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Abstract Many injuries in sports are caused by overuse. These injuries are a major
cause for reduced performance of professional and non-professional beach volleyball
players. Monitoring of player actions could help identifying and understanding risk
factors and prevent such injuries. Currently, time-consuming video examination is the
only option for detailed player monitoring in beach volleyball. The lack of a reliable
automatic monitoring system impedes investigations about the risk factors of overuse
injuries. In this work, we present an unobtrusive automatic monitoring system for
beach volleyball based on wearable sensors. We investigate the possibilities of Deep
Learning in this context bydesigning aDeepConvolutionalNeuralNetwork for sensor-
based activity classification. The performance of this new approach is compared to five
common classification algorithms. With our Deep Convolutional Neural Network, we
achieve a classification accuracy of 83.2%, thereby outperforming the other classifica-
tion algorithms by 16.0%. Our results show that detailed player monitoring in beach
volleyball using wearable sensors is feasible. The substantial performance margin
between establishedmethods and ourDeepNeuralNetwork indicates thatDeepLearn-
ing has the potential to extend the boundaries of sensor-based activity recognition.
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1 Introduction

1.1 Motivation

Most injuries in volleyball and beach volleyball are caused by overuse (Aagaard et al.
1997). Shoulders, knees and the lower back are most prone to injuries due to the
large loads that occur for example during a serve jump. The resulting overuse injuries
are a major cause of impairment and reduced performance for professional beach
volleyball players (Bahr and Reeser 2003). Also in other sports, overuse injuries play
an important role, even for non-professional athletes (Covassin et al. 2012). In order
to prevent such injuries, their causes need to be investigated (van Mechelen et al.
1992). Due to the multifactorial nature of sports injuries, the consideration of as many
relevant risk factors as possible is necessary (Bahr and Holme 2003). This requires a
fine-grained monitoring of player actions during training and matches.

By determining a profile of high load actions, training intensity and/or volume can
be adapted individually and precisely for each player. This reduces overload and allows
better tissue recovery, thus reducing the risk of overuse injuries (Reeser et al. 2006).
For example, if a beach volleyball monitoring system reveals that a player recently
performedmany actions that were accompanied with high loads for the shoulder (such
as spikes or overhead serves), the player could shift to actions that are less straining for
the shoulder. The training could also be adapted according to tactical considerations.
If the recorded activity information indicates that a player performed a lot of defensive
actions but only few attacks in the current training session, the coach could adjust the
training to achieve a well-balanced skill set.

However, acquiring the necessary statistics about the performed actions currently
requires cumbersome manual video analysis. Although preprocessing of the videos
can help extracting relevant sequences (Gomez et al. 2012; Link et al. 2010), the video
analysis of a single session for a single player can take several hours. This great effort
is unacceptable, especially for a consistent long-term monitoring of athletes.

An automatic detection and classification system for beach volleyball actionswould
facilitate the acquisition of detailed player-specific information considerably. By auto-
matically obtaining statistics about the number and type of actions that were performed
by players, it could yield crucial information for characterizing risk factors and mech-
anisms for overuse injuries and possibly even help to prevent them.

Wearable sensors provide a cheap and unobtrusive possibility for measuring signals
that are related to player movements. Powerful pattern recognition techniques such
as Deep Learning could be used for analyzing these signals. By combining wearable
sensors and pattern recognition, an automatic activity recognition system for player
monitoring in beach volleyball could be established.

1.2 Related work

Sensor-based activity recognition in volleyball or beach volleyball is not covered
extensively in the literature. Jarning et al. (2015) attempted to determine the jump
frequency in volleyball in order to understand and prevent patellar tendinopathy (also
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known as jumper’s knee). Using accelerometer sensors, they analyzed peak vertical
acceleration and peak resultant acceleration. They concluded that differences in these
parameters are not sufficient for distinguishing between jumping and non-jumping
movements.

Rawashdeh et al. (2015) used inertial-magnetic measurement units (IMMUs)
attached to the upper arm to capture sensor signals related to the arm motion. With the
acquired data, they were able to automatically distinguish between volleyball serves
and baseball throws. Cuspinera et al. (2016) used gyroscopes and acceleration sensors
on the wrist and hand of beach volleyball players to distinguish between four different
serve types. They concluded that such a differentiation may be possible. However,
their work did not include a comprehensive evaluation and results were obtained with
data containing only one serve type.

IMMUs have also been used for activity recognition in various other sports, e.g., in
soccer (Schuldhaus et al. 2015), skateboarding (Groh et al. 2015, 2016), snowboarding
(Holleczek et al. 2010), rugby (Kautz et al. 2015), basketball (Nguyen et al. 2015),
hockey (Mitchell et al. 2013) and table tennis (Blank et al. 2015). They have also been
employed for the recognition of daily life activities (Bao and Intille 2004; Leutheuser
e tal. 2013; Ravi et al. 2005), gesture recognition (Nguyen-Dinh et al. 2012; Roggen
et al. 2015) and for activity tracking in car manufacturing (Stiefmeier et al. 2008).

In most of the aforementioned publications, classification was based on a set of
generic features that were calculated from the sensor data. These features were the
input to a classifier that was trained to discriminate between different classes. Typ-
ical classification algorithms were Naïve Bayes (NB, Lewis 1998), Support Vector
Machine (SVM, Cortes and Vapnik 1995), k-Nearest-Neighbor (kNN, Cover and
Hart 1967), decision trees (Breiman et al. 1984) and Random Forest (RF, Breiman
2001). In some cases, the classification results were improved by using voting tech-
niques such as plurality voting (VOTE, Ho et al. 1994), boosting (Meir and Rätsch
2003) and bagging (Breiman 1996). The most successful classification algorithms in
the listed publications regarding sensor-based activity recognition were SVM, kNN,
Naïve Bayes, Random Forest, decision trees and a plurality voting of different base
classifiers.

Deep Learning represents an alternative to these classical classification approach
based on hand-crafted features. The most important advantage of Deep Learning is the
automatic extraction of features, also known as representation learning (LeCun et al.
2015). Despite its successes in image and speech recognition (Deng et al. 2013; He
et al. 2015; Hinton et al. 2012a), Deep Learning has not yet fully reached the field of
sensor-based activity recognition (Lane and Georgiev 2015). Zheng et al. (2014) used
Deep Convolutional Neural Networks (DCNNs) to classify four daily activities from
accelerometer data and showed that this approach outperformed a 1-Nearest-Neighbor
classifier. Zeng et al. (2014) demonstrated the use of DCNNs for human activity
recognition from tri-axial accelerometers. The tested data sets included different daily
life activities and activities of assembly-lineworkers. The authors showed that DCNNs
outperformed various other methods for feature extraction, but a comparison of the
DCNNwith other classifiers was not included. Bailador et al. (2007) described the use
of Continuous Time Recurrent Neural Networks for gesture recognition. Here, eight
different gestures were classified based on the data of a tri-axial accelerometer that was
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held in one hand. Again, a comparison of the presented approach with other methods
was not part of the study. Ordóñez and Roggen (2016) used a recurrent network
architecture for gesture recognition from IMMU data. With their Deep Convolution
Long-short-termMemoryNeural Network, they were able to outperform various other
approaches in terms of classification performance. As input, measurements from at
least 10 tri-axial sensors at different body positions were required. However, this high
degree of instrumentation is not acceptable in a sports context since it would hinder
the mobility of athletes.

The usability of DCNNs for sports activity recognition remains to be investigated.
Moreover, the performance of DCNNs in sensor-based activity recognition has not
been compared systematically to other state-of-the-art activity recognition approaches.
The purpose of this paper is to describe an automatic system for activity monitoring
in beach volleyball. To this end, we explore the applicability of Deep Learning for
sensor-based activity classification and compare it to other state-of-the-art classifica-
tion methods.

2 Methods

In this section, the pipeline for the automatic activity recognition in beach volleyball
is described. First, the employed hardware is specified and the conducted study is
outlined. Second, a method for detecting relevant events from the raw data stream is
presented. Third, different approaches for the classification of the detected events are
described. At the end of this section, the evaluation procedure is outlined.

2.1 Data acquisition

2.1.1 Sensor hardware

For data acquisition, sensor units with Bosch BMA280 tri-axis acceleration sensors
were used (Bosch Sensortec 2014a). Since low power consumption is an important
aspect in wearable sensing, the sensors were configured to operate in low-powermode.
In this configuration, the sensors consumed only 6.5µA. In turn, the sampling rate
was reduced to approximately 39Hz.1 Acceleration was recorded in a range of ±16g
with a resolution of 14 bit per axis. The sensor unit also included a STM32L151CCT6
(STMicroelectronics 2015) ultra-low-power micro-controller.

2.1.2 Study design

Three-axial acceleration data was recorded from 30 subjects (11 female, 19 male)
during beach volleyball training. The skills of the players ranged from beginner to

1 According to the sensor data sheet (Bosch Sensortec 2014a), the sampling rate of the acceleration sensors
in low-powermode is 40Hz.However, our tests showed, that the actual sampling ratewasonly approximately
39Hz.
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Fig. 1 Sensor attachment at the
wrist of the dominant hand with
a soft, thin wristband

x

yz

professional level. All subjects were right-handed. The sensors were attached to the
wrist of the dominant hand of the players with a soft, thin wristband. The players
reported no impairment of their actions by the sensing device. The sensor attachment
is depicted in Fig. 1.

The data acquisition was video recorded for reference using a GoPro Hero 3 action
camera. All performed beach volleyball actions were manually labeled based on the
recorded videos. The actions were grouped into the following ten classes:

1. Underhand Serve (US)
2. Overhead Serve (OS)
3. Jump Serve (JS)
4. Underarm Set (UT)
5. Overhead Set (OT)
6. Shot Attack (SA)
7. Spike (SP)
8. Block (BL)
9. Dig (DG)

10. Null Class (NL).

A short description for each of these classes is given in Table 1. A screenshot from
the reference video including the measured acceleration signals is shown in Fig. 2. A
summary of the recorded data is given in Table 2.

2.2 Activity detection

The first step in the data processing was the detection of potentially relevant events
in the acceleration data stream. Since the detection should be executable directly on
the micro-controller in the sensor device, a computationally efficient approach was
necessary. A detailed description of the detection procedure is given in the following
paragraphs.

Almost all actions that were relevant in our analysis involved a ball contact. Based
on that, we used two assumptions about the signal characteristics for the detection
of the considered beach volleyball actions. Our first assumption was, that impacts
of the ball at the wrist or hand create high-frequency peaks in the acceleration data.
The second assumption was, that most relevant actions are accompanied by a swing
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Table 1 Description of the 10 beach volleyball action classes used in this work

Action Class Description

Underhand Serve (US) Underhand technique serve with different hand postures
One hand is holding ball on knee/hip height and ball is hit with the other

hand

Overhead Serve (OS) Overhead technique serve w/o jumping, topspin or float serve style
Ball is thrown overhead and hit with one hand

Jump Serve (JS) Jump serve using topspin technique
Ball is thrown overhead and hit while jumping

Underarm Set (UT) Underarm set played with the forearm
Ball is played on knee to hip height with both arms extended

Overhead Set (OT) Overhead set played with the hands
Ball is softly played overhead with the fingers

Shot Attack (SA) Precise attack with sub-maximal speed
Ball is hit overhead while jumping; spiking with arcing trajectory or soft

dinking

Spike (SP) Hitting ball hard with maximal speed Ball is hit overhead while jumping;
spiking with open hand and downward trajectory

Block (BL) Attempt or actual execution of blocking an opponents attack
Involves a maximal jump with arms extended overhead forming a plane

Dig (DG) Defensive play to prevent ball from hitting the ground
Ball is played with either one or both extended arms while diving to the

ground

Null Class (NL) Non-beach-volleyball actions that occur between rallies
Different motions like clapping, cheering, catching a ball and undefined

motions

movement of the dominant arm to gain momentum and/ or to bring the arm in the
correct position.

For the detection of the acceleration peaks associated with the ball impact, the
acceleration signals from all three axes were high-pass filtered with a Butterworth
filter with a cut-off frequency of 8Hz. Then, the L1-norm of the high-passed signal
was computed. Subsequently, this signal was smoothed using a Butterworth low-pass
filter with a cut-off frequency of 3Hz.

If this auxiliary signal exceeded a threshold εimpact , the next local maximum
in the signal was sought. The amplitude of this maximum acceleration peak was
used as an impact indicator. Since the use of the impact indicator alone was not
sufficient to reliably detect relevant events, an indicator for the swing movement
before the ball contact was calculated in addition. This was done by averaging the
absolute acceleration values of all three axes over an interval of 200ms before the
maximum.

With the two detection features, i.e., the impact indicator and the swing indi-
cator, a decision tree (C4.5) was employed to further refine the activity detection.
A decision tree only requires threshold comparisons to perform a class prediction.
Therefore, it is computationally efficient and suitable for an embedded implementa-
tion. The decision tree was trained to differentiate between relevant actions (classes
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Fig. 2 Screenshot from the recorded reference video including the corresponding acceleration signals. The
performed action is a jump serve. The time of the depicted frame is indicated by the dashed lines in the
signal plots

Table 2 Summary of the recorded data

Actions of interest (without Null Class) 4284

Total duration 21h

Subjects (female/ male) 30 (11/19)

Skill level Beginner to professional

Sensor BMA280 3D acceleration sensor

Sampling rate 39Hz

Sensor placement Wrist of dominant hand

Reference Manually labeled video

1–9) and irrelevant actions (class 10), i.e., a binary classification problem had to be
solved.

In the activity detection, it was more important to detect as many relevant events
as possible (high recall) than to reject as many irrelevant events as possible (high
precision). If a relevant event remained undetected (false negative), this error could
not be recovered in the further processing pipeline. However, if an event was falsely
assessed to be relevant by the detection algorithm (false positive) this error could be
remedied in the subsequent activity classification. To implement this requirement, we
designed the detection algorithm to reach a recall of 99%.Thiswas achievedby training
the decision tree in conjunctionwith theMetaCost algorithm (Domingos 1999) for cost
sensitive learning. The cost ratio between false negatives and false positives was varied
in a leave-one-subject-out-validated grid search. The cost ratio that corresponded to
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Fig. 3 Overview of the activity detection. Possibly relevant actions were extracted from the raw data stream
for subsequent classification

a recall of 99% was selected and used for the training of the detection decision tree.
The threshold εimpact was defined as the minimum of the acceleration peaks of the
detected relevant events in the training data.

If a potentially relevant event was detected, the raw acceleration signals from 2s
before the acceleration maximum until 2 s after the acceleration maximum (157 sam-
ples per channel) were stored for further processing. All events that were detected in
the test data (true positives and false positives) in each fold of the leave-one-subject-
out cross-validation were used as input for the following classification procedure. An
overview of the activity detection is given in Fig. 3.

2.3 Activity classification

For the assignment of the detected actions to the ten pre-defined classes, two different
approaches were investigated. The first approach included generic features in combi-
nation with different classification algorithms. In the second approach, a DCNN was
used for simultaneous feature-extraction and classification. These two approaches are
described in detail in the following sections.

2.3.1 Classifiers with generic features

The first approach that was employed for the classification of the detected actions was
similar to the methods described in previous publications (e.g., Bao and Intille 2004;
Blank et al. 2015; Leutheuser e tal. 2013; Nguyen et al. 2015; Ravi et al. 2005). The
first step was the calculation of a set of manually defined features from the raw data.

123



1686 T. Kautz et al.

Features were calculated from each of the three accelerometer axes for the detected
event windows. The following features were calculated for each sensor axis:

– median
– mean
– standard deviation
– skewness
– kurtosis
– dominant frequency
– amplitude of spectrum at dominant frequency
– maximum
– minimum
– position of the maximum
– position of the minimum
– energy.

In addition, the following Pearson correlation coefficients were calculated:

– correlation between x-axis and y-axis
– correlation between x-axis and z-axis
– correlation between y-axis and z-axis.

In total, 39 features were calculated. To account for different magnitudes, the fea-
tures were normalized. This was accomplished by subtracting the median from the
distribution of each feature and by scaling the features according to their respective
interquartile ranges. We conducted the classification with and without feature selec-
tion. The feature selection was performed with a filter approach based on the adjusted
rand index (ARI, Santos and Embrechts 2009). In the classification with feature selec-
tion, only features for which the ARI was considerably higher than for the rest were
used. A threshold εARI was defined based on a histogram of the ARI values of the 39
features.

The class distribution of the detected events was highly imbalanced. Class
imbalance can deteriorate the performance of classifiers and distort classification
performance metrics (Kotsiantis et al. 2006). To avoid these negative effects, resam-
pling was used to obtain equal instance counts for all classes in the training data.
This was achieved by synthetically creating new instances from minority classes
via SMOTE (Chawla et al. 2002). The resampling was performed in feature-space.
After the resampling, all classes contained the same number of instances, i.e., as
many instances as were originally contained in the class with the highest number of
instances. Resampling was conducted after splitting the data into test and training sets
to make sure that the synthetically created training samples were not influenced by
the samples in the test set. The normalized and resampled feature vectors were then
used as input for different classification algorithms in order to distinguish the action
classes.

We tested several classifiers that were successfully applied in previous sensor-based
activity classification studies (see Sect. 1.2). The tested classifiers were SVM (with
radial basis function kernel), kNN, Gaussian NB, Decision Tree (CART), RF (ten
trees) and a VOTE classifier based on the five aforementioned base classifiers. The
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optimal parameters for the SVM (parameters C and γ ) and for the kNN classifier
(parameter k) were determined in a grid search with C ∈ {100, 101, . . . , 1010}, γ ∈
{10−9, 10−8, . . . , 10−2} and k ∈ {1, 2, . . . , 10}.

In the voting approach, the predicted class c for an event x was obtained as the
weighted vote of the predictions ci from the V = 5 base classifiers:

c(x) = argmax
c

V∑

i=1

wi · ci (x). (1)

The weights wi of the base classifiers were the classification accuracies of the cor-
responding classifiers on the training data. Thus, the class prediction of a classifier
with a good classification accuracy was given a higher weight than the prediction of
a classifier that performed poorly.

The implementation of the algorithms described in this section was based on the
Python package scikit-learn (Pedregosa et al. 2011).

2.3.2 Deep Convolutional Neural Network (DCNN)

Background In the second approach that was tested for classification of the detected
events, a DCNN was employed. Hinton et al. (2012a) defined DNNs as follows:

A deep neural network (DNN) is a feed-forward, artificial neural network that
has more than one layer of hidden units between its inputs and its outputs.

Depending on the problem to be tackled, different types of these layers, such as con-
volutional layers, pooling layers or fully-connected layers can be used. Convolutional
layers have been found to be well suited for learning features from the raw data (Chat-
field et al. 2014). In a convolutional layer, the raw data is convolved with different
kernels, which can be interpreted as filtering. The weights of the filter kernels are
learned from the data, i.e., the network learns specialized filters for the task at hand.
A DNN containing several convolutional layers is a DCNN. By combining several
convolutional layers, features with an increasing abstraction level can be learned from
the data (LeCun et al. 1990).

The output of convolutional layers is usually transformed non-linearly, for exam-
ple with rectified linear units (ReLUs) (Zeiler et al. 2013). The use of ReLUs in
combination with convolutional layers has been found to significantly improve the
performance of recognition systems (Jarrett et al. 2009). Moreover, pooling layers
can help making the features learned in the convolutional layers more robust towards
shifts or distortions of the input data (Boureau et al. 2010).

Fully-connected layers can be employed to find combinations of the extracted fea-
tures that are suitable for classification. By combining different layers with different
functions, DCNNs are able to simultaneously extract features from the raw data and
perform classification based on these features.

In contrast to the classification approach that relied on generic features, the DCNN
employed in this work learned features automatically. As input to the DCNN, the
raw acceleration data of the detected events was employed. The input of the network
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was neither scaled, centered nor pre-filtered. The network input had 471 dimensions
(three-axial acceleration, approximately 4 s per event, sampling rate 39Hz).

Architecture Our DCNN consisted of an input layer, two convolutional layers with
ReLUs and max-pooling, two fully-connected layers and a soft-max (Bridle 1990)
output layer for classification.

A schematic representation of the DCNN designed in this work is shown in Fig. 4.
The elements shown in the visualization are referenced as italic notes in the following
description of the network.

The first hidden layer in our DCNN was a convolutional layer (convolution I). In
this layer, we applied 8 kernels for filtering each of the 3 accelerometer signals. Here,
the kernels were different for each axis. The kernels were one-dimensional and had
a length of 32 samples (approximately 0.8 s). A bias was added to the output of each
filter. The bias terms were also learned from the data and were different for each
filter.

Subsequently, the filtered output of the first convolutional layer was transformed
non-linearly using ReLUs (rectification I). The activation function fReLU of a ReLU
given an input x is

fReLU (x) = max(0, x). (2)

The output of the ReLUs was then compressed using temporal max-pooling (max-
pooling I). In the max-pooling step, the output of the ReLUs within a moving pooling
window were replaced by their respective maximum. For the output of the first con-
volutional layer, we used overlapping pooling windows with a length of 4 samples
(approximately 0.1 s) and a stride of 2 samples (approximately 0.05 s).

After the temporal max-pooling, we applied a second convolutional layer (con-
volution II). This layer took the non-linearly transformed and pooled output of the
first convolutional layer as input. In the second convolutional layer, we employed 16
one-dimensional filter kernels with a length of 16 samples and an additional bias for
each kernel. The output of this layer was again transformed and compressed by apply-
ing the ReLU non-linearity (rectification II) and overlapping temporal max-pooling
(max-pooling II, window size 6 samples, stride 4 samples).

Following the two convolutional layers, fully-connected layers I and II were added
which took the non-linearly transformed and pooled output of the second convolutional
layer as input. In addition, a scalar bias was added to each unit of the fully-connected
layers. The fully-connected layers consisted of 64 ReLUs each. The final output layer
was designed to have as many neurons as classes, i.e., the output layer consisted of
10U in our case. As in the fully-connected layers, a bias was added to the input of
each unit. For the output layer, the soft-max activation function was employed. The
soft-max function fsm for the c-th output unit with respect to an input vector xc is given
by

fsm(xc) = yc = exc
∑M

j=1 e
x j

(3)
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Fig. 4 Overview of the DCNN architecture. Elements in brackets are only active during training and not
during testing. The signal dimension of the output of each layer is given in italics. A detailed description of
the network is given in the text in Sect. 2.3.2. The example signals show the three-axial acceleration during
a float serve

where M = 10 is the number of classes. Using this function, the activation yc can
be interpreted as an approximation of the posterior probability of class c given the
input xc (Bishop 2006), i.e.,

p(c|xc) = yc. (4)

The class predicted by the network was defined as the one which corresponded to
the output unit with the highest activation and thus exhibited the highest posterior
probability.
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Training A resampling procedure as described in Sect. 2.3.1 was used prior to the
training of the DCNN to obtain a balanced class distribution. The only difference to
the previously described procedure was, that this time the resampling was performed
directly on the raw data.

The initial weights of the DCNN were drawn from a truncated normal distribution
with zero mean and a SD of 0.1. All biases were initialized as 0.1. The training of
the DCNN was based on the cross entropy between the output of the network ynet
and the true labels ytrue. The cross entropy is equivalent to the log likelihood under a
multinomial logit model (Jordan 1994). For the true labels, the one-hot representation
was used, i.e., the label for an element from class k was a vector with M elements
where ytrue,c = 0, ∀c �= k and ytrue,k = 1.

The vectors ynet and ytrue represent discrete distributions. The c-th vector elements
ynet,c and ytrue,c give the predicted and true posterior probabilities of the current
network input belonging to class c. The cross entropy H for these distributions is
given by (Shore and Johnson 1981):

H(ynet , ytrue) = −
M∑

c=1

ytrue,c · log(ynet,c). (5)

For the training of the network, the training data was randomly split into
mini-batches containing 200 detected events each. To improve the robustness and
generalization abilities of the DCNN, zero-mean Gaussian noise (additive noise) was
added to the input signals during the training process. The SD of the noise was set to
4.5m/s2. A different noise vector was created each time a sample was used, thus the
network was never presented exactly the same input signal more than once during the
training. During testing, no artificial noise was added to the data.

In each training step, the average cross entropy of all mini-batch elements was
minimized. Since for each training step only the elements of the current mini-batch
instead of the complete training set were evaluated, the objective function (i.e., the
average cross entropy)was stochastic. For data setswithmany elements, this stochastic
training regime ismore efficient than evaluating the objective function for the complete
training data in each step (Bottou 2010).

Theminimizationwas conducted using theAdamalgorithm (Kingma andBa 2015),
a gradient-based optimizer for stochastic objective functions. The learning rate was set
to 10−3. The other hyperparameters for the optimization were set to β1 = 0.9, β2 =
0.999 and ε = 10−8, as suggested by Kingma and Ba (2015). To avoid overfitting,
early stopping was used in the training procedure. The training was stopped, if the
classification performance on a validation data set stopped increasing. As an additional
regularization technique against overfitting, random dropout (Hinton et al. 2012b) was
applied to the connections of the fully-connected layers (random dropout I and II).
This was performed by randomly removing connections between units of these layers
during the training. In each training step, only 30%of the connections weremaintained
in order to prevent complex co-adaptions between the units. For testing, no connections
were dropped.We implemented and trained the DCNN using TensorFlow (Abadi et al.
2015).
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2.4 Evaluation

2.4.1 Activity detection

The activity detection was evaluated in a leave-one-subject-out cross-validation. To
characterize the detection performance, the total number of detections, the number
of true positive, false positive and false negative detections as well as the precision
were determined. The recall over all relevant events was defined as a design parameter
(99%).

2.4.2 Activity classification

For the evaluation of the activity classification, a leave-three-subjects-out cross-
validationwas chosen. Since datawas recorded from30 different subjects, this resulted
in 10 different splits with the data from 27 subjects for training and from 3 subjects
for testing in each split. The subjects were split randomly and the splits were the same
for all tested classifiers. The data in the training sets were resampled as described in
Sect. 2.3.1 while only the original data without resampling was used for testing.

Based on the training sets, subsets of the generic features were selected according
to the Adjusted Rand Index. The SVM, kNN, NB, CART, RF and VOTE classifiers
were then evaluated using the selected features and using the complete feature set.
For the SVM and kNN classifiers, the grid search for the parameter optimization was
performed on the training data in an inner leave-three-subjects-out cross-validation. To
reduce the computational cost, the parameter optimization for the SVMwas conducted
with 1000 randomly selected samples from the training data of each fold of the inner
cross-validation.

For the training of the SVM, kNN, NB, CART, RF and VOTE classifiers with the
determined parameters, all samples from the training data of the outer cross-validation
were used. For the training of the DCNN, the data from 2 randomly selected subjects
was held out in each fold for validation, i.e., for determining when to stop the training
of the DCNN and to avoid overfitting. Hence, the DCNN was trained with the data
from 25 subjects in each fold, while the other classifiers were trained with the data of
27 subjects in each fold. The classifiers based on generic features were trained with
feature selection and without feature selection. An explicit feature selection for the
DCNN was not necessary, since it learned features automatically.

To assess the performance of the different classification approaches, the confu-
sion matrix, the sample accuracy and the balanced accuracy were calculated for each
classifier. The sample accuracy λs is given by

λs =
∑M

c=1 rc∑M
c=1 Nc

, (6)

where Nc is the number of samples from class c, rc is the number of samples from
class c that were classified correctly and M is the number of classes. The balanced
accuracy λb is given by
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λb = 1

M

M∑

c=1

rc
Nc

. (7)

The sample accuracy reflects the performance of a classifier under the assumption that
the misclassification costs for the elements of a class correspond to the prior proba-
bility of this class, whereas balanced accuracy assumes equal misclassification costs
over all classes. In addition to the classification performance measures, the average
computation time for the classification of one detected event was determined. This
time was divided into the time required for the feature calculation and the time for the
actual class prediction. Also the time required for training each classifier was evalu-
ated. Our experiments were run on a PC with an Intel Xeon E3-1276 CPU (3.6GHz)
and 32GB RAM.

3 Results

3.1 Activity detection

With the described method for the detection of relevant events from the acceleration
data stream, 12,180 events were detected. These included 4242 true positives and 7938
false positives. 42 relevant events were not detected (false negatives). The most false
negatives (13) occurred for actions from the the block class which resulted in a recall
of 89.2% for this class. The number of detected events in each class is depicted in
Fig. 5. The overall recall of the detection algorithm was 99.0% The overall precision
of the detection algorithm was 34.8%. The optimal threshold for the acceleration peak
was εimpact = 5.1m/s2.
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Fig. 5 Number of detected instances per class. The vertical axis is interrupted for better visualization due
to the high number of instances in the Null Class (NL)
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3.2 Activity classification

Feature selection The Adjusted Rand Index, which was used for feature selection,
was low (<0.1) for all of the 39 generic features. It was positive in all cases. In
the histogram of the ARI values, two groups of features were identified. For 27 of the
features, the ARI was almost zero, the remaining 12 features hadmarkedly higher ARI
values. Based on this observation, we defined the threshold for the feature selection
as εARI = 5 × 10−3. With this threshold, the same 12 features were selected in all
10 folds of the leave-three-subjects-out cross-validation. Figure 6 shows an example
histogram of the ARI values of the features for one training set. The features with the
highest ARI values were:

– dominant frequency a z-axis (ARI = 0.073)
– position of the minimum on y-axis (ARI = 0.070)
– position of the minimum on z-axis (ARI = 0.058)
– position of the maximum on x–axis (ARI = 0.056)

A complete list of the calculated and selected features can be found in Appendix 1.
In Fig. 7, the averaged spectra of the z-axis acceleration signals for the classes Dig,

Block and Jump Serve are exemplified and the dominant frequencies are indicated.

Classification accuracy The classification performance in terms of sample accuracy
and balanced accuracy of the different classifiers with and without feature selection
is visualized in Fig. 8 (a table with the depicted results is given in Appendix 2).
The DCNN achieved the highest sample accuracy (83.2%) and the highest balanced
accuracy (79.5%). The best performing classifier based on generic features was VOTE
without feature selection (sample accuracy 67.2%, balanced accuracy 60.3%).

Exemplarily, the normalized confusion matrices for the DCNN, VOTE and kNN
classifiers are depicted in Fig. 9. The confusion matrix for the DCNN as the best
performing classifier is given in more detail in Table 3.

Computation time The average computation times for training each classifier are
shown in Fig. 10. The times were averaged over the ten cross-validation folds. On
average, each of the folds contained 7144 training samples after resampling. The kNN
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Fig. 6 Histogram of the ARI values of the 39 generic features (example for one training set)
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Fig. 7 Average spectra of the z axis acceleration signals for Digs, Blocks and Jump Serves. The circles
mark the dominant frequencies
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Fig. 8 Sample accuracies and balanced accuracies of the evaluated classifiers
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Fig. 9 Normalized confusion matrices for the a DCNN, b VOTE and c kNN classifiers

classifier does not require training. The computation time given for this classifier is the
time that was required for building the data representation used by scikit-learn. The
shortest training time was required for NB classifier with feature selection (18.1ms).
The training of the DCNN took the most time (759.9 s). Of the classifiers using generic
features, the SVM (671.1 s) and VOTE (686.1 s) classifiers with feature selection had
the longest training times.
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Table 3 Normalized confusion matrix for the DCNN, columns represent the true class, rows represent the
predicted class, results in %

US OS JS UT OT SA SP BL DG NL

US 87.2 3.7 0.0 1.4 0.0 0.0 0.0 0.9 1.0 1.9

OS 3.0 84.6 16.1 0.3 0.0 10.6 1.3 0.0 0.0 0.3

JS 0.0 3.9 72.0 0.0 0.0 0.9 4.0 0.0 0.0 0.0

UT 4.3 0.0 0.0 83.2 0.7 0.4 0.0 0.0 9.4 4.9

OT 0.0 0.0 0.0 0.1 87.6 7.1 0.6 3.7 1.5 1.1

SA 1.8 5.7 0.7 0.1 8.9 60.2 10.2 4.7 1.5 2.2

SP 0.0 2.0 11.2 0.1 0.2 14.1 82.2 7.5 1.5 0.6

BL 0.0 0.0 0.0 0.2 0.9 2.2 0.9 75.7 0.5 1.0

DI 0.6 0.0 0.0 9.2 0.3 1.7 0.4 0.0 77.7 3.6

NL 3.0 0.0 0.0 5.3 1.4 2.8 0.4 7.5 6.9 84.5

Details about the classes can be found in Table 1
Bold values indicate the class-wise sensitivity
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Fig. 10 Average time in seconds for training each classifier on the training data of each fold of the cross-
validation (7144 samples on average)

The average computation times for performing one classification (feature calcula-
tion and class prediction) with each of the evaluated classifiers are shown in Fig. 11.
The time for calculating the 39 generic features (required for the NB, kNN, CART,
SVM and VOTE classifiers) for one action was 2.24ms on average. The time for
calculating only the 12 selected features was 0.59ms on average.

The shortest computation time (0.53µs) for the class prediction was achieved with
the CART classifier (approximately same time with and without feature selection).
Class prediction with the SVM with feature selection and VOTE without feature
selection took the most time (2.85 and 3.64ms). When only the 12 selected features
were used, the computation time for the prediction was reduced for the NB, kNN,
CART, RF and VOTE classifiers. The prediction time of the SVM increased slightly
with fewer features.

One classification with combined feature calculation and class prediction using the
DCNN took 0.06ms on average. Hence, the DCNN required the shortest computation
time for the complete classification.
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Fig. 11 Average time in milliseconds for classifying one detected event (logarithmic scale). The classi-
fication time consists of the time taken for feature calculation and the time for the actual class prediction
from these features. In the DCNN, feature calculation and prediction are combined and cannot be separated
in terms of computation time

4 Discussion

4.1 Activity detection

The results of the activity detection showed, that it was possible to detect potentially
relevant events with a high recall of 99%. Hence, almost all relevant events were
detected. The class with the highest number of false negatives was the block class. A
closer examination revealed, that in all of these cases the blocks were only attempted,
i.e., no ball contact occurred. However, the detection algorithms was mainly designed
for actions that involve a ball contact, which explains the lower performance of the
detection algorithm on attempted blocks. Nevertheless, a high class-wise recall of
89.2% was achieved even for the block class.

The relatively low overall precision of 34.8% is acceptable, since the activity detec-
tion represents only the first step in the processing pipeline and false positive detections
were removed in the subsequent classification step.

4.2 Activity classification

4.2.1 Classifiers with generic features

The performance of the different approaches for the classification of the detected
activities was inhomogeneous. No satisfactory results could be obtained with the NB,
kNN, CART, SVM, RF, and VOTE classifiers on the presented data set (maximum
sample accuracy 67.2%, maximum balanced accuracy 60.3% with VOTE). In com-
parable studies which were also related to activity classification using inertial sensors
(see Sect. 1), high classification rates of more than 90% were achieved with the same
classifiers and similar features. One possible explanation for this discrepancy is the
fact that in the current study only accelerometer data was used to reduce power con-
sumption. In other studies, also gyroscope measurements were employed. Turning
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rate data from gyroscopes could provide information about the rotation of the sensor
which in turn could be used for the activity classification. However, gyroscopes would
increase the power consumption for sensing substantially. For example the Bosch
BMG160 (Bosch Sensortec 2014b), a state-of-the-art tri-axial gyroscope sensor from
the same manufacturer as the employed acceleration sensors would consume 5mA,
which is 769 times the power consumption of the acceleration sensor. Apart from the
additional gyroscope information, higher sampling rates above 100Hz for the accel-
eration sensors were used in other studies. Also the acceleration sensor employed in
our study would allow sampling rates up to 200Hz instead of the 39Hz that were
used in the presented study. However, this would increase the power consumption
of the sensor by a factor of 20. Using gyroscopes or higher sampling rates would
considerably decrease battery run-time and thus reduce the usability of the sensing
device.

The computation time required for the training of the classifiers that were based on
generic features decreased in most cases when feature selection was applied prior to
the training. In contrast, the training time of the SVMwith feature selection increased.
This was due to the fact, that more support vectors were required to separate the classes
in the lower dimensional feature space. Since the SVMwas the slowest component of
the VOTE classifier, the training time for the voted classification also increased with
feature selection. The RF classifier exhibited the best trade-off between computation
time and classification performance among the classifiers with generic features.While
achieving only 0.1% lower sample accuracy than the VOTE classifier, it required only
a fraction of the time for training and prediction.

The employed classifiers all suffered from overfitting, i.e., they performed much
better on the training data then on the test data. A possible remedy for this problem
would be to record more training data from more players. In the case of the tree-based
classifers (CART, RF), overfitting was partly caused by the depth of the trees that were
fitted based on the training data (depth>50). Pruning strategies could possibly reduce
overfitting for these classifiers.

The performance of the classifiers that were based on generic features did not
improve when feature selection was employed. Instead, the classification accuracy
with feature selection was consistently lower compared to the experiments with
the complete feature set. At the same time, computation times for feature calcu-
lation and prediction decreased in almost all cases when only 12 features were
used. Only the prediction time (without feature calculation) of the SVM classi-
fier with 12 features was higher than with 39 features. Again, this was caused by
the higher number of support vectors in the lower dimensional feature space. The
advantage of a slight decrease in total computation time required for the classifica-
tion with fewer features can not outweigh a drop in accuracy by more than 20%
as it occurred for example with the SVM. A wrapper approach for feature selec-
tion (Kohavi and John 1997) might yield better results than the presented filter
approach, but in conjunction with cross-validation and parameter selection for 5 dif-
ferent classifiers and more than 12,000 samples, the associated computational cost is
prohibitive.

Even though some of the features, as for example the dominant frequency along
the z-axis, varied markedly across subsets of the classes (see Fig. 7), the ARI values
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were low for all features when all ten classes were considered. This indicates that the
generic features did not exhibit sufficient discriminative power for the problem at hand.
Hence, even selecting an optimal subset of these featured may not yield satisfactory
results. Alternatively, application-specific features, derived by experts from themotion
characteristics of the analyzed actions could be used for the classification. However,
due to the high degree of similarity between the classified movements, an increase of
classification performance with such features is questionable.

We assume that classification errors were also caused by the uncertainty of the
labeling. Especially for players with a lower skill-level, it can be difficult even for an
expert to assign a performed action to one of the defined classes.

4.2.2 Deep Convolutional Neural Network

The unsatisfactory results of the establishedmethods on the presented beach volleyball
data set show, that a novel approach for sensor-based activity classification is necessary.
The DCNN outperformed the classifiers based on generic features by a large margin
of 16.0% in terms of sample accuracy and by 19.2% in terms of balanced accuracy.
This suggests that Deep Learning is a viable solution for the problem of sensor-based
activity classification.

From the confusion matrix of the DCNN (see Fig. 9a; Table 3), a more detailed
analysis of the classification outcome of the DCNN is possible. The action classes
that were confused most often by the DCNN were mostly classes for which the corre-
sponding movements were very similar. Amongst the actions that were confused most
often were Underarm Set versus Dig (UT–DG), Overhead Serve versus Jump Serve
(OS–JS), Spike versus Shot Attack (SP–SA) and Jump Serve versus Spike (JS–SP).
For example, during a Jump Serve and a Spike, the movements of the dominant arm
are very similar. Here, the use of a second sensor unit at the non-dominant hand could
improve the classification performance, since in the case of a Jump Serve it is used to
throw the ball in the air before the hit which does not occur in a Spike. We assume that
the similar actions that were confused were also similar in terms of the associated load
on the joints in most cases. Hence, the confusion of these similar actions in the context
of overuse injury analysis is acceptable. However, the misclassifications reduce the
reliability of tactical considerations that are based on the classified actions.

In addition to the good classification accuracy, the computational cost of the DCNN
also compared favorably to the other evaluated classifiers. The average computation
time that was required for classifying one detected event with our DCNN was much
shorter than for all classifiers based on generic features. For example, the computation
time for the SVM with 12 features was increased by a factor of approximately 75
compared to theDCNN.Although the class prediction itself could be performed in very
little time, for example with NB and CART classifiers, the computational overhead for
the explicit calculation of the generic features eliminated this advantage. In contrast,
the DCNN performed a combined feature calculation and class prediction with low
computational cost. The training time for our DCNN was similar to that for the best-
performing classifier based on generic features (VOTE). These results show, that both
good classification performance and computational efficiency can be achieved at the
same time with the proposed DCNN. However, the computation time depends on the
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concrete implementation and used hardware, therefore the generalizability of these
results is limited.

Anothermajor advantage of theDCNN is its ability to automatically extract features
from the raw data. Hence, no cumbersome feature design, feature selection or other
pre-processing of the acceleration data of the detected events were necessary.

Although the fundamental concepts of the DCNN are applicable for a wide range of
problems, the specific realization of the network architecture and the training regime
needs to be adjusted in order to obtain useful results for the problem at hand. Theoreti-
cally,myriads of different network designs are possible. Some of the design parameters
for the architecture are for example the number, type, size and sequence of network
layers, the way of connecting subsequent layers as well as the initialization and acti-
vation functions for the involved units. Also for the training, various parameters need
to be defined, e.g., the optimization algorithm and its hyperparameters, the objective
function, possibilities for regularization and stopping criteria.

The large number of parameters makes it computationally unfeasible to find the
optimal architecture settings in an automatic manner. Therefore, the network archi-
tecture and training scheme presented in this work had to be determined empirically.
Fortunately, research by Hinton et al. (2012a) suggests, that the performance of Deep
Neural Networks is relatively insensitive to the precise details of the network archi-
tecture. In our tests, we found that the use of additional layers did not improve the
classification performance. Also a change in the number of units in each layer did
not alter the results considerably. However, our DCNN suffered from overfitting,
i.e., its prediction performance was much higher on the training data than on the
validation and test data. This effect was reduced by the pooling layers, by adding
artificial noise to the training data and by applying random dropout to the connections
of the fully connected layers. The use of random dropout on the input data did not
improve the performance, probably because this had a similar effect as adding artificial
noise to the input. Overfitting might be further reduced by collecting more data for
training and by unsupervised pre-training of the network. Moreover, training of the
network with batch normalization (Ioffe and Szegedy 2015) could possibly help avoid
overfitting.

4.3 System implementation

The sensor unit in our study was optimized for low power-consumption in order to
allow a long-term monitoring of player actions. Since the proposed activity detection
algorithms requires only little pre-processing of the raw data and several threshold
comparisons in a decision tree, it is suitable for embedded implementation in the
sensor unit. The presented classification methods were not yet optimized for computa-
tional efficiency and embedded implementation. However, modern mobile computing
platforms (e.g., Qualcomm Zeroth, Contreras 2015) are optimized especially for the
execution of Deep Learning algorithms like the presented DCNN classification. Cur-
rently, missing mobile implementation of the classification is remedied by storing the
data for the detected events in the sensor unit and performing off-line classification of
the actions on an external device.
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In our study, all subjects were right-handed. Left-handed players would have to
wear the sensor unit at their left wrist. In order to account for this different attachment,
the signals from the sensor axis that is parallel to forearm (y-axis) would need to to be
inverted. With this correction, we presume that the same detection and classification
algorithms as for right-handed players could be used.

Although the proposed systemwas developed and evaluated in the context of beach
volleyball, it might also be used for volleyball. Volleyball involves very similar move-
ments as beach volleyball and also the injuries associated to both types of sport are
comparable. However, the application of the proposed system was not tested in a
volleyball scenario.

5 Summary and conclusion

In this paper, a novelmonitoring system for beach volleyball was described. Using data
from wrist-worn acceleration sensors, 10 different types of player actions that occur
in beach volleyball were detected and classified. For the classification, we compared
5 different classification algorithms that were successfully used in similar studies to a
Deep Learning approach. Adequate classification results could only be achieved with
the proposed DCNN. It outperformed the second-best classifier by 16.0% in terms of
sample accuracy and by 19.2% in terms of balanced accuracy while at the same time
requiring less computation time for classification on the same hardware.

The proposed sensor-based monitoring system is the first one that allows a detailed
and automatic monitoring of beach volleyball actions. Thereby, our system signif-
icantly facilitates and speeds up data acquisition and analysis for studies in sports
science. It allows building up extensive data sets containing fine-grained information
about the actions performed by professional and non-professional beach volleyball
players. In addition to the potential for training optimization, the output provided by
our system in combination with medical records can be used to asses the risk factors
of overuse injuries related to beach volleyball.

Moreover,we provide the first systematic comparison of variouswidely-used classi-
fiers based on generic features with a DCNN in the context of sensor-based movement
classification. The good performance of the DCNN compared to previously reported
methods indicates that the application of Deep Learning for sensor-based movement
classification is a promising research field and has the potential for achieving higher
levels of classification accuracy.

In future, we will explore possibilities for implementing the complete data pro-
cessing pipeline including the classification in a wearable system to provide results in
real-time and on the wearable device. Furthermore, options for replacing the heuristic
action detection algorithm by a computationally efficient Deep Learning approachwill
be investigated.
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Appendix 1: Generic features

The following generic featureswere calculated for the classificationwith theNB, kNN,
CART, SVM, RF and VOTE classifiers. The features with the highest ARI values that
were used for the experiments with feature selection are printed in bold type.

1. standard deviation x-axis
2. standard deviation y-axis
3. standard deviation z-axis
4. mean x-axis
5. mean y-axis
6. mean z-axis
7. median x-axis
8. median y-axis
9. median z-axis

10. skewness x-axis
11. skewness y-axis
12. skewness z-axis
13. kurtosis x-axis
14. kurtosis y-axis
15. kurtosis z-axis
16. dominant frequency x-axis
17. dominant frequency y-axis
18. dominant frequency z-axis
19. amplitude of spectrum at dominant frequency x-axis
20. amplitude of spectrum at dominant frequency y-axis
21. amplitude of spectrum at dominant frequency z-axis
22. minimum x-axis
23. minimum y-axis
24. minimum z-axis
25. maximum x-axis
26. maximum y-axis
27. maximum z-axis
28. position of the maximum x-axis
29. position of the maximum y-axis
30. position of the maximum z-axis
31. position of the minimum x-axis
32. position of the minimum y-axis
33. position of the minimum z-axis
34. energy x-axis
35. energy y-axis
36. energy z-axis
37. correlation between x-axis and y-axis
38. correlation between x-axis and z-axis
39. correlation between y-axis and z-axis

123



1702 T. Kautz et al.

Appendix 2: Classification accuracy

The performance of the compared classification approaches is summarized in Table 4.

Table 4 Sample accuracy
(SAC) and balanced accuracy
(BAC) for all compared
classifiers with and without
feature selection (%)

w/o feature selection With feature selection

SAC BAC SAC BAC

NB 37.2 52.0 35.6 33.0

kNN 64.4 51.5 55.9 41.1

CART 58.7 45.6 58.2 38.4

SVM 54.6 59.7 33.9 35.8

RF 67.1 57.0 49.5 50.0

VOTE 67.2 60.3 49.9 56.0

DCNN 83.2 79.5 83.2 79.5The best value in each column is
given in bold type
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