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Abstract The presence of complex distributions of samples concealed in high-
dimensional, massive sample-size data challenges all of the current classification
methods for data mining. Samples within a class usually do not uniformly fill a certain
(sub)space but are individually concentrated in certain regions of diverse feature sub-
spaces, revealing the class dispersion. Current classifiers applied to such complex data
inherently suffer from either high complexity or weak classification ability, due to the
imbalance between flexibility and generalization ability of the discriminant functions
used by these classifiers. To address this concern, we propose a novel representation
of discriminant functions in Bayesian inference, which allowsmultiple Bayesian deci-
sion boundaries per class, each in its individual subspace. For this purpose, we design a
learning algorithm that incorporates the naive Bayes and feature weighting approaches
into structural risk minimization to learn multiple Bayesian discriminant functions for
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each class, thus combining the simplicity and effectiveness of naive Bayes and the
benefits of feature weighting in handling high-dimensional data. The proposed learn-
ing scheme affords a recursive algorithm for exploring class density distribution for
Bayesian estimation, and an automated approach for selecting powerful discriminant
functions while keeping the complexity of the classifier low. Experimental results on
real-world data characterized by millions of samples and features demonstrate the
promising performance of our approach.

Keywords Decisionboundaries ·NaiveBayes ·Featureweighting ·High-dimensional
massive data · Class dispersion

1 Introduction

With the constant evolution of information technologies, the large volume of data
nowadays is estimated to beon the order of zettabytes, andgrowing at an unprecedented
rate every day. For example, each day Google has more than 1 billion queries, Twitter
250 million tweets, Facebook 800 million updates and YouTube 4 billion views (Fan
andBifet 2013; Fortuny et al. 2013); every daymore than onemillion pieces ofmalware
are discovered by security enterprises and labs, such asMcAfee, Symantec and Panda,
according to their periodic threat reports.1 At the same time, the extraordinarily high
number of explanatory features2 used to describe such massive data gives rise to high
dimensionality. These data have also emerged from various real-life applications, such
as sequence mining (Rani and Pudi 2008; Kang et al. 2006), document/text mining
(Ifrim et al. 2008; Su et al. 2011) and information retrieval (Li et al. 2011; Kim et al.
2008). Here are two examples involving the classification of high-dimensional data:
(1) Weinberger et al. (2009) studied a collaborative email-spam filtering task with 15
trillion unique features; (2) Dahl et al. (2013) developed large-scale neural network
systems for amalware detection purpose, in which they explored patterns hidden in 2.6
million executables (i.e., samples), each typically expressed in terms of hundreds of
thousands of features. Classification on such high-dimensional, massive-sample-size
(HDMSS) data involving millions of features and samples is our interest here.

1.1 Contributions

In this paper, we propose a novel representation of discriminant functions in Bayesian
inference for HDMSS data classification. This representation allows Multiple
Bayesian decision boundaries in Subspaces per Class (MBSC for short), by incor-
porating the following steps:

• Describe each class using a set of naive Bayes (NB) models, and then generate a
set of Bayesian discriminant functions.

1 They are available at: Macfee http://www.mcafee.com/ca/mcafee-labs.aspx; Symantec http://www.
symantec.com/security_response/publications/threatreport.jsp; Panda http://www.pandasecurity.com/
mediacenter/reports/.
2 The terminologies “feature”, “attribute” and “dimension” are used interchangeably throughout the paper.
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• Select multiple optimized discriminant functions, and thereby enable the classifier
to achieve a tradeoff between flexibility and generalization ability.

Along the way, three algorithms are developed to achieve these steps.

• A robust unsupervised learning algorithm that reshapes each class into a set of
high-density regions situated in different subspaces;

• A feature-weighted Bayesian algorithm based on expectation maximization (EM)
estimates an NB decision boundary by optimizing a new objective function;

• An adapted algorithm that consecutively invokes Bayesian learning and risk mea-
surement to preserve the advantages of NB (e.g., its simplicity and efficiency)
while improving its capacity for handling complex data in the context of class-
dispersion.

Running these algorithms on a target class enables a Bayesian classifier to select a class
of optimal discriminant functions that are used to identifymultiple piecewise-enclosed
decision boundaries, each boundary in a specific subspace used to discern a part of
this class from other classes. The new approach optimizes the simple, rough decision
boundaries for a Bayesian classifier while preventing overfit from arising. With these
boundaries, MBSC classifies an unknown sample by measuring its posterior proba-
bilities of belonging to each of the classes. We investigate MBSC by means of a case
study on a high-dimensional, low-sample-size (HDLSS) dataset and a set of compar-
ative experimental studies on six high-dimensional, massive-sample-size (HDMSS)
datasets and two low-dimensional, massive-sample-size (LDMSS) datasets. Exper-
imental results clearly demonstrate that MBSC yields more accurate classification
results in linear time.

To our best knowledge, there is as yet no documented approach addressing the
class-dispersion problem in a Bayesian learning framework. In addition to addressing
this problem, the approach proposed here can be advantageously applied by learning
machines (e.g., model-based classifiers) to optimize decision boundaries.

1.2 Motivation

1.2.1 Needs for naive Bayes and feature weighting

The high dimensionality of data has far outpaced the processing and analytical capac-
ities of current classifiers (Tan et al. 2014; Fan and Bifet 2013), e.g., support vector
machines (SVMs) (Chang and Lin 2011), decision trees (DTs) (Zhou and Chen 2002),
random forests (RFs) (Breiman 2001), neural networks (NNs) (Nakajima and Watan-
abe 2005) and instance-based learning (IBL) (Albert and Aha 1991). This prompts us
to develop a new classification method for use on HDMSS data. On the other hand,
NB (John and Langley 1995) combined with feature weighting has turned out to yield
a competitive classifier of choice for high-dimensional data classification tasks. For
example, many excellent results have been reported in Frank et al. (2003), Lee et al.
(2011), Chen and Wang (2012a) and Chen and Wang (2012b). The simplicity and
proven effectiveness of NB motivate us to use it as the base model in this study; this,
however, should not be interpreted as a claim that NB is the best approach to cope
with HDMSS data.
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Given a high-dimensional dataset, most of the explanatory features are generally
irrelevant to the class outcome. Furthermore, a number of classifiers based onmeasures
such as the L p distance and the cosine function tend to be invalid in high-dimensional
spaces due to the curse of dimensionality (Chen et al. 2012). Examples include
instance-based classifiers (Aha and Kibler 1991), model-based nearest-neighbor clas-
sifiers (Zhang et al. 2013) and centroid-based classifiers (Han and Karypis 2000; Tan
2008). To address these problems, one can resort to a feature selection technique, such
as feature dependency, information gain or the gain ratio, to deal with filtering out
irrelevant, redundant features and selecting the most relevant features, thus reducing
the data dimensionality so that conventional classifiers are able to work in the reduced
low-dimensional feature spaces. In practice, however, feature selection usually suffers
from high computational complexity, because it is generally not feasible to perform
an exhaustive search to find the optimal feature subsets, due to the huge number of
admissible subsets which is exponential with regard to the data dimensionality (Zhang
et al. 2013).

Instead, feature weighting, which assigns a continuous weighting value to each
feature, has been widely employed to implement a “soft” feature selection. This can
be seen as a dimensionality reduction if we select features according to the values
of their weights. The rationale for using feature weighting is to shrink the correlation
between features.NB thus becomesmore applicable to high-dimensional data if feature
weighting can be incorporated in NB’s learning procedure.

1.2.2 Need for multiple discriminant functions in Bayesian inference

The key to a reasonable learning machine for classification lies in appropriate discrim-
inant functions to identify decision boundaries between classes. Bayesian classifiers
generally encompass a small group of discriminant functions, one for formulating each
decision boundary per class, e.g., the regular NB classifier (John and Langley 1995),
locally weighted NB (LWNB) (Frank et al. 2003), feature-weighted NB (FWNB) (Lee
et al. 2011), subspace-weighed NB (SWNB) and kernel-weighted NB (KWNB) (Chen
and Wang 2012a, b). These classifiers can be reasonably applied when the samples
within class are drawn from a simple density distribution. In HDMSS data, however,
complex distributions are very likely for a class of samples and may lead to a class-
dispersion problem3: the samples of a class may not uniformly fill the input space or
be confined to a unique subspace but may spread out into some natural high-density
regions in diverse feature subspaces. The existing classifiers have not been designed
to account for such a scenario and they usually suffer from an inability of tackling
class dispersion, because classes characterized by complex distributions cannot be
separated from each other via the single boundary per class used in these classifiers.
Recalling the data-mapping approach introduced byVilalta and Rish (2003), augment-
ing the number of decision boundaries according to class density distribution, e.g., the
high-density regions, appears to be a straightforward way of addressing the problem.

3 We have borrowed the terminology “class-dispersion” from Vilalta and Rish (2003); the dispersion of
our case is much more complicated, however, because it is subspace-related.
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In the language of learning theory (Vapnik 2000), the use of a single discriminant
function per class can equip classifiers with a good generalization ability, but may
lead to a decline in flexibility and subsequently an increase in the risk of misclassifi-
cation (i.e., the probability of error), especially if a class has a complex distribution
(Atashpaz-Gargari et al. 2013). The use of multiple discriminant functions per class
is expected to offer the desired tradeoff between flexibility and generalization ability.
In particular, since Bayesian classifiers employ simple representations, using multiple
Bayesian discriminant functions is expected to allow improving the flexibility while
still retaining the generalization ability that makes them suitable for wide use. Here
simple classifiers are preferred to complex ones like neural networks with a large num-
ber of hidden units and nearest-neighbor classifiers with few neighbors. Such complex
classifiers exhibit flexible decision boundaries but are sensitive to small variations in
the data (Vilalta et al. 2003). A risk minimization that entails a balance between flexi-
bility and generalization ability can be used, in combination with Bayes’ theorem, for
learning boundaries.

The remainder of this paper is structured as follows. Section 2 is devoted to prelimi-
naries and problem statements. Our approach is presented in Sect. 3 and the algorithms
in Sect. 4. Section 5 reports our experimental results and the evaluation of MBSC. Our
conclusions are given in Sect. 6.

2 Preliminaries and related work

We present the basic Bayesian inference and related work regarding the naive Bayes
(NB) approaches, as well as the feature-weighting-based NB. Finally, we describe the
class-dispersion problem.

2.1 Preliminaries for Bayesian inference

We begin by presenting some basic terminology and notation necessary for the under-
standing of subsequent sections.

2.1.1 Notation

In what follows, letA = (A1, A2, . . . , AV ) be a V -component vector-valued random
variable, where each Av represents an input attribute or an explanatory feature; the
space of all possible attribute vectors is called the (attribute or feature) full space R

V .
Denote byD = {(x, z)}N a training set of N labeled samples that pertain to K classes,
or categories. Each input-output pair, (x, z), consists of a V -dimensional vector or
data point in the input space, i.e., x = (x1, x2, . . . , xV ) ∈ R

V , and its observed output
attribute, i.e., class outcome z ∈ {1, 2, . . . , K }, wherein xv takes the value of attribute
Av , v ∈ {1, 2, . . . , V }. Nk represents the number of samples within class k which is
given by Ck := {(x, k) ∈ D}, whence ∑K

k=1 Nk = N .
The specific notation is outlined and explained in Table 1.
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Table 1 Explanation of the
specific notation used
throughout the paper

Notation Description

|·| The determinant of vector/matrix ··� Transposing the vector/matrix ·√· Taking entry-wise square root on the vector/matrix ·
diag(·) Diagonalizing the vector ·· ◦ · The Hadamard product (Liu and Trenkler 2008)

between two vectors/matrices· � · Performing column-wise subtraction between two
vectors/matrices

1size The column vector of size, with all entries having a
value of 1

0size The row vector of size, with all entries having a value of
0

I(judgment) The indicator function value of 1 if judgment is true,
and 0 otherwise

2.1.2 Bayesian decision boundary

Assigning samples in the input space to one of K classes means we divide the
input space into K regions R1,R2, . . . ,RK , such that a point falling in Rk is
assigned to class k ∈ {1, 2, . . . , K }. For example, a classifier defines K functions
f (x;ϑ1), f (x;ϑ2), . . . , f (x;ϑK ), one for each class, with a class-specific parameter
ϑk . The classifier assigns, for a given sample, the class whose function is maximum
(Domingos and Pazzani 1997), i.e., the chosen class k is the one satisfying

f (x;ϑk) > f (x;ϑ j ) ∀ j �= k.

A decision boundary occurs at points in the input space where discriminant functions
(for different classes) are equal. For example, the decision boundary between classes
k and j is given by

Bk| j = {
x : f (x;ϑk) = f (x;ϑ j )

}
.

Basically, the discriminant function may be an instantiation of the probabilistic
model (e.g., Bayesian inference), and if this is indeed the case, it can be approximated
by the Bayesian posterior probability, p(k|x;ϑk), as follows:

f (x;ϑk) ∼= p(k|x;ϑk) = p(k)p(x|k;ϑk)

p(x)
, (1)

where

• the prior probability of class k, p(k), can be estimated in its simplest form by Nk
N

if Nk > 0 ∀k, or by a Laplace smoothing (Lee et al. 2011), e.g., Nk+1
N+K ;
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• the class-conditional probability or so-called likelihood given ϑk , p(x|k;ϑk),
might be approximated through a multivariate Gaussian in V dimensions, where
the parameters ϑk � [μk, σ k] with mean μk = (μk1, μk2, . . . , μkV ) and standard
deviation σ k = (σk1, σk2, . . . , σkV );

• the marginal probability, p(x), is independent of class k.

As a result, the discriminant function of a probabilistic classifier against x becomes

f (x;ϑk) ∼= p(k)p(x|k;μk, σ k),

which can be approximated by a manipulation of the prior probability of class and the
likelihood.

2.2 Related work

2.2.1 Naive Bayes (NB) and feature weighting

For the sake of simplicity, the regular NB presented in John and Langley (1995)
assumes that all explanatory features are conditionally independent given the class
outcome. Under this assumption, the conditional probability p(x|k;μk, σ k) can thus
be computed as a simple product of univariate Gaussians, i.e.,

p(x|k;μk, σ k) =
V∏

v=1

G(xv;μkv, σkv).

Thanks to this “naive” assumption, NB is able to reduce a high-dimensional task to
multiple single-dimensional tasks, thereby yielding incredible savings in the degree
of complexity of the discriminant functions. The repertoire of NB’s simplicity reveals
its potential capacity to adapt to classifying high-dimensional massive data, as (Zaidi
et al. 2013) reported.

A variety of feature weighting approaches are commonly employed to address the
fact that classes link to diverse feature subspaces, either in a local or global way.
In a global feature weighting, each feature will be assigned a uniform weight over
all classes, whereas a local weighting assigns each feature a set of class-dependent
weights. That is, samples will be projected onto a global (sub)space by global feature
weighting and onto different (sub)spaces by local feature weighting, each class of
samples being in a specific (sub)space. Here are some examples of recent state-of-the-
art work incorporating NB and feature weighting:

• Chen and Wang (2012a, b) proposed subspace-weighted NB (SWNB) and kernel-
weighted NB (KWNB), in which a local weighted Gaussian was thought of as the
class-conditional distribution of class k, in which the predictive contributions of V
features aremodulated byV class-dependentweights,wk = (wk1, wk2, . . . , wkV ),
∀wkv ∈ (0, 1).
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Table 2 Various forms of simple decision boundary used by NB-based classifiers for class k

Classifier Boundary Parameter Description

NB Bk ∈ R
V ϑk = [μk , σ k ] The K boundaries for K classes are estimated in

the full-space RV

SWNB KWNB Bk ∈ S
wk ϑk = [wk , μk , σ k ] The K boundaries are in K class-dependent

(local) subspaces, each class with a boundary
in a local subspace Swk

FWNB Bk ∈ S
wglobal

ϑk = [wglobal,μk , σ k ] All boundaries are in a global subspace Swglobal

• Lee et al. (2011) introduced FWNB to make use of a global feature weighting to
learn V continuous weights, wglobal = (w(1), . . . , w(V )) for all features across the
K classes, thereby yielding a global weighted Gaussian over all classes.

Table 2 summarizes various forms of boundaries used in NB-based classifiers. The
characteristic worthy of note is that only one Bayesian decision boundary is sketched
for each class to distinguish it from others.

2.2.2 High-dimensional data classification

The well-known classification methods, such as support vector machines (SVMs)
(Chang and Lin 2011), decision trees (DTs) (Zhou and Chen 2002), random forests
(RFs) (Breiman 2001), neural networks (NNs) (Nakajima and Watanabe 2005) and
instance-based learning (IBL) (Albert and Aha 1991), have been shown to be suc-
cessful classifiers, capable of building accurate models with practical relevance for
classification. These classifiers can extend to high-dimensional data classification. For
example,

• Tan et al. (2010) proposed to learn a sparse solution with respect to input features
to SVM for large-scale and very high-dimensional datasets;

• Lin et al. (2014) explored a new representation of hash functions by training
boosted decision trees for high-dimensional data;

• Xu et al. (2012) achieved classification improvement for random forests on high
dimensional data by using a feature weighting method for subspace selection;

• Bengio andBengio (1999) proposed tomodel high-dimensional data using amulti-
layer neural network to represent the joint distribution of the features as the product
of conditional distributions;

• Hinneburg et al. (2000) proposed a new generalized notation for nearest neighbor
search for instance-based learning in high-dimensional space.

Despites of many good performances reported in the literatures, major difficulties
are encountered when these classifiers are applied to HDMSS data. These mainly fall
into three broad categories:

• inefficiency of the classification algorithms and high computational cost in learn-
ing, for SVM;

• high complexity of models and heavy memory requirements, for DTs, RFs and
NNs;
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• low validity of distance metrics and weak generalization ability, for IBL.

2.3 Examples illustrating the problem

The class dispersion in HDMSS data can be seen from the following data-mining
examples:

• In malware detection, a class of Trojans most probably consists of various mali-
cious families. Usually, each families of Trojans can be distinguished from others
by their own family-specific sequential patterns of behavior (i.e., sequence fea-
tures) (Shabtai et al. 2009).

• In healthcare prediction, electronic healthcare records (EHR) of patients frommul-
tiple parties (e.g., hospitals or health centers) are captured (Yu et al. 2008). Records
for patients of distinct parties are characterized by individual party-specific values
of prognostic variables (i.e., features regarding clinical symptoms), yet they may
be diagnosed with the same disease.

• In topic-based text categorization, first, documents from the same categorization
most likely have various subtopics. For instance, in the widely studied hierarchical
benchmark 20-Newsgroups, documents topicalized by Science are closely asso-
ciated with a couple of subtopics, such as Electronics, Medicine, Cryptology and
Space. The documents corresponding to particular subtopics contain a mass of
their own subtopic-specific keywords (namely features in bag-of-words for text
categorization) (Joachims 1996).

Usually, one expects a boundary defined in a global subspace or a (local) class-
dependent subspace to separate a target class from others in this (sub)space, and
therefore, one resorts to a projection approach (Aggarwal et al. 2004), such as LDA
(Martínez and Kak 2001) or class-dependent projection (Chen andWang 2012a; Mar-
chiori 2013). It is hard to identify a (sub)space in which the two classes are completely
separate, however, since what is likely to happen is that some of the samples can be
recognized, but others cannot. We will now give a concrete example to illustrate this
problem.

We selected 240Win32 portable executables (e.g., .EXE, .COM, .DLL, .OCX, etc.).
Of these executables, 100 are password-type Trojans (PSW class) and the remain-
ing 140 are downloader-type (Downloader class). The PSW class comprises many
subtypes such as FakeAIM, QQThief, YahooPass, and others; the Downloader class
contains subtypes such as Agent, QQHelper, Delf, Injecter, Exchanger, etc. For ease of
illustration, we disassembled these executables and then extracted the first two sequen-
tial instructions (i.e., features) A1=“PUSH, JMP, JCC, CALL” and A2=“RET, MOVS,
CALL, POP” via principle component analysis (PCA) (Martínez and Kak 2001). In
Fig. 1a, we plotted the distribution of all samples in the 2-dimensional space with
regard only to A1 and A2. It can be seen from the figure that identifying boundaries
to distinguish the two classes from each other becomes a troublesome task, due to the
irregular sample distributions of the two classes. By means of the typical local feature
weighting described in Jing et al. (2007) and Chen and Wang (2012a), we obtained
an optimal subspace slocal =(0.648, 0.762) with respect to the two variants of A1 and
A2, say Alocal

1 and Alocal
2 , in which the two classes are mostly separate. (The subspace
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(a) (b)

(c) (d)

Fig. 1 Distribution of 100 samples of PSW (in ×) and 140 of Downloader (in �) in different (sub)spaces.
a Distribution of 100 samples from PSW and 140 from Downloader in a 2-dimensional full space. b
Distribution of PSW and Downloader in a projected subspace slocal = (0.648, 0.762). c Distribution of all
100 samples of PSW and 40 samples of Downloader in the subspace s1 = (0.653, 0.994) (left), and all 100
samples of PSW and the remaining 100 samples of Downloader in the subspace s2 = (0.918, 0.756) (right)

designated by the weights of the two features will be interpreted in detail later on.)
Fig. 1b depicts the result when all samples are projected into the subspace slocal. In
this subspace, however, the majority of samples from Downloader and PSW occupy
the same region, and therefore we draw a precise boundary between the two classes.

Things change when we take the following steps:

• Decompose the 140 samples of Downloader into two subclasses: c1 with 40 sam-
ples and c2 with 100;

• Project c1 and c2 separately into two subspaces: s1 designated as (0.653, 0.994)
while s2 as (0.918, 0.756).

As Fig. 1c shows, the samples of c1 in subspace s1 are concentrated in the high-density
region R1 and become easier to separate out; likewise, in subspace s2 this is also the
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case for c2 concentrated inR2. Consequently, the representation using two boundaries
in the subspaces s1 and s2 for the class CDownloader (actually for the two subclasses c1
and c2) appears to be preferable.

This example demonstrates a universal complex class distribution of sampleswithin
high-dimensional data, where samples of a class might spread out intomany regions of
different subspaces. Multiple boundaries for a class are thus required, and, moreover,
each boundary may be in a specific subspace. We call this representation as “multiple
decision boundaries in subspaces per class”.As yet, there has been no report of learning
such boundaries in the general context of Bayesian inference.

It must be emphasized that this work is not centered on class overlapping, but rather
on the class dispersion concealed in HDMSS data. The primary difference between the
two is that class dispersion reveals the context of within-class distribution of samples
whereas class overlapping manifests the characteristic of distributions across different
classes.

3 Our approach

In this section, we will first introduce a new representation of Bayesian discriminant
functions used to describe decision boundaries, and then the Bayesian estimation
for the parameters of discriminant functions. Finally, we present the criterion for
measuring the effectiveness of discriminant functions.

3.1 Multiple Bayesian decision boundaries

Since we do not know the true class density distribution, achieving our goal inevitably
depends on sketching this distribution prior to a Bayesian learning procedure. For
this purpose, we propose the following definitions that can describe class density
distribution:

Definition 1 (Multi-Region) For any given class k, its multi-region,Rk , is a collection
of �k(1 ≤ �k ≤ Nk) high-density region(s) residing in subspace(s), i.e., Rk :=
{Rkl}�kl=1. The high-density region, given by Rkl � [ckl , skl ],∀l = 1, 2, . . . , �k , is
represented by subclass ckl and subspace skl where the samples of ckl are concentrated.

• The number, �k , of high-density region(s) for class k indicates how many discrim-
inant functions used to describe decision boundaries for class k. An appropriate
�k should lead to a balance between model’s flexibility and generalization ability.
Thus, we will determine �k via structural risk minimization (SRM) in Bayesian
model learning. More details can be seen in the following section.

• The total �k subclasses are subject to the following constraints:
– Every subclass belongs to a class:

⋃�k
l=1 ckl = Ck .

– All subclasses are pairwise disjoint: ckl ∩ ckl ′ = ∅ ∀l, l ′, l �= l ′.
– There are no empty subclasses: ckl �= ∅ ∀l.

• Each subspace s is designated by a V -dimensional vectorwith respect to V nonuni-
form squared feature weights, i.e., (

√
wkl1,

√
wkl2, . . . ,

√
wklV ). For readability
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and simplicity, we drop the subscript kl and denote such subspace by

(
√

w1,
√

w2, . . . ,
√

wV ) �
√
w. (2)

Following up on the regularization step introduced by Kooij et al. (2007), we
regularize the feature weights by imposing the constraint that

‖w‖1 = 1�
Vw := √

V , w ∈ (0, 1]V . (3)

Return to the example shown in Fig. 1, the multi-region for the class Downloader
(140 samples) indicates the subclass c1 (40 samples) in subspace s1 while c2 (the
remaining 100 samples) is in s2. The subspace s1, given by (0.653, 0.994), means
that the squared weight for feature A1 is 0.653 while for feature A2 it is 0.994. In
contrast, for the subspace s2, given by (0.918, 0.756), we have

√
wA1 = 0.918 and√

wA2 = 0.756.
Unlike the existing feature-weighting methods (Domeniconi et al. 2007; Jing

et al. 2007), which require a sum-to-one constraint, our regulator stretches up to a
V -dependent value in case numerical underflow occurs in the context of high dimen-
sionality. Note that, wv tells us the relevance of the feature v to c. The higher the
relevance of a feature, the more likely that the feature is related to the region.

A close inspection of R = [c, s] shows that we are able to modulate R through a
subspace NB parameterized as

� = [w,μ, σ ] (4)

w = (w1, w2, . . . , wV )

μ = (μ1, μ2, . . . , μV )

σ �
√
w · σ . (5)

Looking more closely at Eq. 4, one might notice that our approach discards a vector of
standard deviations, e.g.,σ = (σ1, σ2, . . . , σV ), with respect to theV features. Instead,
we consider a uniform global standard deviation, as Eq. 5 shows. Unlike the use of
an empirical constant or the simple Laplace estimation (Seeger 2006), the features
whose variances equate to 0 will gain their non-zero projected variance, according to
the feature’s proper contribution to classification.

Definition 2 (Multiple Bayesian Discriminant Functions per Class) The union of �k
Bayesian discriminant functions for class k is given by

F (�k)
k (x) = { f (x;�)}�k ∼= {p(�)p(x;�)}�k . (6)

Details regarding the NB prior probability, p(�), and the likelihood, p(x;�), will be
presented later.

Definition 3 (MBSC)Multiple Bayesian decision boundaries in their individual sub-
spaces for class k consist of �k piecewise-enclosed boundaries in different subspaces,
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defined as

Bk =
�k⊎

l=1

K⊎

j=1

{

x : f (x;�kl) = max
j �=k

F (� j )

j (x)
}

.

It is essential to note that here our approach recognizes a target class via multiple
boundaries rather than a single one.

Definition 4 (MBSC Classification) With multiple discriminant functions for each
class, Bayes’ theorem predicts the class outcome z of a data point x as the class k, in
the following way:

z|{F (1)
1 (x),F (2)

2 (x), . . . ,F (K )
K (x)} := k

iff maxF (�k)
k (x) > maxF (� j )

j (x) ∀ j �= k.

3.2 Bayesian estimation

A key issue in learning a Bayesian decision boundary in subspace is what the “best”
values are for w, μ and σ of �. In Bayesian learning, one can either maximize the
likelihood (ML) or maximize a posterior probability (MAP) to achieve optimal model
parameters. In general, MAP estimation allows us to incorporate the prior knowledge
into the classification or prediction and therefore might produce better results than
ML estimation (Seeger 2006). Hence, we choose the MAP estimation to optimize the
model parameter �̂, and then obtain

�̂MAP = argmax
�

p(�|c) = argmax
�

p(�)p(c|�)

= argmax
�

(lnp(�) + lnp(c|�)) , (7)

with the prior probability p(�) and the likelihood p(c|�). Eq. 7 takes a logarithm,
since decision boundaries will not be changed by monotonic transformations of the
discriminant functions.

We shall assume without loss of generality that samples of c are drawn from a
Gaussian distribution. As previously argued, c corresponds to a certain subspace s;
thus, such a distribution can be named as a subspace Gaussian. We abbreviate this as

x ∈ c ⊆ Ck | � ∼ G(x;w,μ, σ ),

where the parameter, w, quantifies the subspace s. Next, we will figure out the proba-
bility density function of this subspace Gaussian through the transformations below:

1. Supposey is the projection ofx into the subspace s and can be obtained by imposing√
w on all features; that is,

x
s−→ y : y = √

w ◦ x.
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Assume that V variables of y are drawn from a V -dimensional Gaussian distribu-
tion whose probability density is a function of the form:

G(y; ȳ, σ ) = 1√
2πσ

exp

(

− 1

2σ 2 (y − ȳ)(y − ȳ)�
)

= 1√
2πσ

exp

(

− 1

2σ 2
w ◦ (x − μ)(x − μ)�

)

= 1√
2πσ

exp

(

− 1

2σ 2
(x − μ)diag(w)(x − μ)�

)

.

where ȳ and σ are the associated mean and standard deviation, respectively.
2. Referring to Straub (2009), we know the multivariate Gaussian integrals

∫

G(y; ȳ, σ )dy = √
2πσ

∣
∣diag(w)

∣
∣−1/2 = √

2πσ
∣
∣diag(

√
w)

∣
∣−1

.

By transferring y back to x, the subspace Gaussian distribution of x ∈ c can be
written as

G(x;w,μ, σ ) =
∣
∣diag(

√
w)

∣
∣

√
2πσ

G(y; ȳ, σ )

=
∣
∣diag(

√
w)

∣
∣

√
2πσ

exp

(

− 1

2σ 2
(x − μ)diag(w)(x − μ)�

)

. (8)

Besides the above assumption, in order to allow a fully Bayesian approach, the prior
distribution for � must also be specified. Taking into account that within � the σ is a
constant, andμ depends only on the above-specified distribution of x ∈ c, we switch to
the prior distribution of the V featureweights. In this study,we considered theDirichlet
prior (Rao and Wu 2010) for use. Later, for ease of use, our approach was simplified
such that the user-defined hyperparameters, αv(v = 1, 2, . . . , V ), concentrate upon a
uniform value α, i.e., αv := α for all v, thereby meeting a criterion of the symmetric
Dirichlet prior (Teh et al. 2006; Hsu et al. 2003), that is,

w ∼ Dir(w;α)

Dir(w;α) = 1

Beta(α)

∣
∣diag(w)

∣
∣α−1

. (9)

Here, Beta(α) denotes the Beta function with the concentration factor α. The choice
of a symmetric Dirichlet distribution is not self-evident but may be suggested by
understanding of data-fit. The factor α technically determines the subspace in which
the c can be fitted well. It acts upon the goodness of local data fitting, and contributes
to our learning algorithm. We will discuss this merit in more detail in Sect. 4.
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With the definite likelihood and prior provided by Eqs. 8 and 9, the best realization
for w, μ and σ can then be found as a solution of

max
w,μ,σ

∑

x∈c lnDir(w;α) + lnG(x;w,μ, σ )

subject to

{
1�
Vw = √

V

w ∈ (0, 1]V (10)

Solving this problem requires an algorithmwhich simultaneously maximizes the prior
and the likelihood; we will discuss this in Sect. 4.

3.3 Measuring the effective discriminant functions

The paradigm for depicting the decision boundaries for class k entails learning from
samples a class of Bayesian discriminant functions Fk . This learning comprises three
elements:

• an input sample x ∈ Ck , drawn independently from an unknown distribution
P(x, k) (note that P(x, k) is different from the distribution of samples x ∈ D,
i.e., p(x) of Eq. 1);

• an observer that returns a class outcome z to every input x;
• a learning machine capable of implementing F (�k)

k (x) = { f (x;�)}�k .
The goal of learning is to choose one ofF (1)

k ,F (2)
k , . . . ,F (�k )

k , . . .whichminimizes
the local probability of error, i.e., samples of class k being classified incorrectly; for
example, assigning x to C∀ j �=k when it actually belongs to Ck (x is in the regionR∀ j �=k

when it belongs to class k). Suppose that we have functions F (�k)
k and then consider

the expected value of the loss or discrepancy L(z,F (�k)
k (x)), given by

E(F (�k)
k ) = p(x;F (�k )

k ) =
∫

x∈R∀ j �=k

L(z,F (�k)
k (x))dP(x, k).

The smallest possible value for E(F (�k )
k ) (Atashpaz-Gargari et al. 2013; Boyd and

Vandenberghe 2004) is apparently required for learning. In practice, however, one has
no access to E(F (�k )

k ), since P(x, k) is unknown and the only available information
is contained in the training data. In Vapnik (1999) the structural risk turns out to be
an upper bound on this expected risk, with probability of at least 1 − η (in our case,
η = 0.05), i.e.,

E(F (�k )
k ) ≤ Eemp(F (�k)

k )

local empirical risk

+Conf (Nk, d,F (�k )
k , η)

VC confidence

, (11)

which sums the following two quantities:

• Eemp(F (�k)
k ): the frequency of error over class k forF (�k)

k , asmeasured the probabil-
ity of disagreements between the class outcome z (it is actually k for x ∈ Ck) of the
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observer and the classification output z|F (�k)
k provided by the learning machine. It

in general simplifies to the fraction of incorrectly predicated samples to all samples
of Ck such that

Eemp(F (�k)
k ) = 1

Nk

∑

x∈Ck
I(z|F (�k)

k �= k).

The independence of the learning procedure on each class allows us to evaluate
the frequency of error over Ck , i.e., the local empirical risk, rather than over the
training data D. Consequently, learning from the training data can be reduced to
an easy problem of one-class classification (Manevitz and Yousef 2002), in which
F (�k)
k is utilized to recognize only the samples x ∈ Ck through the rule

z|F (�k)
k �

{
k, if max F (�k)

k (x) > max F (1)
j (x) ∀ j �= k

NULL, otherwise
(12)

• Conf (Nk, d,F (�k )
k , η): the Vapnik–Chervonenkis (VC) confidence interval on the

difference between the training error and the real error. It is measured by the
VC-dimension of the class of functions, d, and the size of the target data, Nk ,
determined as

Conf (Nk, d,F (�k )
k , η) �

⎧
⎨

⎩

√
d(ln(2Nk/d)+1)−ln η

Nk
, if Nk/d is large (near 0.5)

d(ln(2Nk/d)+1)−ln η
Nk

, otherwise

The minimization of the bound given by Eq. 11 yields the so-called principle of
structural risk minimization (SRM). The optimal discriminant functions should be
found by striking a tradeoff between the flexibility and the generalization ability of
learning (Vapnik 1992). The basic argument is that the flexibility (determined by
the complexity) and generalization ability are incompatible properties. The functions
should not be expected to generalize very well if they possess high enough flexibility
(complexity) to fit every possible dataset. On the contrary, if they are characterized by
low complexity (particularly in the VC-dimension, regardless of the dimensionality of
the feature space) but able to explain some particular datasets, they would also work
well on the unseen data.

The VC-dimension is a more “sophisticated” measure of the complexity of a
learning machine (or its discriminant functions) than dimensionality or number of
parameters. Theoretical estimates of the VC-dimension have been obtained for only
handful of simple classes of functions, most notably the class of linear discriminant
functions. For our case, we use a simulation methodology proposed by Vapnik et al.
(1994) which is well suited for estimating the VC-dimension of any learning machine;
the approximation steps are outlined below.
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1. Generate 2m random independent samples of vectors (the xs) and their class out-
comes (the zs, each z ∈ {k,NULL}):

Z t
2m = {

(xt1, z
t
1), . . . , (x

t
m, ztm), (xtm+1, z

t
m+1), . . . , (x

t
2m, zt2m)

}
.

Both x and z are generated randomly: the xs as a Gaussian noise, and the zs by
Bernoulli trials with a probability of success value of 0.5.

2. Study the maximum deviation of error rates between the two independent half-
samples over a given class of discriminant functions F (�k )

k :

δ(Z t
2m) = max

F (�k )

k

{
ξm1

(
Z t
2m;F (�k )

k

)
− ξm2

(
Z t
2m;F (�k )

k

)}

ξm1

(
Z t
2m;F (�k )

k

)
= 1

m

m∑

i=1

I
(
zi |F (�k)

k = NULL
)

ξm2

(
Z t
2m;F (�k )

k

)
= 1

m

2m∑

i=m+1

I
(
zi |F (�k)

k = NULL
)

where ξm1 and ξm2 denote the frequencies of erroneous classifications on the two
half-samples of Z t

2m .
3. Approximate the expectation by an average over T independently generated sets

of size 2m via

E[δ(m)] = 1

T

T∑

t=1

δ(Z t
2m).

According to the theoretical findings of Vapnik et al. (1994), E[δ(m)] is bounded
as follows:

E[δ(m)] ≤ �
( m

d

)
(13)

�
( m

d

)
=

{
1, if m

d < 0.5

ε1
ln(2m/d)+1
m/d−ε3

(√
1 + ε2(m/d−ε3)

ln(2m/d)+1 + 1
)

, otherwise

The parameters can be set as ε1 = 0.16, ε2 = 1.2 and ε3 chosen based on the
condition of continuity at point m/d = 0.5, where �(0.5) = 1, according to the
results provided by the authors.

Since the bound Eq. 13 is tight, we can safely assume E[δ(m)] � �
( m

d

)
.

Hence, we can find the effective VC-dimension that provides the best fit between
�(m/d) and E[δ(m)] by repeating the above procedure for various values of m (i.e.,
m1,m2, . . . ,mh), i.e.,
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Fig. 2 Framework of the learning procedure running on class k

d∗ = argmin
d

h∑

j=1

(
E[δ(mj )] − �

( mj

d

))2
.

4 Learning algorithm

For now, the only unaddressed problem for our work is how to learn the discriminant
functions that achieve the minimum structural risk of misclassification. A new learn-
ing framework addressing this problem is outlined in Fig. 2. Within the framework,
Algorithm 1 successively performs the following two routines independently on each
of K classes:

• (re)model multi-region via the unsupervised learning shown in Algorithm 3;
• learn subspace NB via the EM estimation shown in Algorithm 2.

4.1 Selection of discriminant functions (Algorithm 1)

We recommend the following iteration to choose, from a set of discriminant functions
F (1)
k ,F (2)

k , . . . ,F (�k )
k , the one which best approximates the outcome (i.e., lowest risk).

1. It starts by learningF (�k=1)
k composed of only one discriminant function f (x;�).

2. It then learns the succeeding F (�k+1)
k , which includes one more function than the

current F (�k)
k . The iteration goes on if F (�k+1)

k is superior to F (�k)
k , and ends up

with F (�k)
k otherwise.

Algorithm 1, written in pseudo-code, implements a greedy approach to selecting
preferable boundaries per class. This is done by comparing the risks of every pair
of discriminant functions, e.g., F (�k+1)

k and F (�k)
k , generated by two consecutive iter-

ations. Finally, the one who firstly reaches the lowest structural risk is retained. To
compare the predictive abilities of F (�k+1)

k and F (�k)
k , we let the discriminant func-

tions for class ∀ j �= k (cf. the F j in Eq. 12) be taken over by F (1)
j throughout the

learning. This allows the selection procedure to be implemented in a parallel comput-
ing infrastructure when �k > 1, because it evolves into a one-class learning, where
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all other classes are to be discarded, or wasted. This trick is reserved for extremely
massive data classification in actual practice, as we note that it might be impractical
to learn the discriminant functions for all classes, or even store them in memory, on a
single machine.

Algorithm 1: SRM for Selecting Discriminant Functions

Data: the class k, Ck ;
Result: multiple discriminant functions, Fk ;
1 INITIALIZATION
2 �k = 1; // c = Ck
3 w = (1/

√
V )V ; // the vector in V dimensions

4 F (1)
k = { f (x;�)}1, with � = [

w,μCk , σCk ]; // the μ & σ of Ck
5 repeat
6 ObtainR = {R}�k+1 through Algorithm 3;
7 for l = 1 to �k + 1 do
8 Update � through Algorithm 2;

9 F (�k+1)
k = { f (x;�)}�k+1;

10 until E(F (�k)
k ) ≤ E(F (�k =�k+1)

k ) // compare the risks of F (�k)
k and F (�k+1)

k ;

11 return F (�k)
k ;

4.2 Subspace NB learning (Algorithm 2)

Let us return to the problem, foreshadowed at Eq. 10, of estimating Bayesian para-
meters in �. We replace p(�) with the Dirichlet probability function given by Eq. 9,
and p(c|�) with the probability density function in Eq. 8, arriving at a new objective
function

J (�) = (
2α − 1

)
1�
V lnw − (σ 2n)−11n(� ◦ �)w − V ln σ 2,

where

• the column vector, X = (x1, x2, . . . , xn)�, relates to the n samples of c;
• � represents the standard deviation of these n samples on their features, given by

� = (X � μ)� � (x1 − μ, x2 − μ, . . . , xn − μ)�;

• lnw � (lnw1, lnw2, . . . , lnwV ).

By plugging a Lagrange multiplier λ into J (�) to impose the constraints illustrated
by Eq. 3, one can obtain

J (�) = J (�) + λ(
√
V − 1�

Vw).
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A closer look at (2α − 1)1�
V lnw part of J (�) reveals that this algebraic term

essentially trades off bias and variance. Three effects on w should be noted:

• The weights are mainly concentrated in the values near the mean, e.g., 1√
V
in our

case, when α > 1 holds; that is, all weights closely approach to each other.
• The weights spread across the interval (0,1) when α < 1. In fact, only a few take
large values, whereas the rest will be assigned a group of quite small weights close
to zero.

• The weights regress to a uniform distribution only if α = 1, and consequently the
MAP will reduce to an ML estimation.

Take the case where α < 1 as an example. The learning machine may reduce bias,
but should also increase variance on feature weights and, consequently, the chances
of overfitting the regions. Details about this view can be derived from the statements
indicated in Kohavi et al. (1997) and the ridge regularization approach used in regres-
sion analysis (Verweij and Houwelingen 1994). In this study we will selection a value
of α via cross-validation.

Set the derivatives of J with respect to μ, σ , w and λ to zero. Some algebraic
manipulations then yield the update equations required in our algorithm for Bayesian
learning; these are summarized below.

∂J
∂μ

= 0V ⇒ μ = n−11nXc (14)

∂J
∂σ

= 0 ⇒ σ 2 = (Vn)−11n(� ◦ �)w (15)

∂J
∂w

= 0V ⇒ w = (2α − 1)
(
λ1n + (σ 2n)−11n(� ◦ �)

)−1
. (16)

Here, (·)−1 means that taking reciprocal for each entry of vector/matrix; for example,
(2, 3, 4)−1 = ( 12 ,

1
3 ,

1
4 ). With ∂J

∂λ
= 0, we further conclude from Eqs. 3 and 16 that

the optimized value of λ corresponds to the root of

ϕ(λ) = √
V − (2α − 1)1�

n

(
λ1n + (σ 2n)−11n(� ◦ �)

)−1 = 0. (17)

To solve the convex, differentiable nonlinear function, ϕ(λ), one can resort to a com-
mon numerical algorithm, e.g., the well-known Newton–Raphson or quasi-Newton
method (Navon et al. 1988).

Given the derived update equations, it is possible to determine a desired estimate
via Algorithm 2which recurrently invokes each of these equations. The algorithm is an
instantiation of the EM algorithm, which alternates between computing expectations
for the unobserved values using the current parameters and computing the maximum
MAP parameters of J using the current expectations (Dempster et al. 1977). For
example, theweights are re-estimatedbyEq. 16 and subsequently used for computation
in the next iteration. This iterative process runs until a user-defined halting criterion
that determines the convergence of Algorithm 2 when the change of weights between
the two successive iterations is smaller than 10−5. Since the numbers of iterations differ
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widely over the regions, we have imposed an additional criterion for convergence by
limiting the maximum number of iterations to 100.

Algorithm 2: EM for Subspace NB Learning

Data: the region R = [c, s], with s designated by initialized weights w;
Result: a subspace NB parameter �;
1 INITIALIZATION
2 Obtain μ via Eq. 14; // dispense with updating μ, as it depends only upon Ck
3 w = w;
4 repeat
5 Compute σ using Eq. 15;
6 Determine λ of Eq. 17 via Newton method; // Newton-downhill was used
7 Update w using Eq. 16
8 until memberships no longer change;
9 return � = [w,μ, σ ];

4.3 Remodeling multi-region (Algorithm 3)

For each iteration of the repeat-until loop in Algorithms 1 and 3 seeks a new set of
�k + 1 regions based on the �k known pairs of means, U (�k) � {μ}�k , and weights,
W(�k ) � {w}�k , generated by Algorithm 2. For this purpose, Algorithm 3 includes the
following two steps:

• Update U (�k+1) and W(�k+1) � {w}�k , where the mean relevant to the � with
the worst F1-measure on class k is replaced by the two points of c; likewise, the
associated weight is switched to the two initialized weights. The F1-measure on
Ck is redefined as

F1(Ck;�) = 2 × recall × precision

recall + precision

recall = 1

n

∑

x∈c
I(p(x|�) is maximal)

precision =
∑

x∈c I(p(x|�) is maximal)
∑

x∈Ck I(p(x|�) is maximal)
.

• With the updated U (�k+1) and W(�k+1), the repeat-until loop remodels �k + 1
regions for Ck by means of clustering.

Algorithm3 resembleswell-knownparadigms such as top-downclustering (Parsons
et al. 2004) and class-splitting (Gopal et al. 2012), but differs from them in two respects:

• In comparison to top-down clustering, each iteration of remodeling starts from
scratch, because all previously generated regions are no longer of use.
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• The traditional way of splitting a class would be too restrictive, as it updates only
the worst model and stores the remaining ones. In contrast, our algorithm does not
allow this because the class regions are highly constrained.

Strictly speaking, this algorithm can be thought of as a heuristic recursive learning
that yields a quick convergence of Algorithm 1 and requires fewer runs to learn the
final boundaries.

Algorithm 3: Clustering for Multi-region Remodeling

Data: the class k, Ck , the means of �k NB, U (�k) � {μ}�k and weights
W(�k ) � {w}�k ;

Result: Multi-region R with �k + 1 high-density regions;
1 INITIALIZATION
2 for each μ ∈ U (�k) and w ∈ W(�k ) do
3 l∗ = argminl∈[1,�k ] F1(Ck;�l);
4 U (�k+1) = U (�k ) ∪ {̃xa, x̃b}\{μl∗}, where x̃a, x̃b ∈ cl∗ are randomly picked;
5 W(�k+1) = W(�k ) ∪ {wa,wb}\{wl∗}, with wa = wb = (1/

√
V )V ;

6 repeat
7 for each x ∈ Ck , μ ∈ U (�k+1) and its associated w ∈ W(�k+1) do
8 c = {x : argminx∈Ck ‖w(x − μ)‖22};
9 R = [c, s] with s = √

w;
10 Update each μ ∈ U (�k+1) using Eq. 14;
11 until memberships no longer change;
12 return R = {R}�k+1;

4.4 Algorithmic time complexity

A classifier customized for processing HDMSS should be fast, because we expect
a simple, time-efficient classification. Notwithstanding the search for efficient algo-
rithms in data mining, in practice many exhibit an exponential runtime. Here we show
that our algorithm is linear with respect to the numbers of features and samples.

Two major computational iterations are considered in learning �k decision bound-
aries per class: 1) the procedure of remodeling �k regions takesO(�k NkV ); 2) learning
�k Bayesian discriminant functions would be done in O(�kV n), calling Algorithm 2
�k-rounds. Now, for a K -class problem, we need to run Algorithm 1 K -rounds, and
hence the total runtime requirements should be given precisely by O(K�2kV Nk) +
O(K�2kV n), which is linear with respect to the number of training samples and the
number of features, where K and �k are in general much smaller than n, Nk and V .

5 Experiments

In this section, we evaluate our method in two sets of experiments. The first was
designed to provide deeper insight into the functionality of MBSC through a case
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Table 3 The statistical characteristics of the datasets used in the experiments

Size ID Dataset K N V

HDLSS Case study Ovarian 2 253(162/91) 15,154

HDMSS Real-world R1 News20 2 19,996 1,355,191

R2 Yahoo-Korea 2 460,554 3,052,939

R3 Bank 2 1,102,316 3,117,267

R4 URL-D60 2 1,200,000 3,258,527

Semi-synthetic S1 Trojan-∗ 8 119,621 7,074,856

S2 Malware 5 219,574 7,239,621

LDMSS Real-world L1 Covertype-Binary 2 495,141 54

L2 Poker-Binary 2 946,799 10

Shown are the numbers of classes K , samples N , and explanatory features V

study, and the second, to evaluate how well MBSC performs in practical HDMSS data
classification through a group of comparative experiments on a variety of HDMSS
data.

5.1 Datasets and preprocessing

In the case study, we used a typical high-dimensional, low-sample-size (HDLSS)
dataset. Such datasets can sometimes be more intractable to cope with than HDMSS
data, due to the phenomenon of “empty space” (aka the curse of dimensionality)
(Indyk andMotwani 1998). Comparative experiments were conducted on six HDMSS
datasets, four real-world high-dimensional benchmark datasets and two semi-synthetic
high-dimensional datasets, each dataset involving several million features. The two
low-dimensional, massive-sample-size (LDMSS) datasets were also used to inves-
tigate how well MBSC performs on general low-dimensional data in general. The
statistical characteristics of the datasets are summarized in Table 3.

• One real-world HDLSS dataset for case study: The well-known Ovarian Cancer
dataset4 was used. It comprises proteomic spectra generated bymass spectroscopy
for 162 ovarian cancers (Cancer) and 91 controls (Normal). The raw spectral data
for each observation contains the relative amplitude of the intensity at each mole-
cular mass/charge (M/Z) identity. There are a total of 15,154 M/Z identities (i.e.,
features). The aim of applying a classification method to this data is to recognize
proteomic patterns that are relevant to a particular disease.

• Four real-world HDMSS datasets commonly used to test the classification power
of classifiers:
– The 20 Newsgroups dataset5 is a collection of approximately 20,000 news-
group documents, which has become a popular data set for experiments in text

4 http://datam.i2r.a-star.edu.sg/datasets/krbd/OvarianCancer/OvarianCancer-NCI-PBSII.html.
5 http://qwone.com/~jason/20Newsgroups.
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applications ofmachine learning techniques, such as text classification and text
clustering. We used the News20 dataset which was thoroughly well-processed
by Chang and Lin (2011) and represented by the bag-of-words model.

– The Yahoo-Korea dataset includes documents in a hierarchy of classes (Lin
et al. 2007). We considered the largest branch from the root node (i.e., the
branch including the largest number of classes) as positive, and all others as
negative. By this treatment, the samples involved in this dataset belong to two
classes.

– The Bank dataset provides eleven months of payment transactions from over
31 million consumers to merchants or other persons, to predict the buying of a
pension fund product or a long-term deposit (Martens and Provost 2011). The
payment receivers were treated as features.

– The URL Reputation dataset was collected by a time-order system over
120 days, and is used for classifying URLs as malicious (spam, phishing,
exploits and so forth) and non-malicious (benign), where malicious URLs
were obtained from a large web mail provider,and benign URLs from Yahoo’s
directory listing. Here, we used only 60 subsets, namely URL-D60, of data
collected on days 1 through 60. The set contains 64 real variables and the rest
are in binary (i.e., the feature can take only two values: either one or zero).
Since a large number of binary features have values of zero over all 60 sub-
sets, we removed these non-active features according to the Bernoulli method
established by Fortuny et al. (2013).

• Two semi-synthetic HDMSS datasets extracted from Win32 portable executables
for classifying (or detecting) malware (we collected the raw malware data from
VX Heavens,6 and then disassembled them and extracted frequent sequences, i.e.,
features) at the byte level (Masud et al. 2008):
– The Trojan-∗ dataset comprise 8 types (classes) of Trojans: Banker, Clicker,
Downloader,Dropper, PSW,GameThief, Proxy andSpy.Each feature/sequence
is represented by a 4-g assembly instruction (cf. “PUSH, JMP, JCC, CALL”
shown in Fig. 1c).

– The Malware dataset contains 5 common types of malicious codes: Backdoor,
Worm, Trojan, Virus and Rootkit. We reorganized each class by incorporating
malware families composed of less than 20 executables into large similar fam-
ilies. For example, the family GetQQPass with only two PEs was merged into
QQPass which contains 1308 PEs. Each feature of this dataset is a 6-g opcode
(e.g., “4BE2F082DA74”).

• Two LDMSS datasets available from UCI Machine Learning Repository:
– The Covertype dataset contains 581,012 samples of 7 cover types (i.e., 7
classes) described by 54 explanatory features. The types Spruce-Fir andLodge-
pole Pine, comprising 211,840 and 283,301 samples respectively, are much
larger than the other 5 types. That is, Covertype is an extremely imbalanced
dataset and poses challenges to classifiers. To reduce the difficulties of analyz-
ing such extremely imbalanced data in comparative experiments, we extracted

6 http://vxheaven.org.
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these two largest classes from the original data to yield the Covertype-Binary
dataset, which consists of 495,141 samples belonging to two different classes.

– The original Poker-Hand dataset includes 1,025,010 records, each being a
sample of 5 playing cards drawn from a standard deck of 52. Each card is
described using two features (suit and rank) and thus each sample is represented
by a total of 10 explanatory features. All of these samples belong to one of 10
classes. Similar to the Covertype-Binary dataset, we extracted the two largest
classes Nothing-in-hand” (513,702 samples) and One-pair (433,097 samples),
yielding the Poker-Binary dataset with total 946,799 samples for classification
analysis.

A few missing data in the datasets would lead to inaccurate discriminant functions.
Data imputation can be used to remedy these missing data. We filled in missing entries
via the linear regression introduced by Yuan (2010). As a post-processing step to
impute discrete-valued features, we rounded the imputed values to the nearest discrete
value. In addition, to obtain a meaningful set of weights, normalization was performed
over all samples of each dataset for all variables via min-max-scaling. After normal-
ization, each feature value falls within the range 0 to 1.

5.2 Setup

Each dataset was classified by algorithms for ten executions using tenfold cross-
validation, and the average resultswere reported in the formmean (standarddeviation).
Three evaluation measures used are respectively 0–1 loss (Friedman 1997), F1-
measure (Zhang et al. 2013) and AUC (Fawcett 2006). We report the classification
accuracies, in terms of 0–1 loss, on the two balanced LDMSS datasets L1–L2, since it
is an appropriate measure when classes are balanced. We also report the F1-measure
on the imbalanced datasets Ovarian Cancer (binary-class) and S1–S2 (multi-class),
and the AUC on the imbalanced datasets R1–R4 (binary-class).

The regular NB approach and its variations incorporated into feature weighting,
subspace projection, kernel estimation, and multi-model schemes were selected as
competing classifiers. SVM and the logistic regression model were also used for com-
parative evaluation.

• NB: the regular NB, which uses a Gaussian distribution modeling the continuous
features. We set σkv = 10−5 in case it yields values of 0 on some features.

• SWNB: an NB-based classifier using class-dependent projection (Chen and
Wang 2012a), which automatically optimizes local feature subspaces for high-
dimensional data. The standard deviation of the weights and the bandwidth factor,
corresponding to a constraint on the weights, were set to 0.5 and 7, respectively.

• FWNB: an NB-based method designed for categorical data classification using
heuristic feature weighting, where the weights are calculated by the Kullback-
Leibler measure (Lee et al. 2011). Because it is designed for categorical features,
we discretized all continuous features except the binary ones, in accordance with
the authors’ suggestion.

• KWNB: a semi-naive Bayesian classifier using an embedded feature weighting.
The weights are estimated by the kernel density function (Chen andWang 2012b).
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We set the factor controlling weight distribution to β = 2 in the light of our
previous experiences.

• LWL+MNB: a basic locallyweighted learning (LWL)which usesWeka’sMultino-
mial NB as the base classifier.

• MapNB: an NB-based classifier which maps the data in hand into a new dataset
by a class decomposition that decomposes each class into many clusters (Vilalta
and Rish 2003). In this experiment, the number of clusters is estimated using
cross-validation.

• SVMLIN: the linear classifier (Lin et al. 2007), which performs as well as ker-
nelized ones on large-scale data. We discarded the non-linear SVM in view of its
time-consuming learning process.

• DLR+SGD: The logistic regression (LR) model using stochastic gradient descent
(SGD) learning. SGD has been successfully applied to large-scale machine learn-
ing problems. For large dataset, we used SGDClassifier with “log-loss” and filtered
the features via discretization (Fayyad and Irani 1993) to allow easy use of this
model.

All experiments ran on a Linux workstation with an Intel Core i7-4770S quad-core
processor operating at 3.1GHz base clock, 16GB of main memory and a Samsung
SSD with up to 550MB/s sequential read speed. The source codes for MBSC and
the datasets for case study, including the original Ovarian Cancer dataset and its two
reduced datasets extracted by our model, have been made publicly available.7

5.3 A case study

Surveys were designed to study the following issues of interest, each linked to behav-
iors of MBSC:

• Survey 1 MBSC is intended to address the class-dispersion issue. Does this issue
actually arise in high-dimensional massive data, and what does it look like?

• Survey 2 The classifier selects for class k a set of �k discriminant functions, F (�k)
k ,

by a specific risk criterion. With varying values of �k , what are the changes in the
risk of misclassification by using F (�k )

k ? Do these low-risk discriminant functions
achieve high classification accuracy and low complexity?

• Survey 3A local feature weighting is embedded with Bayesian learning. What are
the advantages of feature weighting in comparison to other methods, e.g., feature
selection? The unique Bayesian prior parameter of the learning machine, α, has
been claimed toworkwith this featureweighting.What are the changes ofMBSC’s
performance with this parameter?

• Survey 4 Feature weighting quantifies the significance of features.What prominent
enhancement can classifiers achieve if they are applied to the reduced dataset with
only those features which are significant?

For Survey 1, Fig. 3 shows the five high-density regions and their individual sub-
spaces discovered from the data. We vectorized a subspace explicitly as a group of

7 http://info.usherbrooke.ca/Prospectus/Members/JZhang/project.
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Fig. 3 Subclasses of the two classes in different subspaces (with respect to feature weights). The two
subclasses c1 and c2 are discovered from CCancer, while n1, n2 and n3 are from CNormal

non-uniform feature weights and each subspace simplifies to the five most relevant
features that are most heavily weighted, where these weights are within the range 0
to 0.07. It can be clearly seen from the figure that samples of each class naturally
yield multiple regions and, more importantly, they link to different sets of features.
For example, the Cancer class groups into two regions [c1, s1] and [c2, s2], where the
subclass c1 fills the subspace s1 relevant to the five features colored in cyan while
c2 fills the subspace s2 relevant to the five features colored in brown. The weights
assigned to the five features for s1 are approximately 0.06 and for s2 0.045. Three
subclasses discovered from the Normal class are residing in three different subspaces
whose feature weights are much larger. This reveals a typical class dispersion in the
sense we have described. This is the reason why our approach neither forces all classes
into the full space nor arbitrarily constrains a class to a whole. Rather, it proposes to
explore the class density distribution.

For Survey 2, Fig. 4 depicts the changes in the structural risk and classification
accuracy on the two classes with varying �k . From the figure it can be clearly seen that
the classification accuracy in terms of the F1-measure depends heavily upon Ek ; in
this regard, it is reasonable for us to set up risk-oriented learning. The two F1-measure
curves increase slightly for smaller �k , although not much, and subsequently go down
for the larger one, because a large �k will lead to a scarcity of known samples for
learning each subclass and its corresponding subspace. Specifically, the F1-measure
on the Cancer class increases from 0.93 when �Cancer = 1 to the maximal 0.96 in the
context of �Cancer = 3. Meanwhile, on the Normal class, it increases from 0.82 to the
maximal 0.94. The change in structural risk is actually a consequence of the interac-
tion between empirical risk and VC confidence. Figure 5 shows that the structural risk
can be approximated by the empirical risk in the context of a small �k , whereas with
increasing �k the VC-dimension of the learning machine grows such that the VC con-
fidence plays an increasing role in the structural risk, despite of a lower empirical risk.
We can see from the figure a sharp growth of structural risk because the VC confidence
of the learning machine increases rapidly. This is a typical scenario of data overfitting.
For an intuitive explanation, we compared the F1-measures of MBSC conducted on
the training and test datasets and plotted the results in Fig. 6. In can be seen from the
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Fig. 4 Risk and classification accuracy (in terms of the F1-measure) with varying numbers of discriminant
functions per class

Fig. 5 Change in structural risk, empirical risk and VC confidence with varying numbers of discriminant
functions per class

Fig. 6 Comparison of accuracy in terms of the F1-measure on the training and test sets

figure that the learning machine achieves over 90% F1-measure accuracies on both
the training and test sets in the context of three discriminant functions used to identify
decision boundaries. However, the F1-measure will drop down to around 60% when
quite a few decision boundaries are built; this reveals that the learning machine ceases
to be effective if its complexity exceeds a certain value, in contrast to the superior
performance on the training data.

For Survey 3, Fig. 7 shows the distribution of weight values for all features, given
varying α. In order to prevent MAP reducing to ML estimation, we required α �= 1.
Moreover, because the Newton method probably yields many weights below 0 when
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Fig. 7 Changes in feature weights for different values of the symmetric Dirichlet priori parameter α

Fig. 8 Changes in F1-measure (mean ± standard deviation) on the dataset Ovarian Cancer with different
values of the symmetric Dirichlet prior parameter α

α ≤ 0.5, we specifically assert that α > 0.5 in the experiments. The figure clearly
shows that most of the weights take values that approximate themean

√
V /V ≈ 0.008

in the case of a larger α; i.e., the weights are likely to be evenly distributed. At the
opposite extreme, when α takes a quite small value, the vast majority of the weights
are concentrated in small values, generally less than 0.008, while a few take large
values. By this property we might be able to easily filter out most of the irrelevant
features that contribute weakly to classification. In Fig. 8 we can see, with varying α,
the changes of classification accuracy in terms of the F1-measure. MBSC appears to
no longer perform well when α becomes small, probably because a small α leads to
large variance of feature weights and consequently to overly fitted regions. The best
performances occur in the case where α is at a value near 0.85, corresponding to a
balance between bias and variance. The sudden change occurs when α = 1 because
MAP reduces to ML estimation. With increasing α, the variance of weights tends
towards zero and the F1-measure towards stability.

For Survey 4, key to our approach is whether or not the training algorithm produces
an optimal subspace for each region; that is, whether we can or cannot acquire a set of
appropriate weights for features for each region.We therefore observed the behavior of
the classifiers on the full space and on the two reduced subspaces. Taking advantage of
the properties indicated in Survey 3, we selected the 41most relevant features assigned
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Table 4 Classification accuracies, in terms of F1-measure (%), of the different classifiers on the full space
and two reduced spaces consisting of 41 and 115 features

#Features Class MBSC NB SWNB FWNB KWNB LWL+MNB MapNB SVMLIN DLR+SGD

15,154 Cancer 98.7 93.9 95.4 94.4 96.8 91.9 97.2 100 100

Normal 94.9 90.4 93.9 88.9 94.1 86.0 100 100 100

41 Cancer 99.5 98.5 100 95.3 99.2 98.8 97.6 100 100

Normal 98.7 97.3 100 92.2 98.5 97.8 98.3 100 100

115 Cancer 100 99.1 100 99.1 99.7 98.2 98.8 100 100

Normal 100 98.3 100 98.7 98.3 96.7 100 100 100

large weights in the phase of learning Bayesian functions F (1)
Cancer and F (1)

Normal, and

the 115 features involved in learning the final discriminant functions F (2)
Cancer and

F (3)
Normal. Table 4 illustrates the classification accuracies of MBSC, in comparison

to the other approaches. It appears that all of the classifiers are strengthened when
they are performing in reduced subspaces. In general, all of the classifiers achieve
higher F1-measures on the data with 41 and 115 selected features. In particular, these
selected features allow SVMLIN andDLR+SGD tomaintain an F1-measure of 100%.
This table demonstrates that learning multiple decision boundaries is able to detect
the different significance of features for different classes to improve classification
accuracy.

5.4 Comparative evaluation

5.4.1 Accuracy

Figure 9 reports theAUCof each classifier on the four binaryhigh-dimensionalmassive
data classification problems. We observed that MBSC achieves 94.7, 88.2, 88.7 and
93.1% AUC on R1, R2, R3 and R4, respectively. It significantly outperforms all
competing NB-based classifiers and DLR+SGD, as well as SVMLIN on all datasets
butR4.The singlemaximum-marginhyperplaneusedbySVMLINand theuseof linear
regression by DLR+SGD lead to high misclassification rates because the two classes
are non-linearly separable in the full space (Joachims 1998). Looking more deeply,
MBSC shows greater general stability with lower variances, because the classifier
performs an SRM in learning decision boundaries. FWNB weights the features based
on the gain ratio of features over classes, and hence acquires a model with many cases
the model does not classify correctly (Chen and Wang 2012a). In contrast, the local
weighting technique helps LWL+MNB, SWNB and KWNB achieve better results
than FWNB. MBSC yields an approximate 12% average improvement in comparison
to NB, 5% to SWNB, 10.5% to FWNB, 4% to KWNB, 7.5% LWL+MNB, 5% to
MapNB, revealing the effectiveness of using multiple discriminant functions.

Table 5 demonstrates that MBSC achieves 94%Micro-F1 and 92.5%Macro-F1 on
the S1 dataset and 96.4%Micro-F1 and 93.3%Macro-F1 on S2; it scores a clear win
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Fig. 9 Comparison of AUC on the real-world datasets

Table 5 Comparison of classification accuracy, in terms of Micro-F1 and Macro-F1, on the two semi-
synthetic HDMSS datasets

ID MBSC NB SWNB FWNB KWNB LWL+MNB MapNB SVMLIN DLR+SGD

S1 94.0(2.3) 74.4(3.8) 88.7(4.5) 85.6(5.3) 92.3(1.7) 92.2(3.3) 85.7(3.6) 86.2(5.4) 86.2(4.3)

92.5(2.8) 78.2(4.1) 85.8(5.2) 83.2(6.8) 91.4(2.2) 88.9(3.8) 81.8(5.4) 83.0(6.6) 84.9(3.7)

S2 96.4(1.7) 82.6(6.6) 83.6(3.5) 81.3(2.3) 94.3(1.8) 87.2(2.9) 92.7(2.6) 84.9(3.3) 82.8(2.9)

93.3(2.6) 79.7(8.3) 82.5(3.8) 77.1(6.1) 90.6(3.4) 85.4(4.1) 91.3(2.9) 82.0(4.7) 81.7(2.2)

The Micro-F1 and Macro-F1 in each cell are given in the form mean (standard deviation) (%)

over the others on the two semi-synthetic datasets. In these two datasets, most classes
cannot be distinguished from each other, mainly due to many dispersed subclasses
in each class and similarity in the behavior of samples between subclasses. In order
to recognize different classes of samples, the mapping procedure used in MapNB
generally decomposes classes into an excessive number of shattered clusters, and thus,
the classifier seems to have learnt quite a number of discriminant functions (Vilalta and
Rish 2003). That is why we see the performance instability on the test sets caused by
the poor generalization. However, MBSC is immune to this scenario because learning
multiple decision boundaries for each class in different subspaces allows MBSC to
find out the underlying malicious families of executables. The class dispersion makes
SVMLIN less effective, as compared to the preceding binary classification datasets.
The results demonstrate that the proposedmethod significantly improves classification
performance on datasets with a substantial number of features and complex class
distributions of samples.

Table 6 shows the comparison of classification accuracy in terms of 0–1 loss on
the two LDMSS datasets. On the L1 dataset, 16.8% samples are classified incor-
rectly by MBSC and 16.6% by KWNB, which perform better than others. On the
L2 dataset, SWNB, LWL+MNB and MBSC achieve under 30% 0–1 loss which indi-
cates a better classification accuracy than the others. Interestingly, we can see that the
weight-based and projection-based models, such as MBSC, SWNB, FWNB, KWNB,
and LWL+MNB, perform better than NB, MapNB, SVMLIN and DLR+SGD on the
two datasets, because the two classes of each dataset overlap each other and cannot
be distinguished in the full space. NB, SVMLIN and DLR+SGD fail to classify the
two classes, yielding close to 50% 0–1 loss (absolute misclassification rate). In con-
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Table 6 Comparison of classification accuracy, in terms of 0–1 loss, on the two LDMSS datasets

ID MBSC NB SWNB FWNB KWNB LWL+MNB MapNB SVMLIN DLR+SGD

L1 16.8(1.5) 23.6(0.8) 18.7(1.5) 21.6(1.3) 16.6(0.9) 17.9(1.3) 18.3(2.3) 22.1(1.4) 22.0(1.2)

L2 27.4(2.5) × 26.6(3.5) 34.0(3.1) 35.3(1.8) 26.9(2.1) 38.7(2.6) × ×
The 0–1 loss in each cell is given in the form mean (standard deviation) (%)

trast, MapNB performs better, because it builds multiple decision boundaries to make
classification easier, although these boundaries are built in the full space. In fact, the
overlapping in LDMSS data is a common challenge to classifiers. One major charac-
teristic of such data is that the distribution of values for one or more features may be
the same for different classes; this results in difficulty in distinguishing them from each
other in overlapping space. The weight-based and projection-based models can easily
identify class boundaries in subspaces and thus achieve more effective classification.

5.4.2 Experimental time complexity

We were concerned with the training velocity of MBSC and other competing NB-
based classifiers in the same context. As NB has exhibited high speed when it runs
on large datasets, we graphically compare the training runtime ratios of classifiers
with NB in Fig. 10. Keep in mind that the ratios here do not indicate the classifiers’
training speeds with respect to sample size and (feature) dimensionality, because each
ratio partly depends on NB’s performance. As we can see, MBSC performs a training
approximately 8 times slower than NB, while SWNB, FWNB and KWNB are 6 times
slower, and SVMLIN and DLR+SGD 14 times slower. That is, the training efficiency
of MBSC is within an acceptable range, better than that of SVMLIN, LWL+MNB and
DLR+SGD, yet a little bit inferior to that of NB. From the results in the figure, we
conclude thatMBSCyields high classification accuracy at amoderate expense in terms
of increase in training runtime.We omitted the corresponding comparisons in terms of
competitors’ test runtimes because there was no significant difference between them.

5.4.3 Scalability for our approach

Since our approach is designed to tackle massive data, we need to examine the time
efficiency of MBSC with respect to increasing numbers of samples and features.
Hence, we ran MBSC on the Trojan-∗ dataset to test its scalability by varying the
sample size (N ) and dimensionality (V ) of the input data. N ranges from 20 to 100K
with fixed V =100K, and V from 20 to 100K with N =100K. All reported runtimes
were obtained using a single-threaded version of the implementation. Figure 11 shows
the results of the scalability test. Note that we did not perform the scalability test on
the competing classifiers, as they have turned out to be linearly increasing with the
growth of dimensionality and sample size, although they may perform slowly on high-
dimensional data. We can see from Fig. 11 that both the training and test runtimes of
MBSC increase linearly with respect to dimensionality and sample size; this indicates
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Fig. 10 Training runtime ratio of classifiers to NB. Note that the ratios are dependent on the NB’s baseline
performance

Fig. 11 Relationships between the runtime (in minutes) of MBSC and the numbers of features (V ) and
samples (N ) of data

that our new approach can be a Bayesian classifier of choice for classifying HDMSS
data.

6 Conclusions

To effectively address the class-dispersion problem arising from high-dimensional,
massive sample-size data, we proposed a new representation of Bayesian discrimi-
nant functions, which allows multiple decision boundaries in subspaces per class, and
developed a simple, effective Bayesian classifier. For this representation, the classifier
makes full use of structural riskminimization to learn Bayesian discriminant functions
and, simultaneously, to optimize decision boundaries. The case study demonstrates
that the classifier’s characteristics include the following:
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• flexibility of feature selection for each class by means of Dirichlet prior and local
feature weighting in conjunction;

• effectiveness of NB learning in exploiting complex class distributions;
• a tradeoff between flexibility and generalization ability.

Comparative experiments we have done show that, on data involving millions of
samples and features, NB strengthened by the new representation is effective, time-
efficient and suitable for tackling extremely complex data. One avenue of further
investigation is to extend the multiple decision boundaries per class diagram beyond
the NB cases to model-based classifiers.
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