
Data Min Knowl Disc (2017) 31:972–1005
DOI 10.1007/s10618-017-0498-x

Scalable density-based clustering with quality
guarantees using random projections

Johannes Schneider1 · Michail Vlachos2

Received: 23 June 2015 / Accepted: 19 February 2017 / Published online: 2 March 2017
© The Author(s) 2017

Abstract Clustering offers significant insights in data analysis. Density-based algo-
rithms have emerged as flexible and efficient techniques, able to discover high-quality
and potentially irregularly shaped clusters. Here, we present scalable density-based
clustering algorithms using random projections. Our clustering methodology achieves
a speedup of two orders of magnitude compared with equivalent state-of-art density-
based techniques, while offering analytical guarantees on the clustering quality in
Euclidean space. Moreover, it does not introduce difficult to set parameters. We
provide a comprehensive analysis of our algorithms and comparison with existing
density-based algorithms.

Keywords Density-based clustering · Random projections · Nearest neighbors

1 Introduction

Clustering is an important operation for knowledge extraction. Its objective is to
assign objects to groups such that objects within a group are more similar than objects
across different groups. Subsequent inspection of the groups can provide important
insights, with applications to pattern discovery (Whang et al. 2012), data summa-
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rization/compression (Koyutürk et al. 2005) and data classification (Chitta and Murty
2010). In the field of clustering, computationally light techniques, such as k-Means,
are typically of heuristic nature, may require non-trivial parameters, such as the num-
ber of clusters, and often rely on stringent assumptions, such as the cluster shape.
Density-based clustering algorithms have emerged as both high-quality and efficient
clustering techniques with solid theoretical foundations on density estimation (Hin-
neburg and Gabriel 2007). They can discover clusters with irregular shapes and only
require parameters that are relatively easy to set (e.g., minimum number of points per
cluster). They can also help to assess important dataset characteristics, such as the
intrinsic density of data, which can be visualized via reachability plots.

In this work, we extend the state of the art in density-based clustering techniques by
presenting algorithms that significantly improve runtime, while providing analytical
guarantees on the preservation of cluster quality. Furthermore, we highlight weak-
nesses of current clustering algorithms with respect to parameter dependency. Our
performance gains and our quality guarantees are achieved through the use of ran-
dom projections. A key theoretical result of random projections is that, in expectation,
Euclidean distances are preserved. We exploit this in a pre-processing phase to parti-
tion objects into sets that should be examined together. The resulting sets are used to
compute a new type of density estimate through sampling.

Our algorithm requires the setting of only a single parameter, namely, the minimum
number of points in a cluster, which is customarily required as input in density-based
techniques. In general, we make the following contributions:

– We show how to use random projections to improve the performance of existing
density-based algorithms, such as OPTICS and its performance-optimized version
DeLi-Clu without the need to set any parameters. We introduce a new density
estimate based on computing average distances. We also provide guarantees on
the preservation of cluster quality and runtime.

– The algorithm is evaluated extensively and yields performance gains of two orders
of magnitude with provable degree of distortion on the clustering result compared
with prevalent density-based approaches, such as OPTICS.

2 Background and related work

The majority of density-based clustering algorithms follow the ideas presented in
DBSCAN (Ester et al. 1996), OPTICS (Ankerst et al. 1999) and DENCLUE (Hin-
neburg and Keim 1998). Our methodology is more similar in spirit to OPTICS, but
relaxes several notions, such as the construction of neighborhood. The end result is a
scalable density-based algorithm even without parallelization.

DBSCANwas the first influential approach for density-based clustering in the data-
mining literature. Among its shortcomings are flat (not hierarchical) clustering, large
complexity, and the need for several parameters (cluster radius, minimum number of
objects). OPTICS overcame several of these weaknesses by introducing a variable
density and requiring the setting of only one parameter (density threshold). OPTICS
does not explicitly produce a data clustering but only a cluster ordering, which is
visualized through reachability plots. Such a plot corresponds to a linear list of all

123



974 J. Schneider, M. Vlachos

objects examined, augmented by additional information, i.e., the reachability distance,
that represents the intrinsic hierarchical cluster structure. Valleys in the reachability
plot can be considered as indications of clusters. OPTICS has a complexity that is
on the order of O(N · |neighbors|), which can be as high as O(N 2) in the worst case,
or O(N log N ) in the presence of an index (discounting for the cost of building and
maintaining the actual index). A similar complexity analysis applies for DBSCAN.

DENCLUE capitalizes on kernel density estimation techniques. Performance opti-
mizations have been implemented in DENCLUE 2.0 (Hinneburg and Gabriel 2007)
but its asymptotic complexity is still quadratic.

Other approaches to expedite the runtime of density-based clustering techniques
involve implementations in Hadoop or using Graphical Processing Units (GPUs).
For example, Cludoop (Yu et al. 2015) is a Hadoop-based density-based algorithm
that reports an up to fourfold improvement in runtime. Böhm et al. (2009) presented
CUDA-DClust, which improves the performance of DBSCAN using GPUs. They
report an improvement in runtime of up to 15 times. G-DBSCAN (Andrade et al.
2013) and CudaSCAN (Loh and Yu 2015) are recent GPU-driven implementations of
DBSCAN, and report an improvement in runtime of 100 and 160 times, respectively.
Our approachuses randomprojections to speedup the execution,while at the same time
having provable cluster quality guarantees. It exhibits an equivalent or more speedup
than the above parallelization approaches, without the need for distributed execution,
thus lending itself to a simpler implementation. Random projections can easily be
parallelized. Thus, parallelization is likely to considerably improve performance of
our algorithms.

Random projection based methodologies have also been used to speed up density-
based clustering. For example, the algorithm in Urruty et al. (2007) leverages the
observation that for high-dimensional data and a small number of clusters, it is possible
to identify clusters based on the density of the projected points on a randomly chosen
line. We do not capitalize on this observation. We attempt to determine neighborhood
information using recursively applied random projections. The protocol in Urruty
et al. (2007) is of “heuristic nature”, as attested by the original authors, so it does not
provide any quality guarantees. It runs in time O(n2 · N + N · log N ), where N points
are projected onto n random lines. It requires the specification of several parameters,
whereas our approach is parameter-light.

Randomly projected k−d-trees were introduced in Dasgupta and Freund (2008). A
k−d-tree is a spatial data structure that splits data points into cells. The algorithm in
Dasgupta and Freund (2008) uses random projections to partition points recursively
into two sets. Our algorithm Partition shares this methodology, but uses a sim-
pler splitting rule. We just select a projected point uniformly at random, whereas the
splitting rule in Dasgupta and Freund (2008) requires finding the median of all pro-
jected points and using a carefully crafted jitter. Furthermore, we perform multiple
partitionings. The purpose of Dasgupta and Freund (2008) is to serve as an indexing
structure. Retrieving the k-nearest neighbors in a k−d tree can be elaborate and suffers
heavily from the curse of dimensionality. To find the nearest neighbor of a point, it may
require to look at several branches (cells) in the tree. The cardinality of the branches
searched growswith the dimensions. Even worse, computing k-nearest neighbors only
with respect to OPTICS would mean that all information between cluster distances
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would be lost. More precisely, for any point of a cluster, the k-nearest neighbors would
always be from the same cluster. Therefore, only knowing the k-nearest neighbors is
not sufficient for OPTICS. To the best of our knowledge, there is no indexing struc-
ture that supports finding distances between two clusters (as we do). Nevertheless, an
indexing structure such as Dasgupta and Freund (2008) or the one used in Achtert et al.
(2006) can prove valuable, but might come with significant overhead compared with
our approach. We get neighborhood information directly using small sets. Further-
more, we are also able to obtain distances between clusters. Therefore, our indexing
structure might prove valuable for other applications.

Random projections have also been applied to hierarchical clustering (Schneider
and Vlachos 2014), i.e., single and average linkage clustering (more precisely, Ward’s
method). To compute a single linkage clustering it suffices to maintain the nearest
neighbor that is not yet in the same cluster for each point. To do so, Schneider and
Vlachos (2014) run the same partitioning algorithm as the one used here. In contrast
to this work, it computes all pairwise distances for each final set of the partitioning.
Because this requires quadratic time in the set size, it is essential to keep the maximum
possible set size,minPts, as small as possible. In contrast to this work, whereminPts is
related to the density parameter used in OPTICS, there is no relation to any clustering
parameter. In fact,minPtsmight be increased during the execution of the algorithm. If
a shortest edge with endpoints A,B is “unstable”, meaning that the two points A and
B do not co-occur in many final sets, then minPts is increased. In this work there is
no notion of neighborhood stability.

Multiple random projections onto one-dimensional spaces have also been used for
SVM (Schneider et al. 2014). Note that for SVMs a hyperplane can be defined by a
vector. The naive approach tries to guess the optimal hyperplane for an SVM using
random projections. The more sophisticated approach uses local search to change the
hyperplane, coordinate by coordinate.

Projection-indexed nearest neighbors have been proposed in Vries et al. (2012)
for outlier detection. First, they identify potential k-nearest-neighbor candidates in
a reduced dimensional space (spanned by several random projections). Then, they
compute distances to this nearest-neighbor candidates in the original space to select
the k-nearest-neighbors. In contrast, we perform (multiple) recursive partitionings of
points using random projections to identify potential nearest neighbors.

Locality Sensitive Hashing (LSH) (Datar et al. 2004) also employs random pro-
jections. LSH does not perform a recursive partitioning of the dataset as we do, but
splits the entire data set into bins of fixed width. It conducts multiple of these partition-
ings. Furthermore, in contrast to our technique, it requires several parameters, such
as width of a bin, number of hash tables, and number of projections per hash value.
These parameters typically require knowledge of the dataset for proper tuning.

3 Our approach

In density-based clustering, a key step is to discover the neighborhood of each object
to estimate the local density. Traditional density-based clustering algorithms, such as
OPTICS, may exhibit limited scalability partially because of the expensive computa-
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tion of neighborhood. Other approaches, such as DeLi-Clu (Achtert et al. 2006), use
indexing techniques to speed up the neighborhood discovery process. As discussed in
the related work, spatial indexing approaches are not tailored towards the scenario of
OPTICS and require fast k-nearest neighbor retrieval but also distance computation
between (distant) points of different clusters.

Our approach capitalizes on a random-projection methodology to create a parti-
tioning of the space from which the neighborhood is produced. We explain this step
in Sect. 4. The intuition is that if an object resides in the neighborhood of another
object across multiple projections, then it belongs to that object’s neighborhood. The
majority of random-projection methodologies project high-dimensional data into a
lower dimensionality d that does not depend on the original dimensionality, but is
logarithmic to the dataset size (Johnson and Lindenstrauss 1984). In contrast, we run
computations directly onmultiple one-dimensional projections. This allows us towork
on a very reduced space, in which operations, such as neighborhood construction, can
be executed very efficiently. Our neighborhood construction is fast because it only
requires linear time in the number of points for each projection. Note that a naive
scheme looking at pairs of neighboring points would require quadratic time.

After the candidate neighboring points of each object are computed, see Sect. 5, the
local density is estimated. This is described in Sect. 6. We prove that the local density
computed using our approach is an O(1)-approximation of the core density calculated
by the algorithm used in OPTICS given weak restrictions on the neighborhood size
(depending on the distance). This essentially allows us to compute reachability plots
equivalent to those of OPTICS, but at a substantially lower cost. Finally, in Sect. 8, we
show empirically that our approach is significantly faster than existing density-based
clustering algorithms.

This work represents an extension of Schneider and Vlachos (2013). We augment
our previous work by formally stating the proofs for the theorems presented and
including additional comparisons with existing density-based clustering techniques.
We also make the source-code for our approach available in the public domain.

Naturally, our approach and the related proofs are focused on Euclidean distances,
because random projections conserve the Euclidean distance (Table 1).

3.1 Preliminaries

We are given a set of N pointsP in the d-dimensional Euclidean space, i.e., for a point
P ∈ P it holds P ∈ R

d . We use the term whp, i.e., with high probability, to denote
probability 1−1/Nc for an arbitrarily large constant c. The constant c (generally) also
occurs as a factor hidden in the big O-notation. We often use the following Chernoff
bound:

Theorem 1 The probability that the number X of occurred independent events Xi ∈
{0, 1}, i.e., X := ∑

i Xi , is not in [(1 − c0)E[X ], (1 + c1)E[X ]] with c0 ∈]0, 1] and
c1 > 0 can be bounded by

p(X ≤ (1 − c0)E[X ] ∨ X ≥ (1 + c1)E[X ]) < 2e−E[X ]·min(c0,c1)2/3
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Table 1 Notation and constants used in the paper

Symbol Explanation

P, T, Q Points in Euclidean space Rd

P,C,S Set of points

L Randomly chosen line

L Sequence of lines (L0, L1, . . .)

Li,P Set of of projected values of points P onto Li ∈ L, ie.
Li,P := {Li · Q|Q ∈ P}

P Sequence of sets of points

S,W Set of sets of points

Davg(A) Average distance of A to nearby points, see Definition 2

N (A) Neighbors of A, see Algorithm 3

N f (A) Subset of neighbors of A, see Definition 1

N (A, r) All points B ∈ P within distance r from A

D̃k (A) Distance to k nearest point inN (A) computed using Algorithm 3

Dk (A) Distance to k nearest point among all points P
minPts Parameter of OPTICS stating the number of points used for the density

estimate, i.e., the distance to the minPts nearest

DminPts(A) Average distance of the minPts nearest points to a point A, defined as
DminPts(A) := ∑

B∈N (A,DminPts(A)) D(A, B)/|N (A, DminPts(A))|.
Generally, |N (A, DminPts(A))| = minPts, except if there are multiple
points at the same distance DminPts(A) from A.

minSize Parameter of the partitioning process stating the minimum size for which a
set is split

cm Fixed analysis constant; It relates the partitioning parameter minSize for
splitting the point set and the density parameter minPts:
minSize = cm · minPts; cm ≥ 1

r Distance to the cm · minPts nearest neighbor, i.e., r := Dcm ·minPts(A) in
the analysis; otherwise, just the distance to the minPts closest neighbor.

c0, . . . , c3 Constants in basic probability bounds

cL Fixed analysis constant; for a partitioning of the entire point set, we need
up to cL log N random lines; to ensure low dependencies when
permuting lines we need at least cL log N of them

cd Fixed analysis constant; a point is far away if it is a factor cd > 1 further
away than the minSize nearest point

cp Fixed analysis constant; we perform cp(log N ) partitions of the point set

cs A small constant close to zero, used for technical reasons.

fd , fg Factors used for the upper bound on the neighborhood size, see Eq. (1).

If an event occurs whp for a point (or edge) it occurs for all whp. This can be proved
using Boole’s inequality (or, alternatively, consider Schneider andWattenhofer 2011).

Theorem 2 For nc2 (dependent) events Ei with i ∈ [0, nc2 − 1] and constant c2 such
that each event Ei occurs with probability p(Ei ) ≥ 1 − 1/nc3 for c3 > c2 + 2, the
probability that all events occur is at least 1 − 1/nc3−c2−2.
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4 Pre-process: data partitioning

Our density-based clustering algorithm consists of two phases: the first partitions
the data so that close points are placed in the same partition. The second uses these
partitions to compute distances or densities only within pairs of the same partition.
This enables much faster execution.

The partitioning phase splits the dataset into smaller sets (Partition algo-
rithm). We perform multiple of these partitions by using different random projections
(MultiPartition algorithm). Intuitively, if the projections P · L and Q · L of two
points P, Q onto line L are of similar value then the points should be close. Thus, they
are likely kept together whenever the points are divided. The process is illustrated in
Fig. 1. Since projections are costly to compute, we use the same random lines L and
the computed projections of points onto these lines across multiple partitionings.

For a single partition, we start with the entire point set. We split it recursively
into two parts until the size of the point set is at most minSize + 1, where minSize
is a parameter of the algorithm. To split the points, the projected values of points
onto a random line are used, ie. a projected value of one of the projected points is
chosen uniformly at random. All points with a projected value smaller than that of the
point chosen constitute one part and the remainder the other part. In principle, one
could also split based on distance, i.e., pick a point randomly on the projection line
that lies between the projected point of minimum and maximum value. However, this
might create sets that only contain points of one cluster. This yields infinite distances
between clusters, because no distance will be computed for points stemming from
different clusters. For example, if there are three very dense clusters on one line, then
using a distance-based splitting criterion will give the following: The first random
projection will likely yield one set containing all points of one cluster and one set
containing all points of the other two clusters. It is probable that these two clusters
being in one set are split into two separate sets in the second projection. From then
on, all further partitionings are within the same cluster. Thus, all clusters are assumed
to have infinite distances from each other, although all clusters are on the same line
and might have rather different distances to each other. Using our splitting criterion
for this scenario yields that (most likely) some pair of points from different clusters
will be considered.

More formally, the MultiPartition algorithm chooses a sequence L :=
(L0, L1, . . .) of cL log N random lines. It projects the points on each random line
Li in the sequence L giving a set Li,P of projected values for each line Li . The
sequence of all these sets of projected values is denoted by P := (L0,P , L1,P , . . .).
First, the points S are split into two disjoint sets S0

0 ⊆ P and S0
1 using the value

rs := L0 · A of a randomly chosen point A ∈ S. The set S0
0 contains all points P ∈ S

with smaller projected value than the number rs chosen, i.e., Q ·L0 ≤ rs , and the other
points P \ S0

0 end up in S0
1 . Afterwards, recurse on sets S0

0 and S0
1 , that is, for line

L1 we first consider set S0
0 and split it into sets S1

0 and S1
1 . Then, a similar process is

used on S0
1 to obtain sets S1

2 and S1
3 . For line L2, we consider all four sets S1

0 ,S1
1 ,S1

2
and S1

3 . The recursion ends once a set S contains fewer than minSize + 1 points. We
compute the union of all sets of points resulting from any partitioning for any of the
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Fig. 1 A single partitioning of points using random projections. The splitting point is chosen uniformly at
random in-between the two most distant points on the projection line

projection sets L ∈ P. Techniques equivalent to algorithm Partition have been
used in the RP-tree (Dasgupta and Freund 2008).

Theorem 3 For a d-dimensional dataset, algorithm Partition runs in O(N log N )

time whp.

Essentially, the theorem says that we need O(log N ) projections of all points. If we
were to split a set of N points into two sets of equal size N/2 then it is clear that log N
projections would be sufficient, because after that many splits the resulting sets are
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Algorithm 1 Partition
Input: Points S, projected values of points onto random lines P,minSize
Output: Set of sets S
1: if |S| > minSize then
2: r := chosen uniformly at random in [0, cL log N − 1] {line index used for paritioning the point set}
3: rs := value chosen uniformly at random from Lr,S
4: S0 := {Q ∈ S|Q · Lr ≤ rs , Lr ∈ L} {Q · Lr is precomputed in Lr,P}
5: S1 := S \ S0
6: Parti tion(S0,P,minSize)
7: Parti tion(S1,P,minSize)
8: else
9: S := S ∪ {S}
10: end if

Algorithm 2MultiPartition
Input: Points P , minimum set size minSize
Output: Set of point sets S
1: Choose sequence of random linesL := (L0, L1, . . . , LcL log N−1) for constant cL with L j ∈ R

d being
a random vector of unit length

2: Li,P := {A · Li |A ∈ P} (projected values of points P onto line Li )
3: P := (L0,P , L1,P , . . . , LcL log N−1,P )

4: for i = 1..cp(log N ) do
5: W := result of Parti tion(P,P,minSize)
6: S := S ∪ W
7: end for

only of size 1, i.e., N/2/2/2 . . . = N/2log N = 1. Therefore, the proof deals mainly
with showing that this also holds when splitting points are chosen randomly.

Proof The number of random lines required until a point P is in a set of size smaller
than minSize + 1 is bounded as follows: In each recursion, the given set S is split
into two sets S0,S1. By p(E|S|/4) we denote the probability of event E|S|/4 :=
min(|S0|, |S1|) ≥ |S|/4 that the size of both sets is at least 1/4 than that of the total
set. As the splitting point is chosen uniformly at random, we have p(E|S|/4) = 1/2.
Put differently, the probability that a point P is in a set of size at most 3/4 of the overall
size |S| is at least 1/2 for each random line L . When projecting onto |L| = cL · log N
lines, we expect E|S|/4 to occur cL · log N/2 times. Using Theorem 1, the probability
that there are fewer than cL · log N/4 occurrences is

e−cL ·log N/48 = 1/NcL/48.

For a suitable constant cL , we have

N · (3/4)cL ·log N/4 < 1.

Therefore, the number of recursions until point P is in a set S of size less than
minSize + 1 is at most cL · log N whp. Using Theorem 2 this holds for all N points
whp. Thus, the time to compute |L| = cL · log N projections is O(N log N ) whp. �	

123



Scalable density-based clustering with quality guarantees 981

Fig. 2 Picking a center and adding all points to its neighborhood (left panel) results in a connected
graph. Picking the same number of edges at random (center panel) likely results in several non-connected
components. Picking all pairwise distances (right panel) is computationally expensive

Theorem 4 Algorithm MultiPartition runs in O((d + log N )N log N ) time whp.

Proof For each random line L j ∈ L, all N points from the d-dimensional space
are projected onto the random line L j , which takes time O(dN ). We compute
cL log N projections. Additionally, Algorithm MultiPartition calls Algorithm
Partition cp(log N ) times thus using Theorem 2 concludes the proof. �	

5 Neighborhood

Using the data partitioning described above, we compute, for each point, a neighbor-
hood consisting of nearby points and an estimate of density. Each set resulting from
the data partitioning consists of nearby points. Thus, potentially, all points in a set are
neighbors of each other. However, looking at a set as a clique of points results in an
excessive computation and memory overhead, because the distances for all pairs of
neighboring points must be computed.

OPTICS (see Sect. 7.1) uses the idea of core points. If a core point has sufficiently
large density then the core point and all its closest neighbors NC form a cluster,
irrespective of the neighborhood of the points NC near the core point. This motivates
the idea to pick only a single point per set, call it center, and add the other points
of the set to the neighborhood of the center (and the center to the neighborhood of
all points). If the center is dense enough, it and its neighbors are in the same cluster.
Another motivation to pick a single point and add all points to its neighborhood is that
this gives a connected component with the minimum number of edges (see Fig. 2).
More precisely, the single point picked from a set S of points has |S| − 1 edges.
Picking |S| − 1 edges randomly reduces the probability that the graph is connected,
e.g., picking edges randomly results in the creation of triangles of nearby nodes.

To reduce run-time, one may consider to evaluate all pairwise distances only for a
single random projection and (potentially) perform fewer random projections overall.
Although this seems feasible, further reducing the number of projections to asymp-
totically below log n (i.e., o(log n)) poses a high risk of obtaining inaccurate results,
because a single random projection only preserves distances in expectation and, there-
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fore, a minimum number of projections is necessary to obtain stable and accurate
neighborhoods. More precisely, using only a few random projections likely creates
neighborhoods that consist of points that are actually far from each other, i.e., that
should not be considered neighbors, and points that are not in the same neighborhood
although they are close to each other.

To summarize the neighborhood creation process: A sequenceS ∈ S is an ordering
of points projected onto a random line (see Fig. 1). For each sequence S ∈ S, we
pick a random point, i.e., a center point PCenter . For this point, we add all other
points S \ PCenter to its neighborhood N (PCenter ). The center PCenter is added to
the neighborhood N (P) of all points P ∈ S \ PCenter . The pseudocode is given in
Algorithm 3.

Algorithm 3 Neighbors
Input: Set of set of points S
Output: For each point A neighbor set N (A)

1: for all P ∈ S ∈ S do N (P) := {} end
2: for all S ∈ S do
3: PCenter := random point in set S
4: N (PCenter ) := N (PCenter ) ∪ (S \ PCenter )

5: for all P ∈ S \ PCenter do
6: N (P) := N (P) ∪ {PCenter }
7: end for
8: end for

The next theorem elaborates on the size of the neighborhood created. In the
current algorithm, we only ensure that the size of the neighborhood is at least
Ω(min(minSize, (log N ))). Thus, for a largeparameterminSize, i.e.,minSize 
 log N ,
the size of the neighborhood might be smaller than minSize. In this situation, the
neighborhood would be a sample of size roughly log N of close points. To get a larger
neighborhood, it is possible to pick more than one center per set in Algorithm 3.

Theorem 5 For the size |N (A)| of a neighborhood N (A) for every point A holds
|N (A)| ∈ Ω(min(minSize, (log N ))) whp and |N (A)| ∈ O(log N · minSize).
Proof The size of the neighborhood of a point A can be bounded by keeping in mind
that the entire point set is split cp(log N ) times into sets of size at most minSize. For
each final set of size at most minSize a point may receive minSize− 1 new neighbors.
This yields the upper bound. A point A gets at least one neighbor for the first set. From
then on, for every final set that is the result of the partitioning process, a new point
might either be added to the neighborhood or a point chosen might already be in the
neighborhood. Algorithm MultiPartition performs cp(log N ) calls to algorithm
Partition. For each call, we obtain a smallest setSA containing A. DefineSA ⊂ S to be
the union of all sets A ∈ SA ∈ S containing A. Before the last split of a setSA resulting
in the sets S1,A and S2, the set S must be of size at least cm · minSize; the probability
that splitting it at a random point results in a set SA with |SA| < cm/2 · minSize is at
most 1/2. Thus, using a Chernoff bound 1, at least cp/8 log N sets SA ∈ SA are of
size at least cm/2 ·minSizewhp. Assume that the current number of distinct neighbors
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Fig. 3 Point A and its 8 closest
points. Potentially, the computed
neighborhoodN (A) of a point
A using 5 points might miss
some of the closest points, e.g.,
the points with dashed circles

N (A) for A is smaller than min(cm/4 ·minSize, cp/16(log N )). Then, for each of the
cp/8(log N ) final sets SA the probability that a new point is added toN (A) is at least
1/2. (Note that we cannot guarantee that final sets resulting from the partitioning are
different.) Thus, we expect that at least min(cm/4 ·minSize, cp/16(log N )) points are
added (given |N (A)| < cm/4 ·minSize). The probability that we deviate by more than
1/2 of the expectation is 1/Ncp/96 using Theorem 1 for point A and 1/Ncp/96−2 for all
points using Theorem 2. Therefore, for every neighborhood, it is at least min(cm/8 ·
minSize, cp/32(log N )) whp. �	

The time complexity is dominated by the time it takes to compute the partitioning
of points (see Theorem 4). Once we have the partitioning, the time is linear in the
number of points per set: For example, hash tables requiring O(1) for inserts and
finds (to check whether a neighbor is already stored) can be used to implement the
neighborhood construction in lines 4 and 6 in Algorithm 3.

Corollary 1 The neighborhood of all points A ∈ P can be computed in time O((d +
log N )N log N ).

The neighborhood may not contain some close points, but rather some more distant
points as shown in Fig. 3. We discuss the details and guarantees in Sect. 7.3.

6 Density estimate

To compute the density at point A one needs to measure the volume containing a
fixed amount of points. This volume is roughly rd , where d is the dimension and r is
the radius of a ball that is required to include a fixed number of points minPts. More
precisely, the radius r is the distance to the minPts-th point. The density is then a
function of 1/rd .

Density-based clustering algorithms, such as OPTICS, cluster points based on dis-
tances r rather than densities 1/rd . Reasons for this are:

– It is computationally faster.
– It avoids a potential division by zero.
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– For large d, even small changes in r would yield large differences in density.
Therefore, a transformationwould be requiredwhenvisualizing densities of points.

A key question is how the number of points minPts used to compute the volume
relates to the minimum size threshold minSize such that a set is split in Algorithm
MultiPartition.

To compute a density estimate for a point we should have its minPts-nearest
neighbors. Therefore, for a single partitioning splitting a set if it is at least of size
minSize ≥ minPts + 2 seems a natural lower bound. For a set of size minPts + 2
at least one point is removed by a split leaving minPts + 1 points in a final set. For
such a set there could be one or more points such that it contains the minPts closest
neighbors. When performing multiple partitionings, less points might suffice, since
each final set for a partitioning is essentially a random set of generally nearby points.
In other words, the union of the sets from different partitionings (each of size less than
minPts) might still contain all minPts nearest neighbors. Thus, there is a relationship
between the number of partitionings and the minimum size minSize a set gets split to
get the nearest neighbors. We quantify it in the analysis. In the practical evaluation we
used for simplicity minSize = minPts.

Algorithm 4 states the density and neighborhood computation. For the theoretical
analysis of Algorithm 4 (given later), we fix minSize to cm ·minPts for some constant
cm determined in the analysis.

6.1 Density estimate

The originalOPTICS algorithmmeasures density of a point as the inverse to itsminPts-
nearest neighbors. The density is indifferent to the distribution of theminPts−1 closest
points, as well as all points that are further away than theminPts point from A. In some
cases this might yield unnatural density estimates, as shown in Fig. 4 because of the
high sensitivity on the number of fixed points minPts. For all three cases points A, B
have circles of equal radius (and, thus, equal density) in Fig. 4. For the distribution
of points on the left, this seems plausible. In the middle distribution, A should be of
larger density, because all points except one are very near to A, thus changing minPts
by one has a large impact. On the right-hand side, A also appears denser because it has
many points that are just at marginally larger distance than the minPts closest point.

Therefore, it seems a reasonable alternative to consider the distances of several
points.We compute an average involving several points, e.g., using the (1− f )·minPts
to (1+ f ) ·minPts closest points for constant f ∈ [0, 1] or a sample of nearby points.
This yields a less sensitive density estimate. However, we do not see our estimate as
superior in capturing the meaning of density, but see it as another option to estimate
density. Before discussing its property let us formally define the density of a point
and the average distance Davg(A) of a point A, which depends on the neighbors
N (A).
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Fig. 4 Three examples of a distribution of 10 points together with the circles for two points A, B covering
the 5 closest points. For a standard definition of density, all densities for A and B are the same although an
intuitive consideration might not suggest this

Definition 1 The set of neighbors N f (A) is a subset of neighbors N (A) given by
all points with distances between the (1 − f )minPts-closest point C0 and the (1 +
f )minPts-closest point C1 in N (A) for constant f ∈ [0, 1].

N f (A) := {B ∈ N (A)|D(A,C0) ≤ D(A, B) ≤ D(A,C1)}

Note, for f close to 1, we use A as C0, i.e., the 0-th nearest neighbor of A is A itself.

Definition 2 The average distance Davg(A) of a point A is the average of the dis-
tances from A to each point P ∈ N f (A):

Davg(A) :=
∑

B∈N f (A)

D(A, B)/|N f (A)|

Definition 3 The density at a point A is the inverse of the average distance, i.e.,
1/Davg(A).

To give some more intuition assume f = 1, ie. we average over the 2 · minPts
closest points. Furthermore, assume a uniform distribution of points in d dimensional
space [0, 1]d . In one dimension d = 1 the minPts nearest neighbor of a point A is
in expectation at distance minPts/N/2, since two points are separated in expectation
by about 1/N and we have points on either side of A. Averaging over the 2 · minPts
nearest neighbors yields double the expectation. For very large d and a point A the
distance Davg(A) is decreasing relative to the k-th nearest neighbor, since the number
of points, ie. volume, grows polynomial in d with distance from A. For illustration,
within a distance r we expect points proportional to rd within distance 2r we expect
points proportional to 2d · rd . However, even this case our average distance Davg(A)

is at most a factor two smaller than the distance to the minPts-nearest neighbor. (We
discuss the more complex upper bound for Davg(A) in Theorem 12).

Algorithm 4 states the density and neighborhood computation for f = 1. Note,
in principle it is possible (though as we shall discuss not very likely) that a point A
has less than (1 + f )minPts (or even (1 − f )minPts) neighbors N (A), eg. due to an
unfortunate splitting of the point set. In this case, we can only compute the distance
to the |N (A)|-closest neighbor in N (A) rather than the (1 ± f )minPts-nearest one.
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Algorithm 4 DensityEstimateAndNeighbors
Input: Points P , distance in points minPts
Output: For each point A its neighborhood N (A) and density estimate D̃minPts(A) (or average distance

Davg(A)

1: f := 1; minSize := cm · minPts; {with constant cm for theoretical analysis; minSize := minPts;}
2: S := Multi Parti tion(P,minSize)
3: N := Neighbors(S)

4: for all A ∈ P do
5: C0 := min(|N (A)|, (1 − f )minPts)-closest point inN (A)

6: C1 := min(|N (A)|, (1 + f )minPts)-closest point in N (A)

7: N f (A) := {B ∈ N (A)|D(A,C0) ≤ D(A, B) ≤ D(A,C1)}
8: Davg(A) := ∑

B∈N (A) D(A, B)/|N (A)|
9: Alternative to Davg(A) is the conventional OPTICS estimate: D̃minPts(A):= Distance to minPts-

closest point inN (A)

10: end for

7 Density-based clustering using reachability

We apply our ideas to speed up the computation of an ordering of points, i.e., OPTICS
(Ankerst et al. 1999).

7.1 OPTICS

Ordering points to identify the clustering structure (OPTICS) (Ankerst et al. 1999)
defines a sequence of all points and a distance for each point. This enables an easy
visualization to identify clusters. Similarity between two points A, B is measured by
computing a reachability distance. This distance is the maximum of the Euclidean
distance between A and B and the core distance (or density around a point), i.e., the
distance of A to the minPts-th points, where minPts corresponds to the minimum size
of a cluster. Thus, any point A is equally close (or equally dense) to B if A is among
theminPts-nearest neighbors of B. If this is not the case then the distance between the
two points matters. The algorithm comeswith a parameter ε that impacts performance.
Parameter ε states the maximum distance for which we look for the minPts-closest
neighbors. Using ε equal to the maximum distance of a point therefore requires the
computation of all pair-wise distances without the use of sophisticated data structures.
Choosing ε very small may not cluster any points, as the neighborhood of any point
is empty, i.e., all points have zero density. A core point is a point that contains at least
minPts points within distance ε.

The algorithm maintains a list of point pairs sorted by their reachability distance.
It chooses a point A with minimum reachability distance (if the list is non-empty,
otherwise it chooses an arbitrary point and uses “undefined” as reachability distance.
It marks the point as processed and updates the list of point-wise distances by com-
puting the reachability distance from A to each neighbor. It updates or inserts pairs of
points (with their corresponding distance) consisting of A and the neighbors of A if
a pair of points has not already been processed or if the newly computed distance is
smaller.
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7.2 SOPTICS: speedy OPTICS

Our algorithm for density-based clustering, SOPTICS, introduces a fast version of
OPTICSwhich exploits the pre-processing elaborated previously to discover the neigh-
borhood of each point.1 The processing of points is the same as for OPTICS, aside
from the neighborhood computation as shown inAlgorithm 5 (line 4). A key difference
is that we do not need a parameter ε as in OPTICS.

Algorithm 5 provides pseudocode for SOPTICS. Essentially, wemaintain an updat-
able heap, in which each entry consists of a reachability distance of a point A and the
point A itself. The heap is sorted by reachability distance. For initialization an arbitrary
point is put on the heap with undefined reachability distance. Afterwards, repeatedly a
point (with shortest reachability distance) is polled from the heap and marked as pro-
cessed before the reachability distance of all its non-processed neighbors is computed
and either inserted into the heap or an existing entry for that point is updated.

Algorithm 5 SOPTICS
Input: Points P , distance in points minPts
Output: ordered Pts of points and reachability distance reachdist for points
1: ∀P ∈ P : processed(P) := f alse, reachDist (P) := ∞
2: Heap := (){Updatable heap of pairs (reachability distance, point) sorted by reach. dist.}
3: ordered Pts := ()

4: Davg,N := DensityEstimateAndNeighbors(P,minPts) {Classical OPTICS uses D̃minPts}
5: while ∃P ∈ P : processed(P) == f alse do
6: Heap.Add((undefined,P))
7: while Heap not empty do
8: Pcurr := Heap.Poll
9: ordered Pts.Append(Pcurr )
10: processed(Pcurr ) := true
11: for all A ∈ N (Pcurr ) with processed(A) == f alse do
12: Dreach := max(Davg(Pcurr ), D(Pcurr )) {Classical OPTICS uses

max(D̃minPts(A), D(A, Pcurr ))}
13: reachdist (A) := min(reachdist (A), Dreach)

14: Heap.AddOrUpdate((reachdist (A),A))
15: end for
16: end while
17: end while

We have discussed the neighborhood computation in Sect. 5. Thus, let us now dis-
cuss in more detail how we deal with parameter ε. OPTICS requires to set a parameter
ε that balances performance and accuracy. A small parameter results in the core dis-
tance being undefined for many points. Therefore, the clustering result would not be
very meaningful. For OPTICS, to give exact results according to the core-distance
definition ε must be at least the maximum distance to the minPts-nearest neighbor.
Such an approach represents a good compromise between performance and accuracy.
However, this can result in drastic performance penalties in the case of uneven point

1 SOPTICS presents small differences to the Fast OPTICS (FOPTICS) presented in Schneider and Vlachos
(2013).
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densities. Let’s see it with an example: Assume that there is a dense area of points of
diameter 10, for which ε = 1 would suffice for optimal accuracy and a significantly
less dense area, which requires ε = 10. Choosing ε = 10 means that OPTICS com-
putes all pairwise distances of points within the dense cluster, whereas for ε = 1 it
might compute only a small fraction of all pairwise distances. Therefore, it would be
even better to define ε depending on a point A, i.e., ε(A) is the distance to theminPts-
nearest neighbor. Using our random projection-based approach, we do not define ε

directly, but we set minPts, determining the size of a set of points that is used for the
computation of the core distance. Intuitively, for each point, we would like to know its
minPts-closest neighbor. Assuming a set computed by our random projections indeed
contains nearest neighbors, we have minSize ≈ minPts (see discussion in Sect. 6).
Specifying the number of points per set presents a more intuitive approach than using
a fixed distance for all points, because it can be set to a fixed value for all points to
yield maximal performance, while maintaining the best possible accuracy.

Theorem 6 Algorithm SOPTICS runs in O((d+log N )N log N ) timewhp. It requires
O(N (d + log N · minSize)) memory.
Proof Computing all neighbors requires O((d + log N )N log N ) time whp according
to Theorem 1. The average number of neighbors is at most log N per point. The size
of the heap is at most N . For each point, we consider each of the most log N neighbors
at most once. Thus, we perform O(N log N ) heap operations and also compute the
same number of distances. This takes time O(N log N · (d + log N )). Storing all d-
dimensional points in memory requires N · d. Storing the neighborhoods of all points
requires O(N log N · minSize). �	

In Fig. 5 we provide a visual illustration of the reachability plots computed on
one dataset for OPTICS and SOPTICS. It is apparent that both techniques reveal the
same cluster structure. The following definitions are analogous as for OPTICS, but we
use the average distance Davg(A) rather than the minPts-nearest neighbor distance.
The original definition of core distance in OPTICS is undefined if there are less than
minPts neighbors within some radius ε. Otherwise the core distance is the distance to
the minPts-th nearest neighbor. In contrast, our core distance is always defined.

Definition 4 The core distance of a point A equals the average distance Davg(A).

Two points are reachable if they are neighbors, i.e., one of the two points must be
in the neighborhood of the other.

The definition of the reachability distance for a point A and a reachable point B
from A is the same as for OPTICS. However, for a point A, we only compute the
reachability distance to all neighbors B ∈ N (A).

Definition 5 The reachability distance Dreach(A, B) is the maximum of the core
distance of A and the distance of A and B, i.e., Dreach(A, B) := max(Davg(A),

D(A, B)).

Note that the reachability distance is non-symmetric, i.e., in general Dreach(A, B) �=
Dreach(B, A).
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7.3 Theoretical analysis

Nowwe state ourmain theorems regarding the complexity of the techniques presented.
Our algorithm strongly relies on the well-known Johnson–Lindenstrauss Lemma,
which states that, if two points are projected on a randomly chosen line, the dis-
tance of the projected points on the line corresponds to the scaled distance of the
non-projected points, in expectation. Higher-dimensional spaces can in general not be
embedded in one dimension without distortion, so the above only holds in expectation.
The expected scaling factor of the distance between two points in the original (high)
dimensional space and in the one dimensional projected space (on the random line) is
the same for all points. It is proportional to 1/

√
d, i.e., one over the squared root of

the original data dimensionality.
We state and prove theorems that show that we retrieve at least some close neighbors

for every point, but not necessarily all nearest neighbors. We state a bound for the
minPts-nearest neighbor distance.This allowsus to relate the core distances ofOPTICS
and SOPTICS. It also helps to get a bound for our density estimate Davg(A) for a point
in R

d , so we relate Davg(A) and the average of the distance to the minPts-nearest
neighbors of a point A.

Specifically, in Theorem 8, we prove that only a small fraction of points have a
projected length that is much longer or shorter than its expectation for a randomly
chosen line. This enables us to bound the probability that a projection and a splitting-
up of points will keep close points together and separate distant points as shown in
Theorem 9. Therefore, after a sequence of partitionings, we can pick a point randomly
for each set containing A to include in the neighborhoodN (A) such that at least some
of the pointsN (A) are close to A (Theorem 10) given that there are some more points
near A than just minPts. The latter condition stems from the fact that we split a set by
the number of points in the set and not by distance. We discuss it in more detail before
the theorem. Theorem 11 explicitly gives a bound on the distance to theminPts-nearest
neighbor. Finally, in Theorem 12, we relate our computed density measure and the
one of OPTICS by showing that they differ at most by a constant factor.

We require a “mild” upper bound on the neighborhood size of a point. The reason
being that for a given point, points distant from it are very likely removed compared
with very near points when splitting a set. But points that are somewhat near are not
removed much more likely than very close points. Thus, if there are too many of them,
we need many splits to remove them all and the odds that we remove also a lot of
nearby points becomes large.2

More mathematically, we require an upper bound on the number of points that
are within a certain distance of A. For point A the bound depends on the distance to
the nearest neighbor, i.e., r . The number of points should not grow more than some
exponential function of r . More precisely, with all details being clarified during this
section, consider a multiple of the nearest neighbor distance r , ie. ( fg)3/2+cs · ( fd · r)
for an arbitrary integer fg , a value fd > 1 and a small constant cs > 0. The number

of points within that interval for fg ≥ 1 is allowed to be at most 2
√

fg · |N (A, fd · r)|

2 This condition could be removed for low-dimensional spaces, i.e., assuming d is constant.
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points. We require for point A

∣
∣
∣
{
B ∈ S|D(A, B) ≤ ( fg)

3/2+cs · fd · r
}∣
∣
∣ ≤ 2

√
fg · |N (A, fd · r)| (1)

Let SA be a set of points containing point A, i.e., A ∈ SA, being projected onto
a random line L . We distinguish between three point sets. They correspond to close
points, points that are somewhat close and far away points. Ideally, for a projection we
would like to have that for any k the k-nearest points on the projection line correspond
to the k-nearest points in the d-dimensional space. However, generally this does not
hold, but we prove that most close points are closer to A than most far away points.
Therefore when choosing a splitting point uniformly at random, the resulting set
containing A is likely to contain almost all close points but only a constant fraction of
far away points.
We defined the three point sets ‘close, somewhat close and far away’ points non-
disjointly for ease of notation throughout the proofs:

i) Points close to A, i.e., within radius r , i.e, SA ∩N (A, r), whereN (A, r) are the
points within radius r from point A.

ii) Points distant from A, i.e, SA \ N (A, cdr), for some constant cd > 80 (defined
later).

iii) Points N (A, cdr) that consist of close and somewhat close points.

For these three sets, we prove in Theorems 7 and 8 that only for a few close points will
the distance of their projections onto a random line bemuch larger than the expectation,
quantified by random variable Xlong

A , and that for only few distant points will their
projections be much smaller than the expected projection, quantified by Xshort

A .

Let event Elong
A (C) be the event that for a randomly chosen line L the projected

length (C − A) · L of a close point C ∈ N (A, r) is more than a factor log(cd) of the
expected projected length E[(C − A) · L]. Let Xlong

A be the random variable giving

the number of all occurred events Elong
A (C) for all points C ∈ N (A, r).

Let event Eshort
A (C) be the event that for a randomly chosen line L the projected

length (C−A)·L of a distant pointC ∈ SA\N (A, cdr) is less than a factor 2 log(cd)/cd
of the expected projected length E[(C − A) · L]. Let Xshort

A be the random variable
giving the number of all occurred events Eshort

A (C) for all pointsC ∈ SA \N (A, cdr).

Theorem 7 For every pointC holds p(Eshort
A (C))≤3 log(cd)/cd and p(Elong

A (C)) ≤
2/ log(cd)e− log(cd )2/2 for some value cd .

Proof The probability of event Eshort
A (C) can be bounded using Lemma 5 (Dasgupta

and Freund 2008): p(Eshort
A (C)) ≤ 3 log(cd)/cd . Using again Lemma 5 from Das-

gupta and Freund (2008) for Elong
A (C)we have p(Elong

A (C)) ≤ 2/ log(cd)e− log(cd )2/2.
�	

Theorem 8 states that for most points there is not too much deviation from the
expectation. More precisely, for most close points (as well as for most distant points)
the distances of projected close (as well as distant) points is not much longer (shorter)
than the expectation.
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Theorem 8 For points SA projected onto line L chosen randomly fromL define event
E ′ := (Xshort

A < |SA\N (A, cdr)|/ log(cd))∧(Xlong
A < |SA∩N (A, r)|/(cd)log(cd )/3)

We have

p(E ′) ≥ (1 − 4 log(cd)
2/cd)

2.

Proof Can be found in the appendix. �	

The proof works in the same fashion for Xshort
A and Xlong

A . We discuss the main
ideas using Xshort

A . The proof computes a bound on the expectation of Xshort
A by

using linearity of expectation to express the expectation of Xshort
A in terms of the

expectation of individual events that are upper-bounded using Theorem 7. To bound
the probability that Xshort

A does not exceed the upper bound of the expectation, we
use Markov’s inequality. The proof also needs to deal with the fact that we repeatedly
choose lines randomly from a small subset of all random lines, ie. L. Thus, there are
dependencies. We show that these are rather weak, since we choose sufficiently many
random lines allowing us to give high probability bounds using the Chernoff Bound
for dependent events (see Theorem 1).

The next theorem shows that a set resulting from the partitioning is likely to contain
some nearby points. The proof starts by looking at a single random projection and
assumes that there are only relatively few non-distant points left in the set containing
A. It shows that it is likely that distant points from A are removed whenever a set is
split, whereas it is unlikely that points near A are removed. Therefore, for a sequence
of random projections, we can prove that some nearby points will remain and many
more distant points are removed. On the technical side, the proof uses elementary
probability theory.

Theorem 9 For each point A, for at least cp/16(log N ) sets SA resulting from a call
to algorithm Partition it holds

|SA ∩ N (A, r)|/|N (A, r)| > 2/cd

Proof Can be found in the appendix. �	
The next theorem shows that the computed neighborhood for a point A contains

at least some points “near” A. It contains a restriction on the parameter minPts that
is mainly due to neighborhood construction but could be eliminated by using a larger
parameter minSize. The proof bounds the number of sets resulting from the partition-
ing that are at least of a certain size using a Chernoff bound. Then we compute the
probability that for a point A a new nearby point is chosen as a neighbor.

Theorem 10 The neighborhoodNA computed by Algorithm 3 for a point A contains
at least 2 ·minPts points for minPts < cm log N that are within distance Dcm ·minPts(A)

from A.

Proof Can be found in the appendix. �	
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Let us bound the approximation of the minPts-nearest-neighbor distance when
using the neighborhood computed by Algorithm 3.

Theorem 11 Let DminPts(A) be the distance to the minPts-nearest neighbor. For the
distance D̃minPts(A) to the minPts-nearest neighbor in the neighborhoodN (A) com-
puted by Algorithm 3 holds DminPts(A) ≤ D̃minPts(A) ≤ DcmminPts(A) for suitable
constant cm whp.

Proof The lower bound follows from bounding the minimum size ofN (A, r). Using
Theorem10, 2minPts points are containedwithin distance DcmminPts(A). The smallest
value of D̃minPts(A) is reached when N (A) contains all minPts-closest points to A,
which implies D̃minPts(A) = DminPts(A). For the upper bound due to Theorem 10,
NA contains at least 2minPts within distance Dcm ·minPts(A). Thus, theminPts-nearest
point in NA is at most at distance Dcm ·minPts(A). �	

Assume that the k-nearest-neighbor distance is not increasing very rapidly, when
increasing the number of points considered, i.e., k. More formally, assume that there
exists a sufficiently large constant c > 1, such that Dc·minPts(A) ≤ c · DminPts(A).
Then, we compute a constant approximation of the nearest-neighbor distance. This
condition is generally satisfied if clusters are significantly larger than minPts. Since
in d dimensional space in a cluster of roughly constant density the number of points
within radius r increases much faster than linearly with distance, ie. by a factor of 2d

when doubling the radius. However, our theoretical analysis also says that we might
overestimate the distance to the k-th nearest neighbor in case a (dense) cluster has just
minPts points surrounded by a large very sparsely populated volume of points.

Next, we relate the core distance of OPTICS (see Sect. 7.1), i.e., the distance to the
minPts-nearest neighbors of a point A, and of SOPTICS, i.e., Davg(A).

Theorem 12 For every point A ∈ R
d , DminPts(A)/2 ≤ Davg(A) ≤ DcmminPts(A)

holds for constant cm and f = 1 whp.

Proof To compute Davg(A)with f = 1,we consider the (1+ f )·minPts = 2minPts
closest points to A from N (A). Using Theorem 10, 2minPts points are contained
in N (A) with distance at most DcmminPts(A). This yields Davg(A) ≤ DcmminPts(A).
Thus, the upper bound follows. To compute Davg(A), we average the distance using
the 2 · minPts-closest points to A. Thus, minPts points must have distance at least
DminPts(A). The other minPts points could be at distance (almost) 0 from A. Thus,
Davg(A) ≥ minPts·DminPts(A)+minPts·0

2·minPts = DminPts(A)/2. �	
Assume that the average distance to the minPts-nearest neighbor is an equivalently

valid density measure compared with the distance of the minPts-th neighbor used by
OPTICS. Typically, the cluster size is significantly larger than minPts and the density
within clusters is not varying very rapidly when looking at a point and some nearest
neighbors. In this case, we compute an O(1) approximation of the density, i.e., core
distance, used by OPTICS. This is fulfilled if the distances to the minPts-th up to the
(cmminPts)th point do not increase by more than a constant factor compared with
the minPts-closest point. More technically, we require the existence of a (sufficiently
large) constant c such that ∀A ∈ P : DminPts·c(A) = c · DminPts(A).
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8 Empirical evaluation

Here we evaluate the runtime and clustering quality of the proposed random-
projection-based technique. The SOPTICS algorithm has been implemented in Java3

using both density measure, ie. based on classical OPTICS measure and the average
of (nearest) neighbour distances. We compare its performance with that of OPTICS
with and without LSH index (Datar et al. 2004) and DeLi-Clu, from the Elki Java
Framework (Schubert et al. 2015) 4 using version 0.7.0 (2015, November 27). DeLi-
Clu represents an improvement of OPTICS that leverages indexing structures (e.g.,
R*-trees) to improve performance. OPTICS with an LSH index it also a good baseline
comparison, because it allows one to support very fast nearest-neighbor queries. All
experiments have been conducted on a 2.5GHz Intel5 CPU with 8GB RAM.

8.1 Datasets

We use a variety of two-dimensional datasets typically used for evaluating density-
based algorithms as well as high-dimensional data sets to compare the performance
of the algorithms for increasing data dimensionality. A summary of the datasets is
given in Table 2. We did not apply any particular preprocessing to the datasets; for all
algorithms, we measured the time, once the data set had been read into memory.

Implementation detailsThe source code of SOPTICS is available at the second author’s
website,6 and can also be found in the ELKI Framework, as of version 0.7.0 (Schubert
et al. 2015).7

Parameter setting OPTICS requires the parameters ε and minPts. When not using an
index, ε is set to infinity, which provides the most accurate results; minPts depends
on the dataset. When using an LSH index, setting the parameters is non trivial. For
parameter ε of OPTICS, we used the smallest ε that is needed to get an accurate result,
i.e., the maximum distance to the minPts-nearest neighbor of a point of a dataset. The
LSH index requires three main parameters: number of projections per hash value (k),
number of hash tables (l) and the width of the projection (r ). For parameters k and l,
we performed a grid search using values between 10 and 40. We kept both parameters
at a value of 20 because it returned the best results. The width r should be related
to the distance of the maximum minPts-nearest neighbor, i.e., ideally a bin contains
the minPts-nearest neighbor of a point and it should also depend on the dimension,
because distances are scaled by the square root of the dimension. Thus, in principle,
the maximal distance of any point to the minPts-nearest neighbor should roughly
suffice to get the same results as for OPTICS with ε = ∞ (up to some constant factor,

3 Java is a registered trademark of Oracle and/or its affiliates.
4 https://elki.dbs.ifi.lmu.de/.
5 Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other
countries. Other product or service names may be trademarks or service marks of other companies.
6 http://alumni.cs.ucr.edu/~mvlachos/erc/projects/density-based/.
7 The latest optimizations are not included in version 0.7.0.
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i.e., values below 8 did not yield good results; for the “Musk” benchmark we used
64). Starting from this assumption, we tried to find the best possible value (up to a
factor of 2). We compared the plots of the outcomes with OPTICS with ε = ∞. We
recorded the fastest running time for LSH while maintaining reasonable similarity, ie.
we allowed somewhat worse similarity than for SOPTICS. DeLi-Clu requires only the
minPts parameter. SOPTICS uses the same parameter value minPts as OPTICS (and
DeLi-Clu) and we setminSize = minPts. We set f = 0.2.We performed 20 log(Nd)

partitionings, i.e., calls to algorithm Partition from MultiPartition of the
entire dataset for SOPTICS.

8.2 Cluster quality

The original motivation of our work was to provide faster versions of existing density-
based techniques while not compromising their accuracy. To compare the cluster
results, we use the adjusted Rand index (Hubert and Arabie 1985). It returns a value
between 0 and 1, where 1 indicates identical clustering. The adjusted Rand index
corrects for the chance grouping of elements. The ordering of points as computed by
OPTICS does not yield a clustering. Therefore, we defined a threshold that gives a
horizontal line in the ordering plot. Whenever the threshold is exceeded, a new cluster
begins. We chose the threshold for OPTICS and SOPTICS to match the actual clus-
ters as well as possible and compared the clusters found by OPTICS and SOPTICS.
The results are shown in Table 2 when using the classical definition of core-distance
for OPTICS. Results are similar for both the OPTICS core-distance definition and
our core-distance definition based on the average distance, but using our average
density estimate yields slightly worse results. Note that the similarity metric consis-
tently exceeds the 0.95 value, suggesting that SOPTICS provides clustering results
that are indeed very close to those of OPTICS. More importantly, SOPTICS delivers
these results significantly faster than both OPTICS and DeLi-Clu, as also shown in
Table 2.

Figure 5 provides visual examples of the high similarity of the reachability plots
for SOPTICS and OPTICS. We subtracted the mean of both plots. The difference of
the means of OPTICS and SOPTICS was below 10% for all data sets. The reason is
that the computation of the minPts-nearest neighbor is not perfectly accurate. Thus,
for some points, our approximation might be accurate, for others the computed neigh-
borhood might consist of points not being part of the minPts-nearest neighborhood.
In our computation of the Davg, we used all points in the set resulting from the
partitioning of points. Thus, for a point A, Davg is not necessarily computed using
its minPts-nearest neighbors, but potentially might miss some nearest neighbors and
incorporate some points further away. The random partitioning induces a larger vari-
ance in Davg. In principle, one could filter outliers to reduce the variance, e.g., for a
set S resulting from a partitioning, one could discard points that are far from the mean
of all points in S. However, as the reachability plot and the extracted clusters matched
very well for OPTICS and SOPTICS, we refrained from additionally filtering any
outliers.
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Fig. 5 Reachability plots for various datasets (note that clusters might be permuted)

8.3 Runtime

Table 2 already shows the clear performance advantages ofSOPTICS.Not surprisingly,
OPTICS without an index is much slower. However, even using the LSH index does
generally not yield satisfactory results. Our splitting of the entire point set is based
on the number of points within a region. LSH splits the entire point set according to
a fixed bin width, i.e., in a distance-based manner. This distance must inevitably be
chosen rather large (e.g., close to maximum) among all points to get accurate results.
Therefore, bins are generally (much) too large and contain many points, resulting in
slow performance. DeLiClu is generally significantly faster than OPTICS, but still
much slower than SOPTICS.

In addition to the experiments discussed above, we conduct scalability experi-
ments using synthetically generated datasets according to a Gaussian distribution.
Each Gaussian cluster consists of 1000 points. We use more than 120,000 objects and
a dimensionality of 10 to evaluate scalability with respect to the number of objects. In a
similar manner we generate synthetic datasets having up to 1200 dimensions to assess
scalability with regard to dimensionality. The performance comparison between the
various density-based techniques is shown in Fig. 6. It suggests a drastic improvement
of SOPTICS comparedwithOPTICS andDeLi-Clu. For 130000 data points SOPTICS
is more than 500 times faster than OPTICS and more than 20 times faster than DeLi-
Clu. Note that DeLi-Clu uses an R*-tree structure to speed up various operations. Our
approach bases its runtime improvements on random projections, thus is simpler to
implement and maintain.
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Fig. 6 Runtime comparison of SOPTICS with OPTICS and DeLi-Clu, for increasing number of data
objects

Fig. 7 Evaluating the approaches for increasing data dimensionality. The performance of DeLi-Clu dimin-
ishes for higher dimensions, because of its use of indexing techniques

Figure 7 highlights the runtime for increasing data dimensionalities. Note that the
performance gap betweenOPTICS andDeLi-Clu diminishes for higher dimensions. In
fact, for more than 500 dimensions, OPTICS is faster than DeLi-Clu. This is due to the
use of indexing techniques by DeLi-Clu. It is well understood that the performance of
space-partitioning indexing structures, like R-trees, diminishes for increasing dimen-
sionalities. The performance improvements of SOPTICS compared with OPTICS
range from 47 times (at low dimensions) to 32 times (for high dimensions). A differ-
ent trend is suggested in the runtime improvement against DeLi-Clu, which ranges
from 17 times (at low dimensions) to 38 times (at high dimensions). Using OPTICS
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998 J. Schneider, M. Vlachos

with an LSH index improves performance at higher dimensionalities, but the approach
is still much slower than SOPTICS. We do not employ excessive parameter tuning for
LSH (as we did for our small scale experiments), since the gain due to tuning did not
create large differences in outcome. Therefore, when dealing with high-dimensional
datasets, it is preferable to use techniques based on random projections.

9 Conclusion

Density-based techniques can provide the building blocks for efficient clustering algo-
rithms. Our work contributes to density-based clustering by presenting SOPTICS,
which is a random-projection-based version of the popular OPTICS algorithm. Not
only is it orders of magnitude faster than OPTICS, but it also comes with analytical
clustering preservation guarantees. In the spirit of reproducibility, we have also made
available the source code of our approach.

Acknowledgements The research leading to these results has received funding from theEuropeanResearch
Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERCGrant Agree-
ment No. 259569.

Appendix

Proof of Theorem 8 Assume for now that the random line used for partitioning is
chosen uniformly at random. By definition and using linearity of expectation, the
expectationof Xshort

A isE[Xshort
A ] := ∑

C∈SA\N (A,cdr) p(E
short
A (C)).UsingTheorem

7 to bound p(Eshort
A (C)),

E[Xshort
A ] ≤ 3 log(cd)/cd |SA \ N (A, cdr)|

The probability that the random variable Xshort
A exceeds the expectation E[Xshort

A ] by
a factor cd/ log(cd)2 or more is at most log(cd)2/cd using Markov’s inequality. Thus,
for the probability of event E0 as defined below we have

p(E0) := p
(
Xshort
A < E

[
Xshort
A

]
· cd/ log(cd)2 ≤ 3|SA \ N (A, cdr)|/ log(cd)

)

≥ 1 − log(cd)
2/cd .

Analogously, let us bound the probability of event Elong
A (C) that a projection of two

points C, A results in a distance L · (C − A) much beyond the expectation. Next,
we use Theorem 7 to bound p(Elong

A (C)). By definition the expectation of Xlong
A is

E[Xlong
A ] := ∑

C∈SA∩N (A,r) p(E
long
A (C)). Consider the upper bound of E[Xlong

A ]
being E[Xlong

A ] · cd , i.e., cd/(cd)log(cd )/2|SA ∩ N (A, r)| ≥ 1/(cd)log(cd )/3|SA ∩
N (A, r)| (for cd > 1). Thus, define the probability of event E1 and bound as before
using Markov’s inequality as follows:

p(E1) := p
(
Xlong
A ≤ |SA ∩ N (A, r)|/(cd )log(cd )/3

)
≥ 1 − 1/cd .
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Assume E0 occurs. This excludes at most a fraction log(cd)2/cd ∈ [0, 1], ie. require
cd > 80, of all possible projections for event E1, leaving

(1 − 1/cd − log(cd)
2/cd) > 1 − 2 log(cd)

2/cd .

Thus, the probability of E1 given E0 becomes p(E1|E0) = 1 − 2 log(cd)2/cd . The
probability of event E ′ := E0 ∩ E1 is

p(E ′) = p(E1|E0) · p(E0) ≥ (1 − 2 log(cd)
2/cd) · (1 − log(cd)

2/cd)

≥ (1 − 2 log(cd)
2/cd)

2.

Let us deal with dependencies among chosen lines. We choose cL · logN random
lines independently from each other. Define cE ′ := 1 − p(E ′) = 2 log(cd)2/cd .
Then using a Chernoff Bound (see Theorem1), we have that the probability of event
E f (SA) that the number of lines for which E ′ does not hold for SA exceeds the
expectation cL · log N · cE ′ by at most a factor 1 + √

3/(cL)1/4 is 1 − 1/N
√
cLcE ′ .

Thus, assume that we “reuse” the projections for a total of Nc2 sets of points across
all partitionings, ie. c2 < 2. Therefore, given that the projections have been reused
Nc2 times the probability p(E f (SC )) for a set SC can be upper bounded using the
bound for dependent events from Theorem 2 1−1/N

√
cLcE ′−c2. Thus, the probability

for a bad event increases at most by a factor of 1 + √
3/(cL)1/4 yielding that for cL

sufficiently large.

p(E ′) ≥ 1 − 2 log(cd)
2/cd · (1 + √

3/(cL)1/4) ≤ 1 − 4 log(cd)
2/cd

�	
Proof of Theorem 9 The idea of the proof is to look at a point A and remove “very”
far away points until there are only relatively few of them left. Then, we consider
somewhat closer points (but still quite far away) and remove them until we are left
with only some very close points and some potentially further away points. Consider
a partitioning of set SA into two sets S0 and S1,A, i.e., A ∈ S1,A using algorithm
Partition and random projection line L . Assume that the following condition holds for
set SA: There are many more points “very far away” from A than not so distant points
using some factor fd ≥ cd :

cr |SA ∩ N (A, fd · r)| ≤ |SA \ N (A, fd · r)| (2)

The value cr is defined later; we require cr ≥ fd . We prove that even in this case after
a sequence of splittings of the point set only few very far away points end up in set
S1,A. (If there are fewer faraway points than somewhat close points, the probability
that many of them end up in the same set is even smaller.) Define event E1 as follows:
A splitting point is picked such that for the subset S1,A most very close points from
N (A, r) ∩ SA remain, i.e.,

|S1,A ∩ N (A, r)| ≥ |SA ∩ N (A, r)| · (1 − 1/cr ).

123



1000 J. Schneider, M. Vlachos

The probability of event E1 can be bounded as follows. Assume that E ′ as defined
in Theorem 8 occurs (using fd > cd instead of cd ), i.e., most distances are scaled
roughly by the same factor from a point A to other points. To minimize the probability
of p(E1|E ′) we assume that all projected distances from faraway points to A are
minimized and those of close points are maximized. This means that at most a fraction
1/ log fd of all very far away points SA \N (A, fd · r) are below a factor 3 log( fd)/ fd
of their expected length and that the distances to all other points in SA \N (A, fd · r)
are shortened exactly by that factor. We assume the worst possible scenario, i.e., those
far away points are split such that they end up in the same set as A, i.e., they become
part of S1,A. At most a fraction 1/( fd)log( fd )/3 of all very close points SA ∩ N (A, r)
are above a factor log( fd) of the expectation. We assume that those points behave in
the worst possible manner, i.e., the close points exceeding the expectation are split
such that they end up in a different set than A, i.e., S0 not S1,A. Next, we bound the
probability that no other points fromSA∩N (A, r) are split. If we pick a splitting point
among the fraction of 1−1/ log fd points from SA \N (A, fdr) that are not shortened
by more than a factor 3 log( fd)/ fd , then p(E1|E ′) occurs. By initial assumption we
have (1 − 1/ f log( fd )/3

d )|SA ∩ N (A, fd · r)| ≤ (1 − 1/ log fd) · cr |SA \ N (A, fdr)|
and thus, |SA \N (A, fdr)|/|SA| ≤ 2/cr for 1− 1/ log fd > 1/2, i.e., fd sufficiently
large, and because |SA| ≥ |SA \N (A, fdr)|. Put differently, the probability to pick a
bad splitting point is at most 2/cr . The occurrence of event E ′ reduces the probability
of E1 at most by 1 − p(E ′), i.e., p(E1|E ′) ≥ p(E1) − (1 − p(E ′)).

Therefore,

p(E1) = p(E ′)p(E1|E ′)
= p(E ′) · (1 − |SA \ N (A, fd · r)|/|SA| − (1 − p(E ′)))
≥ p(E ′) · (1 − 2/cr − 4 log( fd )2/ fd ))

≥ (1 − 4 log( fd )2/ fd )2 · (1 − 6 log( fd )2/min( fd , cr )) (Substitution of p(E ′))
= (1 − 6 log( fd )2/ fd )3 (since by definition cr ≥ fd )

Define event E2 as follows: At least 1/3−1/cr of all far away points |SA \N (A, fdr)|
are not contained in S1,A, i.e.,

|SA \ N (A, fdr)| ≥ 2/3|S1,A \ N (A, fdr)|.

The probability that the size of the set resulting from the split S1,A is at most 2/3
of the original set SA is 1/3, because a splitting point is chosen uniformly at random.
When restricting our choice to far away points SA \ N (A, fdr), we can use that
owing to Condition (2) at most a fraction 1/cr of all points are not far away. The
probability of E2 given E1 can be bounded by assuming that all events, i.e., choices
of random lines and splitting points, that are excluded owing to the occurrence of
E1 actually would have caused E2. More precisely, we can subtract the probability
of the complementary event of E1, i.e., p(E2|E1) = 2/3 − 1/cr − (1 − p(E1)) ≥
2/3 − 1/cr − (1 − 4 log(cd)2/ fd)3 ≥ 1/4 for a sufficiently large constant fd . The
initial setS := P has to be split at most cL log N times until the final setSA containing
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A (which is not split any further) is computed (see proof of Theorem 3). We denote
a trial T as up to log fd splits of a set S into two sets. A trial T is successful if after
at most log fd splits of a set SA the final set S ′

A ⊂ SA is of size at most |SA|/2 and
E1 occurred for every split. The probability for a successful trial p(T ) is equal to the
probability that E1 always occurs and E2 at least once. This gives:

p(T ) = p(E1)
log fd · (1 − p(E2|E1)

log fd )

≥ (1 − 6 log( fd)
2/ fd)

3 log fd · (1 − 1/4log fd )

≥ (1 − 6 log( fd)
2/ fd)

4 log fd (3)

Starting from the entire point set we need log(N/minSize) + 1 (consecutive) suc-
cessful trials until a point A is in a set of size less than minSize and the splitting stops.
Next we prove that the probability to have that many successful trials is constant given
that the required upper bound on the neighborhood holds, i.e., (1). Assume there are
ni points within distance [i3/2+cs · cd · r, (i + 1)3/2+cs · cd · r ] for a positive integer i .
In particular, note that the statement holds for arbitrarily positioned points. We do not
even require them to be fixed across several trials.

The upper bound on the neighborhood growth (1) yields that ni ≤ 2i
1/2 ·

|N (A, cdr)|. Furthermore, we have that
∑∞

i=1 ni ≤ N . Next, we analyze how many
trials we need to remove points ni until only the close points N (A, cdr) remain. We
are going from large i to small i , i.e., remove distant points first. For each ni we need at
most log ni −log |N (A, cdr)| ≤ i1/2 successes. Let Eni be the event that this happens,
i.e., that we have that many consecutive successes.

p(Eni ) :=
log ni−log |N (A,cdr)|∏

j=1

p(T )

=
log ni−log |N (A,cdr)|∏

j=1

(
1 − 6 log(x)2/(x)

)4 log x
(Defining x := cd · i3/2+cs )

=
√
i∏

j=1

(
1 − 1/2log(x)−2 log(6 log x)

)4 log(x)

= 24
√
i log(x) log

(
1−1/2log(x)−2 log(6 log x)

)

= 2−4
√
i log(x)·1/2log(x)−2 log(6 log x)

(Using log(1 − x) ≤ −x)

≥ 2−4
√
i ·log(x)·log(x)4/x (Using 22 log(6 log x) = (6 log(x))2, 2log(x) = x)

= 2
−24

√
i log(cd ·i3/2+cs )3

cd ·i3/2+cs

≥ 2
− 1

cd ·i (for cs and cd sufficiently large) (4)

As the number of points N is finite, the number of ni > 0 is also finite. Let mA be
the largest value such that nmA > 0. Let pA := p(∧i∈[1,mA]Eni ) be the probability
that all trials for all ni in i ∈ [1,mA] and ni > 0 are successful. Note that the events
Eni are not independent for a fixed point set P . However, the bound (4) on p(Eni )
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1002 J. Schneider, M. Vlachos

holds as long as condition 2 is fulfilled, i.e., for an arbitrary point set. Put differently,
the bound (4) holds even for the “worst” distribution of points. Therefore, we have
that pA := p(∧i∈[1,mA]Eni ) ≥ ∏

i∈[1,mA] 2−1/(i ·cd ) using stochastic domination. Note
that our choice of maximizing ni , i.e., the number of required successful trials for Eni
minimizes the probability of a p(Eni ). This is quite intuitive, since it says that we
should maximize the number of points closest to A that should not be placed in the
same set as A (i.e., they are just a bit too far to yield the claimed approximation
guarantee). We also need to be aware of the fact that the distribution for the ni under
the constraint that

∑mA
i=1 ni ≤ N should minimize the bound for pA. It is also apparent

from the derivation of (4) that this happens when we maximize ni ; the probability for
pA decreases more if we maximize small i . Essentially, this follows from line 2 in
(4) because the number of trials nT is less than

√
i and each trial is successful with

probability of (1−1/ i3/2) (focusing on dominating terms), yielding an overall success
probability of (1 − 1/ i3/2)nT for a trial. Thus, (1 − 1/ i3/2)

√
i > (1 − 1/ l3/2)

√
l for

1 < i < l. Put differently, choosing ni large for a large i is not a problem for our
algorithm, because it is unlikely that these points will be projected in between the
nearest points to A.

Therefore, when maximizing the number of points close to A, we have that mA =
(log N )2, i.e., all ni for i > (log N )2 are 0 because 2

√
(log N )2 = n(log N )2 = N .

Additionally, note that we need at most c8 log N trials in total. As each trial slices the
number of points by 1/2, we only need to take into the account the subset X ∈ [1,mA]
for which the number of points doubles, i.e., n j = 2 · ni , for ni = 2i

1/2
. This happens

whenever i1/2 is an integer, i.e., for i = 1, 4, 9, 16, . . ., we get ni = 1, 2, 3, 4, . . ..
Thus, we only need to look at i2 ∈ [1,mA]

pA ≥
∏

i2∈[1,mA]
2−1/(cd ·i)

≥
∏

i2∈[
1,log2 N

]
2−1/(cd ·i)

≥ 2
−1/cd

∑
i2∈[1,log2 N] 1/ i

= 2−1/cd
∑

i∈[1,log N] 1/ i2

≥ 2−2/cd

≥ 1/22/cd

Thus, when doing cp(log N ) partitionings, we have at least cp/16 log N successes for
point A whp using Theorem 1 and cd ≥ 1. This also holds for all points whp using
Theorem 2.

Finally, let us bound the number of nearby points that remain. We need at most
cL log N (see Theorem 3) projections until a point set will not be split further. Each
projection reduces the points |N (A, r)| at most by factor 1 − 1/cr . We give a bound
in two steps, i.e., for cr ≥ log3 N and cr ∈ [cd , log3 N ].
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cL log N∏

i=1

(1 − 1/cr ) ≥
(
1 − 1/ log3 N )cL log N (Assuming cr ≥ log3 N

)

≥ 1 − 1/ log N

To reduce the number of points by a factor of log3 N requires 3 · log log N trials, each
reducing the set by a factor 1/2. Thus, trial i is conducted using a factor cr = log3 N/2i

of the original points or, equivalently, trial 3 · log log N − i is conducted with cr = 2i .
Thus, in total the fraction of remaining points in N (A, r) is

(1−1/ log N )

3 log log N∏

i=1

(1−1/2i )log cd = (1 − 1/ log N ) ·
⎛

⎝
3 log log N∏

i=1

(1 − 1/2i )

⎞

⎠

log cd

= (1−1/ log N ) ·
(

2
∑3 log log N

i=log cd
log(1−1/2i )

)log cd

≥ (21−2/cd )log cd ≥ 1/(2cd)

�	
Proof of Theorem 10 First we bound the number of neighbors. Using Theorem 9 we
obtain cp/16(log N ) sets SA containing A. Define SA to be the union of all sets
SA ∈ S containing A. Before the last split of a set SA resulting in the sets S1,A and
S2, the set SA must be of size at least cm · minPts; the probability that splitting it at
a random point results in a set S1,A with |SA| < cm/2 · minPts is at most 1/2. Thus,
using a Chernoff bound (Theorem 1), at least cp/128 log N sets SA ∈ SA are of size
at least cm/2 · minPts whp.

Let SA be a set SA with size at least cm/2 · minPts. Consider the process when
the neighborhood N (A) is built by inspecting one set SA after the other. Assume
that the number of neighbors |N (A)| < cm/2minPts/(2cd). Thus, the probability of
event p(Choose new close neighbor B) = p(B /∈ N (A)∧ B ∈ N (A, r)) that a point
B ∈ SA but not already in N (A) is chosen from N (A, r) ∩ SA is at least cm/(4cd).

p (Choose new close neighbor B||N (A)| < cm/2 · minPts/(2cd))
:= p(B /∈ N (A) ∧ B ∈ N (A, r))) = cm/(4cd)

As by assumption minPts < cm log N and there are at least cp/128 log N sets SA

with |SA| ≥ cm/2 · minPts and cp ≥ cm · 128, using the Chernoff bound in Theorem
1 we get that there are at least cm/(4cd)minPts points within distance DcmminPts(A)

in N (A) whp for every point A. Setting cm ≥ 8cd completes the proof. �	
Proof of Theorem 12 To compute Davg(A) with f = 1 we consider the (1 + f ) ·
minPts = 2minPts closest points to A from N (A). Using Theorem 10 2minPts
points are contained in N (A) with distance at most DcmminPts(A). This yields
Davg(A) ≤ DcmminPts(A). Thus, the upper bound follows. To compute Davg(A),
we average the distance using the 2 · minPts-closest points to A. The smallest value
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of Davg(A) is reached whenN (A) contains all 2 ·minPts closest points to A, which
implies Davg(A) ≥ D2·minPts(A) ≥ DminPts(A) for any set of neighbors N (A). �	
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