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Abstract One of the hot topics in modern era of cricket is to decide whether the
bowling action of a bowler is legal or not. Because of the complex bio-mechanical
movement of the bowling arm, it is not possible for the on-field umpire to declare a
bowling action as legal or illegal. Inertial sensors are currently being used for activity
recognition in cricket for the coaching of bowlers and detecting the legality of their
moves, since a well trained and legal bowling action is highly significant for the career
of a cricket player. After extensive analysis and research, we present a system to detect
the legality of the bowling action based on real time multidimensional physiological
data obtained from the inertial sensors mounted on the bowlers arm. We propose a
method to examine the movement of the bowling arm in the correct rotation order
with a precise angle. The system evaluates the bowling action using various action
profiles. The action profiles are used so as to simplify the complex bio-mechanical
movement of the bowling arm along with minimizing the size of the data provided
to the classifier. The events of interest are identified and tagged. Algorithms such as
support vector machines, k-nearest neighbor, Naïve Bayes, random forest, and artifi-
cial neural network are trained over statistical features extracted from the tagged data.
To accomplish the reliability of outcome measures, the technical error of measure-
ment was adopted. The proposed method achieves very high accuracy in the correct
classification of bowling action.
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1 Introduction

Cricket is a bat-and-ball sport which is played between two teams on a cricket ground.
Each team consists of eleven players. At the centre of the cricket ground is a twenty
two yard rectangular pitch with a set of three vertical wooden posts at each end called
wicket. The team designated for batting, always has two players on the pitch called
batsmen while the opponent team fields its eleven players. The match begins when a
bowler, a designated player of the fielding team, runs towards his wicket and bowls the
ball from one end of the pitch towards the batsman standing in front of the wicket at the
other end. The batsman’s intention is to prevent the ball from hitting the wickets with
his bat and score as many runs as possible with the bat after hitting the ball. The bowler
attempts to both stop the batsman from scoring the runs and to dismiss the batsman.
The dismissed batsman is replaced by another player of his team at the pitch. The
batsman is dismissed by a bowler when he is bowled, the batsman failed to prevent the
ball from hitting the stumps, leg before wicket, when the bowler hits the batsman with
the ball in front of the stumps without touching the bat, and caught, when the ball goes
into the air after touching batsman’s bat and is caught by a fielder before touching the
ground. There are two phases in the cricket game, each called an innings. An inning
is completed either when a defined limit of overs has been reached or the ten batsmen
of the batting team have been dismissed. The batting team then becomes the bowling
team and vice versa. The team running the most score is declared the winner. The
International Cricket Council (ICC) and Marylebone Cricket Club (MCC) maintain
the laws of cricket. The bowler is restricted to deliver the ball overarm with a straight
arm and cannot throw the ball. If the bowler bends his arm, the other team is given
one run and he has to bowl the ball again.

Activity recognition is an active domain of research with its root in the field of com-
puting and multimedia (Casale et al. 2011). Activity recognition aids in recognizing
different activities of a subject under study. Activity recognition has made it possible
to identify human activity by attaching sensors to the human body (Altun et al. 2010),
and thus has extensive applications in the field of medicine (Akay 2011), detecting and
classifying human physical activity such as walking, running and sitting (Casale et al.
2011; Altun et al. 2010; Wang et al. 2011; Ayu et al. 2012; Preece et al. 2009; Man-
nini and Sabatini 2011; Anguita et al. 2012; Garcia-Ceja and Brena 2013; Mannini
and Sabatini 2010, detecting user’s motion type (Bedogni et al. 2012), traffic security
in networks (Weaver et al. 2011), bio-mechanics and sports science (Wixted et al.
2010, 2011a, b; Qaisar et al. 2013; Ghasemzadeh et al. 2010; Ghasemzadeh and Jafari
2011). Activity recognition has been used in a lot of sports, particularly swimming
and jogging etc. for measuring different traits of athletes like their body temperature,
velocity and acceleration. Recently, inertial sensors have seen their utility in many
applications of activity recognition. Inertial sensors have previously been used in the
aircraft navigation (Frew et al. 2004), autopilot (Wu et al. 2013), satellite systems
(Hofmann-Wellenhof et al. 2007), land vehicles (Niu et al. 2012) and ships (Johnson
et al. 2012). The gyroscope measures changes in orientation, whereas the accelerom-
eter measures the acceleration around an axis. Some of these inertial sensor devices
measure the changes along one single axis (1-dimensional) whereas others measure
the sensitivity aroundmultiple axes (2-dimensional, 3-dimensional; Altun et al. 2010).
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Accelerometer and the gyroscope are usually used together to ensure higher accuracy.
The fast establishment of Micro-electro-mechanical systems (MEMS) has resulted in
the decrease of size, weight and cost of inertial sensors. Market proliferation of inertial
sensors has given rise to renewed interest in research community in their application
to a wide range of problems (Titterton and Weston 2004). The application of iner-
tial sensors in activity recognition has been extended to many sports such as tennis,
swimming and running to name a few.

Cricket is one of the major sports where inertial sensors have been deployed for
the training of the players and detecting the legality of their moves (Wixted et al.
2010, 2011a, b; Qaisar et al. 2013). Wixted et al. (2010, 2011a, b) are working to
develop a light weight, inexpensive, wearable device for the bowlers which will detect
the legality of the bowling action in real time instead of doing it in the laboratories
dedicated for this task. The matter of bowlers throwing an illegal delivery, commonly
known as throwing or chucking, gives an unfair advantage to the bowler to deliver the
ball at high speed (Wixted et al. 2011b). This topic has been controversial over the
last few decades, leading the International Cricket Council (ICC) to bring changes to
the rules of cricket by allowing a bowler to extend the elbow to 15◦. However, due to
the complexities involved in the movement of the arm, it is yet not possible to make a
quick decision over the legality of the bowling action. When a bowler is suspected of
throwing, he is sent to one of the ICC approved international laboratories, where the
bowling action is assessed with the help of motion capture system, radar and a high
speed video. The bowler has to go through the complex process of bio-mechanical
analysis and is required to bowl a series of deliveries with his normal speed in the
laboratory environment where 20 motion cameras, 2–3 high speed cameras and a
radar gun is installed (Wixted et al. 2011b). It is pertinent to keep in consideration the
assessment cost, travel cost, time and a temporary ban on the bowler for that particular
action until the results are out. Also, there is a possibility that the bowler will deliver
balls in a different manner during the study.

The inertial sensor can be easily used with objects without creating any blockades
in the movement (Altun et al. 2010). This is a big advantage over video cameras,
which require a free line of sight for capturing significant information. Also, some
features may be lost when 3D scene view is projected onto 2D. Another disadvantage
of using the video based system is the cost of storing and processing the video (Altun
et al. 2010). In many research studies, video cameras have been used as a reference for
the data collected from inertial sensors (Uiterwaal et al. 1998). A commonly proposed
solution in the literature (Aginsky andNoakes 2010; Chin et al. 2010;Yeadon andKing
2015; Middleton et al. 2015) uses a marker-based approach. The reflective markers
are commonly affixed to different body parts of an athlete before being analyzed using
a motion analysis system. The disadvantage of this method is that the system cost is
high, the assessment procedure is lengthy and the system is unlikely to be applicable
in competitive play to detect the legality of bowling action on the field.

A recent research work (Ahmed et al. 2015) used flex sensors to check the validity
of bowling action by measuring arm angle at ball release. However, it does not discuss
specific points of bowling action particularly the carry angle, the start of the arm action
is not identified and the critical aspect of elbow extension is not monitored between
the start and the end of the arm action. Therefore, a simple orientation based detection
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of the legality of the bowling action is not feasible. Wixted et al. (2010) determined
whether the current technology is capable of capturing significant acceleration and
orientation changes by comparing the data captured from the MEMS device with the
data received from the Vicon markers (Wixted et al. 2011a). In a recent experiment,
Wixted et al. (Spratford et al. 2015) investigated the utility of peak outward acceleration
plotted against the data received from inertial sensors mounted on the wrist, which is a
critical aspect in detecting the illegal bowling action. However, their output is limited
to the visual analysis by the human eye to make a decision regarding the legality.
Qaisar et al. (2013) have worked on the legality of the bowling action and proposed a
method to train the bowler for a specific bowling action using the sameMEMS inertial
sensors. However, they did not work on the validity of the arm extension. Thus having
a low cost wearable inertial sensor device to detect an illegal bowling action in real
time is of high importance since the technology is cheap and can be used by both
professional as well as amateur players.

Although designing a precise and reliable device to detect the illegal bowling action
and the training of a bowler has been addressed by many researchers (Wixted et al.
2010, 2011a, b; Qaisar et al. 2013; Ahmed et al. 2015), yet, the use ofmachine learning
with inertial sensors for training and detecting themoves has got little attention. Qaisar
et al. (2013) used unsupervised machine learning to train a bowler over a specific
action getting an acceptable accuracy. Our work is different from the aforementioned
studies. To the best of our knowledge, legality analysis of cricket bowling action using
inertial sensorsmounted onto the bowler’s arm (known asBodySensorNetwork)while
applying supervised machine learning technique has not been studied previously by
other researchers. Following are the main contributions of this paper:

– We present a low cost mobile decision system for the detection of the illegal
bowling action. The system could be used to help quarantine the suspected bowling
actions. It could be easily used both at the street and the club level cricket andwould
certainly help in early detection. The bowling action of most of the players are
reported illegal at a later stage of their professional carrier where it is very hard
for them to remodel and keep the effectiveness of their new bowling action.

– We introduce action profiling that computes profiles from the sensor readings and
specify the events of interest.

– We develop an application where the data from the sensors is reported to a com-
puting core which conducts the classification process and displays the result in
real time.

2 Action profiling

The idea of action profiling has been inspired from the concept of data profiling. Just
like the analysis in data profiling is performed to assess the data quality for a data
warehouse to simplify the content, relationships, and structure of the data in order to
discover and validate metadata; action profiling is performed to simplify the complex
bio-mechanicalmovement and clarify the relationship between differentmoving joints
of the bowling arm to investigatewhether the bowling arm conformswith the standards
dictated by the regulating authority for a legal bowling action. We aim to develop
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Fig. 1 Key events of bowling action

different profiles of the events that can be used to assess the legality of the bowling
action, as well as analyze the arm extension. The key events in a bowling action are
run-up, pre-delivery stride, the start of the arm action, the end of the arm action (ball
release), and follow through, as shown in Fig. 1. The movements performed by an
athlete during the key events may or may not follow the standards set by the regularity
authority. For example, the problem with arm movement during the arm actions may
include extending the arm beyond an angle of 15◦.

A profile of action is a data recorded in time of different movements performed
by several joints of the bowling arm during a bowling action. The profile describes
the order and the occurrence of the events along with the relationship between differ-
ent joints involved in the event, thus reducing the complexity of the bio-mechanical
movement with the help of a simple representation of data. For example, a profile for
an arm during the bowling action consists of (1) Lifting the arm (2) Rotating the arm
clockwise (3) Moving the arm rigidly once it reaches the level of your shoulder till the
ball release. This order and sequence is followed in all of the legal bowling actions.

To detect the legality of the bowling action, it is critical to identify the start and the
end of the arm action with the help of sensors’ data. In our work, we are able to identify
the key events of the bowling action. This helps us to focus only on the data related
to the events in order to find useful patterns of the moving joints by visualization.
Moreover, it also reduces the size of raw data provided to the classifier which greatly
minimizes the complexity and the computation needed for classification.

2.1 Profile computation

Using action profiles, we divide the sensor readings into several windows. Each win-
dow contains a short-interval sensor reading that corresponds to an event (phase) of
the bowling action. The corresponding window may contain important information
about the key event at any given time. Tags are used to assign individual labels to every
window. Tagging helps in the identification of the events of interest. An example of
a profile computed from a sensor node placed on the wrist is shown in Fig. 2. This
figure illustrates the angular velocity of the wrist at X , Y and Z axes during a bowling
action. We detect the value of the ball released from our training data from the node
placed on the wrist. The ball release point, highlighted as amaxima in Fig. 2 is used as
a detonator to start the process of windowing and tagging the sensor readings recorded
during a bowling action. The bar at the top shows the tags assigned to different win-
dows based on several events identified in the bowling action. The data samples of the
corresponding events are tagged to create a window of the specific sensor reading.
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Fig. 2 Profile tagging in order to identify events of interest

We have introduced an algorithm for profile computation after extensive analy-
sis. We detected a close correlation between the peak acceleration (maxima) and
the ball release during our analysis as shown in Fig. 2. The maxima occurs in
the data when the ball is about to be released during the arm action. This infor-
mation is used by our algorithm to tag the data samples around this point as the
arm action window. Other windows are computed in a relative manner to the start
and end of the arm action window. The direct extraction of the start of the arm
action is not possible due to many forces acting along the moving arm (Wixted
et al. 2010). Also, we only need the data collected from the bowler during the arm
action to check for the possible elbow extension. We need to crop the arm action
data in order to look at the critical aspects of the arm orientation and movement
during this phase. This whole concept is incorporated in the Algorithm 1 provided
next.

Algorithm 1 takes the complete sensors reading recorded during the bowling action
of a bowler as an input. As discussed previously, the extension in the arm for per-
forming the legality analysis of a bowler is checked during the arm action phase
only; therefore we need to identify the different phases of the bowling action first
in order to focus on the concerned phase. The key point that determines the vari-
ous phases is the maxima which occurs just before the ball release (during the arm
action) as evident from Fig. 2. Our algorithm considers the maxima as a starting
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Algorithm 1 Profiling
Input: Dataset (Ax , Ay , Az ,Gx ,Gy ,Gz);
where Ax , Ay , Az represents the column vectors for tri-axial accelerometer and Gx ,Gy ,Gz represents
the tri-axial gyroscope column vectors
Max ← Gx [1]
Ws ← 0 (initially null); Ws is the starting index of the window for Start of Bowling Action data
We ← 0 (initially null); We is the ending index of the window for End of Bowling Action data
Wp ← 0 (initially null); Wp is the ending index of the window for Pre-delivery Stride
W f ← 0 (initially null); W f is the starting index of the window for Follow Through
Search for Maxima:
Scan Gx for the maximum value and set Max(x) = Gx [n]; where n is the index of the array vector
where Global Maxima occurs and Max(x) >= Gx [x]
Tagging:
Set Ws = [n − 10],
We = [n + 5],
Wp = [< n − 10],
W f = [> n + 5]; between (Ws , We) we need to crop the data from all the column vectors of both the
accelerometer and gyroscope.
Crop (Ws , We) from (Wp,Ws ,We,W f )

such that (Ws , We) ε (Wp,Ws ,We,W f );
This function will return a dataset containing cropped data from all the column vectors of both the
accelerometer and gyroscope
Output: Profiled Dataset (Ax , Ay , Az ,Gx ,Gy ,Gz);
Data samples recorded between Ws and We

point for profiling the data. Therefore, Algorithm 1 starts searching for the max-
ima first by initializing the Max(x) variable to the first index of the Gx column
vector and then incrementally search for the next higher value by passing the Gx

vector to searchMaxima function which returns the index of Gx vector where max-
ima occurs. The arm action window is tagged in an approximate manner around
the maxima by tagging the previous and the following adjacent data samples as
arm action data. Algorithm 1 uses this information to enforce the grouping of data
sample to different windows prior to and after the occurrence of the arm exten-
sion so as to compute the profile of the data. The other phases are identified in a
relative manner to the arm action phase but they do not contribute towards the out-
put.

The gyroscope mounted at the wrist of a bowler gives the highest value along x-axis
due to the physical position of the gyroscope relative to the accelerometer during the
arm action just before the ball release. This is due to the fact that the gyroscope output
changes during the rotation around a particular axis. The gyroscope will give a high
value as long as the arm is rotating.

We evaluated the performance of the Algorithm 1 with the data (150 samples) col-
lected in Sect. 4. The two important points in the bowling action where the legality
is checked is the start of the arm action and the end of the arm action (ball release).
The Algorithm 1 gives 100% performance in detecting the ball release point where the
start of the arm action is calculated in an approximate manner around the ball release
point as mentioned previously.
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2.2 Profile analysis

A good bowling action requires proper and timely movement of different body parts.
According to the ICC laws of cricket (MCC 2013), a legal bowling action involves
moving the arm rigidly during the arm action, and the bowler is not permitted to
partially or completely extend his arm during this phase. Our algorithm computes a
profile with key events of the bowling action identified and outputs the arm action
sensor reading as a result. The arm action event data is analyzed by the action profiler
to show the articulation of the elbow, the fundamental difference between throwing
and bowling.

In Fig. 3,wehave shown the representative deliveries of both, the legal and the illegal
bowling action where the dotted line represents the upper arm plot and the continuous
line represents the forearm plot. The gyroscope reading from the upper arm and the
forearm is displayed after taking a vector VG of the 3-axes reading with Eq. 1. The
triaxial gyroscope detects the orientation changes along Gx , Gy , and Gz . Although a
triaxial gyroscope canmeasure the changes in orientation, the complex forces involved
with the moving arm makes it very difficult to detect the elbow extension based on the
analysis of the values of the 3-axes individually. Therefore, in order to minimize the
effect of complex forces (which occurs as a consequence of the orientation changes)
in the analysis, we take the magnitude of the three axes. In Eq. 1, VG is the orientation
vector that the gyroscope is measuring whereas Gx , Gy , Gz are the 3 axes that define
our orientation vector. The vector VG represents a unit vector and may be regarded as
the Direction Cosine.

VG =
√
G2

x + G2
y + G2

z (1)

Initially, in our analysis, we displayed the magnitude vectors of both the accelerom-
eter and gyroscopes, individually, for all the three sensors’ placement i.e. upper arm,
forearm and wrist. Interestingly, we found a strong correlation between the upper arm
and the forearm during arm action as the bowler has to rotate his arm (upper arm and
forearm) rigidly during the arm action whereas there is no restriction on the move-
ment of the wrist. In Fig. 3, we have shown only the arm action data which is given
as an output by Algorithm 1, thus eliminating other phases of the bowling action. It
can be seen clearly in the legal bowling actions (Fig. 3a) that the upper arm and the
forearm stay aligned (positively correlated) during the arm action. However, in case
of illegal bowling action, where the elbow is extended to involve chucking (throwing),
the upper arm and the forearm move independently (negatively correlated) during the
arm action, as evident from Fig. 3b. The deviation in Fig. 3b shows the amount of arm
extension during the arm action. This is verified with the help of frame by frame video
analysis. The sensor output provides a basis for an early decision on the legality or the
extension of the arm during an arm action at minimum. This analysis also confirms the
capability of our mobile sports system to detect the extension in the arm movement.

3 Material and methods

Our process starts with collecting the sensors’ data for the various bowling actions
followed by pre-processing. The pre-processing steps involve calibration, removal of
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Fig. 3 Legality analysis of the data collected from synchronous inertial sensors mounted onto the bowler’s
arm for legal and illegal bowling action. a Legal bowling delivery b Suspected illegal delivery

Fig. 4 Conceptual scheme of bowling action classification system

missing values and outlier detection. This is then followed by action profiling, feature
extraction and evaluation. A classifier is then trained based on the training set to build
a computational model for classification. A conceptual scheme of the classification
process for the assessment of a given bowling action is shown in Fig. 4.

3.1 Experimental setup

We use body worn miniature inertial sensors known as Body Sensor Network to exam-
ine the legality of the bowling action. We design a sensor board that consists of a
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Fig. 5 Custom manufactured sensor board

tri-axial accelerometer, a tri-axial gyroscope, a microprocessor for interfacing with
sensors and a Bluetooth module for data transfer as shown in Fig. 5.

We use custom manufactured sensor board 1.75in × 1.75in where each board
consists of a micro-controller, IMU module, Bluetooth module, voltage regulators
and a rechargeable battery placed at the bottom of the device. The IMU is interfaced
with the micro-controller via I2C interface while the Bluetooth is interfaced with
micro-controller via serial interface. The IMU sends the data of the accelerometer
and gyroscope to the micro-controller. After processing the data received from IMU,
the micro-controller sends the value of the respective axis of the accelerometer and
gyroscope to Bluetooth for wireless communication.

We placed our custom-made sensor board at three different points (upper arm, fore-
arm and wrist) onto the bowler’s arm after careful consideration, to ensure maximum
accuracy and to detect any anomaly in the bowling action, as shown in Fig. 6. The
wrist sensor is necessary in addition to the forearm sensor because there is an extensive
movement of sensor placed at the elbow due to the muscle tension and wrist rotation
which affects the sensor orientation (Wixted et al. 2011a). The data rate of inertial
sensors are kept at 150Hz, since at this rate we can capture the key information of the
subject arm during bowling (Wixted et al. 2010) while keeping the power consumption
very low. We can increase the date rate up to 400Hz at the cost of more battery usage
(Qaisar et al. 2013). All of the data from the sensors is transmitted to a computer via
Bluetooth serial communication, where it is stored in a file to be processed later for
further analysis. We also video recorded each bowling data, which is used to help in
analysis and validation of different results obtained from our proposed system.
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Fig. 6 Position of sensors
placed on Bowler’s arm

3.2 Reliability assessment

Despite the widespread use of anthropometrical applications in industry, it is believed
that there exists an error margin in the measurements. There is a variability in the
anthropometrical measurements when repeated for different subjects. This is due to
different physical characteristics which are not possible to avoid or due to technical
or measurement error which could be avoided (Perini 2005). This variation in the
measurement caused by the technique or measurement is highly responsible for the
error in results. The most common way to assess the reliability and precision of the
anthropometrical measurements is by means of the technical error of measurement
(TEM) (Miguel-Etayo et al. 2014). The TEM index [advocated by the International
Society for the Advancement of Kinanthropometry (ISAK)] is used to calculate the
standard deviation between the repeated measures performed by the same anthro-
pometrist for the same athlete (or group of athletes) and the standard deviation between
the repeated measures performed by different anthropometrist in the same group of
anthropometrist. The TEM index allows anthropometrists to verify the accuracy when
performing and repeating anthropometrical measurements.

In order to calculate the TEM index for intra-evaluator results, the measurements
recorded from the gyroscope mounted at the wrist during the bowling action of 10
athletes listed in Table 1 were considered. All of the steps to calculate the intra-
evaluator TEM based on Table 1 are given next:

∑
(Deviations)2 = 0.012
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Table 1 Measurements taken from 10 different volunteers for a bowling action

Volunteers 1 2 3 4 5 6 7 8 9 10

Measurements

1st −1.92 0.21 0.36 −0.28 −0.59 0.25 0.53 −1.59 1.64 −1.23

2nd −1.02 0.34 0.04 −0.41 −0.38 0.75 0.7 −1.59 1.76 −0.70

3rd −0.86 0.14 −0.07 −0.76 0.08 0.19 0.49 −1.53 1.41 −1.65

4th −1.31 0.2 −0.42 −1.09 −0.07 0.34 0.65 −1.76 1.35 −0.47

5th −1.02 0.28 −0.38 −0.66 0.08 0.37 0.92 −1.76 1.23 −1.26

Deviations 0.42 0.08 0.3 0.32 0.3 0.22 0.17 0.11 0.22 0.47

Deviations2 0.18 0.01 0.10 0.01 0.09 0.05 0.03 0.01 0.05 0.22

Table 2 Measurements taken from 10 different volunteers (1–5) for a bowling action by different anthro-
pometrists

Volunteers 1 2 3 4 5

Measurements

1st anthropometrists −1.923 0.096 0.196 −1.162 −0.533

2nd anthropometrists −1.822 0.089 0.218 −1.12 −0.485

Deviations 0.071 0.005 0.016 0.03 0.034

Deviations2 5.1 × 10−3 2.2 × 105 2.4 × 104 8.7 × 104 1.1 × 103

Table 3 Measurements taken from 10 different volunteers (6–10) for a bowling action by different anthro-
pometrists

Volunteers 6 7 8 9 10

Measurements

1st anthropometrists 0.654 −1.593 1.354 0.648 −0.702

2nd anthropometrists 0.62 −1.528 1.333 0.654 −0.667

Deviations 0.024 0.049 0.015 0.005 0.025

Deviations2 5.9 × 104 2.1 × 103 2.2 × 104 2 × 105 6.4 × 104

Absolute Technical Error Of Measurement=0.204
Variable Average Value(VAV)=2.937
Relative Technical Error Of Measurement=6.94

These values are obtained based on the techniques mentioned in (Perini 2005). The
same procedure must be followed in order to calculate the inter-evaluator TEM but the
measurements should be performed by different anthropometrists in the same group of
athletes by adopting the same procedure and equipment. The following inter-evaluator
TEM value is calculated based on the measurements listed in Tables 2 and 3.

∑
(Deviations)2 = 0.012

Absolute Technical Error Of Measurement=0.023
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Variable Average Value(VAV)=0.284
Relative Technical Error Of Measurement=8.25

It is worth mentioning that a higher deviation of the relative TEMmay be observed
for the same bowling action where the arm is slightly extended. The relative TEM val-
ues therefore are closer to the cut point (15% tobeacceptable) in bowling actionswhere
the arm is slightly extended for the same bowling action. The anthropometrists were
encouraged to improve the procedure and measurements where the TEM results were
classified as non-acceptable (greater than 15%). These reliability values should be
consideredwhen evaluating the bowling action of cricket players within a competition.

3.3 Pre-processing

The basic purpose of pre-processing is to remove any inconsistency in the data and
refine the data to a form that is suitable for subsequent analysis. For this purpose,
the data collected from various sensors is first preprocessed by calibration and then
passed through a filter. The output of the filter gave six dimensional data as a result
i.e. the accelerometer (Ax , Ay , Az) and the gyroscope (Gx , Gy , Gz). A check is
required on the dataset to avoid any inconsistency in the data due to the presence of
missing values and outliers, which is sometimes a common problem while collecting
data from sensors. Outlier is an attribute value that lies outside a defined range of
normal values, therefore the outliers are considered as kind of noise (Bashir et al.
2015). Outliers often occur in the data due to experimental or measurement error but
can also occur by chance in the distribution. The outlier detection is useful in such
cases when there is an error in the data due to a faulty instrument or experiment
and minimize the chances of incorrect classification of data. They are detected and
removed from each attribute using a standard procedure of Inter-Quartile Range (IQR)
(Rousseeuw and Hubert 2011). Any value that falls outside the range of ±3 IQR
is replaced with the average field value. A box plot of IQR for the wrist’s data is
shown in Fig. 7. Each box in Fig. 7 corresponds to a dimension of the wrist’s data.
The central mark of the box represents the median where as the edges represent
the 25th and 75th percentiles. Similarly, the whiskers indicate the borderline for the
normal data. The outliers are plotted separately as shown in the box plot of Gy in
Fig. 7.

The pre-processing module of the proposed system also involves handling miss-
ing values in each attribute. The missing values are replaced with the corresponding
mean values of the attribute. The removal of missing values in bowling action data
is very critical and need to be handled carefully because they can directly effect the
classification and analysis of the bowling action. Therefore, we have put a limit on the
percentage (10%) of the missing values in a attribute. If the percentage of the missing
values exceeds the 10% threshold, then the particular attribute will be discarded and
will not be considered for classification and analysis. This is because in bowling action,
the bowler can perform chucking within a 1 sec duration and we can miss important
information if the missing values in an attribute exceeds the specified threshold. Each
entry in the data set DS

B is given the following structure:
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DS
B = 〈A(x,w), A(y,w), A(z,w), G(x,w), G(y,w), G(z,w)〉

∪〈A(x,e), A(y,e), A(z,e), G(x,e), G(y,e), G(z,e)〉
∪ 〈A(x,u), A(y,u), A(z,u), G(x,u), G(y,u), G(z,u)〉 (2)

We can summarize Eq. 2 in the following way:

∀p ∈ {w, e, u}{S(x,p), S(y,p), S(z,p)} (3)

where S is the value of the respective sensor on x , y, and z axes and P is the position,
i.e. wrist, forearm or the upper arm.

3.4 Profiling

The next step in our process was the identification of the key events. The identification
of the key events, especially the start of the arm action and the end of the arm action
(ball release) is very important since the bowling arm needs to be monitored during
this phase of the bowling action for legality analysis. The profiles were computed
based on Algorithm 1 described in Sect. 2.1. The key events were identified and their
respective data samples were tagged by a unique label to make a data window. The
key events in our system are identified with two labels demonstrating a transition from
one phase of the bowling action to the other. The window containing the arm action
reading is cropped for analysis and classification purposes.

3.5 Feature extraction

Since three inertial sensors were attached to each subject’s arm, each with two tri-axial
devices (accelerometer and gyroscope), a total of six signals were received from each
inertial sensor unit, resulting in 18 signals (3 sensor units× 6 axes) from thewhole arm.
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After an extensive research, we extracted the following set of features initially before
feature reduction that have proved to be useful from both computational and accuracy
point of view with the state of the art wearable system for human activity recognition
(Casale et al. 2011; Altun et al. 2010; Wang et al. 2011; Ayu et al. 2012; Preece et al.
2009; Mannini and Sabatini 2011; Anguita et al. 2012; Garcia-Ceja and Brena 2013;
Mannini and Sabatini 2010; Bedogni et al. 2012). For example, Preece et al. (2009)
have reported high levels of classification accuracy using time-domain features such
as mean, standard deviation and median against a number of novel wavelet features
for classifying dynamic activities from accelerometer data. Similarly (Altun et al.
2010) used minimum and maximum values, the mean value, variance, skewness, and
kurtosis from a number of body-worn miniature inertial sensors to classify a wide
range of activities accurately (accuracy >95%). The features are extracted from the
data, keeping in view that we cannot apply machine learning algorithm directly to the
raw sensor data for classification (Mannini and Sabatini 2010).

〈mean(s,p), med(s,p), std(s,p), skew(s,p), kurt(s,p),min(s,p), max(s,p)〉 (4)

where s represents the type of the sensor i.e. accelerometer or gyroscope, p repre-
sents the location of the sensor placement on the bowler’s arm whereas mean, med,
std, skew, kurt, min, max are the mean, median, standard deviation, skewness, kur-
tosis, minimum and maximum value, respectively, extracted from each axis of the
accelerometer and the gyroscope. After acquiring the signals with 150Hz data rate
for a 10-s bowling action, we obtain a time sequenced data of Es = 150 elements for
each of the 18 signals where each signal can be represented as Es × 1 vector where
s = [s1, s2, s3, . . . , sEs]T . All of the statistical features are computed over s vector of
corresponding signal as follows:

mean(s) = μs = 1

Es

Es∑
i=1

si

standard deviation(s) = σ =
√

1

Es

∑Es

i=1
(si − μs)2

skewness(s) = 1

Esσ 3

Es∑
i=1

(si − μs)
3

kurtosis(s) = 1

Esσ 4

Es∑
i=1

(si − μs)
4

When a feature such as the mean, is extracted from a record, 18 (1 feature × 18
signals) different values are obtained.Whenwe calculate the seven featuresmentioned
above, from a single record, a total of 126 features (18 signals × 7 features) are
obtained. These features are placed in a feature vector in the following order: the upper
arm, the forearm and the wrist, with accelerometer features placed first; followed by
the gyroscope for each sensor unit. The features are extracted from the sensors’ data
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after cropping the tagged arm action from the profile, as discussed previously. For the
sake of simplicity, we use some notations in this paper: the features extracted from
accelerometer values on a position P are presented in Eq. 5.

F A
p = {mean(p,A), med(p,A), std(p,A), skew(p,A),

kurt(p,A), min(p,A), max(p,A)} (5)

Similarly, we denote the set of features extracted from the gyroscope with:

FG
p = {mean(p,G), med(p,G), std(p,G), skew(p,G),

kurt(p,G), min(p,G), max(p,G)} (6)

We combine both of the feature sets to make a feature vector and denote it as
follows:

V AG
p = F A

p ∪ FG
p (7)

Lastly, the set of feature vectors used in classification is denoted by:

TV = Up〈V AG
p , B〉 (8)

3.6 Feature selection

When the dimension of the feature space is high, learning the parameters of a classifier
becomes a difficult task, especiallywhen the size of the training set is small (the curse of
dimensionality; Mannini and Sabatini 2010; Altun et al. 2010). The feature reduction
process consists of selecting only those features which have a greater impact on the
classification of the data, discarding those which minimally help the classifier towards
the correct response. Due to the high computation involved in searching through a
number of high dimensional subsets, this process is not always considered optimal
(Mannini and Sabatini (2010)). Since the feature set that we extracted from the tag data
was quite big (126 features), and not all of the features contributed in classification,
which makes the process computationally expensive and difficult for the classifiers to
learn from the data. Feature selection reduce the dimension of the data such that the
overall accuracy is improved (Dash and Liu 2003). As discussed earlier, in case of
illegal bowling action, where the elbow is extended to involve chucking (throwing), the
upper arm and the forearm move independently during the arm action. Therefore the
features extracted around the upper arm and the forearm data will contribute more than
the others. However, certain other factors are also important to keep in view; one such
factor is the speed of the bowler bowling a legal delivery. If a bowler delivers a bowl
with a much higher speed than his previous deliveries, then there is also a chance of
chucking. In such case, the data collected from the wrist can be very significant along
with that of the upper arm and the forearm since the speed is directly proportional with
the movement of the bowler’s wrist. Since we have extracted a large set of features
where there is a high chance of irrelevant features that contribute very less towards the
outcome. Thereforewe looked into different feature reduction and selection techniques
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to select only those features that contribute more towards the classification to make the
learning process optimal and accurate. We use a Correlation-based Feature Selection
(CFS) algorithm to create reduced feature sets. Themotivation behind selectingCFS is
that the redundant, noisy and irrelevant features are filtered out quickly. CFS identifies
an optimal feature set by evaluating different combination of features and taking into
account the predictive ability of each feature individually (Hall and Smith 1998).
The basic difference between CFS and other feature selection techniques is that CFS
provides a heuristic merit for a feature subset. Hence, the algorithm can decide to
choose that option during its next iteration which maximizes the output of the given
function(heuristic). Furthermore, it uses different search techniques to generate the
feature subsets that are to be evaluated. We used a Greedy search method. The greedy
search method evaluates the parent set by examining all of the possible child subsets
by either adding or removing features to the subset. The subset that shows the highest
correlation with the output class replaces the parent set. The process continues till no
further improvements can be made (Williams et al. 2006).

We run CFS subset evaluation procedure over the training datasets to get the most
significant attributes. The test data was excluded during feature selection process. The
CFS subset evaluation selected the top 21 features based on their highest contribution
towards the output class, thus reducing the number of features to 21 from 126. As a
result of this feature selection, we get a 21 × 1 feature vector. The results obtained
when the classification techniques are applied on test data with and without feature
selection are discussed in Sect. 4.

3.7 Classification techniques

A classifier takes as input a feature vector V AG
p for sensor placements P and a feature

training set TV , and outputs a value (V AG
p , TV ) B that estimates the Bowling Action

as legal or illegal. The training set TV contains a number of feature vectors V =
V1 + V2 + V3 + · · · Vc where each feature vector V is associated with an output class
B. An output classB is assigned to each instance of the test set which is used to evaluate
the performance of the classifier. We consider five classifiers in our study: Support
Vector Machines (SVM), k-Nearest Neighbor (k-NN), Naïve Bayes, Random Forest
(RF) and Artificial Neural Network (ANN).

We use SVM in our study to discover potential spatial relationships throughout
the feature sets. A library LibSVM is used using Java language in the ECLIPSE
environment for this purpose.

The classification process of the k-NN works by selecting a feature vector V in the
training set TV and then assigning a label to the feature vector based on the majority
vote of its k nearest neighbors. When the parameter value of k is equal to 1, it means
that the feature vector V will be assigned the class of its nearest neighbor, but if
the value of k is equal to 3 or more, the feature vector will be assigned the class
of the most common neighbors. The selection of the value of k is a critical issue
and can significantly influence the decision made by algorithm. Since no standard
method exists for the determination of k, we select the value of k experimentally by
evaluating the performance of the classification technique over different values of k.
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Fig. 8 Performance of k-NN over different values of k

The performance of k-NN over different values of k is shown in Fig. 8. The accuracy
of k-NN gradually decreases when the value of k increases as evident from Fig. 8. The
value of k for k-NN was optimized on separate training datasets.

In our problem,NaïveBayes classifierwas introduced in order to reflect the stochas-
tic nature of the environment where the training set was built.

Moreover, we used a three-layered feed-forward Artificial Neural Network for the
classification of the bowling action. The input layer is composed of asmany neurons as
the dimension of the input feature vector (10, after feature reduction). The hidden layer
is composed of twelve neurons, while the output layer is composed of two neurons
which are equal to the number of output classes. We have an additional neuron in both
the input and hidden layers with a bias value of 1. The neurons in the output layer can
take any value between 0 and 1. The target output for a neuron for an input feature
vector V is 1 when it belongs to that class and 0 for the other neuron.

4 Results and discussion

We developed a Java desktop application that facilitates in making a dataset and save
the incoming data in a log file. The data collection process obtains the data from
different subjects. As mentioned earlier, we mount the inertial sensor devices on the
subject’s arm at three different places: P ={Wrist (w), Forearm (e), Upper arm (u)}.
The inertial sensor device consists of two types of sensors: S ={Accelerometer (A),
Gyroscope (G)}. The data is collected from 14 different subjects with ages ranging
from 15 to 30years, all of whom were males. The subjects were directed to bowl a
series of deliveries in their regular style in both the legal and illegal ways: B ={Legal
(L), Illegal (I)} and were not restricted to perform the activity in a certain way. The
activity was carried out in a cricket ground with flat pitch. We collected the data from
equal number of fast and medium-pace bowlers for both the visual and the boundary-
line legal and illegal bowling actions under the supervision of expert cricketers. We
made three datasets: simple, moderate, and complex. The simple dataset is composed
of 100 instances of visually legal and illegal bowling actions, whereas the complex
dataset is composed of 50 instances of boundary-line legal and illegal bowling actions.
The moderate dataset is composed of 150 instance of both the simple and boundary-
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line legal and illegal bowling actions. The datasets strictly follow the rules dictated by
the regulatory authority (ICC) and extreme care is taken that the arm extension angle
is not violated.

We perform a baseline analysis to check how the alternative approaches would
perform at this task. Without such a baseline, it is not possible to decide whether
classifiers are useful. The baseline analysis also helps us in assessing the difficulty
of the original problem. We calculate the correlation between the upper arm as well
as forearm sensor. The correlation is one of the most useful and valued statistics. It
is a single number between −1 and +1 that measures the strength and the direction
of a relationship between two variables, with +1 being the highest indicating that the
two variables are in a strong positive linear relationship, −1 being the lowest value
indicating that the two variables are in a negative linear relationship, and 0 shows that
there is no linear relationship between the two variables. If the correlation between
the upper arm sensor and the lower arm sensor readings during the arm action is low,
the bowling action is declared illegal and vice versa. For example, in Fig. 3a (Legal
bowling delivery) the upper arm record and the forearm record are much correlated
whereas in Fig. 3b (Suspected illegal delivery) the upper arm record and the forearm
record are not correlated.

We perform the correlation analysis (represented as CA in Table 5) on all the three
datasets and present the results obtained in Table 5. It seems that distinguishing the
illegal bowling action is relatively difficult in comparison to the legal bowling action by
correlation analysis. Based on a very preliminary examination of some of the illegal
bowing actions that were classified as Legal by the correlation analysis, we found
that the upper arm and the forearm have a positive relationship even in the case of
phase shift (illegal bowling action) when chucking occurs resulting in a high value of
correlation coefficient. Two such cases are shown in Fig. 9. This analysis provides us
with a baseline for comparison with other techniques.

The classification algorithms described in Sect. 3.7 are applied to the three cricket
bowling datasets having different number of instances to build a computational model
for the classification of bowling action. Each training set consists of unique feature
vectors, and each one has the CFS selected features of the arm action data. Keep-
ing the nature of experiments in view, we used leave-one-subject-out cross-validation
(LOSOCV) approach to evaluate the performance of the classification techniques.
The LOSOCV is mostly used for machine learning experiments that involves human
subjects. The benefit of using LOSOCV over other validation techniques is the ten-
dency to allow subject-to-subject variation by leaving out all observations from the
same human subject altogether in the cross-validation. Also the auto-correlation for in
case of time series data involving a single subject makes the LOSOCV more appeal-
ing.

The proposed framework is applied on each test instance to process and classify
each instance into legal or illegal action based on the model developed by the classifier
on training dataset. The LOSOCV used input feature vectors from all subjects except
one in the dataset for training and then the feature vectors of the excluded subject
are used to test the performance of the classifier. Since the datasets contain multiple
examples from a single test subject, we ensured that all of the examples from one test
subject are in the same fold of test or training data thus developing a model which
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Fig. 9 Incorrectly classified illegal bowling actions

gives the best performance on unseen data. The process is repeated until each of the
subject in the dataset is used exactly once to test the performance of the classifier. An
average accuracy is calculated for all the train-test repetitions and are given in Tables 4
and 5. We have used multiple bowling action datasets in order to show robustness of
the proposed system and to give representative results when applied to different kinds
of bowling action datasets.

Table 4 shows the comparison of correct differentiation rates (accuracy) along
with standard deviation (SD), recall, precision and F-measure of the classification
techniques before feature selection. A significant improvement is observed in the
performance of the classifiers when feature selection is performed as shown in Table 5.
Tables 4 and 5 depict that the classification performed on 21 features is better than
the original 126 features. For example, the accuracy of k-NN in simple dataset (before
feature selection: 94 ± 3.45, after feature selection: 98.50 ± 0.70), moderate dataset
(before feature selection: 87.67 ± 4.10, after feature selection: 91.50 ± 3.10) and
complex dataset (before feature selection: 72.50 ± 5.35, after feature selection: 79.67
± 4.65) has been improved with feature selection. It can be observed from Table 5
that the highest accuracy is achieved by all of the algorithms when applied to simple
dataset. The proposed system produces significant results with an acceptable accuracy
with the moderate and complex datasets as well.
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Table 4 Performance evaluation of different classification techniques before feature selection

Classification techniques Accuracy (%) ± SD Recall Precision F-measure

Simple dataset

NB 89.67±2.45 0.90 0.88 0.90

SVM 92±2.20 0.88 0.94 0.92

k-NN (k=1) 94±3.45 0.94 0.94 0.94

ANN 97±1.72 0.94 1.0 0.97

RF 96.33±3.02 0.92 1.0 0.96

Moderate dataset

NB 77.33±3.11 0.67 0.89 0.77

SVM 84.50±2.80 0.82 0.86 0.85

k-NN (k=1) 87.67±4.10 0.83 0.92 0.88

ANN 89.67±3.66 0.89 0.91 0.90

RF 82.33±1.0 0.80 0.85 0.82

Complex dataset

NB 61.50±6.56 0.61 0.62 0.62

SVM 71.67±3.29 0.70 0.72 0.72

k-NN (k=1) 72.50±5.35 0.68 0.76 0.73

ANN 73.33±6.10 0.68 0.78 0.73

RF 74±4.23 0.74 0.74 0.74

As evident from the results presented in Table 5, all of the algorithms were able to
improve the results obtained with the baseline approach for all of the data sets. The
best classification is performed by k-NN and SVM which outperform other classifiers.
The comparison of the results show that SVM and k-NN give a consistent performance
for all of the three datasets whereas they perform relatively worse in case of complex
data. It can be observed from Table 5 that

A significance test is performed in order to ascertain the significance of the dif-
ference in the accuracy of the algorithms. In Machine Learning, a significance test is
often performed between two algorithms to support the claim that one algorithm gen-
eralizes better than the other (Nadeau and Bengio 2003). We run Corrected Paired T
test over the data to check the significance of the difference between the performance
of various algorithms that we tested for classification. We prefer to use the Corrected
Paired T test for the significance test rather than the Paired T test because the latter
does not assume any dependency between the attributes, which often leads to high
errors. We get the following findings based on the percentage correct score assigned
by the Corrected Paired T test with a 5% significance level when applied to simple,
moderate and complex datasets respectively.

{ANN , k − NN , SV M, RF} > {CA}
{ANN , SV M, k − NN } > {RF, N B} > {CA}
{SV M, k − NN } > {RF, ANN } > {N B} > {CA}
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Table 5 Performance evaluation of different classification techniques after feature selection

Classification techniques Accuracy (%)± SD Recall Precision F-measure

Simple dataset

CA 61±0.0 0.77 0.46 0.58

NB 93.50±2.22 0.93 0.94 0.94

SVM 97.33±1.15 0.95 1.0 0.97

k-NN (k=1) 98.50±0.70 0.99 0.98 0.99

ANN 100±0.0 1.0 1.0 1.0

RF 97.33±1.40 0.95 1.0 0.97

Moderate dataset

CA 53.33±0.0 0.68 0.51 0.58

NB 79.67±5.95 0.75 0.84 0.80

SVM 88.50±2.36 0.88 0.89 0.89

k-NN (k=1) 91.50±3.10 0.89 0.94 0.92

ANN 89.33±4.47 0.87 0.91 0.89

RF 86.50±3.74 0.86 0.87 0.87

Complex dataset

CA 46±0.0 0.67 0.41 0.51

NB 67.50±4.45 0.67 0.68 0.68

SVM 81±3.12 0.80 0.82 0.81

k-NN (k=1) 79.67±4.65 0.79 0.80 0.80

ANN 72±6.26 0.70 0.74 0.72

RF 74±5.85 0.74 0.74 0.74

where “>” indicates that the classifier on the left-hand side provides better gener-
alization and that it is significantly better than the classifier on the right-hand side,
whereas the classifier within the same “{}” indicates no significant statistical differ-
ence between their results.

The classification techniques applied in our study show a good rate of classification
for both legal and illegal bowling actions, with some classifiers showing a small error
while classifying the illegal bowling action, as evident from the recall of k-NN and
SVM in Table 5. This is because some of the illegal bowling actions tend to give a big
phase shift in the data signal,whereas somegive a very small variation from the normal.
The k-NN algorithm has some limitations such as it requires a lot of storage space and
is also computationally expensive. On the other hand, SVM had acceptable accuracy,
speed and also requires less training time. One of the most important observations
which can be drawn fromTable 5 is that significantly good results with higher accuracy
are produced when we use joint sensor’s data (upper arm, forearm, and wrist), as
compared to the work done by Saad et al. (Qaisar et al. 2013) in which case separate
datasets of upper arm, forearm and wrist were used giving an average accuracy of
90%.

Accuracy is also highly dependent on the training dataset and the placement of the
sensors. The sensors should be placed at the right point on the bowler’s arm and care
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has to be taken that the bowlers follow the ICC rules for legal bowling action while
collecting the data. The more accurate the training data, the higher are the chances of
correct classification.

The choice of different parameters affects the performance of themodel. Enhancing
the performance of a model is a challenging task. It is important to gain the domain
knowledge first and spend much time analysing the given problem. Some of the meth-
ods that help us in improving the model performance are treating outlier and missing
values, profiling, feature extraction and selection, applying multiple algorithms and
algorithm tuning. All of the methods except algorithm tuning are discussed previously
in the paper. The algorithm tuning refers to selecting the best parameters of the algo-
rithm. These parameters strongly influence the outcome of the learning process. For
example, in k-NN, we try different values of k’s in our model and noted the output
of the model as we vary k as shown in Fig. 8. We also fine tune the distance metric
of k-NN which determines the neighbor in order to classify an instance of a dataset.
Let us consider SVM as another example. SVM adjusts the classification parameters
by using the training data since it requires an initial learning phase. One of the main
parameters to tune is the selection of the kernel type. We selected radial basis func-
tion(RBF) for the kernel to perform classification. This is one way of doing this; there
are several other methods to fine tune the algorithms and increase the accuracy of a
model. However, this is not the main focus of this paper.

5 Evaluation

We used SVM during evaluation of the proposed system. SVM is a machine learning
classifier widely used for classification and regression analysis problems. Support
Vector Machine was first presented by Cortes and Vapnik (1995). SVM is basically a
supervised learning model that has the ability to recognize patterns and analyze data
with the help of the associated learning algorithms. SVM was initially proposed for
binary classification only, but later it was adjusted for addressing multi-class problems
also. For a binary classification task, SVM represents the feature vectors on a plane
in order to make it linearly separable. Each instance on the plane is associated to one
of the two classes i.e. positive or negative by introducing a separation gap between
them. The unknown instances are classified based on the side of the gap they fall on.
The dimension of the resulting space is sometimes greater than the original plane. The
space is defined by a weight vector w and a bias b. SVM can work as a non-linear
classifier in addition to linear classification, using kernel methods to map the feature
vector into a sufficiently higher dimensional space where the data is made separable
by a hyperplane (Altun et al. 2010). The following rule is used by the SVM to classify
an unknown instance (Bashir et al. 2015):

cr( f (v,w, b)) (9)

f (v,w, b) = 〈w.x〉 + b (10)

where v denotes the instance to be classified and f(w,b) represents the space constructed
by hyperplane.
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Table 6 Confusion matrix for
evaluation of proposed system

Predicted by system Classified by panel

Legal Illegal

Legal 11 3

Illegal 1 15
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Fig. 10 Rigid movement of the bowling arm during bowling action

In order to evaluate the proposed system, we use an unseen test set that helps us to
assess the effectiveness of the system and to fine tune our parameters. The unseen test
set consists of 30 instances that are collected from various cricket bowlers in real time
in the presence of a panel of expert cricketers according to the mechanism discussed in
Sect. 4. Each instance of the test set was provided to the system for classification, and
the results were recorded. The panel of expert cricketers provided their feedback on
each instance of the bowling action. The decision provided by the panel of cricketers
was matched with the decision provided by the proposed system in order to calculate
the accuracy of the system. The confusion matrix obtained as a result of the decisions
provided by the panel and the proposed system is shown in Table 6.

The confusionmatrix shows a high level of agreement between the panel’s decisions
and those of the proposed system.Themain reason behind a different decision provided
by the system is the presence of the outlier values in some attributes of the system. The
process is shown in the case analysis provided next for some representative bowling
actions with visual inspection of the data generated during the action profiling phase.

Case 1: the arm was rotated rigidly in an ideal way by the bowler during the
bowling action. Both the panel and proposed system predicted the bowling action
as Legal. The visual output of the bowling action’s data for forearm and upper arm
displayed in Fig. 10 also confirms the rigidmovement of the arm.When the arm is kept
rigid during the bowling action, the sensor output for the upper arm and the forearm
is closely aligned.

Case 2: the arm was extended by the bowler during the bowling action. The exten-
sion in the armoccurs just before the ball release point. The panel predicted the bowling
action as Illegal. The proposed system also classifies the bowling action as Illegal. The
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Fig. 11 Extension in the bowling arm before ball release point
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Fig. 12 An acceptable extension in the bowling arm

deviation in the sensor’s output of the upper arm and forearm at the ball release point
is shown in Fig. 11.

Case 3: the arm was extended in an acceptable way by the bowler during the
bowling action such that the extension remains less than 15◦ of the arm angle. The
panel predicted the bowling action as Legal. The proposed system also classifies the
bowling action as Legal. The little deviation in the sensor’s output for the forearm
and the upper arm displayed in Fig. 12 is an evidence of the arm extension during the
bowling action.

Case 4: The arm was extended by the bowler during the bowling action at the start
of the arm action and then flexed at the moment of the ball release. The panel predicted
the bowling action as Illegal. The proposed system also classifies the bowling action
as Illegal. The deviation in the sensor output of the upper arm and the forearm at the
start of the arm action is shown in Fig. 13.

Case 5: The arm was extended by the bowler during the bowling action at the start
of the arm action and the extension in the elbow was carried till the ball release. The
panel predicted the bowling action as Illegal. However, the proposed system classifies
the bowling action as Legal. The panel was able to observe the extension in the arm at
the start of the arm action but the extension was not detected by the system since the
angle was carried in a way giving the perception of a rigid arm movement. According
to ICC, this bowling action is illegal. The visual output of the bowling action’s data
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Fig. 13 Extension in the bowling arm at the start of arm action

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

Time (sec)

A
ng

ul
ar

 v
el

oc
ity

 (θ
/s

)

Upper arm
Lower arm

Fig. 14 Extension in the bowling arm till ball release point

for the forearm and the upper arm displayed in Fig. 14 clearly shows that the deviation
started at the start of the arm action and was carried till the ball is released.

The results obtained during the validation phase are encouraging and reflect the
effectiveness of the proposed system.

6 Application

WedevelopedCricketBowlingLegalityAnalysis (CiBLA) as a desktop application that
streamlines the flowof information between the sensorsmounted onto the bowler’s arm
to collect important aspects of the arm movement. Both, the Graphical User Interface
as well as the middleware, is implemented in Java language. Standard Widget Toolkit
(SWT) is a widget library (providing text-boxes, drop-down menus, check-boxes etc.)
that is used to build all of the user interfaces in our system. The Rich Client Platform
(RCP) is used as part of the application development environment. It is basically a
modular UI framework that integrates many lower level frameworks, including SWT
to provide a workbench. The applications developed with RCP are compatible with
many operating systems and greatly facilitate in the rapid development of client-side
applications.
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CiBLA can work in two different modes: training and detector. When the training
mode is selected, it collects the sensors’ data samples in real time from the bowler’s arm
at each positionPwhere sensors are placed, performs action profiling of the data, crops
the arm action window from the bowling action, extracts the statistical features FS

P
from each sensor axes to create a feature vector V AG

P and gets the user input concerning
the recently delivered bowling action to store the labeled feature vector 〈V AG

P , B〉 in
the training set TV . Finally, the classifier is trained over the standard training set to
develop a reference model. In the detector mode, CiBLA works in the similar manner
except that the legality of bowling action B is determined with the help of a reference
model developed on stored knowledge. SVM is used as the classification algorithm
in CiBLA since it gives the highest accuracy and speed as discussed in Sect. 4. The
application visualizes the arm action data (after the events of interest are identified
in the action profiling phase) in addition to the output class of the observation (legal,
illegal) to show the extension in the arm action, indicating the deviation from the legal
bowling action when the arm is not moved rigidly during the arm action as shown in
Fig. 3.

7 Limitations

The system is presently going through further field testing. We seek international
cricketing academies toworkwith us along-side their bio-mechanical experts to profile
their legal and illegal bowling actions so that we can train our system with the defined
system parameters. The system is currently limited to detect chucking only. Research
needs to be carried out to measure the degree of deviation from the defined limits of
legality by the ICC bowling law. The system should be able to determine the change in
the angle between the upper arm and the lower arm about the elbow axis. It is evident
that this is a tool that can be used on-field in real conditions to tackle suspected illegal
bowling action as well as a coaching tool for amateur players to help them correct,
improve and remodel their bowling action.

8 Conclusion and future work

In this paper, we have addressed the problem of detecting the legality of a bowling
action in the game of cricket. For this purpose, we have introduced a mobile sports
system that acquires data in real time from various inertial sensors mounted onto the
bowler’s arm. We have proposed a novel technique for identifying and cropping the
key events from the raw sensor reading. To achieve this target, we generated tags of
the key events from the raw sensor data to group the corresponding data samples in
a single window and provide a visual analysis to point out the relationship between
different parts of the arm during the bowling action. We evaluated a number of feature
extraction techniques, and based on our research, we figure out a set of features which
are highly acceptable, both computationally and in terms of accuracy. We use CFS
algorithm to reduce the dimensionality of the feature vectors by selecting only the
most important features. Moreover, we have developed an innovative application that
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acquires real-time data from sensors and conducts the classification process using
supervised machine learning. We have also demonstrated that the use of combined
datasets obtained frommultiple sensors’ placement (on the bowler’s arm) significantly
improves the classification. A very high classification accuracy has been achieved as
a result of the proposed system.

Future works include the development of a system classifying the spin bowling as
well as the female bowlers’ bowling action. The accuracy of the system could may
be further improved with other approaches such as Hidden Markov Model (HMM),
SVM-struct or by implementing an ensemble of different classifiers with an insightful
analysis by discussing the impact of the different features on accuracy. A possible
extension includes the support to classify the harmful movements of bowlers during
their bowling to prevent major injuries (hamstring strain, shoulder pain, sprained ankle
etc.) which often occurs at a later stage of their professional career. The system can
also be extended to other sports.
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