Competing methods

Our evaluation focus is on understanding how the proposed local community detec-
tionmethods performonmultilayer networks. Nevertheless, given the unavailability of
competing methods for local community detection in multilayer networks, we devised
two stages of comparative evaluation: (1) comparison with single-layer, local com-
munity detection, and (2) comparison with multilayer, global community detection
approaches.

For the first stage of comparative evaluation, we resorted to themethods LCD (Chen
et al. 2009) and Lemon (Li et al. 2015). The LCD approach is chosen since its strategy
of identification of a local community is close to ours, while Lemon is a more recent,
state-of-the-art method for local community detection. Since themethods are designed
to deal with single-layer graphs, we applied each of them on the aggregate graph
derived from the input multilayer network GL, i.e., a graph with set of nodes V and
such that an edge exists between any two nodes that are connected in at least one
layer in GL. While LCD is completely parameter free, for Lemonwe used the default
setting,3 also disabling the ground-truth option and the sampling for graphs with less
than 1k nodes.

For the second stage of comparative evaluation, we used Locally Adaptive Random
Transitions (LART) (Kuncheva and Montana 2015), Principal Modularity Maximiza-
tion (PMM) (Tang et al. 2009) and Generalized Louvain (GL) (Mucha et al. 2010).
Note that all such methods produce non-overlapping global community structures,
while the local communities produced by ML-LCD for various seed nodes can of
course overlap to each other. Note also that LART and GL deal with node-layer pairs,
thus allowing different instances of the same node to belong to more communities; to
make the two methods comparable with all the other approaches, we apply a majority
votingmechanism, so that a node is assigned to the community containing themajority
of its instances.

Inferring multilayer global community structure. In order to compare ourML-LCD
methodswith global community detectionmethods,we propose a heuristic, hereinafter

3 As specified in the publicly available implementation from the repository at https://github.com/YixuanLi/
LEMON
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referred to asLocToGlob, to infer a global non-overlapping community structure from
local solutions produced by our methods.

LocToGlob takes as input the multilayer graph GL and yields a set of non-
overlapping communities. The algorithm works by iteratively performing a covering
phase, which first computes the local community for a selected seed node, then updates
the global community structure and the portion of graph that has not been processed
yet. For the selection of seed node at each iteration of ML-LCD, we employ the
simple heuristic (Fagnan et al. 2014), which first samples at random a node v then
selects the node with maximum degree among v and its neighbors. The covering
phase terminates when all nodes have been processed. Since this phase may pro-
duce singleton communities, a post-processing phase is performed to re-assign each
of the nodes belonging to a singleton community to the (non-singleton) community
for which adding the singleton produces the highest increase in the local community
function.

4.3 Experimental settings

Each of ourML-LCDmethodswas carried out over all nodes in a network, by selecting
one node at a time as seed.ML-LCD-wlsim andML-LCD-clsim require the definition of
a node similaritymeasure for a given layer (simi (·, ·)) or couple of layers (simi, j (·, ·)),
respectively (cf. Sect. 3.3). We considered three alternative measures, as listed below:

– Jaccard similarity, i.e., simi, j (u, v) = |Ni (u)∩N j (v)|
|Ni (u)∪N j (v)| , where Ni (u) = {v ∈

V|(v, u) ∈ Ei } denotes the set of neighbors of a node u in layer Li (with i = j
for ML-LCD-wlsim).

– Cosine similarity,whereby the proportionality of sharedneighborhood is smoothed

to favor unbalanced neighborhoods to be compared: simi, j (u, v) = |Ni (u)∩N j (v)|√|Ni (u)||N j (v)|
(with i = j for ML-LCD-wlsim).

– Triad-based similarity, whichwe define as a Jaccard similarity calculated on the set

of 3-cliques to which any two nodes u, v belong to: simi, j (u, v) = |Ni (u)∩N j (v)|
|Ti (u)∪Tj (v)| ,

where Ti (u) indicates the set of 3-cliques (or triads) to which node u belongs to
on layer i (i = j forML-LCD-wlsim). Please note that, since we take into account
undirected graphs, the number of triads in common between two adjacent nodes
is equivalent to the number of neighbors in common.

We will use notations jac, cos, and tr iads to refer to the above instantiations of
function sim. For the layer weighting scheme in ML-LCD-lw, we assume uniform
weights.

As concerns the evaluation of global community detection, we averaged perfor-
mance results of LocToGlob and PMM over a relatively large number of runs (50),
in order to reduce the bias due to their non-deterministic behavior. The number of
desired communities, which is a further input in PMM, was set equal to the number of
communities extracted by each of our LocToGlob variants based on ML-LCD. Per-
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formance results by LocToGlob variants and competing ones are assessed by means
of the multilayer (or multislice) modularity measure proposed in (Mucha et al. 2010).4

5 Results

We organize the presentation of experimental results in three subsections: Sect. 5.1
provides an in-depth analysis of the communities identified by ourML-LCDmethods,
whereas the subsequent two subsections contain comparative evaluation of ML-LCD
with local community detection methods on aggregate graphs (Sect. 5.2) and with
global, multilayer community detection methods (Sect. 5.3).

5.1 Evaluation of ML-LCD methods

We assessed the behavior of the proposed ML-LCD methods in terms of: (1) size
of extracted local communities, (2) structural characteristics of the communities, (3)
similarity between communities, (4) distribution of layers involved in each of the local
communities, (5) community distribution over number of edges, (6) impact of simi-
larity measures on ML-LCD-wlsim and ML-LCD-clsim, (7) overlap of communities
generated by each of the methods, (8) efficiency analysis. In the following we will
present results concerning each of the above evaluation aspects.

5.1.1 Size of local communities

Table 2 compares our ML-LCD methods in terms of size of the local communities
produced. (We refer here only to ML-LCD methods, while results corresponding to
LCD and Lemonwill be discussed later in Sect. 5.2). On average,ML-LCD-lw yields
the largest communities on all datasets, except TW-YT-FF; on this dataset, which has
a unique combination of highest Adeg and lowest Alayer (cf. Table 1),ML-LCD-clsim
communities slightly prevail in size w.r.t. ML-LCD-wlsim, though the latter shows
the largest variation. In general, ML-LCD-wlsim yields the smallest communities on
all datasets (with the exception of RemoteSensing on which however it shows the
smallest variation). Note also that, on DBLP, all methods tend to identify quite small
communities, which can be explained due to the nature of the node relation (i.e.,
co-authorship).

5.1.2 Structure of the communities

Table 3 reports the per-layer average path length and clustering coefficient of the
identified communities. For each of the datasets, ML-LCD methods, and measures,
we report mean and standard deviation over the layers, of the mean and maximum
values found over all communities.ML-LCD-lw communities tend to have the highest

4 Experiments were carried out on an Intel Core i7-3960X CPU@3.30GHz, 64GB RAMmachine. All our
algorithms are written in Python. Original codes of competing methods are in Python (LART) and Matlab
(PMM and GL).
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Table 3 Per-layer average path length and clustering coefficient of the communities identified byML-LCD
methods

Dataset Average path length Clustering coefficient

Mean SD Max Mean SD Max

ML-LCD-lw

Airlines 0.881 ± 0.143 2.259 ± 0.365 0.077 ± 0.088 0.488 ± 0.374

AUCS 1.479 ± 0.201 1.978 ± 0.207 0.560 ± 0.180 0.801 ± 0.138

Biogrid 0.656 ± 0.430 6.049 ± 0.767 0.095 ± 0.102 1.000 ± 0.000

DBLP 0.041 ± 0.029 2.306 ± 0.284 0.016 ± 0.011 1.000 ± 0.000

RealityMining 1.409 ± 0.108 2.545 ± 0.621 0.276 ± 0.112 0.889 ± 0.192

RemoteSensing 1.474 ± 0.048 2.786 ± 0.145 0.471± 0.082 1.000 ± 0.000

TW-YT-FF 1.368 ± 1.107 4.515 ± 2.250 0.128 ± 0.118 1.000 ± 0.000

ML-LCD-wlsim

Airlines 0.222 ± 0.168 1.872 ± 0.397 0.022 ± 0.027 0.508 ± 0.398

AUCS 1.182 ± 0.237 1.880 ± 0.364 0.533 ± 0.238 0.938 ± 0.087

Biogrid 0.314 ± 0.247 3.839 ± 0.655 0.079 ± 0.091 1.000 ± 0.000

DBLP 0.030 ± 0.021 1.875 ± 0.202 0.015 ± 0.011 1.000 ± 0.000

RealityMining 0.778 ± 0.111 1.833 ± 0.153 0.295 ± 0.126 1.000 ± 0.000

RemoteSensing 1.201 ± 0.053 2.541 ± 0.265 0.529± 0.094 1.000 ± 0.000

TW-YT-FF 1.091 ± 0.473 2.660 ± 0.121 0.301 ± 0.233 0.917 ± 0.144

ML-LCD-clsim

Airlines 0.557 ± 0.180 2.208 ± 0.485 0.035 ± 0.052 0.277 ± 0.252

AUCS 1.249 ± 0.221 2.022 ± 0.269 0.447 ± 0.237 0.824 ± 0.176

Biogrid 0.336 ± 0.332 6.593 ± 2.439 0.037 ± 0.044 1.000 ± 0.000

DBLP 0.028 ± 0.020 2.306 ± 0.324 0.010 ± 0.008 1.000 ± 0.000

RealityMining 1.165 ± 0.276 2.743 ± 0.287 0.113 ± 0.083 0.719 ± 0.286

RemoteSensing 1.244 ± 0.183 3.073 ± 0.379 0.232 ± 0.043 1.000 ± 0.000

TW-YT-FF 1.211 ± 0.955 3.771 ± 1.440 0.062 ± 0.058 0.546 ± 0.506

Bold values correspond to the minimum per-dataset (mean) average path length and to the maximum
per-dataset (mean) clustering coefficient

mean and maximum values of average path length, followed byML-LCD-clsim. This
is likely to be related to the different sizes of communities produced by the methods.
Moreover, all methods’ communities show very low average path length on DBLP,
which again depends on the co-authorship type of relations.

Considering the clustering coefficient values, the three methods behave quite sim-
ilarly to each other on AUCS, DBLP, and RealityMining. Some clique communities
are identified on Biogrid, DBLP and RealityMining (all methods), TW-YT-FF (ML-
LCD-lw), and RealityMining (ML-LCD-wlsim). Also, by coupling with average path
length results, roughly small-world communities are observed on AUCS, RealityMin-
ing,RemoteSensing and (forML-LCD-wlsim)TW-YT-FF. The lowest values of average
path length and clustering coefficient is achieved by allmethods onDBLP, whichmight
be explained due to the very sparse connectivity in this dataset (cf. Table 1).
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Table 4 Pairwise comparison of communities produced byML-LCDmethods:mean and standard deviation
of Jaccard similarity

Dataset ML-LCD-lw versus ML-LCD-wlsim versus ML-LCD-lw versus
ML-LCD-wlsim ML-LCD-clsim ML-LCD-clsim

Airlines 0.345 ± 0.351 0.389 ± 0.397 0.391 ± 0.349

AUCS 0.641 ± 0.314 0.688 ± 0.288 0.638 ± 0.364

Biogrid 0.440 ± 0.400 0.722 ± 0.376 0.425 ± 0.395

DBLP 0.753 ± 0.306 0.807 ± 0.258 0.674 ± 0.317

RealityMining 0.536 ± 0.361 0.542 ± 0.319 0.458 ± 0.308

RemoteSensing 0.536 ± 0.305 0.531 ± 0.234 0.444 ± 0.265

TW-YT-FF 0.254 ± 0.300 0.328 ± 0.325 0.237 ± 0.251

Bold values correspond to the highest per-dataset (mean) similarities

Fig. 2 Distribution of number of layers over communities. (Best viewed in color version, available in
electronic format). a Airlines b Biogrid c DBLP

5.1.3 Community similarity

We also compared our methods in terms of Jaccard similarity between the sets of
nodes belonging to the local communities respectively extracted for the same seed
node. Table 4 summarizes the mean and standard deviation similarities aggregated
over all local communities.

The highest average similarity is generally achieved by ML-LCD-wlsim vs. ML-
LCD-clsim, with marginal exceptions for Airlines (ML-LCD-lw vs. ML-LCD-clsim)
and RemoteSensing (ML-LCD-lw vs.ML-LCD-wlsim). Also, the comparison between
ML-LCD-lw and ML-LCD-clsim always results in the lowest average similarity with
the exception of AirlineswhereML-LCD-lw andML-LCD-wlsim behave more differ-
ently from each other.

5.1.4 Layer coverage over communities

We analyzed the number of layers covered by each particular community, for each of
the ML-LCD methods. Figure 2 reports results for the datasets with higher number
of layers, i.e., Airlines, Biogrid and DBLP. (Communities are sorted by decreasing
number of layers.) On DBLP, all methods show a stairs-like behavior on the various
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Fig. 3 Kernel density estimates of per-layer community distributions for number of edges, on AUCS. (Best
viewed in color version, available in electronic format). aML-LCD-lw bML-LCD-wlsim cML-LCD-clsim
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Fig. 4 Kernel density estimates of per-layer community distributions for number of edges, onAirlines. (Best
viewed in color version, available in electronic format). aML-LCD-lw bML-LCD-wlsim cML-LCD-clsim

layers, with a tendency of ML-LCD-clsim to produce more communities that cover a
lower number of layers. A less regular form of stairs-like trend is observed for Biogrid,
with a long tail (more evident for ML-LCD-clsim) of single-layer communities. More
interestingly, onAirlines, a large fraction of communities (above 50%) byML-LCD-lw
cover all or most of the layers; ML-LCD-clsim here also produces communities that
lie on most layers, although for a much smaller fraction of them (about 12%), whereas
ML-LCD-wlsim produces about 25% of the communities covering 50-70% of layers.

Moreover, considering the datasets with the highest network-specific average ratio
of layers per node (i.e., AUCS, RealityMining and RemoteSensing), we observe that all
methods are able to produce most of the communities that cover all layers (results not
shown). On TW-YT-FF, at least two of three layers are always covered by a community.

5.1.5 Distributions of communities for number of edges

In addition to the previous analysis, we also studied the per-layer distribution of com-
munities for number of edges. Due to space limitation, we report here details on AUCS
and Airlines, which can be regarded as representatives of our evaluation datasets in
terms of layer coverage and sparseness. Figures 3–4 show the kernel density estimate
of the community distribution for number of edges, over each layer in a network.

On AUCS (Fig. 3), when usingML-LCD-lw, layers #3 and #4 characterize most of
the communitieswith number of edges less than 10 and around 20, respectively. For the
other layers there is instead a tendency to be covered by communities of varying size
(in the full x-axis, for layer #1). Considering ML-LCD-wlsim and ML-LCD-clsim,
layer #3 characterizes the majority of communities with smaller number of edges,
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Table 5 Mean and standard deviation of the size of the communities identified by ML-LCD-wlsim and
ML-LCD-clsim using Cosine and triad-based similarity measures

Dataset ML-LCD-wlsim ML-LCD-clsim

cos triads cos triads

Airlines 13.348 ± 17.023 8.127 ± 11.968 21.362 ± 22.197 19.273 ± 21.324

AUCS 8.869 ± 3.032 8.328 ± 2.274 12.230 ± 8.538 8.689 ± 4.298

Biogrid 5.383 ± 11.748 4.953 ± 3.919 20.419 ± 57.634 7.338 ± 16.300

DBLP 3.266 ± 2.466 3.642 ± 2.108 3.706 ± 3.930 3.764 ± 2.843

RealityMining 3.523 ± 2.276 3.333 ± 1.805 10.273 ± 10.441 7.632 ± 5.859

RemoteSensing 5.865 ± 2.620 5.926 ± 2.714 7.945 ± 4.276 7.006 ± 3.844

TW-YT-FF 25.785 ± 42.462 16.700 ± 29.853 18.209 ± 17.020 9.080 ± 5.656

Bold values correspond to the highest per-dataset (mean) size

while peaks of layer #5 and #4, respectively, correspond to less than 20 edges per
community.

On Airlines (Fig. 4), distributions appear very right-skewed w.r.t. the number of
edges. For ML-LCD-lw, the highest density corresponds to a small group of layers
(being #34 the dominant one), in the regime around 25 edges. Much more diversified
is the situation for ML-LCD-wlsim and ML-LCD-clsim, where more layers are char-
acteristic for a relatively large number of edges; in particular, ML-LCD-clsim is able
to produce communities where more than five layers correspond to high density for a
number of edges between ten and forty.

5.1.6 Impact of similarity measures onML-LCD-wlsim and ML-LCD-clsim

We investigated the effect of using measures alternative to Jaccard similarity ( jac),
which is chosen as default in ML-LCD-wlsim and ML-LCD-clsim (cf. Sect. 4.3).
Specifically, we discuss results concerning the size, similarity and matching of com-
munities produced by the two methods when equipped with each of the similarity
measures.

Looking at Table 5, we observe that the average size of the communities obtained
using cosine similarity or triad-based similarity is, in many cases, higher than the one
obtained using Jaccard (cf. Table 2), for both ML-LCD methods. One exception is
represented by DBLP, where all the methods obtain comparable average sizes. This
is probably due to the low connectivity and the high number of cliques this dataset
contains; moreover, in DBLP, almost the same average community size is obtained
by using tr iads and jac. As a side remark, the method used (i.e.,ML-LCD-wlsim or
ML-LCD-clsim) does not seem to have a strong bias on the relative differences among
the behaviors of the different similarity measures, for what concerns the size of the
communities.

Table 6 reports the average Jaccard similarities between the node sets of the com-
munities obtained by ML-LCD-wlsim and ML-LCD-clsim, by varying the similarity
measures. It can be noted that the most different communities (i.e., the lowest Jac-
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card similarity values) are obtained when comparing communities detected by cos
and tr iads, for both ML-LCD-wlsim and ML-LCD-clsim (with the only exception of
ML-LCD-clsim on RemoteSensing). As regards the most similar communities, onML-
LCD-clsim higher similarity values are generally achieved comparing jac and tr iads
measures. Even when this comparison does not correspond to the highest similarity of
community, i.e., on AUCS and RemoteSensing, it is very close to the maximum value,
which is therein obtained by comparing jac and cos. This is not surprising since
jac and tr iads are both Jaccard-based measures, and on some specific networks the
number of shared 3-cliques can be very similar to the number of shared neighbors,
making the effects due to these twomeasures close to each other. As regardsML-LCD-
wlsim, the highest similarity is achieved again when comparing jac and tr iads on
DBLP, RemoteSensing and TW-YT-FF, and when comparing jac and cos on the other
datasets. The latter would indicate that in the rest of the datasets the neighborhood of
nodes to be compared tend to be of comparable sizes.

We further studied the effect of alternative measures by observing the percentage
of identical communities obtained by ML-LCD-wlsim and ML-LCD-clsim. Looking
at Table 7, this ranges from 24.60% to 81.60% for ML-LCD-wlsim, and from 21.80%
to 76.60% for ML-LCD-clsim. Generally, high percentages are achieved on DBLP,
which again is explained by the particular structure of this network. ConsideringML-
LCD-clsim, this appears to be more sensitive to the choice of similarity measure since
the percentage of identical communities is general lower that the corresponding values
obtained byML-LCD-wlsim. In both cases, highest values are achieved considering the
comparison between jac and tr iads measures. As regardsML-LCD-wlsim, relatively
high percentages are obtained on RemoteSensing and RealityMining, i.e., datasets
which are relatively small in size and number of layers. Conversely, the fraction of
identical communities decreases considering networks with more layers and higher
connectivity (e.g., on Airlines).

5.1.7 Community structure overlap

In this analysis we evaluated the amount of overlap among the communities identi-
fied by each of the ML-LCD methods on the various networks. To this purpose, we
computed the Jaccard coefficients of the node sets over all pairs of local communities
identified by any particular ML-LCDmethod. Results, shown in Table 8, indicate that
each of the methods, on all datasets, produces local communities sharing, on average,
relatively few nodes with the other communities in the network. In all cases, with the
exception of all methods on AUCS and ML-LCD-lw on Airlines, the mean Jaccard
coefficient is below 0.1, while the standard deviations are generally higher than the
corresponding means, up to 0.3 on AUCS.

Thismight be explained considering the network characteristics reported in Table 1,
and the semantics of our evaluation data (as described in Sect. 4.1). From a structural
point of view, networks on whichML-LCDmethods generate communities with more
overlap are relatively smaller in terms of nodes (AUCS, Airlines and RealityMining),
while less overlapping communities are identified for sparser and larger networks
(RemoteSensing, Biogrid and TW-YT-FF). The extreme case is represented by the
DBLP network where the extracted communities roughly form a partition of the net-
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work. We remind that this network contains many small connected components and it
is characterized by high sparsity and the lowest average degree per node (Adeg equals to
3.8). The slightly higher overlap of community structure observed on smaller datasets
(i.e., AUCS, Airlines and RealityMining) also finds an intuitive explanation in the
nature of the multilayer data, and in particular in the presence of hubs or bridges in the
network. For instance, in the flight routing scenario corresponding to Airlines, some
nodes may represent airport locations that are main hubs in a certain geographical area
(e.g., major European capital cities). These hubs would be connected to the majority
of smaller airports in the area, and with other main hubs, for almost all airline com-
panies flying in that area, therefore they will be more likely to be included in several
local communities. As concernsAUCS andRealityMining, since these networks repre-
sent different online/offline interactions between (relatively) small sets of individuals,
some highly popular individuals may act as “bridges” across layers, causing a certain
overlap in the local communities built around them and their neighbors. For instance,
the chief of the department represented in AUCS is likely to appear, together with
full professors, in several local communities. A similar scenario can be figured out
for RealityMining where members of the MIT Media Laboratory and members of the
MIT Sloan business school can belong to different communities since they attend the
same master classes and/or sport activities in the campus.

5.1.8 Efficiency analysis

We discuss here the time performances of ML-LCD. Table 9 shows, for each dataset
and method, the average, standard deviation and maximum execution times, over all
nodes in the network. Note that minimum time values are not reported, since they
are of the order of magnitude of 1.0e-4 in all cases, except for TW-YT-FF where they
correspond to few seconds for all methods.

Considering firstML-LCD-lw and the default versions of ML-LCD-wlsim andML-
LCD-clsim ( jac option), it can be noted that, when the methods produce communities
of comparable size (like inAUCS,DBLP andRemoteSensing; cf. Table 2),ML-LCD-lw
and ML-LCD-wlsim have similar time performance whileML-LCD-clsim tends to be
slower; in particular, on DBLP, this behavior appears to be more evident considering
the maximum time, since the average time is biased by the very sparse connectivity of
this network and the presence of many, small, connected components in which the size
of the shell set plays a minor role than in the other networks. Conversely, on Biogrid
and RealityMining,ML-LCD-lw tends to run more slowly than the other two, whereas
on Airlines the time performances of ML-LCD-lw are between those of ML-LCD-
wlsim and ML-LCD-clsim; also, on TW-YT-FF, ML-LCD-clsim can perform better
thanML-LCD-wlsim. The above findings are clearly related to both the computational
complexity of each of theML-LCDmethods as well as to the size of the communities
extracted by the methods; for instance, on Airlines, Biogrid and RealityMining, ML-
LCD-lw communities are bigger (from two to four times) than those extracted by the
other methods; also, on TW-YT-FF, the size obtained byML-LCD-wlsim with tr iads
option is nearly double the size of ML-LCD-clsim communities (Table 5).

It should be noted that the time performance of the variousmethods on TW-YT-FF is
several orders ofmagnitude higher than in the other datasets (up to an average execution
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time of 133514 seconds for wlsim_triads and absolute maximum time for clsim_jac).
This is explained since, as reported in Table 1, TW-YT-FF is the dataset having the
highest average degree of node and, among the largest datasets, is also the densest
one (one order of magnitude denser than Biogrid and DBLP). These characteristics
make TW-YT-FF our hardest benchmark in terms of time performance obtained by
our methods.

Concerning the impact of the different similarity measures on the time perfor-
mances, the execution time of the methods tend to become much slower when tr iads
is used, given the generally higher cost of computing all the 3-cliques in which a node
is involved than analyzing its neighbors. Moreover, options jac and cos generally
leadML-LCD-wlsim andML-LCD-clsim to behave similarly (which is quite expected
since the two similarity measures have the same cost), in all cases with the exception
of TW-YT-FF — for the characteristics of this dataset above discussed, the Jaccard
measure could lead to particularly slow performance, as it may yield high values (i.e.,
the nodes may share a large portion of their neighborhood), thus being quite inclusive
when building a local community.

5.1.9 Discussion

We summarize here the main results from the evaluation of our ML-LCD meth-
ods. First, ML-LCD-lw followed by ML-LCD-clsim have shown to produce larger
communities on all datasets. This indicates that in general the approach underlying
ML-LCD-lw (i.e., fixed layer-based weighting scheme) tends to be less “xenopho-
bic” than ML-LCD-clsim, and this in turn less than ML-LCD-wlsim. This is actually
explained since the impact of the LCext term is generally smaller for the ML-LCD-
lw formulation allowing it to grow more the local community for a particular seed
node. A different situation corresponds to ML-LCD-clsim where the LCext function
is computed between the boundary nodes and all their neighbors without considering
the layers on which they lay.

Related to the above aspect is thatML-LCD-lw followed byML-LCD-clsim provide
communities having the highest mean and maximum values of average path length.
Moreover, all methods are able to produce roughly small-world communities (on
AUCS, RealityMining, and ML-LCD-wlsim on TW-YT-FF).

ML-LCD-wlsim and ML-LCD-clsim are more likely to behave similarly, in terms
of Jaccard similarity between the extracted communities for the same node. This is
not surprising, since these two formulations are based on a similar notion of node
similarity, while differing in how layer features are considered. Moreover, for both
methods, cosine similarity and triad-based similarity show a generally more aggregat-
ing behavior than the default Jaccard similarity in most cases.

ML-LCD-lw and ML-LCD-clsim generally produce communities that cover all or
most of the layers. This holds consistently with various distributions of the number of
layers per node; when the latter is quite high (e.g., above 80%), allML-LCDmethods
are equally able to mostly produce communities that cover all or most of the layers.

Each of the ML-LCD methods produces local communities sharing, on average,
relatively few nodeswith the other communities identified in the same network dataset.
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As concerns the efficiency of the proposedML-LCDmethods, the best performance
is obtained by ML-LCD-wlsim (with Jaccard or cosine similarity) in most cases. Yet,
this can be explained since, despite the ML-LCD-lw has the lowest computational
complexity, it tends to discover larger local communities than the other methods, thus
affecting the number of iterations to terminate. This efficiency result would make
ML-LCD-wlsim a preferred choice for the ML-LCD problem, supporting our initial
intuition on beneficial effects that might be obtained by incorporating node similarity
over the layers into the objective function of the ML-LCD problem.

5.2 Comparison with local community detection methods on the aggregate
graphs

In this evaluation stage, our goal was to assess the difference in size and in composition
between the local communities produced byML-LCD and the ones (corresponding to
the same seeds) produced by the LCD and Lemon methods (cf. Sect. 4.2).

Size values of the communities identified by LCD and Lemon are reported in
Table 2, along with values corresponding to the ML-LCD methods. From the com-
parison, we observe that the mean size of communities by LCD are generally lower
than the size of at least one of the ML-LCD methods; on AUCS and RemoteSensing,
where LCD yields the largest communities on average, the corresponding values are
however very close to those by ML-LCD-lw, yet with higher standard deviation. Dif-
ferent situation concerns Lemon, which in absence of ground-truth information on
the communities to be identified (as in our case), tends to generate communities with
significantly larger size than approaches based on the optimization of the internal-to-
external connection density ratio.

Tables 10–11 summarize results relating to the comparison with LCD and Lemon,
respectively, in terms of Jaccard similarity (mean and standard deviation values over all
seed nodes) and fraction of identical communities (i.e., Jaccard similarity equal to one).
Considering Table 10 and looking at the mean similarity values w.r.t. LCD, it appears
that on all datasets, but DBLP, they are always below 0.5, with maximum values per
dataset that are reached when the cos option is used. Also, the percentage of identical
communities w.r.t. LCD is generally very low or even null (again, with the exception
of DBLP where ML-LCD-wlsim and ML-LCD-clsim equipped with cos obtain about
40% of same communities as those by LCD); clearly, the situation observed forDBLP
depends on the presence ofmany small, highly-connected components in this network.
Concerning the comparison with Lemon (Table 11), it is evident and even more
significant the lack of similarity between ML-LCD and the competing one: mean
similarities are occasionally above 0.2, while percentages of identical communities
are zero in nearly all cases, again with the exception ofDBLP (in which case, they are
around or below 5%).

Overall, not surprisingly, the above results confirm that accounting for the multiple
available layer information, as our ML-LCD methods do, brings to the identification
of local communities that are quite different from the ones obtained by a single-layer
LCD method applied on the aggregate graph derived from the original multilayer
network.
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Table 12 Number of communities identified by LocToGlob (mean and standard deviation) and competing
methods

Dataset LocToGlob-lw LocToGlob-wlsim LocToGlob-clsim LART GL

Airlines 50.38 ± 4.28 67.36 ± 5.18 56.20 ± 6.14 381 12

AUCS 8.46 ± 1.17 10.24 ± 1.11 8.66 ± 1.05 27 6

Biogrid 5959.0 ± 105.53 7323.60 ± 229.32 6037.20 ± 272.1 NA 16151

RemoteSensing 116.44 ± 5.28 134.76 ± 5.10 152.62 ± 5.32 218 19

RealityMining 20.64 ± 2.30 23.82 ± 2.02 20.42 ± 2.55 62 13

TW-YT-FF 1076.44 ± 25.17 1255.71 ± 38.33 1230.71 ± 45.33 NA 761

Results of LocToGlob are aggregated over fifty runs. Bold values and underlined values correspond to the
highest per-dataset community numbers considering ML-LCD methods and all methods, respectively

5.3 Comparison with global community detection methods

Table 12 summarizes statistics on the number of communities identified byLocToGlob
(with suffixes lw, wlsim, and clsim to distinguish among the different variants) and
by the competing methods — please note that we do not report results of PMM
since, for this method, the number of communities is an input parameter. We observe
that, among our proposed methods, LocToGlob-lw and LocToGlob-wlsim tend to
produce the lowest and highest number of communities, respectively (which is in
line with results previously presented). Considering also LART and GL, the former
yields a number of communities that is significantly higher than that of other methods;
however, on Biogrid and TW-YT-FF, it was not able to terminated as it incurred an
out-of-memory issue.5 Note also that on Biogrid, all the methods produced the largest
number of communities, which might be explained since this network is characterized
by the highest sparsity among all the employed datasets (cf. Table 1).

Table 13 reports multilayer modularity values corresponding to the global, non-
overlapping community structures obtained by LocToGlob and competing methods.
Notation PMM-i , with i = {1, 2, 3}, refers to the setting of number of communities
corresponding to each of the LocToGlob methods (cf. Sect. 4.3).6

A first important remark is that, on all network datasets, LocToGlob-lw always
leads to better modularities than the other two approaches, with LocToGlob-wlsim
and LocToGlob-clsim showing similar behaviors. Compared to the competitors, all
LocToGlobmethods outperform, in terms of both average and maximum modularity,
LART and the three variants of PMM. In the case of GL, LocToGlob-lw obtains
comparable average modularity; moreover, LocToGlob-lw achieves higher maximum
modularity on AUCS, Airlines and TW-YT-FF with respect to GL.

The obtained results highlight that our proposed framework is able to reach com-
parable or even better modularity results against state-of-the-art global community
detection methods. We stress here that this evaluation setting is actually a severe com-

5 We do not include DBLP in this evaluation because the competitors incurred out-of-memory issues,
though our methods did not.
6 For LART and GL we report only one performance score since they have a deterministic behavior.
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Table 13 Multilayer modularity performance of global community detection methods

Dataset LocToGlob-lw LocToGlob-wlsim LocToGlob-clsim

Mean Max Mean Max Mean Max

Airlines 0.033 0.040 0.023 0.028 0.027 0.033

AUCS 0.225 0.252 0.212 0.233 0.214 0.239

Biogrid 0.113 0.135 0.074 0.076 0.085 0.088

RemoteSensing 0.196 0.201 0.185 0.190 0.151 0.157

RealityMining 0.243 0.281 0.209 0.226 0.187 0.225

TW-YT-FF 0.167 0.185 0.118 0.121 0.117 0.122

Dataset LART GL PMM-1 PMM-2 PMM-3

Mean Max Mean Max Mean Max

Airlines 0.013 0.037 0.014 0.018 0.014 0.016 0.014 0.015

AUCS 0.154 0.249 0.167 0.222 0.157 0.187 0.166 0.218

Biogrid NA 0.225 0.038 0.039 0.037 0.039 0.038 0.039

RemoteSensing 0.069 0.269 0.159 0.167 0.152 0.161 0.143 0.150

RealityMining 0.101 0.288 0.175 0.217 0.165 0.200 0.171 0.237

TW-YT-FF NA 0.022 0.053 0.580 0.060 0.069 0.053 0.053

Bold values and underlined values correspond to the highest per-dataset modularities consideringML-LCD
methods and all methods, respectively

parison for our approach since: all the competitors exploit a complete knowledge of
the graph to optimize their internal objective function and, the multilayer modularity
we employ as evaluation criterion is also the function internally optimized by GL.

6 Conclusion

We addressed the novel problem of local community detection in multilayer networks,
and presented the first algorithmic framework to solve it. Our ML-LCD formulation
relies on the optimization of a function based on internal and external connectivity of
a multilayer local community, and is instantiated into three methods that differ in the
way within- and across-layer features are taken into account to discover a local com-
munity for a given seed node. An extensive analysis over seven real-world multilayer
networks has shown significance and ability of our methods in detecting multilayer
local communities. In addition, by inferring a global non-overlapping community
structure from the local communities identified for a given set of seed nodes in the
network, we demonstrated that our ML-LCDmethods can produce higher-modularity
communities than state-of-the-art methods designed for multilayer global community
detection.

Our future research directions would move along paths involving both theoretical
and experimental aspects. On the former, we would like to study alternative objective
functions for the ML-LCD problem and theoretical guarantees on the sub-optimality
of the solutions. Also, an interesting aspect to understand is how outlier and hub nodes
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1478 R. Interdonato et al.

can be efficiently detected and handled during the construction of a local community.
Considering the experimental evaluation, it would be an important addiction the con-
struction of a ground-truth for the local communities to be identified in a multilayer
network. Finally, we envisage a number of application problems for which ML-LCD
methods can profitably be used, such as friendship prediction, targeted influence prop-
agation, and more in general, mining in incomplete networks.
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