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Abstract Shapelets are discriminative subsequences of time series, usually embedded
in shapelet-based decision trees. The enumeration of time series shapelets is, however,
computationally costly, which in addition to the inherent difficulty of the decision
tree learning algorithm to effectively handle high-dimensional data, severely limits
the applicability of shapelet-based decision tree learning from large (multivariate)
time series databases. This paper introduces a novel tree-based ensemble method for
univariate andmultivariate time series classificationusing shapelets, called the general-
ized random shapelet forest algorithm. The algorithm generates a set of shapelet-based
decision trees,where both the choice of instances used for building a tree and the choice
of shapelets are randomized. For univariate time series, it is demonstrated through an
extensive empirical investigation that the proposed algorithm yields predictive perfor-
mance comparable to the current state-of-the-art and significantly outperforms several
alternative algorithms, while being at least an order of magnitude faster. Similarly for
multivariate time series, it is shown that the algorithm is significantly less computa-
tionally costly and more accurate than the current state-of-the-art.
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1 Introduction

In many domains, repeated measurements are collected in order to obtain characteris-
tics of objects or situations that evolve over time. Examples of such domains include
shape outline recognition, e.g., for classifying historical documents or projectile points
(Ye and Keogh 2009), classification of electrocardiograms (ECGs) (Kampouraki et al.
2009), and anomaly detection in streaming data (Rebbapragada et al. 2009). These
measurements are typically collected at a fixed rate and such collections are com-
monly referred to as data series. In the case of measurements over time, such series
are referred to as time series, and they can be either univariate (with a single variable
evolving over time) or multivariate (with d time-evolving variables).

Our main focus in this paper is time series classification. In other words, given a
collection of time series, we would like to infer a model that can predict the value of a
categorical output variable, based on the observed time series describing an instance.

ExampleLet us consider an example from themedical domain.More specifically, given
an electrocardiogram (ECG) of a patient, we would like to infer the cardiovascular
condition of that patient by exploiting the information contained in a collection of
past observations of ECGs, labeled with a categorical outcome variable, taken from
different patients. Hence, in this case, the outcome variable corresponds to the heart
condition of the patient. An example of an ECG is illustrated in Fig. 1. We can observe
that an ECG in this case can be modeled as a multivariate time series consisting of 15
concurrently evolving variables, each corresponding to the voltage of a heart signal
over time.

Achieving fast and accurate time series classification has attracted significant inter-
est of the data mining community over the past decade. One line of research has
been focusing on representing time series as ordinary feature vectors. Such represen-
tations allow for direct application of standard supervised learning algorithms, such
as decision trees (Rodríguez and Alonso 2004), support vector machines (SVMs) (Wu
and Chang 2004), neural networks (Nanopoulos et al. 2001), and nearest neighbor
classifiers (Batista et al. 2011). For univariate time series (UTS) classification, exper-
imental evidence has repeatedly demonstrated (Xi et al. 2006; Wang et al. 2013) that
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Fig. 1 An example of an electrocardiogram (ECG) with 15 variables. Each variable is a heart signal,
measured by a separate voltage meter, that evolves over time. This ECG can be seen as a 15-dimensional
time series
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Generalized random shapelet forests 1055

similarity-based approaches with elastic measures, such as dynamic time warping
(DTW) (Berndt and Clifford 1994) provide state-of-the-art predictive performance.
Multivariate time series (MTS), however, are characterized not only by similarities
between individual attributes, but also by relations between different attributes. The
latter is not captured by the traditional univariate approaches (Bankó 2012), which has
directed the attention to feature based approaches such as learned pattern similarity
(Baydogan and Runger 2015).

A recent approach for time series classification is to identify and extract time
series subsequences, called shapelets, that can be used as discriminatory features
for classification (Ye and Keogh 2009). Their main characteristic is that they are class-
discriminant, phase-independent, i.e., location invariant, subsequences of a longer
time series. Several shapelet-based approaches have been proposed for univariate time
series classification, such as shapelet-based decision trees (Ye and Keogh 2009) and
pre-processing approaches using shapelet transformations (Hills et al. 2014). Similar
approaches have been proposed also for multivariate time series. One approach is to
build a shapelet-based decision tree for each dimension and then combine the indi-
vidual classifiers using majority voting (Cetin et al. 2015), while another approach is
to perform a shapelet transformation with weighted voting (Patri et al. 2014). It has
been demonstrated that while shapelet-based decision trees can provide interpretable
rules and, hence, insights to practitioners (Ye and Keogh 2009), their classification
accuracy and training costs are often prohibitive (Rakthanmanon and Keogh 2013),
limiting their applicabilitywhen dealingwith large andmultivariate time series. There-
fore, a natural extension to shapelet-based decision trees is to consider forests of such
trees, where each individual tree is built by considering only a subset of all available
shapelets. The latter can lead to a substantial speedup, especially for large multivari-
ate time series, leading to that entire forest can be generated faster and obtain higher
predictive performance than a single tree (generated by enumerating all shapelets),
similar to how random forests (Breiman 2001) improve upon single decision trees.

The main contributions of the paper can be summarized as follows:

Novelty We propose a generalized method for efficient and effective time series
classification. The key novelty of our approach is that it extends the random
shapelet forest algorithm1 to support both uni- and multivariate time series classi-
fication.
Efficiency and effectiveness Through an extensive experimental evaluation on both
univariate andmultivariate time series datasets, we demonstrate that the proposed
algorithm can achieve competitive predictive performance compared to state-of-
the-art methods, while reducing the training cost by up to an order of magnitude
on average. In addition, we evaluate the robustness of the method with respect to
different parameter settings and provide insights on how to tune them for different
situations, exploring their impact on the evaluation measures through a decompo-
sition of the mean square error into the bias and the variance of class probabilities
assigned by the individual trees in the forest.

1 An earlier version of the algorithm, restricted to univariate time series, was presented together with a
limited empirical evaluation in Karlsson et al. (2015).
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ApplicabilityWe demonstrate the applicability of the novel method on a large and
diverse collection of datasets spanning various application domains, including 56
univariate and14multivariate time series datasets. Finally, the presented algorithm
is: simple to implement, accurate, fast and embarrassingly parallel, i.e., applicable
to a wide range of tasks.

The remainder of the paper is organized as follows. In the next section, we discuss
related work on time series classification, focusing on shapelet-based classifiers and
multivariate time series. In Sect. 3, the notation and problem setting are defined. In
Sect. 4, we present the algorithm for generating forests of randomized shapelet trees
and discuss various implementation choices. In Sect. 5, the experimental setup and
results from the empirical investigation are presented. Finally, we summarize the main
findings and point out directions for future work in Sect. 6.

2 Related work

Most approaches for univariate time series classification generally rely on instance-
based classification algorithms, e.g., k-nearest neighbor, using different similarity (or
distance) measures, of which the most common and simplest is the Euclidean norm.
To improve accuracy, elastic distance measures have been proposed, such as dynamic
time warping (DTW) or longest common subsequence (Maier 1978) and variants,
e.g., cDTW (Sakoe and Chiba 1978), EDR (Chen and Özsu 2005), ERP (Chen and Ng
2004), that are robust to misalignment and time warps. These distance measures allow
for localized distortion, e.g., DTW finds the optimal match between two sequences by
allowing non-linearity in the distance calculation. By regularization using, e.g., a band
(Ratanamahatana andKeogh 2004), the search performance and generalization behav-
ior of k-nn can be greatly improved (Ding et al. 2008). For a more complete overview
of instance based univariate time series classifiers, the reader is referred to, e.g., Ding
et al. (2008). Although the extension of the DTW algorithm for the multivariate case
is non-trivial (Shokoohi-Yekta et al. 2015), several alternatives have been proposed
for multivariate time series classification, where the simplest and most commonly
employed is the cumulative distance of all univariate distances. Another alternative is
introduced by Bankó (2012), where a correlation-based version of DTW (CBDTW)
is proposed that combines DTW and principal component analysis to preserve the
correlation structure between time series.

To supplement instance-based classifiers and improve the interpretability of the
generated models, the concept of shapelets has been introduced (Ye and Keogh 2009).
Shapelets are usually described as subsequences whose distance to other time series
provides discriminative features used for classification and interpretation (Ye and
Keogh 2011). For shapelet-based classifiers, the idea is to consider all subsequences
of the training data recursively in a divide-and-conquer manner, while assessing the
quality of the shapelets using a scoring function to estimate their discriminative power,
constructing an interpretable shapelet tree classifier (Ye and Keogh 2009, 2011).

The most common scoring function is information gain (Shannon 1948), which is
also commonly employedwhen constructing traditional decision trees, (see e.g., Quin-
lan 1993). To prune non-informative shapelet candidates early and, hence, speed-up
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the exhaustive search, Ye and Keogh (2009) employ early-abandoning and lower-
bounding on the information gain. Due to the combinatorial explosion, however,
lower-bounding the information gain does not scale and becomes infeasible when
the number of classes increases. To overcome this limitation, other measures based
on the analysis of variance have been considered, with the rationale being that these
measures are computationally less costly to compute (Lines et al. 2012; Hills et al.
2014). Hills et al. (2014) showed that although there is no significant difference in
predictive performance between using information gain and the measures based on
variance, the computational cost is significantly reduced. In addition to these tech-
niques for speeding up the exhaustive search for shapelets, several other approaches
have been proposed in the literature. For example, methods for trading time complex-
ity for memory consumption, while finding the optimal match have been explored
(Mueen et al. 2011).

Decision trees are interpretable, something which is useful in many domains.
However, when it comes to predictive performance, they are in almost all cases outper-
formed by other classifiers, such as support vectormachines (Cortes andVapnik 1995),
deep neural networks, (Schmidhuber 2014) and random forests (Breiman 2001). To
overcome this limitation, Hills et al. (2014) proposes a single-scan algorithm for find-
ing the best k shapelets in a collection of time series. Subsequently, the produced set of
k shapelets is used to generate a new transformed k-feature dataset, with each attribute
being the (minimum) distance from the i :th shapelet to the j :th original time series. By
disconnecting the shapelet search and the model generation, time series classification
is reduced to a feature selection (or generation) problem, enabling the use of a wide
range of efficient learning algorithms (Hills et al. 2014).

Shapelet transformation is one instance of a more general concept of feature gen-
eration, which has been thoroughly investigated for time series classification. For
example, generated features include interval-based features (Rodríguez et al. 2005;
Rodríguez and Alonso 2004), statistical features (Nanopoulos et al. 2001; Deng
et al. 2013), and other interpretable features, such as correlation structure, distrib-
ution or entropy (Fulcher and Jones 2014). Typically the features produced by these
transformations can be grouped into three main categories: correlation-based, auto-
correlation-based, and shape-based, each denoting similarity in time, change, and
shape, respectively. For example, a time series forest based on interval features, such
as averages, standard deviations and slope has been proposed by Deng et al. (2013)
and a transformation based on time series bag-of-words by Baydogan et al. (2013).

Since exhaustive shapelet discovery requires the enumeration of every subsequence
in the training data, it is not feasible for large datasets with large, multivariate, time
series. To improve speed, the search space is usually reduced by only considering
subsequences of specific lengths, e.g., within predefined ranges. The optimal shapelet
length is generally unknown, requiring brute-force searches over multiple classifiers
using cross-validation. Due to computational constraints, this is however often infea-
sible. To improve the performance, Hills et al. (2014) introduce a heuristic-based
algorithm for estimating the shapelet length.

For univariate time series classification, an alternative to exhaustively enumerating
and searching among all shapelets has been introduced by Grabocka et al. (2014)
through the notion of shapelet learning (LTS). In the domain of univariate time series
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classification, this can be considered the current state-of-the-art in terms of classi-
fication accuracy. In this framework, shapelets are learned from the training data,
while simultaneously minimizing both the training error using the logistic loss func-
tion and the minimum distance using a soft minimum (Grabocka et al. 2014). The
learned shapelets can improve predictive performance significantly compared to other
shapelet-based classifiers that are primarily based on exhaustive search (Grabocka
et al. 2014). Apart from the high computational cost, the primary disadvantage of
LTS is the large number of hyper-parameters that require tuning and the difficulty
of choosing the initial shapelet prototypes, which typically has a large impact on the
resulting accuracy (Grabocka et al. 2014).

As far as multivariate time series classification is concerned, two main approaches
using shapelets have been introduced in the literature. Patri et al. (2014) proposes a
shapelet forest for classifying heterogeneous multivariate sensor data. The algorithm
uses the Fast Shapelet approach (Rakthanmanon and Keogh 2013) to extract the most
informative shapelets from each dimension. Using these shapelets, a distance matrix
is computed and weights are learned for each shapelet using different feature selection
methods. The classification of a newmultivariate time series is performed byweighting
the votes of the individual shapelet trees built for each dimension by summing the
learned weights of the used shapelets. A similar approach, in which one shapelet
tree is built from each time series dimension, is presented by Cetin et al. (2015).
For the latter, several techniques for improving the search speed are proposed, which
makes building several trees tractable. The techniques improve the performance of
tree generation significantly over existing methods by using multi-length indexing
and dynamic stepping (Cetin et al. 2015). Different voting approaches are evaluated,
showing that building one shapelet tree per dimension outperforms shapelets defined
over multiple dimensions (Cetin et al. 2015). The main drawback of these approaches
is however that, by building an individual tree per dimension, the trees do not take
into consideration potential dependencies between the dimensions. In addition, the
weighted voting technique that is employed for determining the final class does not
consider the varying importance of different dimensions.

Similar to shapelet transformation, Wistuba et al. (2015) proposes a method for
multivariate time series, Ultra-Fast Shapelets (UFS), where random shapelets are used
as features. The authors show that such transformations are both fast and accurate.
In particular, the method outperforms related algorithms for multivariate time series
classification (Wistuba et al. 2015). The most prominent advantage of UFS, which is
rather similar to the method proposed in this work, is the ability to model relationships
between different dimensions at a low computational cost. A drawback, however, is
the fact that UFS considers shapelets globally from a restricted pool of preselected
shapelets, as opposed to the method proposed in this study, which, at each node in each
tree, locally considers a set of shapelets, improving diversity and directing the search to
more important regions. Finally, another line of research for multivariate time series
classification includes feature based approaches, such as learned pattern similarity
(LPS) (Baydogan and Runger 2015), symbolic representation for multivariate time
series (SMTS) (Baydogan and Runger 2014), and multivariate extensions of time
series bag-of-words (Baydogan et al. 2013).
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3 Problem setting

The problem studied in this paper is uni- and multivariate time series classification,
i.e., the task at hand is, given one or several set-valued variables, each with values
ordered by time and sampled at regular and fixed intervals, we want to infer a model
that is able to accurately predict the class labels of unseen examples based on the
observed variables.

Next, we proceed by providing some background definitions alongwith the problem
formulation.

Definition 1 (d-dimensional time series) A d-dimensional time series T =
{T1, . . . , Td} is a sequence of d variables, such that Tk ∈ R

m , ∀k ∈ {1, . . . , d},
where Tk = {Tk,1, . . . , Tk,m}, with Tk, j ∈ R, ∀ j ∈ {1, . . . ,m}. For d = 1, T defines
a univariate time series, denoted simply as T = {T1, . . . , Tm} consisting of a sequence
of m ordered elements Tj ∈ R. For d > 1, T defines a multivariate time series.

A local segment of a time series is called a time series subsequence. A more formal
definition is given next.

Definition 2 (time series subsequence) A time series subsequence of the kth dimen-
sion of a time series T is a sequence of l contiguous elements of Tk , denoted as
Ts:s+l−1
k = {Tk,s, . . . , Tk,s+l−1}, where s is the starting position and l is its length.

Time series subsequence and shapelet is used interchangeably.

As stated earlier, time series classification predominantly relies on the chosen
distance (similarity) measure to compare and discriminate between instance pairs.
Depending on the application domain and the nature of the time series, various dis-
tance measures can be used. For the case of a single time series dimension, k, we will
consider the following two distance functions.

Definition 3 (time series distance) Given two time series T and T ′ of equal length
l, the time series distance between their corresponding kth dimensions is the length-
normalized Euclidean distance between Tk and T′

k , i.e.:

Fdist (Tk, T′
k) = ED(Tk, T′

k) =
√
√
√
√

1

l

l
∑

i=1

(Tk,i − T ′
k,i )

2 . (1)

Finally, we define the distance between a time series subsequence and a time series.

Definition 4 (time series subsequence distance) Given a 1-dimensional time series S
and a d-dimensional time series T of lengths l and m, respectively, such that l ≤ m,
the time series subsequence distance between S and the kth dimension of T , is the
minimum distance between S and any subsequence of Tk of length l, i.e.:

Sdist (S, Tk) = m−l+1
min
s=1

{Fdist (S, Ts:s+l−1
k )} . (2)
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Note that since a S is 1-dimensional time series of length equal to the length of
each subsequence T′s:s+l−1

k , Fdist can be applied directly. Also note that the distance
function must be length invariant in order to avoid penalizing longer sequences (Ye
and Keogh 2009).

It is important to mention that in the two previous definitions, alternative distance
measures can be used, instead of the Euclidean distance, without loss of generality.
We have chosen Euclidean distance since it is almost exclusively used in the literature
for building shapelet-based time series classifiers.

A collection of n time series D = {T 1, . . . , T n} defines a time series dataset. For
notational simplicity, we assume that every time series in D has the same number of
dimensions d and that each dimension is of the same lengthm. Although this is one of
the most common settings for time series classification, the equal length assumption
is not a requirement in general (Hu et al. 2013) and the presented method can in fact
handle time series of varying lengths.

Supervised learning involves a set of training instances, usually denoted as the
learning set, labeled with one of a finite set of possible values, which we denote
as C = {c1, c2, . . . , cq}. For time series classification, the learning set consists of a
collection of labeled time series. Next, we formally define a time series learning set.

Definition 5 (time series learning set) Given a time series dataset D of size n and a
set of class labels C, a time series learning setZ{D,Y} is defined as a vector of instance
tuples zi = (T i , yi ), where each T i ∈ D and each yi ∈ C, ∀i ∈ {1, . . . n}. We use
Y = {y1, . . . , yn} to denote the vector of assigned labels for the time series.

Hence, time series classification can be seen as the task of learning a classification
function from a dataset of d-dimensional time series D to a set of labels C, such that
the predicted class labels are as close as possible to the true time series class labels.

Definition 6 (time series classification function) Given a dataset D of n time series
and a finite set of labels C, a classification function is a mapping f : D → C, such
that for each T i ∈ D

f (T i ) = ŷi ∈ C ,∀i ∈ {1, . . . , n} .

Based on the above, the problem studied in this paper can be formulated as follows:

Problem 1 (time series classification) Given a time series learning set Z{D,Y} of
size n, a finite set of labels C, and a loss function L, we want to learn a classification
function f : D → C that minimizes E(x,y)∈U [L(y, f (x))], i.e., the expected loss on
samples drawn from the (unknown) target distribution U .

In this work, we will consider the 0/1 loss function:

L(y, y′) =
{

0, if y = y′

1, otherwise.
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Our goal in this paper is to solve Problem 1 using this loss function for the case of
multivariate time series, using the distance measures described above. The proposed
approach is, however, generic enough for any type of data series, given a well-defined
distance or similarity function.

4 Forests of generalized random shapelet trees

4.1 Background

Given a learning set, the standard decision tree learning algorithms (Quinlan 1993;
Breiman et al. 1984) deterministically produce a classifier. For decision trees, however,
it has been noted that minor changes of the learning set or parameter settings can have
a fairly large impact on the resulting model. This variability can be remedied, or in fact
benefited from, by generating sets of, rather than single, trees, as done by ensemble
methods, amongwhichbagging is one of the simplest (Breiman1996).Other examples,
such as random forests, apply randomization both to the learning set and the learning
algorithm (Breiman 2001). In random forests, the first is done by employing bagging
when building each tree and the latter by only selecting a (small) fixed number of
random features to evaluate at each node.

In the traditional decision tree framework (Breiman et al. 1984), a shapelet tree,
denoted as ST , is in essence generated by a combination of a decision tree learning
algorithm and a feature extractor. In the case of multivariate time series, a shapelet S
is extracted from a selected dimension, say k, of a selected time series, say T i ; hence,
it corresponds to a time series subsequence, i.e., Tk . Since it is highly essential to
keep track of the dimension k as well as the time series index i , from which a shapelet
is extracted, a shapelet is denoted as Sk,i . In the algorithm, each split consists of an
shapelet and a distance threshold τ . The distance threshold is found by computing
the distance between Sk,i and all n time series of the kth dimension in the dataset D,
resulting in a list of n distances, i.e., {Sdist (Sk,i , Tk) : Tk ∈ T ∈ D} (Ye and Keogh
2009, 2011).

The distance list is discretized, similar to the way numerical features are handled
in decision trees (Quinlan 1993), i.e., by sorting the distances and at each possi-
ble split point τ evaluating the impurity measure for a binary split. This results
in partitioning the instances into two groups: one with minimum distance ≤τ and
one with minimum distance >τ . Let Dt denote the set of time series appearing in
node t of the shapelet tree and let Sk,i be a candidate shapelet. Then, Dt is par-
titioned into two sets: Dt

L = {T : Tk ∈ T ∈ Dt , Sdist (Sk,i , Tk) ≤ τ } and
Dt

R = {T : Tk ∈ T ∈ Dt , Sdist (Sk,i , Tk) > τ }. A valid split point is the mean
of two consecutive distances for which the associated instances are labeled differ-
ently. To evaluate the goodness of a split at a particular node t , an impurity measure
is used. The impurity is defined as

Im(Sk,i , t) = I (t) − nLt
nt

I
(

t L
) − nR

t

nt
I
(

t R
)

, (3)
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where nLt = |Dt
L | and nR

t = |Dt
R | denote the sizes of the two partitions emerging from

node t , nt the total number of time series instances in node t , and I (t) evaluates the
goodness of a partitioning of node t . In this work, entropy is employed as goodness
measure, i.e., Ientropy = −∑

c∈C p(c|t)log2 (p(c|t)) since it has been shown to work
well for both single decision trees, random forests (Breiman 2001), shapelet trees (Ye
and Keogh 2009), and logical shapelets (Mueen et al. 2011). The selected shapelet
is, hence, the time series subsequence that achieves the highest decrease in impurity
when splitting the learning set at node t into two disjoint partitions using a time series
shapelet from the kth dimension as a split attribute, i.e., max

Sk,i

Im(Sk,i , t).

The most important factor limiting practical use of shapelets as discriminative pat-
terns is the computational cost of evaluating shapelet candidates, especially in the
case of multivariate time series. To overcome this limitation, the number of evaluated
candidates needs to be reduced. One way of improving the computational (and pre-
dictive) performance of decision tree ensembles is to only evaluate a small number of
attributes at each node (Ho 1998). In a similar way, the computational cost of building
shapelet trees can be reduced by only evaluating a constant (small) number of, e.g.,
randomly selected, candidates, r , at each internal node. To reduce the variance of the
generalized random shapelet trees, we adopt an ensemble approach for generating
a set R = {ST1, . . . , STp} of p random shapelet trees and combining their predic-
tions using majority voting to determine the final class label. The proposed learning
algorithm, as outlined in Algorithm 1, is elaborated in detail in the next section.

4.2 Generalized random shapelet forests

The generalized random shapelet forest (gRSF) algorithm (Algorithm 1) is a random-
ized ensemble method, which generates p generalized trees (using Algorithm 2), each
built using a random selection of instances and a random selection of shapelets. In
Algorithm 1, Sample draws a random sample of indices from the learning set Z ,
which we denote as ZI j and defines the in-bag instances for the j th tree. Although,
the function Sample can be implemented in a number of ways, the traditional boot-
strap approach (Breiman 1996) is chosen here since, for each tree, several instances
will be left out during training, i.e., the out-of-bag instances. The out-of-bag instances
can subsequently be used to compute the performance of the forest using a subset of
trees for which an instance is left out, enabling estimates of the running performance.
Hence, Sample returns a vector of n indices drawn with replacement from the range
[1, n]. Using this sample, the algorithm continues by generating the j th tree (sequen-
tially or in parallel) using the function RandomShapeletTree and the instances
included in the sample ZI j .

Each random shapelet tree is constructed using Algorithm 2. In the algorithm,
TerminalNode returns true if certain conditions, which may vary between imple-
mentations, aremet. Common conditions for traditional random forests, which are also
employed here, include that all instances are labeled with the same class label, i.e., the
node is pure, or that the number of instance is below a certain threshold (here we adopt
|Z| ≤ 2). If the termination condition is not met, Algorithm 2 continues by sampling
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Algorithm 1: Random Shapelet Forest(Z , p, l, u, r )
Input : Z: a learning set, p: number of trees, l: lower shapelet length, u: upper shapelet length, r :

number of shapelets.
Output : An ensemble of random shapelet trees R = {ST1, . . . , STp}.

1 for j ← 1 to p do
33 I j ← Sample(Z);
55 STj ← RandomShapeletTree(ZI j , l, u, r);

77 R ← R ∪ {

STj
}

;
8 return R

r shapelets randomly from the learning set using the function SampleShapelet.
This function, which introduces the second type of randomization mentioned above,
can, again, be implemented in a number of ways of which we here adopt a straight-
forward approach. SampleShapelet is implemented to randomly and uniformly
select a single time series from a randomly selected dimension k, T i

k ∈ Z and extract

a shapelet S j,e
k,i from T i

k by uniformly selecting a length l in the range e = rand([l, u])
and a start position in the range j = rand([1,m−l]), where l and u denotes minimum
and maximum shapelet sizes. Employing this function r times, where r is a parameter
of the algorithm, results in a subset S of candidates, where |S| = r .

Algorithm 2: Random Shapelet Tree(Z , l, u, r )
Input : Z: a learning set, l: lower shapelet length, u: upper shapelet length, r : number of

shapelets.
Output : A randomized shapelet tree ST .

1 if IsTerminal(Z) then
2 return MakeLeaf(Z)
3 for 1 to r do
4 S ← S ∪ {SampleShapelet(Z, l, u, rand(1, d))};
5 (τ,S, k) ← BestSplit(Z , Y , S);
6 (ZL ,ZR) ← Distribute(Z , S, τ , k);
7 STL ← RandomShapeletTree(ZL , l, u, r);
8 STR ← RandomShapeletTree(ZR, l, u, r);
9 return {(τ,S, k, STL ), (τ,S, k, STR)};

The BestSplit function determines which shapelet, S ∈ S, from the k:th dimen-
sion and distance threshold, τ , should be selected as the test condition at node t . The
chosen test condition is subsequently used to separate the instances into two groups,
those with a distance Sdist (S, Tk) ≤ τ and those with a distance Sdist (S, Tk) > τ .
The utility of a split is determined by the information gain, i.e., Eq. 3, using entropy.
To resolve conflicts in information gain, i.e., two or more thresholds with the same
gain, we choose the threshold that maximizes the separation gap (Rakthanmanon and
Keogh 2013):

1

nLt

∑

Tk∈DL

Sdist (S, Tk) − 1

nR
t

∑

Tk∈DR

Sdist (S, Tk). (4)
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The SplitDataset function partitions the instances according to the chosen
split point, i.e., ZL contains the instances with a distance less than or equal to τ and
vice versa for ZR . The partitions are subsequently used to recursively build sub-trees.
Finally, MakeLeaf returns a representation of a leaf in the generated tree by simply
assigning the class label that occurs most frequently among the instances reaching
the node, dealing with ties by selecting a label at random according to a uniform
distribution.

4.2.1 Parameters and computational cost

From a computational point of view, the rational behind the random shapelet tree is
that the cost of generating such trees is significantly lower than that of generating a
traditional shapelet tree (Ye and Keogh 2009) and also lower than the cost of a Fast
Shapelet Tree (Rakthanmanon and Keogh 2013) and a single shapelet ensemble tree
(Cetin et al. 2015). Furthermore, from a bias-variance point of view, the rationale
behind the random shapelet forest is that the randomization of the selected shapelets
combined with the ensemble averaging is able to reduce the variance of variable base
models and hence improve the generalization behaviour of the ensemble.

The total number of shapelet candidates in a 1-dimensional time series dataset with
n instances of length m isO(nm2). Exhaustively comparing all pairs of candidates of
equal length thus requires a runtime of O(n2m4), which hence results in a computa-
tional complexity ofO(n2m3 log nm3) for the original shapelet tree algorithm (Ye and
Keogh 2009). For the fast shapelet algorithm, an exhaustive search is only performed
for a subset of r shapelets, found using a SAX approximation, reducing the complexity
to O(rnm2) for a single node and O(n2rm2 log nrm2) for a full tree. Similarly, the
computational cost for a generalized random shapelet tree isO(n2rm2 log nrm2). For
both generalized random shapelet trees and fast shapelet trees the amortized computa-
tional cost isO(n2m2 log nm2), since r is constant in both cases. In practice, however,
generating a random shapelet tree is faster then building a fast shapelet tree, since
the former randomly samples shapelets in constant time, whereas the latter performs
a more costly SAX approximation (Rakthanmanon and Keogh 2013). Finally, the
shapelet ensemble tree approach (Cetin et al. 2015) utilizes several speed-up tech-
niques that, in practice, significantly improves the computational cost compared to the
fast shapelet algorithm and could also be used to improve the performance of random
shapelet trees. The worst case run-time, however, remains unchanged compared to the
original shapelet tree algorithm (Cetin et al. 2015).

As summarized in Table 1, the random shapelet forest algorithm has three parame-
ters that require tuning: r (the number of shapelets randomly selected at each node)
and [l, u] (the range of allowed shapelet sizes defined as fractions of m). It also has
a final parameter, p (the number of constructed trees in the ensemble) that for most
practical purposes does not require tuning (larger is better). The parameters r , [l, u],
and p have different effects: r determines the strength of the shapelet selection pro-
cedure, where a low number of selected shapelets results in a relatively high variance
of the base models; while p determines the strength of the variance reduction of the
ensemble model averaging. These parameters could be selected to suite the applica-
tion in a number of manual or automatic ways using, for example, cross-validation, or
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Table 1 The parameters of the defined random shapelet forest

Parameter name Abbr. Values

No. of trees p [1,∞]
No. of inspected shapelets r [1,∑m

l=1 nd(m − l + 1)]
Lower shapelet length l (0, 1]
Upper shapelet length u (l, 1]

employing the less costly out-of-bag error estimate. In Sect. 5.4, we empirically inves-
tigate the effect of different parameter configurations. Similar to what is commonly
chosen for the traditional random forest algorithm, the default value for r is defined
as the square-root of the total number of possible shapelets in a single time series, i.e.,√
md(md + 1)/2, and the default values for l and u are set to include shapelets of all

possible lengths, i.e., as limited by the training set.

5 Experimental evaluation

In this section, the empirical methodology is outlined together with the experimental
design for evaluating the predictive performance of the gRSF algorithm compared
to state-of-the-art univariate and multivariate time series classifiers. We also present
experiments for exploring the effect of different parameter configurations for gRSF in
terms of the bias-variance decomposition.

5.1 Experimental setup

For time series classification, the most common metric for evaluating the predictive
performance of classifiers is by measuring the accuracy, i.e., the fraction of correctly
classified instances (Hills et al. 2014; Ye and Keogh 2009; Gordon et al. 2012). We
note, however, that other measures, such as the area under ROC curve (Bradley 1997)
can be more suitable in some cases, e.g., when the class distribution differ between
training and testing.

To explore and analyze how different parameter configurations affect the predictive
performance, internal estimates for computing the average strength and the level of
correlation in predictions by the individual classifier (based on the out-of-bag perfor-
mance) are employed. For completeness, the definitions of these metrics are given
in Appendix 1. Briefly, the strength measures the accuracy of each classifier in the
ensemble based on the margin, i.e., the average number of votes for the right class that
exceeds the average number of votes for any other class; and the correlation measures
the dependence between classifiers. To further explore the gRSF, we also consider
the bias/variance decomposition and compare how different parameter configurations
impact the predicted probabilities. To make the paper self-contained, Appendix 1 pro-
vides a decomposition of the bias and variance in terms of the posterior probabilities
assigned by the forest.
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5.1.1 Hypothesis testing

The generally accepted procedure for inferring significant differences in terms of, e.g.,
classification accuracy, when comparing multiple classifiers over many datasets is the
non-parametric Friedman test based on ranks (Demšar 2006). Using this test, the best
performing algorithm receives a rank of 1 (for a particular dataset), the second best
received rank 2, and so on, while ties are resolved by assigning the average rank.
If the Friedman test allows for rejecting the null hypothesis (stating that there are no
differences in performance between themethods), then a post-hoc test, e.g., a Nemenyi
test, may be employed for identifying pairs of methods for which the difference is
significant. Following Demšar (2006), the latter can be visualized by depicting the
ranks of classifiers as points on a horizontal line, connecting points for which the
difference is not significant, i.e., where the difference between the algorithms is less
than a critical distance, which is dependent on the chosen level of significance. For
a more complete description of the employed statistical tests, the reader may consult
Demšar (2006).

5.1.2 Datasets

To evaluate the classification accuracy and run-time of the gRSF algorithm compared
to the state-of-the-art univariate time series classifiers, we have selected 56 diverse
datasets (see Tables 2 and 3). The majority of the datasets are from the UCR repository
(Keogh et al. 2015) and the rest are from Lines et al. (2012).2 The datasets cover a
range of domains, commonly grouped into four categories: image outline classifica-
tion, motion classification, sensor reading classification and simulated classification
problems (Lines and Bagnall 2014). Similarly, to evaluate the performance of gRSF
against the state-of-the-art multivariate time series classifiers, we have selected 14
datasets covering domains such as image outline classification, motion classification
and sensor reading classification (Baydogan and Runger 2015).

5.1.3 Parameter optimization protocol

To avoid selection of sub-optimal parameter values for the baseline approaches, the
results of gRSF are compared to results previously reported in the literature using
the already provided training and test sets, for which typically the hyper-parameters
have been optimized. For the presented method and the UTS datasets, we perform
a grid-search over some of the parameters enumerated in Table 1 using the out-of-
bag error rate of the gRSF, i.e., using only the training data, to identify the best
performing configuration. To resolve conflicts between configurations with the same
out-of-bag error rate, the correlation and strength square ratio, i.e., p̄/s2, as defined
in Appendix 1, is employed. To simplify replication of the experiment, the finally
selected parameter configurations are listed in Tables 2 and 3. Since the generalization
error of an ensemble is expected to decrease with an increasing number of members

2 All currently available datasets in both repositories have been included.
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Table 2 The predictive performance, as measured by accuracy, of gRSF compared to LTS, shapelet trans-
formations and cDTW

Dataset Parameters Accuracy

l u r cDTW FST SVM LTS gRSF

Adiac 0.900 1.000 500 0.609 0.159 0.283 0.542 0.742

Beef 0.025 0.100 500 0.533 0.567 0.867 0.800 0.800

Beetle/fly 0.025 0.200 10 0.650 0.900 0.975 0.950 0.975

Bird/chicken 0.025 0.400 10 0.725 0.900 0.950 1.000 0.975

CholorineC 0.200 0.500 500 0.650 0.535 0.562 0.743 0.673

Coffee 0.200 0.500 50 0.821 1.000 1.000 1.000 1.000

DiatomSize 0.900 1.000 50 0.935 0.765 0.922 0.952 0.964

DP_Little 0.025 0.400 500 0.439 0.603 0.752 0.727 0.752

DP_Middle 0.025 0.400 500 0.546 0.619 0.796 0.752 0.767

DP_Thumb 0.025 0.400 500 0.530 0.560 0.698 0.740 0.755

ECGFiveDays 0.025 0.300 100 0.797 0.990 0.990 1.000 1.000

FaceFour 0.025 0.400 10 0.886 0.750 0.977 1.000 1.000

GunPoint 0.025 0.400 10 0.913 0.953 1.000 1.000 1.000

ItalyPower 0.900 1.000 500 0.955 0.931 0.921 0.962 0.940

Lightning7 0.700 1.000 100 0.712 0.411 0.699 0.877 0.699

MedicalImages 0.800 1.000 def. 0.747 0.508 0.525 0.734 0.733

MoteStrain 0.025 0.100 def. 0.866 0.840 0.887 0.913 0.921

MP_Little 0.025 0.500 500 0.558 0.578 0.750 0.758 0.761

MP_Middle 0.025 0.400 500 0.470 0.609 0.769 0.770 0.786

Otoliths 0.025 0.300 100 0.594 0.578 0.641 0.760 0.594

PP_Little 0.025 0.300 500 0.495 0.586 0.721 0.710 0.727

PP_Middle 0.025 0.400 500 0.499 0.581 0.759 0.767 0.781

PP_Thumb 0.025 0.400 500 0.526 0.591 0.755 0.715 0.699

SonyAIBO 0.300 0.600 100 0.695 0.953 0.867 0.952 0.925

Symbols 0.025 0.400 1 0.938 0.801 0.846 0.959 0.968

SyntheticControl 0.300 0.600 500 0.983 0.957 0.873 1.000 1.000

Trace 0.025 0.300 100 0.990 0.980 0.980 1.000 1.000

TwoLeadECG 0.025 0.200 10 0.868 0.970 0.993 1.000 1.000

Average – – – 0.712 0.721 0.813 0.860 0.855

Rank – – – 3.969 4.234 3.000 1.922 1.875

The parameters (def. denotes default value) for gRSF was optimized using the out-of-bag accuracy and the
d̄/s2-ratio (see Sect. 5.1)
For each dataset, the highest accuracy is highlighted in bold

(cf. Fig. 6), the forest size is kept static at p = 500, which has been shown to be a
suitable forest size for traditional random forests (Boström 2011). For univariate time
series, the following configurations of upper and lower shapelet length, i.e., l and u,
are used in the optimization: l = 0.025, u = {0.1, 0.2, 0.3, 0.4}; l = 0.2, u = 0.5;
l = 0.3, u = 0.6 and l = {0.6, 0.7, 0.8, 0.9}, u = 1, i.e. 10 possible configurations.
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Table 3 The predictive performance, as measured by accuracy, of gRFS compared to LTS, cDTW and
SAX

Dataset Parameters Accuracy

l u r cDTW SAX LTS gRSF

50words 0.700 1.000 def. 0.758 0.443 0.768 0.738

Adiac 0.900 1.000 500 0.609 0.486 0.542 0.742

Beef 0.025 0.100 500 0.533 0.553 0.800 0.800

CBF 0.025 0.400 100 0.996 0.947 0.994 0.999

ChlorineC 0.200 0.500 500 0.650 0.583 0.743 0.673

CinCECG-torso 0.600 1.000 500 0.930 0.826 0.833 0.841

Coffee 0.200 0.500 50 0.821 0.932 1.000 1.000

CricketJX 0.200 0.500 50 0.764 0.473 0.791 0.759

Cricket.Y 0.300 0.600 500 0.803 0.495 0.751 0.764

Cricket_Z 0.300 0.600 500 0.820 0.453 0.799 0.769

DiatomSize 0.900 1.000 50 0.935 0.883 0.952 0.964

ECG200 0.600 1.000 def. 0.880 0.773 0.874 0.830

ECGFiveDays 0.025 0.300 500 0.797 0.996 1.000 1.000

FaceAll 0.200 0.500 1 0.808 0.589 0.782 0.763

FaceFour 0.200 0.400 10 0.886 0.910 1.000 1.000

FacesUCR 0.800 1.000 def. 0.912 0.672 0.941 0.870

Fish 0.025 0.200 def. 0.840 0.803 0.934 0.960

GunPoint 0.025 0.400 10 0.913 0.939 1.000 1.000

Haptics 0.900 1.000 500 0.412 0.384 0.468 0.474

InlineSkate 0.300 0.600 500 0.387 0.259 0.427 0.405

ItalyPower 0.900 1.000 100 0.955 0.905 0.962 0.940

Lighting2 0.900 1.000 def. 0.869 0.705 0.869 0.803

Lighting7 0.700 1.000 100 0.712 0.597 0.877 0.699

MALLAT 0.600 1.000 1 0.914 0.967 0.954 0.945

MedicalImages 0.800 1.000 def. 0.747 0.567 0.734 0.733

MoteStrain 0.025 0.100 def. 0.866 0.783 0.913 0.921

OliveOil 0.300 0.600 1 0.833 0.787 0.440 0.867

OSULeaf 0.025 0.200 def. 0.616 0.641 0.818 0.913

SonyAIBO 0.300 0.600 100 0.695 0.686 0.952 0.925

SonyAIBOII 0.025 0.200 500 0.859 0.785 0.918 0.897

SwedishLeaf 0.025 0.300 def. 0.843 0.731 0.913 0.931

Symbols 0.025 0.300 1 0.938 0.932 0.959 0.968

SyntheticControl 0.300 0.600 50 0.983 0.919 1.000 1.000

Trace 0.025 0.300 100 0.990 0.998 1.000 1.000

TwoLeadECG 0.025 0.200 100 0.868 0.910 1.000 1.000

TwoPatterns 0.600 1.000 def. 0.998 0.887 0.997 0.999
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Table 3 continued

Dataset Parameters Accuracy

l u r cDTW SAX LTS gRSF

uWav_X 0.300 0.600 100 0.773 0.707 0.800 0.800

uWav_Y 0.600 1.000 def. 0.699 0.608 0.713 0.718

uWav_Z 0.200 0.500 50 0.678 0.636 0.731 0.744

Wafer 0.025 0.100 500 0.995 0.996 0.996 1.000

WordsSynonyms 0.700 1.000 1 0.748 0.406 0.660 0.622

Yoga 0.025 0.300 def. 0.845 0.731 0.850 0.851

StarLightCurves 0.025 0.400 50 0.905 0.937 0.967 0.977

Thorax1 0.025 0.400 def. 0.815 0.754 0.900 0.919

Thorax2 0.025 0.400 100 0.871 0.789 0.850 0.934

Average – – – 0.810 0.728 0.847 0.854

Rank – – – 2.689 3.667 1.889 1.756

The parameters (def. denotes default value) for gRSF was optimized using the OOB accuracy and the
d̄/s2-ratio (see Sect. 5.1)
For each dataset, the highest accuracy is highlighted in bold

Furthermore, for multivariate time series, we here opt for using the default values
for upper and lower shapelet length, i.e., all possible lengths. For both univariate and
multivariate time series, the number of inspected shapelets is set to 1, 10, 50, 100, 500
and

√
md(md + 1)/2, yielding a total of 60 evaluated parameter configurations for

univariate and 6 parameter configurations for multivariate time series. By using the
out-of-bag error rate, we avoid more costly strategies, such as employing k-fold cross-
validation.

5.2 Competing approaches

In this section, we list the baseline algorithms to which the presented approach is
compared. In the univariate case, all competing algorithms, except cDTW, are based
on shapelets. For multivariate time series, all alternative approaches are based on time
series features extraction.

5.2.1 Nearest neighbours (univariate/multivariate)

Themostwidely adopted time series classifier is the nearest neighbour classifier, which
have predominantly and successfully been used together with the constraint dynamic
time warping distance measure (Sakoe and Chiba 1978; Ratanamahatana and Keogh
2004). We denote this approach cDTW. The nearest neighbour classifier requires the
number of nearest neighbours k and DTW requires one additional parameter: the
width of the band. Here, we adopt k = 1 using a cross-validation optimized DTW
constraint. We opt for not optimizing the number of nearest neighbours, since the
gain is often minimal (Bagnall and Lines 2014). For the univariate case, the predictive
performance for cDTW in Tables 2 and 3 are taken from Keogh et al. (2015). For
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the multivariate case, the distance between two MTS is the sum of DTW distances
between the associated UTS, similar to Baydogan and Runger (2014).

5.2.2 Shapelet trees (univariate)

Herewe adopt the shapelet-based decision tree classifier with the F-stat measure (FST)
proposed by Hills et al. (2014), since, in their work, the F-stat measure is able to
both generate trees slightly faster and provide slight benefits in terms of classification
accuracy compared to the traditional shapelet tree. The shapelet tree classifier requires
twoparameters: the upper and lower shapelet size,whichwere optimized using a subset
of time series (Hills et al. 2014). The predictive performance in Table 2 is taken from
Hills et al. (2014).

5.2.3 Fast shapelets (univariate)

The fast shapelet algorithm, which we denote SAX, uses symbolic aggregate approxi-
mations (SAX) to reduce the dimensionality of the shapelet search problem, improving
the run-time of the shapelet-based decision tree algorithm with several orders of mag-
nitude. The employed fast shapelet algorithm requires four parameters: the upper and
lower shapelet size, the top-k shapelets for the approximations and a step-size. Addi-
tionally, SAX requires a number of parameters, e.g., the alphabet size. Here, we use
the default setting. Predictive performance in Table 3 is taken fromRakthanmanon and
Keogh (2013). Note that the predictive performance of SAX is not included in Table 2,
since it provides an approximation of the single shapelet tree (FST) and, hence, gives
similar results. Similarly, the single shapelet tree is not included in Table 3 due to com-
putational constraints, instead we here include the approximation provided by SAX.
Since the shapelet based ensemble (Cetin et al. 2015), provide comparable results to
SAX, we here opt to include only the latter.

5.2.4 Shapelet transformations (univariate)

We also consider shapelet transformations (Hills et al. 2014). Since the transformation
is independent from the used classifier, we here opt for the classifier that has been
shown to give the best results, namely support vector machines (Hills et al. 2014). We
refer to this approach as SVM. The transformation requires two parameters; the top-k
shapelets to include and the number of clusters. Additionally, the chosen classifier
might have parameters of its own that require tuning, e.g., kernel for SVMs. The
predictive performance in Table 2 is taken from Hills et al. (2014), using a linear
kernel.

5.2.5 Learning shapelets (univariate)

Finally, for the univariate case, we consider learning shapelets (LTS) (Grabocka et al.
2014), which instead of enumerating shapelets from a restricted pool of candidates
in the learning set, consider them as parameters in an optimization problem. The
LTS algorithm requires six hyper-parameters; the learning rate η, regularization λ, the

123



Generalized random shapelet forests 1071

Table 4 Predictive performance, as measured by accuracy, of gRSF compared to SMTS, cDTW, UFS, and
LPS for the multivariate time series datasets

Dataset Parameters Accuracy

r cDTW SMTS LPS UFS gRSF

ArabicDigits 100 0.908 0.964 0.971 0.964 0.975

AUSLAN 500 0.762 0.947 0.754 0.972 0.955

CharacterT. 500 0.960 0.992 0.965 0.993 0.994

LIBRAS 500 0.800 0.909 0.903 0.849 0.911

ECG 10 0.850 0.818 0.820 0.862 0.880

CMU_MOCAP_S16 10 0.931 0.997 1.000 1.000 1.000

uWaveGestureLibrary 10 0.929 0.941 0.980 0.929 0.929

Wafer 500 0.977 0.965 0.962 0.976 0.992

Japanes Vowels 500 0.649 0.969 0.951 0.932 0.800

KickvsPunch 500 0.900 0.850 0.900 0.700 1.000

Walkvsrun 500 1.000 1.000 1.000 1.000 1.000

NetworkFlow 10 0.712 0.974 0.965 0.891 0.914

PEMS 100 0.832 0.896 0.844 0.988 1.000

Pendigits 10 0.912 0.917 0.931 0.919 0.932

Average – 0.866 0.939 0.925 0.927 0.949

Rank – 4.177 3.036 2.964 2.964 1.857

For each dataset, the highest accuracy is highlighted in bold

number of iterations i ter , the soft max parameter α, the scales of pattern lengths r and
number of latent patterns k. The predictive performance using optimized parameters
in Table 2 is taken from Grabocka et al. (2014) and in Table 3 from their supporting
website.3

5.2.6 Symbolic representation for multivariate time series (multivariate)

For MTS, we consider a learned symbolic representation for multivariate time series
(Baydogan and Runger 2014), which we will refer to as SMTS. SMTS provides a
symbolic representation of a multivariate time series based on time index and values
which are exploited to generate time segmented features using the terminal nodes in a
decision forest. The features are subsequently exploited for making predictions using
a second ensemble. The predictive performance in Table 4 is taken from (Baydogan
and Runger 2014).

5.2.7 Learned pattern similarity (multivariate)

For the multivariate case, we consider learned pattern similarity (LPS), which models
the dependency structure of time series based on the concept of local autopatterns, i.e.

3 http://fs.ismll.de/publicspace/LearningShapelets.
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time segments, learned using an ensemble of regression trees. A similarity measure
based on these patterns are subsequently used to make predictions using a nearest
neighbour approach (Baydogan and Runger 2015). The feature extraction algorithm
has two parameters; the number of regression trees and the number of segments. In
Table 4, the predictive performance is taken from Baydogan and Runger (2015).

5.2.8 Ultra fast shapelets (multivariate)

Finally, we also include the the ultra-fast shapelet transformation (UFS) approach,
which models the input data as a set of distances from randomly chosen shapelets
(Wistuba et al. 2015). The algorithm has only one parameter; the number of random
shapelets to sample. The predictive performance in Table 4 is in part taken from
(Wistuba et al. 2015) and in part from experiments using our own implementation4

with the recommended parameter configurations (Wistuba et al. 2015).

5.3 Empirical results

The performance of the gRSF algorithm is compared to the competing approaches
both in terms of classification accuracy and run-time. The results are presented in
three stages: in Sect. 5.3.1, we compare the predictive performance of gRSF against
the competing approaches described in Sect. 5.2 for both univariate and multivariate
time series. For univariate time series the comparison is first conducted for a subset
of datasets commonly used when evaluating shapelet classifiers and then for the full
set of datasets. In Sect. 5.3.2, the computational performance and scalability of gRSF
is evaluated and compared to alternative methods. Finally, in Sect. 5.4, we investigate
the effect of gRSF hyper-parameters in terms of the bias-variance decomposition.

5.3.1 Predictive performance

Univariate time series classification Since the computational cost for shapelet based
classifiers have been a limiting factor for full utilization of the algorithms, most such
classifiers (see Hills et al. 2014; Grabocka et al. 2014) have been evaluated on a subset
of smaller datasets only. More specifically, 17 datasets from the UCR time series
repository (Keogh et al. 2015) and 11 datasets from Hills et al. (2014) have usually
been selected. To give an overview, the results for all algorithms and datasets are
presented in Table 2. Statistical tests for determining whether differences in predictive
performance are significant or not are undertaken by comparing the performance ranks
of the algorithms.

In Table 2, we can see the classification accuracy of the different methods. By
inspecting the ranks of the individual algorithms, on average gRFS and LTS are ranked
second (with ranks 1.87 and 1.92, respectively) and SVM third (3) and cDTW and
FST fourth (3.97 and 4.23). A significance test reveals that the observed differences in
accuracy ranks significantly (p < 0.001) deviate fromwhat can be expected under the

4 Available at the supporting website.
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Fig. 2 Comparisonof pair-wiseNemenyi tests for all classifiers used for the 28univariate datasets inTable 2.
Classifiers that are not significantly different at p = 0.1 (left) and at p = 0.05 (right) are connected
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Fig. 3 Comparisonof pair-wiseNemenyi tests for all classifiers used for the 45univariate datasets inTable 3.
Classifiers that are not significantly different at p = 0.1 (left) and at p = 0.05 (right) are connected

null hypothesis. For a significance level of 0.05 and 0.1, the critical distance is 1.15
and 1.04 respectively. As seen in Fig. 2, a post-hoc Nemenyi test reveals that there is
a significant difference between gRSF when comparing against single shapelet-based
decision trees (FST), cDTW and SVM for p < 0.05 and between gRSF and LTS
compared to FST and cDTW for p < 0.1. Thus, for the lower significance levels, we
can identify two main groups of algorithms; the performance of FST and cDTW are
significantly worse than that of gRSF and LTS. The SVM approach, however, falls
in between of the two groups; it cannot clearly be separated from the worst (or best)
performing group at the lowest significance level. Since the difference between gRSF
and LTS is minimal, the empirical findings for univariate time series classification
indicate that when aiming for highest accuracy, either gRSF or LTS can be safely
recommended.

Since the computational cost for gRSF is generally lower than that of other shapelet
based algorithms, e.g., LTS (see Sect. 5.3.2), the second experiment include all 45
datasets from theUCR repository. In Table 3, the results for these datasets are presented
for the gRSF algorithm and three state-of-the-art classifiers able to cope with these
larger time series datasets, namely: cDTW, SAX, and LTS. As can be seen in Table 3,
the two best performing classifiers, in terms of accuracy, are again the LTS and gRSF
algorithms. This is also confirmed by the average performance ranks, where gRSF
and LTS are ranked second (with ranks 1.76 and 1.89, respectively), while cDTW
ranks 2.69 and SAX 3.67. For these datasets, the observed differences in accuracy
ranks deviate significantly (p < 0.001) from what can be expected under the null-
hypothesis of no difference.

To investigate if there are any significant differences between pairs of classifiers,
a post-hoc Nemenyi test is again performed (Fig. 3). Given the critical distances for
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Fig. 4 Comparison of pair-wise Nemenyi tests for all MTS classifiers over the 14 multivariate datasets in
Table 4. Classifiers that are not significantly different at p = 0.1 (left) and at p = 0.05 (right) are connected

the significance levels of 0.05 and 0.1 as 0.69 and 0.62, the post-hoc test reveals
that there is no significant difference between gRSF and LTS for both significance
levels. However, SAX is significantly less accurate than all alternatives (again, for both
significance levels). Furthermore, at both significance levels, cDTW is less accurate
than both LTS and gRSF. Partitioning the algorithms into groups for p < 0.05, we can
identify two groups; the performances of SAX and cDTW are significantly worse than
gRSF and LTS. Thus, since gRSF and LTS cannot be separated in terms predictive
performance, either is expected to outperform the alternatives.

Multivariate time series classification Univariate time series classification is a special
case of multivariate time series classification where each instance is described by a
single time series. In many domains and settings, where more than one variable per
instance evolves over time, this is however overly simplistic. Table 4 presents the accu-
racy for the evaluated multivariate time series classifiers. Looking at the accuracies,
we can see that the gRSF algorithm predominantly performs either better or on par
with the competing approaches. By inspecting the ranks of the individual algorithms,
gRSF is ranked highest (with rank 1.86) and cDTW ranked last (with rank 4.18) and
LPS, UTF and SMTS in between (with ranks close to 3). A Friedman test reveals that
the observed differences in accuracy ranks deviate significantly (p < 0.001) from
what can be expected under the null-hypothesis of no difference.

To investigate if there are any significant differences between pairs of algorithms,
a post-hoc Nemenyi test is again performed (see Fig. 4). The post-hoc test does not
indicate any significant differences between gRSF, LPS, UFS and SMTS for neither
the 0.05 nor 0.1 significance levels. cDTW is, however, significantly outperformed
by gRSF (p < 0.05), but not by LPS, UFS or SMTS. Partitioning the algorithms
into groups for p < 0.05, we can identify two groups: the performance of cDTW is
significantly worse than for gRSF. Since neither LPS, UFS or SMTS clearly belong
to any of these groups, the experimental data is not sufficient to reach any conclusions
regarding the relative performance of LPS, UFS or SMTS for multivariate time series
classification.

5.3.2 Computational performance

In this section, we show that in addition to achieving state-of-the-art predictive perfor-
mance for univariate and multivariate datasets, the gRSF algorithm is also competitive
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in terms of run-time performance. In the univariate case, we include shapelet based
classifiers that have been designed for either speed (SAX) or predictive performance
(LTS) and show that the gRSF is significantly faster than the latter and perform similar
to, albeit is significantly more accurate, than the former. In the multivariate case, we
include the classifiers with highest predictive performance, i.e., LPS, UFS and gRSF,
and show that the run-time of gRSF is comparable to or better than the alternative
approaches. For both UTS andMTS classification, the algorithms have approximately
the same number of hyper-parameters and would, hence, be penalized in similar ways
when performing grid search for the best setting. This cost cannot, however, be directly
compared and is therefore left out.

In the experiments, we report training time relative to that of the gRSF algorithm,
hence, a number larger than 1 indicates slower training than gRSF while a number
smaller than 1 indicates faster training than gRSF. Since the training time for LPS
only includes feature extraction and classification is instance based, i.e., has zero
training time, we include both training and testing time in the multivariate case. For
the comparison, we select a number of UTS datasets with representative properties
and all available MTS datasets.
Univariate time series classification In the comparison of UTS classifiers, we have
included SAX and LTS and used the default settings for all algorithms. For LTS
this amounts to: α = −30, η = −0.1, i ter = 1000 and λ = 0.01, for gRSF:
r = √

md(md + 1)/2, l = 0.025, u = 1 and p = 500 and finally, for SAX: step = 1
and topk = 10. Table 5 shows that in the univariate case, gRSF is systematically at least
three times faster than LTS, and in some cases also faster than SAX.5 On average,
over the selected datasets, the performance ratio shows that the gRSF algorithm is
approximately 45 times faster than LTS and has a similar performance to SAX-based
decision trees. Note, however, that we employ a rather large forest (500 trees) in the
comparison, but a smaller one (consisting of less than 100 trees), which is generally
faster to train, in most cases still outperforms SAX in terms of classification accuracy
(see Karlsson et al. 2015).
Multivariate time series classification Comparing the MTS classifiers in terms of
computational cost, we use 500 trees and 100 shapelets for gRSF; 500 trees and 10
segments for LPS and 10,000 shapelets for UFS.6 Similarly to the univariate case,
Table 6 shows that in the multivariate case, gRSF is competitive in terms of compu-
tational cost. On average, the gRSF algorithm is six times faster than UFS and eight
times faster than the LPS algorithm.7 One reason for the strong performance of gRSF
in the multivariate case, compared to UFS, is that a dynamic (often lower) number of
shapelets are required to construct a tree. Another, related, reason is that gRSF only
computes the similarity between shapelets and time series from the same dimensions,
whereas UFS finds the minimum distance to any dimension, increasing the number of
comparisons with a factor d.

5 We note, however, that since gRSF and LTS are distributed over several cores, the comparison to the
non-parallel fast shapelet algorithm is not entirely fair.
6 For the run-time experiment, we limit the total number of shapelets to 10,000 for computational conve-
nience, i.e., reducing the cost of UFS by a factor d.
7 Note, however, that the LPS algorithm is run on a single core.
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Table 5 Relative training time of gRSF compared to LTS and SAX for univariate time series

Dataset Properties Runtime

l n m SAX LTS gRSF

Adiac 37 390 176 1.19 419.39 1.00

DiatomSizeReduction 4 16 345 0.64 4.70 1.00

ECGFiveDays 2 23 136 0.91 3.44 1.00

fish 7 175 463 0.11 6.94 1.00

Gun_Point 2 50 150 0.76 2.15 1.00

MedicalImages 10 381 99 2.22 43.60 1.00

MoteStrain 2 20 84 0.50 3.29 1.00

OSULeaf 6 200 427 0.81 3.50 1.00

synthetic_control 6 300 60 2.65 30.11 1.00

Trace 4 100 275 0.94 4.38 1.00

wafer 2 1000 152 0.11 2.45 1.00

Average – – – 0.98 47.63 1.00

For each dataset, the fastest method is highlighted in bold

Table 6 Relative training and testing time of gRSF compared to UFS and LPS for multivariate time series

Dataset Properties Runtime

l d n m LPS UFS gRSF

ArabicDigits 10 13 6600 144 8.06 0.38 1.00

AUSLAN 95 22 1140 45–136 2.93 1.59 1.00

CharacterTrajectories 20 3 300 109–205 0.97 1.27 1.00

LIBRAS 15 2 180 45 11.44 0.22 1.00

ECG 2 2 100 39–152 9.03 0.17 1.00

CMU_MOCAP_S16 2 62 29 127–580 6.58 23.70 1.00

uWaveGestureLibrary 8 3 200 315 0.53 2.49 1.00

Wafer 2 6 298 104–198 3.99 2.23 1.00

Japanes Vowels 9 12 270 7–79 4.59 1.10 1.00

KickvsPunch 2 62 16 274–841 6.60 12.31 1.00

Walkvsrun 2 62 28 128–1918 1.78 7.92 1.00

NetworkFlow 2 4 803 50-997 0.15 0.16 1.00

PEMS 7 963 267 144 51.30 36.87 1.00

Pendigits 10 2 300 8 8.50 2.95 1.00

Average – – – – 8.32 6.67 1.00

For each dataset, the fastest method is highlighted in bold

To confirm the theoretical run-time (see Sect. 4.2.1), the computational performance
of gRSF is also empirically evaluated in terms of how well the algorithm scales with
increasing time series length (m) and increasing number of time series in the data
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Fig. 5 The reported relative training time (y-axis) as a function of increasing time series length (m) (right)
and of increasing number of time series (n) (left)

set (n). For the former, univariate datasets with m > 1000 time points, and for the
latter univariate datasets with n > 1000 instances were selected. Since the run-time of
gRSF is unaffected by additional dimensions, onlyUTS datasets are used. In Fig. 5, the
computational performance of running the gRSF algorithm is shown as the size of the
training set (left) and time series length (right) increases with an increasing multiplier
of 0.1, . . . , 1. As we can see, the gRSF algorithm tends to scale approximately linearly
in the size of the learning set, i.e. n, and quadratically in time series length, i.e. m.

5.4 The effect of parameters

In this section, we analyze and discuss the effect of the random shapelet forest para-
meters, including the number of shapelets r , the shapelet length [l, u] and finally the
averaging strength of adding more trees to the ensemble, i.e., p. Since the effect of
parameters is independent from the number of time series dimensions, we limit the
analysis to univariate time series databases.

5.4.1 The shapelet selection strength r

The parameter r denotes the number of random shapelets to evaluate at each node of the
forest. For a given problem, the smaller r , the greater the randomization of the trees and,
hence, the weaker the output value depends on the structure of the tree. In the extreme,
with r = 1, the tree is built using a single shapelet sampled independently from the
target label, i.e., the trees are grown randomly in an uninformed manner. Figure 6,
shows the evolution of the out-of-bag error rate for 9 time series classification data
sets as we increase r . The default value of r is shown as a vertical line. In the figure,
we see a number of trends, e.g., decreasing (Fish, Adiac, OSULeaf ) and increasing
(FaceFour). For these, the default value is clearly not the optimal choice. For the other
data sets, however, the default value provides a good starting point for optimization.
Since r provides a mechanism for balancing strength and correlation, it is an important
hyper-parameter.

On average, over all datasets, when r = 500, the strength (s) and correlation (d̄) (see
Appendix 1) is s = 0.36 and d̄ = 0.12 and when r = 1, s = 0.26 and d̄ = 0.1, i.e., as
expected, increasing r strongly increases the strength, but only slightly increases the
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Fig. 6 The evolution of the out-of-bag error rate with l = 0.025, u = 1 on 9 time series classification
tasks. The vertical line denotes the default value of r = √

md(md + 1)/2

correlation. By analyzing the bias, Fig. 7 (left) shows that it decreases as r increases,
from 0.2 when r = 1 to 0.15 when r = 500. Similarly, as r increases the variability
of the forests decreases, from 0.55 with r = 1 to 0.46 with r = 500. One reason
for the increase in bias for forests with more randomization could be the fact that
the tree generation results in trees predominantly voting for the majority class, hence
producing highly biased probability estimates.

5.4.2 The shapelet sampling effect of l and u

The parameters l and u denote the fraction of shapelet lengths sampled. For a given
problem, l and u defines the search space for suitable features and guides the algorithm
towards global or local similarities. In the default case, every possible shapelet length
is a possible candidate, but the choice can be specialized using the out-of-bag error
rate. In Fig. 7 (right) the average out-of-bag error rate and bias and variance are shown
for the average shapelet length when considering r = √

md(md + 1)/2 shapelets at
each node.

On average, the error is highest when limiting the search to very short or very long
shapelets, indicating that a wider sampling range is needed to get sufficient variability
among the trees. An analysis of the bias and the variance, as shown in Fig. 7 (right),
shows that the bias decreases from 0.47 when limiting the search to short shapelets
to 0.34 when increasing the sampled shapelet sizes. Similarly, the variance decreases
as we limit the search to longer shapelets. As seen in Fig. 7 (right), the setting that
minimizes the trade-off between bias and variance is, however, inspecting shapelets
shapelets of all possible lengths, explaining its superior performance on average. We
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Fig. 7 The shapelet sampling effect of l and u (right) and the average effect of increasing the number of
shapelets r (left)
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Fig. 8 The averaging strength of p

note, as shown in the result tables, that the parameter requires tuning to find the best
performing model.

5.4.3 The averaging strength of p

It is well known that the prediction error is a continual, asymptotically, declining
function of the number of members in an ensemble. The latter corresponds to the
parameter p, which denotes the number of trees in a random shapelet forest. Hence,
the higher the value of p the better the ensemble will perform, essentially rendering the
choice of p to be a compromise between computational efficiency and accuracy. Fig. 8
shows the effect of p on the out-of-bag error, bias and variance for a number of data
sets (with r = √

md(md + 1)/2). In general, we can see that while randomization
increases the bias and variance of individual trees, the variance due to randomization
can be canceled out by averaging over a (large) ensemble.
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6 Conclusions

In this paper, we have proposed and investigated a novel approach for both univari-
ate and multivariate time series classification; the gRSF algorithm, building on the
well-established shapelet tree algorithm (Ye and Keogh 2009) and the random forest
algorithm (Breiman 2001). The use of shapelets has been shown to be an important
approach for time series classification tasks, but current methods have been either too
slow, e.g., learning time series shapelets or shapelet transforms, too inaccurate, e.g.,
fast shapelets, or both, e.g., single shapelet-based decision trees. We have demon-
strated that by combining several weak randomized shapelet-based decision trees into
an ensemble, substantial gains in predictive and computational performance can be
achieved compared to generating single shapelet-based decision trees. Moreover, the
performance of gRSF is comparable to the current state-of-the-art in terms of accuracy
for both univariate and multivariate time series classification, but with substantially
lower computational cost. The results from the presented extensive empirical investi-
gation suggest that the proposed algorithm is among the strongest classifiers currently
available for both uni- and multivariate time series.

Although the proposed algorithm requires tuning of a set of parameters, the number
of such parameters are comparable to, or fewer, than for alternative methods. Most
importantly, the use of out-of-bag examples allows for tuning the parameters without
requiring that a computationally costly cross-validation procedure is employed or that
a validation set is put aside. The latter is not as computationally costly as the former,
but may negatively affect predictive performance due to leaving fewer examples for
model construction. The parameters of gRSF include the number of trees to generate
(a common parameter for most ensemble methods), the number of sampled shapelets,
for controlling the strength of the random shapelet selection, and also a secondary pair
of parameters for controlling the size of the evaluated random shapelets. The empiri-
cal investigation has shown that the predictive performance can be greatly improved
by optimizing the parameters of the algorithm, reaching state-of-the-art predictive
performance for both univariate and multivariate time series classification. Further-
more, by using a bias and variance decomposition of the (squared) prediction error,
the ingredients making the algorithm performing well have been investigated, namely
the trade-off between the strength of each individual tree and the diversity among the
trees.

One advantage of shapelet based decision trees, similar to traditional decision trees,
is the possibility to interpret the generated model and gain insights into predictions.
For traditional random forests, the importance of factors contributing to predictions
can be computed using various methods. A similar procedure was investigated for the
univariate version of the random shapelet forest in Karlsson et al. (2015), where the
importance of regions and shapelet sizes can be used to support interpreting themodel.
Since this method is limited to globally important regions and not shapelets, one direc-
tion for future work concerns alternative approaches for interpreting random shapelet
forests, e.g., by providing the importance of specific shapes, or in themultivariate case,
specific dimensions. Other directions for future work include investigating approaches
for handlingmultivariate and heterogeneous time series consisting of both discrete and
numerical data streams.
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Appendix 1: Decomposing the mean squared error in a forest

To investigate whether the observed difference in predictive performance between
parameter configurations is mainly due to bias, variance, or both, the mean square
error of the forest can be decomposed into those terms. In contrast to regression,
where the decomposition of prediction error into bias and variance is well understood
and widely used (James 2003), there is no general definition for classification. Hence,
several decompositions of the average classification error rate into bias and variance
have been proposed (see Friedman 1997; James 2003; Valentini and Dietterich 2004).
It is, however, difficult to directly study the effect of bias and variance of randomized
algorithms in the context of miss-classification error since a decrease in variability
of the predictions can increase the average error, making the averaged model worse
than the randomized. Instead, similar to the mean square error (MSE) of a regressor,
the mean square error of a forest consisting of trees able to output a conditional
class probability estimates for a given example can be computed as follows (Boström
2012). Given the class labels {c1, c2, . . . , cl}, let b̄(i)

k = (b(i)
k1 , b(i)

k2 , . . . , b(i)
kl ) be the

probabilities assign by k:th random shapelet tree STk in the forest for a labeled time
series z(i). Furthermore, let c̄(i) = (c̄(i)

1 , c̄(i)
2 , . . . , c̄(i)

l ) represent the true class vector

for a labeled time series z(i), where c̄(i)
j is 1 if y(i) = c j and 0 otherwise, then the

mean squared error (mse) of the forest can be defined as:

mse = 1

n

t
∑

i=0

1

p

p
∑

k=1

(

b̄(i)
k − c̄(i)

)2
(5)

Given the mean class probability vector b̄(i)
μ for the i th example, the mse can be

composed into two parts, the bias (left) and variance (right):

mse = 1

n

n
∑

i=0

(

c̄(i) − b̄(i)
μ

)2 + 1

n

n
∑

1=0

1

T

(

p̄(i) − b̄(i)
μ

)2
(6)

8 http://github.com/briljant/mimir.
9 http://people.dsv.su.se/~isak-kar/grsf/.
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Appendix 2: Internal estimates of strength and correlation

In the original Random Forest, Breiman (2001) proposes internal estimates for the
strength (i.e., how accurate the individual classifiers are) and correlation (i.e., the
dependence between classifiers) of the forest based on the out-of-bag instances not
included during training. Using these measures, an upper bound can be derived for
the generalization error. More precisely, for the case of random shapelet forests, each
random shapelet tree STk ∈ R can be seen as a base classifier function fk . Hence,
we can define a set of p base classifier functions { f1(T ), . . . , f p(T )} as well as the
ensemble classifier function fR(T ). Let us denote the set of out-of-bag instances
for a classifier STk as DTk . Furthermore, given a class label c ∈ C, Q(T, c) is an
approximation function for P( fR(T ) = c) corresponding to the out-of-bag proportion
of votes for class c for the input time series T . More formally:

Q(F , c) =
∑p

k=1 1(STk(T ) = c; T ∈ DTk )

|T ∈ DTk |
, (7)

where 1(·) is the indicator function. Then, the margin measures the extent to which
the average number of votes for the right class exceeds the average number vote for
any other class (Breiman 2001).

Definition 7 (margin function) The empirical margin function for a random shapelet
forest, similar to a random forest, is

mr(F , T, c) = P( fR(T ) = c) − |C|
max
j=1
j �=c

{ fR(T ) = c j } (8)

where P(·) is estimated using Q(·).

The expectation over the margin function gives a measure of how accurate, or
strong, a set of classifiers are.

Definition 8 (strength) The strength of a random shapelet forest is the expected mar-
gin, and can be empirically estimated as the average over the training set:

s = 1

n

n
∑

i=1

mr(Ti , yi ) (9)

By computing the variance of the margin, the correlation and interdependence
between the individual classifiers can be estimated as the variance of the margin over
the squared standard deviation of the random shapelet forest.
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Definition 9 (correlation) The correlation of the random shapelet forest can be empir-
ically estimated as:

p̄ = var(mr)

sd(F)2
=

1
n

∑n
i=1 mr(Ti , yi )2 − s2

(

1
p

∑p
k=1

√

bk + b̂k + (bk − b̂k)2
)2 (10)

where bk is an out-of-bag estimate of P( fk(T = y) = c), with

bk =
∑n

i=1 1( fk(Ti ) = yi ; Ti ∈ DTk )

|{T ∈ DTk }|
, (11)

and b̂k is an out-of-bag estimate of P( fF (T ) = ĉ j )

b̂k =
∑n

i=1 1( fk(Ti ) = ĉi )

|{T ∈ DTk }|
, (12)

where ĉ j is estimated for every instance in the training set with Q(T, c) as

ĉ j = arg
|C|
max
j=1
j �=c

Q(T, c j ). (13)

Assuming that the strength is s > 0, Breiman (2001) showed that a (rather loose)
upper bound on the generalization error of a random forest, and by similar argument

a random shapelet forest, can be given by p̄(1−s2)
s2

. The bound shows that the two
ingredients involved in the generalization error for forests of randomized trees are the
strength of the individual classifiers, and the dependencies between them in terms of
the margin function (Breiman 2001). Furthermore, the correlation divided with the
squared strength, p̄/s2, provides a ratio, where smaller is better, that can be used to
understand the functioning of the forest (Breiman 2001).
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