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Abstract Finding dense subgraphs is an important problem in graph mining and has
many practical applications. At the same time, while large real-world networks are
known to have many communities that are not well-separated, the majority of the
existing work focuses on the problem of finding a single densest subgraph. Hence,
it is natural to consider the question of finding the top-k densest subgraphs. One
major challenge in addressing this question is how to handle overlaps: eliminating
overlaps completely is one option, but this may lead to extracting subgraphs not as
dense as it would be possible by allowing a limited amount of overlap. Furthermore,
overlaps are desirable as in most real-world graphs there are vertices that belong
to more than one community, and thus, to more than one densest subgraph. In this
paper we study the problem of finding top-k overlapping densest subgraphs, and we
present a new approach that improves over the existing techniques, both in theory and
practice. First, we reformulate the problemdefinition in away thatwe are able to obtain
an algorithm with constant-factor approximation guarantee. Our approach relies on
using techniques for solving themax-sum diversification problem, which however, we
need to extend in order to make them applicable to our setting. Second, we evaluate
our algorithm on a collection of benchmark datasets and show that it convincingly
outperforms the previous methods, both in terms of quality and efficiency.
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1 Introduction

Finding dense subgraphs is a fundamental graph-mining problem, and has applications
in a variety of domains, ranging from finding communities in social networks (Kumar
et al. 1999; Sozio and Gionis 2010), to detecting regulatory motifs in DNA (Fratkin
et al. 2006), to identifying real-time stories in news (Angel et al. 2012).

The problem of finding dense subgraphs has been studied extensively in theoret-
ical computer science (Andersen and Chellapilla 2009; Charikar 2000; Feige et al.
2001; Khuller and Saha 2009), and recently, due to the relevance of the problem in
real-world applications, it has attracted considerable attention in the data-mining com-
munity (Balalau et al. 2015; Tatti and Gionis 2015; Tsourakakis 2015; Tsourakakis
et al. 2013; Sozio and Gionis 2010). In a domain where most interesting problems
are NP-hard, much of the recent work has leveraged the fact that under a specific
definition of density, the average-degree density, finding the densest subgraph is a
polynomially-time solvable task (Goldberg 1984). Furthermore, there is a linear-time
greedy algorithm that provides a factor-2 approximation guarantee (Charikar 2000).

The exact polynomial algorithm (Goldberg 1984) and its fast approximation coun-
terpart (Charikar 2000), apply only to the problem of finding the single densest
subgraph. On the other hand, in most applications of interest we would like to find the
top-k densest subgraphs in the input graph. Given an efficient algorithm for finding the
single densest subgraph, there is a straightforward way to extend it in order to obtain
a set of k dense subgraphs. This is a simple iterative method, in which we first find the
densest subgraph, remove all vertices contained in that densest subgraph, and iterate,
until k subgraphs are found or only an empty graph is left.

This natural heuristic has two drawbacks: first it produces a solution in which all
discovered subgraphs are disjoint. Such disjoint subgraphs are often not desirable,
as real-world networks are known to have not well-separated communities and hubs
that may belong to more than one community (Leskovec et al. 2009), and hence, may
participate in more than one densest subgraph. Second, when searching for the top-k
densest subgraphs, we would like to maximize a global objective function, such as
the sum of the densities over all k subgraphs and, as shown by Balalau et al. (2015),
enforcing disjointness may lead to solutions that have very low total density, compared
to solutions that allow some limited overlap among the discovered subgraphs.

From the above discussion it follows that it is beneficial to equip a top-k densest-
subgraph discovery algorithm with the ability to find overlapping subgraphs. This is
precisely the problem on which we focus in this paper. The challenge is to control
the amount of overlap among the top-k subgraphs; otherwise one can find the densest
subgraph and produce k − 1 slight variations of it by adding or removing a very small
number of vertices—so that the k − 1 almost-copies are also very dense.

A simple example that demonstrates the concept of finding the top-k densest sub-
graphs with overlap is shown in Fig. 1. The example is the famous Zachary karate club
dataset (1977), and the result is an actual execution of our algorithm, with k = 3. The
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Fig. 1 Densest overlapping subgraphs on Zachary karate club dataset (1977). k = 3, β = 2

importance of allowing overlap between dense subgraphs is immediate: subgraphs 1
and 2 overlap on vertices 33 and 34. Had those vertices been assigned only to subgraph
1, which was discovered first, subgraph 2 would fall apart.

Our paper follows up on the recent work of Balalau et al. (2015): finding top-k
densest subgraphs with overlap. The main difference of the two papers is that here we
use a distance function to measure overlap of subgraphs and penalize for overlap as
part of our objective, while Balalau et al. are enforcing a hard constraint. Our approach
allows to obtain a major improvement over the results of Balalau et al., both in theory
and in practice. On the theoretical side, we provide an algorithm with worst-case
approximation guarantee, while the method of Balalau et al. offers guarantees only
for certain input cases. On the empirical side, ourmethod outperforms the previous one
in practically all datasets we experimented, with respect to all measures. In addition,
in terms of computation time, our method is more scalable.

From the technical point of view, our approach is inspired by the results of Borodin
et al. (2012) for the max-sum diversification problem. In particular, Borodin et al.
designed a greedy algorithm in order to find, in a ground set U, a set of elements
S that maximizes a function of the form f (S) + λ

∑
{x,y}: x,y∈S d(x, y) , subject to

|S| = k. Here f is a submodular function and d is a distance function. To apply this
framework, we set S to be the set of k subgraphs we are searching for, f to capture the
total density of all these subgraphs, and d to capture the distance between them—the
larger the overlap the smaller the distance.

Yet, the greedy algorithm of Borodin et al. cannot be applied directly; there are a
number of challenges that need to be addressed. The most important is that, for our
problem, the iterative step of the greedy algorithm results in an NP-hard problem.
This is a major difficulty, as the basic scheme of the algorithm of Borodin et al.
assumes that the next best item in the greedy iteration can be obtained easily and
exactly. To overcome this difficulty, we design an approximation algorithm for that
subproblem. Then, we show that an approximation algorithm for the greedy step yields
an approximation guarantee for the overall top-k densest-subgraph problem.

We apply our algorithm on a large collection of real-world networks. Our results
show that our approach exhibits an excellent trade-off between density and overlap
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and outperforms the previous method. We also note that density and overlap are not
comparable measures, and balancing the two is achieved via the parameter λ. As
demonstrated in our experiments, executing the algorithm for a sequence of values of
λ creates a density versus overlap “profile” plot, which reveals the trade-off between
the two measures, and allows the user to select meaningful values for the parameter λ.

The contributions of our work can be summarized as follows:

– We consider the problem of finding top-k overlapping densest subgraphs on a
given graph. Our problem formulation relies on a new objective that provides a
soft constraint to control the overlap between subgraphs.

– For the proposed objective function we present a greedy algorithm. This is the
first algorithm with an approximation guarantee for the problem of finding top-k
overlapping densest subgraphs.

– We evaluate the proposed algorithm against state-of-the art methods on a wide
range of real-world datasets. Our study shows that our algorithm, in addition to
being theoretically superior, it also outperforms its main competitors in practice,
in both quality of results and efficiency.

The rest of the paper is organized as follows.We start by reviewing the related work
in Sect. 2. In Sect. 3 we define our problem, and in Sect. 4 we present an overview of
background techniques that our approach relies upon. Our method is presented in
Sect. 5, while the experimental evaluation of our algorithm and the comparison with
state-of-the-art methods is provided in Sect. 6. Finally, Sect. 7 is a short conclusion. For
convenience of presentation the proofs of the main claims are given in the Appendix.

2 Related work

2.1 Dense-subgraph discovery

As already discussed, the problem of finding dense subgraphs, and its variations,
have been extensively studied in the theoretical computer science and graph mining
communities. The complexity of the problem depends on the exact formulation. The
quintessential dense graph is the clique, but finding large cliques is a very hard prob-
lem (Håstad 1996). On the other hand, if density is defined as the average degree of
the subgraph, the problem becomes polynomial. This was observed early on by Gold-
berg, who gave an algorithm based on a transformation to the minimum-cut problem
(Goldberg 1984). For the same problem, Asahiro et al. (1996) and Charikar (2000)
provided a greedy linear-time factor-2 approximation algorithm, making the problem
tractable for very large datasets.

The previous algorithms do not put any constraint on the size of the densest sub-
graph. Requiring the subgraph to be of a certain size makes the problem NP-hard.
Feige et al. show that, for a fixed k, the problem of asking for the dense subgraph of
size exactly k can be approximated within a factor ofO(|V |α), for α < 1

3 (Feige et al.
2001). The problems of asking for a densest subgraph of size at most k or at least k
are alsoNP-hard, and the latter problem can be approximated within a constant factor
(Andersen and Chellapilla 2009; Khuller and Saha 2009).
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Other notions of density have been considered. Tsourakakis et al. provide algo-
rithms for the problem of finding α-quasicliques and evidence that such subgraphs
are, in practice, “more dense than the densest subgraph” (Tsourakakis et al. 2013).
Recently, Tsourakakis showed that finding triangle-dense subgraphs is also a polyno-
mial problem, and gave a faster approximation algorithm (Tsourakakis 2015) similar
to Charikar’s approach (2000).

All of the above papers focus on the problem of finding a single densest sub-
graph. Seeking to find the top-k densest subgraphs is a much less studied problem.
Tsourakakis et al. (2013) address the question, but they only considered the naïve
algorithm outlined in the introduction—remove and repeat. Balalau et al. (2015) are
the first to study the problem formally, and demonstrate that the naïve remove-and-
repeat algorithm performs poorly. Their problem formulation is different than ours, as
they impose a hard constraint on overlap. Their algorithm is also greedy, like ours, but
there is no theoretical guarantee. On the other hand, our formulation allows to prove
an approximation guarantee for the problem of top-k overlapping densest subgraphs.
Furthermore, our experimental evaluation shows that our algorithm finds denser sub-
graphs for the same amount of overlap.

Finally, extracting top-k communities that can be described by conjunctions of
labels was suggested by Galbrun et al. (2014). In this setup, the communities can
overlap but an edge can be assigned to only one community. In addition, a community
should be described with a label set. However, the algorithm can be easily modified
such that it operates without labels and we use this modified algorithm as one of our
baselines.

2.2 Community detection

Community detection is one of the most well-studied problems in data mining. The
majority of the works deal with the problem of partitioning a graph into disjoint com-
munities. A number of different methodologies have been applied, such as hierarchical
approaches (Girvan and Newman 2002), methods based on modularity maximization
(Blondel et al. 2008; Clauset et al. 2004; Girvan and Newman 2002; White and Smyth
2005), graph theory (Flake et al. 2000), random walks (Pons and Latapy 2006; van
Dongen 2000; Zhou and Lipowsky 2004), label propagation (van Dongen 2000), and
spectral graph partitioning (Karypis andKumar 1998; NgAndrew et al. 2001; Luxburg
2007). A popular suite of graph-partitioning algorithms, which is accompanied by
high-quality software, includes the Metis algorithm (Karypis and Kumar 1998). The
Metis algorithm is one of the baselines against which we benchmark our approach in
our experimental evaluation.

A considerable amount of work has also been devoted into the problem of find-
ing overlapping communities. Different methods have been proposed to address this
problem, relying on clique percolation (Palla et al. 2005), extensions to themodularity-
based approaches (Chen et al. 2014; Gregory 2007; Pinney andWesthead 2006), label
propagation (Gregory 2010; Xie et al. 2011), analysis of ego-networks (Coscia et al.
2012), game theory (Chen et al. 2010), non-negative matrix factorization (Yang and
Leskovec 2013) or edge clustering (Ahn et al. 2010). A comprehensive survey on the
topic of overlapping community detection has been compiled by Xie et al. (2013).
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Our problem formulation is different than most existing work in community detec-
tion, as we focus solely in subgraph density, while typically community-detection
approaches consider a combination of high density inside the communities and small
cuts across communities. In fact, there has been experimental evidence that most
real-world networks do not exhibit such structure of dense and relatively isolated
communities (Leskovec et al. 2009). To contrast our approach with methods for over-
lapping community detection, we experimentally compare our algorithm with Links,
a state-of-the-art method by Ahn et al. (2010).

3 Preliminaries and problem definition

Throughout the paper we consider a graph G = (V, E), where V is a set of vertices
and E is a set of undirected edges. Given a subset of vertices W ⊆ V, we write

E(W ) = {(u, v) ∈ E | u, v ∈ W } ,

for the edges of G that have both end-points in W, and G(W ) = (W, E(W )) for the
subgraph induced by W.

As we are interested in finding dense subgraphs of G, we need to adopt a notion of
density.

Definition 1 The density of a graph G = (V, E) is defined as dens(G) = |E |/|V |.
Note that dens(G) is half of the average degree of G. If the graph G = (V, E) is
known from the context and we are given a subset of vertices W ⊆ V, we define the
density ofW by dens(W ) = dens(G(W )) , that is, the density of the induced subgraph
G(W ).Additionally, we refer to the set X ⊆ V that maximizes dens(X) as the densest
subgraph of G.

Next we define the density of a collection of subsets of vertices.

Definition 2 Given a graph G = (V, E) and a collection of subsets of verticesW =
{W1, . . . ,Wk} , Wi ⊆ V, we define the density of the collection W to be the sum of
densities of the individual subsets, that is,

dens(W) =
k∑

i=1

dens (Wi ) . (1)

Example 1 Consider the graph given in Fig. 2 with three subgraphs W = {W1, W2,

W3}. The collective density of W is then equal

dens(W) = dens (W1) + dens (W2) + dens (W3) = 6

4
+ 3

3
+ 5

4
= 15

4
.
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Our goal is to find a set of subgraphs W with high density dens(W) . At the same
timewewant to allow overlaps among the subgraphs ofW.Allowing overlaps without
any restriction is problematic though, as the obvious solution is to find the densest
subgraph of G and repeat it k times. Therefore we need a way to control the amount
of overlap among the subgraphs ofW. To control overlaps we use a distance function
defined over subsets of vertices. Let d: 2V ×2V → R+ denote such a distance function.
We are then asking to find a set of subgraphs W so that the overall density dens(W)

is high, and the subgraphs inW are far apart, according to the distance function d.

More precisely, the problem definition that we work with in this paper is the fol-
lowing.

Problem 1 (Dense-Over-lapping-Sub-graphs) Given a graph G = (V, E), a dis-
tance function d over subsets of vertices, a parameter λ, and an integer k, find k
subgraphsW = {W1, . . . ,Wk} , Wi ⊆ V, which maximize a combined reward func-
tion

r(W) = dens(W) + λ

k∑

i=1

k∑

j=i+1

d
(
Wi , Wj

)
.

A few remarks on our problem definition. First note that the parameter λ is nec-
essary as the two terms that compose the reward function, density and distance, are
quantitatively and qualitatively different. Even if one normalizes them to take values
in the same range, say, between 0 and 1, they would still not be directly comparable.
In fact, the parameter λ provides a weight between density and distance. A small
value of λ places the emphasis on density and gives solutions with high overlap, but
as λ increases the subgraphs of the optimal solution need to be more distant, at the
expense of the density term. In our experimental evaluation we illustrate the effect
of the parameter λ by drawing a “profile” of the solution space. By displaying the
evolution of the two terms of the reward function as λ varies, such plots also allow to
select meaningful values for this parameter.

Second, observe that we are not asking to assign every vertex of V in a subgraph
of W. The fraction of vertices assigned to at least one subgraph is controlled by
both parameters λ and k. The higher the value of λ, the less overlap between the
subgraphs, and thus, the higher the coverage. Similarly, the higher the value of k, the
more subgraphs are returned, and thus, coverage increases.

Finally, we restrict the family of functions used to define the distance between
subgraphs. As is common, we work with metric and relaxed-metric functions.

Definition 3 Assume a function d mapping pairs of objects to a non-negative real
number. If there is a constant c ≥ 1 such that (i) d(x, y) = d(y, x) , (ii) d(x, x) = 0,
and (iii)

d(x, y) ≤ c(d(x, z) + d(z, y)),

we say that the function d is a c-relaxed metric. If (iii) holds for c = 1, the function
d is a metric.

123



Top-k overlapping densest subgraphs 1141

The distance function we use to measure distance between subgraphs in this paper
is a metric. However, our approach applies more generally to any c-relaxed metric.
We formulate our results in their generality, so that the dependency on the parameter
c of a c-relaxed metric becomes explicit.

4 Overview of background methods

In this section we provide a brief overview of some of the fundamental concepts and
algorithmic techniques that our approach relies upon.

4.1 The densest-subgraph problem

We first discuss the problem of finding the densest subgraph, according to the average-
degree density function, given in Definition1. This problem of finding the densest-
subgraph canbe solved inpolynomial time.Anelegant solution that involves amapping
to a series of minimum-cut problems was given by Goldberg (1984). However, since
the fastest algorithm to solve the minimum-cut problem runs in O(|V ||E |) time, this
approach is not scalable to very large graphs. On the other hand, there exists a linear-
time algorithm that provides a factor-2 approximation to the densest-subgraph problem
(Asahiro et al. 1996; Charikar 2000). This is a greedy algorithm, which starts with the
input graph, and iteratively removes the vertex with the lowest degree, until left with
an empty graph. Among all subgraphs considered during this vertex-removal process,
the algorithm returns the densest. Hereinafter, we refer to this greedy algorithm as the
Charikar algorithm.

4.2 Max-sum diversification

Our approach is inspired by the results of Borodin et al. (2012) for the max-sum
diversification problem, which, in their general form, extend the classic Nemhauser et
al. approximation results (1978) for the problemof submodular functionmaximization.
A brief description of the problem setting and the methods of Borodin et al. follows.

LetU be a ground set, let d:U ×U → R+ be ametric distance function over pairs
ofU, and f : 2U → R+ be amonotone submodular function over subsets ofU. Recall
that a set function f : 2U → R is submodular if for all S ⊆ T ⊆ U and u /∈ T we
have f (T ∪ {u}) − f (T ) ≤ f (S ∪ {u}) − f (S) (Schrijver 2003). Also the function
f is monotonically increasing if for all S ⊆ T ⊆ U f (T ) ≥ f (S) holds. For the rest
of the paper, we write monotone to mean monotonically increasing.

The max-sum diversification problem is defined as follows.

Problem 2 (Max-sum diversification) Let U be a set of items, f : 2U → R+ a
monotone submodular function on subsets of U, and d:U × U → R+ a distance
function on pairs of U. Let k be an integer and λ ≥ 0. The goal is to find a subset
S ⊆ U that maximizes
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f (S) + λ
∑

{x, }: x, y∈S
d(x, y), subject to |S| = k.

Here, λ is a parameter that specifies the desired trade-off between the two objectives
f (·) andd(·, ·).Borodin et al. (2012) showed that under the conditions specified above,
there is a simple linear-time factor-2 approximation greedy algorithm for the max-sum
diversification problem. The greedy algorithmworks as follows. For any subset S ⊆ U
and any element x /∈ S the marginal gain is defined as

φ(x; S) = 1

2
(f (S ∪ {x}) − f (S)) + λ

∑

y∈S
d(x, y) . (2)

The greedy starts with the empty set S = ∅ and proceeds iteratively. In each iteration
it adds to S the element x which is currently not in S and maximizes the marginal gain
φ(x; S) . Note that due to the 1/2-factor in the first term, φ(x; S) is not equal to the
actual gain of the score upon adding x to S.The algorithm stops after k iterations, when
the size of S reaches k.As already mentioned, this simple greedy algorithm provides a
factor-2 approximation to the optimal solution of themax-sumdiversification problem.

5 The proposed method

As suggested in the previous section, our method for solving Problem1 and finding
dense overlapping subgraphs relies on the techniques developed for themax-sumdiver-
sification problem. First note that, in theDense- Overlapping- Subgraphs problem,
the role of function f is taken by the density function dens. The density of a collection
of subgraphs is a simple summation (Definition2) therefore it is clearly monotone and
submodular.

The other components needed for applying the method of Borodin et al. (2012) in
our setting are not as simple. A number of challenges need to be addressed:

(1) While in the max-sum diversification problem we are searching for a set of ele-
ments in a ground set U, in the Dense- Overlapping- Subgraphs problem we
are searching for a collection of subsets of vertices V . Thus, U = P(V ) (the
powerset of V ) and the solution space is

(P(V )
k

)
.

(2) Adapting the max-sum diversification framework discussed in the previous sec-
tion requires selecting the item in U that maximizes the marginal gain φ in each
iteration of the greedy algorithm. Since U is now the power-set of V, the mar-
ginal gain computation becomes φ(W, W) , where W is a subset of vertices, and
W is the set of subgraphs previously selected by the greedy algorithm. Find-
ing the subgraph W that maximizes the marginal gain now becomes a difficult
computational problem. Thus, we need to extend the framework to deal with the
possibility that we are only able to find a subgraph that maximizes the marginal
gain approximately.

(3) We need to specify the distance function d·, · that will be used to measure over-
lap between subsets of vertices. There are many natural choices, but not all are
applicable to the general max-sum diversification framework.
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Challenges (2) and (3) are intimately connected. The problem of finding the set of
vertices that maximizes the marginal gain φ in each iteration of the greedy algorithm
crucially depends on the distance function d chosen for measuring distance between
subgraphs. Part of our contribution is to show how to incorporate a distance function,
which, on the one hand, is natural and intuitive, and, on the other hand, makes the
marginal gain-maximization problem tractable. We present our solution in Sect. 5.2.

But before, we discuss how to extend the greedy algorithm in order to deal with
approximations of the marginal gain-maximization problem and with c-relaxed met-
rics.

5.1 Extending the greedy algorithm

Consider the Max- Sum- Diversification problem, defined in Problem2. To sim-
plify notation, if X and Y are subsets of U we define

d(X, Y ) =
∑

x∈X

∑

y∈Y
d(x, y) and d(X) = 1

2

∑

x, y∈X
d(x, y) ,

so, the objective function in Problem2 can be written as

r(S) = f (S) + λd(S) .

The algorithm of Borodin et al. (2012), discussed in the previous section, is referred
to as Greedy. As already mentioned, Greedy proceeds iteratively: in each iteration
it needs to find the item x∗ of U that maximizes the marginal gain with respect to the
solution set S found so far. The marginal gain is computed according to Eq. (2). The
problem is formalized below.

Problem 3 (Gain) Given a ground setU, a monotone, non-negative, and submodular
function f , a c-relaxed metric d, and a set S ⊆ U, find x ∈ U \ S maximizing

φ(x; S) = 1

2
(f (S ∪ {x}) − f (S)) + λd({x} , S) .

Now consider the case where the Gain problem cannot be solved optimally, but
instead an approximation algorithm is available. In particular, assume that we have
access to an oracle that solves Gain with an approximation guarantee of α. In this
case, the Greedy algorithm still provides an approximation guarantee for the Max-
Sum- Diversification problem. The quality of approximation of Greedy depends
on α as well as the c parameter of the c-relaxed metric d. We prove the following
proposition in Appendix.

Proposition 1 Given a non-negative, monotone and submodular function f , a c-
relaxed metric d, and an oracle solving Gain with an approximation guarantee of
α, the Greedy algorithm yields an approximation guarantee of α/(2c).
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5.2 Greedy discovery of dense subgraphs

We now present the final ingredients of our algorithm: (i) defining a metric between
subsets of vertices, and (ii) formulating the problem of maximizing marginal gain,
establishing its complexity, and giving an efficient algorithm for solving it. We first
define the distance measure between subgraphs.

Definition 4 Assume a set of vertices V . We define the distance between two subsets
X, Y ⊆ V as

D(X, Y ) =
{
2 − |X∩Y |2

|X ||Y | if X �= Y,

0 otherwise.

The distance function D resembles very closely the cosine distance (1 − cosine simi-
larity), but unlike the cosine distance, the distance function D is a metric.

Proposition 2 The distance function D is a metric.

Proof Clearly, D is symmetric and D(X, X) = 0. To prove the triangle inequality
consider X, Y, Z ⊆ V . It is easy to see that the triangle inequality holds if at least
two of the three sets are identical. So, assume that X, Y, and Z are all distinct. Note
that 0 ≤ 1 − |X∩Y |2

|X ||Y | ≤ 1. This gives

D(X, Y ) ≤ 2 ≤ D(X, Z) + D(Z , Y ) ,

which is the desired inequality. �

Example 2 Let us consider again the graph given in Fig. 2 withW = {W1, W2, W3}.
We already know that dens(W) = 15/4. Let us adopt D as our metric. Then we have

D (W1, W2) = D (W2, W3) = 2 − 1

3 × 4
= 23

12
,

and D(W1, W3) = 2. We can now compute the reward of W, r(W) = 15
4 +

λ
(
2 + 2 × 23

12

)
.

Next we formulate the problem of selecting the set of vertices that maximizes the
marginal gain, in the iterative step of the greedy process, given a set of subgraphs
selected so far. The following problem statement specializes Problem3 in the context
of theDense- Overlapping- Subgraphs problem.We denote themarginal gain with
χ(·; ·) , instead of φ(·; ·) , to emphasize that it is a function of a vertex set given a
collection of vertex sets.

Problem 4 (Dense subgraphs) Given a graph G = (V, E) and a collection of vertex
sets W = {W1, . . . ,Wk}, Wi ⊆ V, find a set of vertices U ⊆ V and U /∈ W
maximizing the marginal gain

χ(U ; W) = 1

2
dens(U ) + λD({U }, W) = 1

2
dens(U ) + λ

∑

W∈W
D(U, W ) .
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Example 3 Let us consider again the graph given in Fig. 2. Set W ′ = {W1, W2} and
consider adding W3. In this case, the gain is equal to

χ
(
W3; W ′) = 1

2
dens (W3) + λ (D (W3, W1) + D (W3, W2))

= 1

2
× 5

4
+ λ

(

2 + 23

12

)

.

We should stress that χ
(
W3; W ′) is not equal to the difference in rewards

r
(W ′ ∪ {W3}

) − r
(W ′) . This is due to the 1/2-factor in the density term.

In the definition of the Dense- Subgraph problem, dens is the density function
given in Definition1, whileD is the subgraph distance function defined above. Had the
term λD(·, ·) been absent from the objective, the Dense- Subgraph problem would
have been equivalent with the densest-subgraph problem, discussed in Sect. 4. In that
case, the problem could be solved in polynomial time with Goldberg’s algorithm, or
approximated efficiently with Charikar’s algorithm.

However, as we show next, adding the λD(·, ·) term in the objective changes the
complexity of the problem. Inotherwords, in contrast to the densest-subgraphproblem,
Dense- Subgraph is not solvable in polynomial time.

Proposition 3 Dense- Subgraph is NP-hard.

Proof We consider the decision version of the problem. The problem is obviously
in NP. To prove the completeness, we will use Regular- Clique. An instance of
Regular- Clique consists of a regular graph (all vertices have the same degree) and
an integer c. We are then asked to decide whether the graph contains a clique of size
at least c (Garey and Johnson 1979).

Assume that we are given a d-regular graph G = (V, E) with n = |V | and
m = |E |, and an integer c > 2. Define W as follows: for each (x, y) /∈ E, add a set
{x, y} toW. Finally, set λ = m.

LetU be a subgraph and let p = (|U |
2

)−|E(U )| be equal to the number of non-edges
in U. A straightforward calculation shows that the gain χ(U ; W) can be written as

χ(U ; W) = |E(U )|
2|U | + 2λ|W| − λ(n − d)

1

2
− λp

|U | .

If we assume thatU is a singleton set {u}, then the gain is equal to χ({u}; W) = α =
2λ|W | − λ(n − d)/2.

Let U be the subgraph with the optimal gain. Assume that p ≥ 1. Then, since
|E(U )| ≤ m = λ the gain is at most α − m/(2|U |), which is less than the gain of a
singleton. Hence, p = 0 and the gain is equal to (|U | − 1)/4 + α. Hence, U will be
the largest clique. It follows that the graph G contains a clique of size c if and only if
Dense- Subgraph has a solution for which the gain is at least (c − 1)/4 + α. �


Despite this hardness result, it is still possible to devise an approximation algorithm
for the Dense- Subgraph problem. Our algorithm, named Peel, is a variant of the

123



1146 E. Galbrun et al.

Algorithm 1: DOS; Algorithm for finding top-k overlapping densest subgraphs
(problem Dense- Overlapping- Subgraphs)
Input: G = (V, E), λ, k
Output: set of subgraphsW s.t. |W| = k and maximizing r(W)

1 W ← ∅ ;
2 foreach i = 1, . . . , k do W ← W ∪ Peel(G, W, λ) ;
3 return W ;

Algorithm 2: Peel; finds a dense subgraph U of the graph G, overlapping with
a collection of previously discovered subgraphs W.

Input: G = (V, E), W, λ

Output: U maximizing χ(U ; W)

1 Vn ← V ;
2 foreach i = n, . . . , 2 do

3 v ← argminv

{

deg(v; Vi ) − 4λ
∑

Wj�v

∣
∣Vi∩Wj

∣
∣

∣
∣Wj

∣
∣

}

;

4 Vi−1 ← Vi \ {v};
5 foreach i = 1, . . . , n do
6 if Vi ∈ W then Vi ← Modify(Vi , G, W, λ)

7 return argmaxVj

{
χ

(
Vj ; W

)}
;

Charikar algorithm for the densest-subgraph problem. Peel, similar to Charikar,
starts with the whole graph and proceeds iteratively, removing one vertex in each step.
Peel stops when there is no vertex left, and it returns the set of vertices that maximizes
the gain function, selected among all vertex sets produced during the execution of the
algorithm.

Peel has two main differences when compared to Charikar. First, instead of
removing the minimum-degree vertex in each iteration, Peel removes the vertex that
minimizes the following adjusted degree expression

deg (v; Vi ) − 4λ
∑

Wj�v

∣
∣Vi ∩ Wj

∣
∣

∣
∣Wj

∣
∣

.

Here Vi stands for the set of vertices that constitute the candidate in the current
iteration—after removing some vertices in earlier iterations. The intuition for using
this adjusted degree is to lower the gain associated to vertices that belong to subgraphs
selected in earlier steps of the greedy process. Indeed, we want to favor high-degree
vertices but we want to penalize such vertices that are contained in previously selected
subgraphs and thereby generate overlap with (i.e., reduce the distance to) the current
subgraph. A further difficulty is that we do not know the current subgraph (since we
are currently searching for it!) so we use as a proxy the set of vertices still contained
in the candidate at that step (Vi ). Despite making this seemingly crude approximation,
as we will see shortly, the Peel algorithm provides an approximation guarantee to the
Dense- Subgraph problem.
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Algorithm 3: Modify; modifies U if U ∈ W
Input: U, G, W, λ

Output: modified U
1 X ← {U ∪ {x} | x /∈ U, U ∪ {x} /∈ W};
2 Y ← {U \ {y} | y ∈ U, U \ {y} /∈ W};
3 if X = ∅ and dens(U ) ≤ 5/3 then
4 U ← {a wedge of size 3 not inW};
5 else
6 U ← argmaxC∈X∪Y {χ(C; W)};
7 return U ;

The second difference between Peel and Charikar is the following: it is possible
that Peel returns a subgraph that has been selected previously. This could happen
if the value of the parameter λ is small compared to dense subgraphs that may be
present in the input graph. When Peel returns a previously-selected subgraph U, it is
sufficient tomodify U : we can either add one vertex, remove one vertex, or just replace
U with a trivial subgraph of size 3; among all these options we select the best solution
according to our marginal gain objective χ. A detailed description of this process is
given in Algorithm3.

For the quality of approximation of Peel, which is detailed in Algorithm2, we can
show the following result, which is proved in Appendix.

Proposition 4 Assume that we are given a graph G = (V, E), a collection of previ-
ously discovered vertex sets W and λ > 0. Assume that |W| < |V | and G contains
more than |W| wedges, i.e., connected subgraphs of size 3. Then Peel yields 2/10
approximation for Dense- Subgraph.

The approximation guarantee of 2/10 is rather pessimistic due to pathological cases,
and we can obtain a better ratio if we consider these cases separately. In particular,
if Peel does not call Modify, then the approximation ratio is 1/2. If X �= ∅ during
Modify, then the approximation ratio is at least |U |

2(|U |+1) , otherwise the ratio is at least
2/10.

We note that the main function of Modify is to allow us to prove a worst-case
approximation guarantee; i.e., for all possible values of λ. In practice, if Modify is
called for a certain value of λ, the user should perceive this as a signal that λ is too
small (as overlaps are not penalized enough) and should increase it.

5.3 The DOS algorithm

Finally, we consider the specialization of the genericGreedy algorithm studied above
for the problem at hand in this paper. To obtain an algorithm for the Dense- Over-
lapping- Subgraphs problem, we instantiate f and d with functions whose domains
consist of collections of vertices. Specifically, we let f = dens and d = D. The result-
ing overall algorithm for the Dense- Overlapping- Subgraphs problem, named
DOS, is shown as Algorithm1. By combining Propositions1 and 4 we obtain the
following result.
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Theorem 1 DOS is an 1
10 -approximation algorithm for the Dense- Overlapping-

Subgraphs problem.

5.4 Computational complexity

DOS consists of k successive runs of Peel, iteratively removing the vertex with mini-
mum adjusted degree. To perform this operation fast, vertices are stored into separate
worker queues according to the previous subgraphs they belong to. Since such vertices
incur the same distance penalty, we keep the queues sorted by degree. There are at
most t = min{2k, |V |} such queues. In practice, the number is much smaller. To find
the next vertex, we compare the top vertex of every worker queue. The search can be
done in O(t) time. Upon deletion of a vertex, updating a single adjacent vertex in a
worker queue can be done in constant time,1 while updating the distance penalties can
be done in O(k) time. If we are forced to call Modify, then finding the best subgraph
in X and Y can be done in O(|E | + |V |k) time. In a rare pathological case we are
forced to return a wedge. We can do this by first computing k wedges before invoking
DOS. If we ever need a wedge, we simply select a wedge from this list that is not yet
inW. Consequently, we can execute DOS in O(k(|E | + |V |(t + k))) time.

6 Experiments

In this section we report on the experimental evaluation of our proposed algorithm
DOS. Our python implementation of theDOS algorithm is publicly available online.2

First, we explore the behavior of the algorithms in a controlled setting, using syn-
thetic networkswith planted ground-truth subgraphs. Then, we evaluate the algorithms
on real-world networks for which the ground-truth is not accessible. In these two parts,
we use different evaluation measures, as required by the distinct goals of the two sce-
narios.

6.1 Algorithms

In both parts, our primary baseline is theMAR algorithm recently proposed by Balalau
et al. (2015). Similarly to our approach, their goal is to extract dense overlapping
subgraphs while controlling the Jaccard coefficient between the discovered subgraphs.

BothmethodsMAR andDOS allow/require to adjust the overlap permitted between
subgraphs in the solution. InMAR, this is done by fixing a strict maximum threshold
for the Jaccard coefficient between two subgraphs, while inDOS, by setting the value
of the parameter λ, which balances density and distance.

For DOS, note that the density of subgraphs vary from dataset to dataset, while
the distance function D is always below 2. Consequently, in practice it is easier to set

1 Here we use the fact that edges are not weighted, and consequently the queue can be implemented as an
array of linked lists of vertices.
2 http://research.ics.aalto.fi/dmg/dos_code.tgz.
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the value of λ relative to the density of the first subgraph discovered by the algorithm.
Note that when extracting the first subgraph, λ has no effect since the distance part
of the score given in Problem4 is 0. Thus, when running the algorithm we provide a
value β and we set λ = βdens(W1) .

ForMAR, we denote the Jaccard threshold by σ . Note that larger values of σ result
in increased overlap withMAR but larger values of β reduce overlap with DOS.

6.2 Finding planted subgraphs

In the first part of our experiments, we consider synthetic networks and evaluate how
well the algorithms are able to recover planted ground-truth subgraphs.

6.2.1 Datasets

Our synthetic networks are generated as follows: each network consists of a backbone
of five subsets of vertices. We generate networks both with and without overlaps. In
networks without overlap, the subgraphs simply consists of five disjoint subsets of 30
vertices. In configurations with overlap, the subgraphs are arranged in a circle, they
are assigned 20 vertices of their own plus 10 vertices shared with the subgraph on one
side and 10 shared vertices with the other side.

We consider two families of networks depending on whether connections are gen-
erated using the Erdős–Rényi model with fixed densities between 0.6 and 0.9, or using
the Barabási–Albert preferential attachment model.

This way, we obtain four types of noise-free networks. We also consider noisy
variants, that is, networks where noise is added on top of the backbone. Specifically,
we double the number of vertices in the network by adding new vertices that do not
belong to any of the subsets, and the connections are flipped with the probability of
0.01.

For each of the eight configurations, we generate ten synthetic networks, each
containing five planted subgraphs.3

6.2.2 Statistics

We adopt an approach similar to Yang and Leskovec (2012) and compare the sets of
subgraphs detected by the algorithms to the planted ground-truth using the following
measures.

NMI : the Normalized Mutual Information between the ground-truth and the
detected subgraphs,

F1[t/d]: the average F1-score of the best-matching ground-truth subgraph to each
detected subgraph (“truth to detected”),

F1[d/t]: the averageF1-score of the best-matching detected subgraph to each ground-
truth subgraph (“detected to truth”),

3 The synthetic networks used in our experiments are available at http://research.ics.aalto.fi/dmg/dos_synth.
tgz.
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(�): theOmega index, i.e., the fraction of vertex pairs that share the same number
of communities in the solution and the ground-truth.

Each of these four measures takes value between 0 and 1, with values closer to 1
indicating highest similarity between the detected subgraphs and the planted ground-
truth.

6.2.3 Results

The averages of these statistics over ten datasets for each configuration are shown in
Table1. We observe that theMAR algorithm performs better in the absence of overlap
and noise, and is able to recover the ground truth perfectly in the case of the Erdős–
Rényi graphs. This result can be explained by the fact that MAR handles overlaps
with a hard constraint. However, our method is clearly superior when the backbone
communities overlap, and also more resistant to noise, that is, for graphs that resemble
better real-world application scenarios.

Further experiments, in a setup where the five planted subgraphs have different
sizes, show that the difference between the two algorithms is less pronounced. In
particular, in the absence of overlap and noise, the improved performance of DOS
gets closer to the relatively stable performance of MAR, while in the presence of
overlap and noise the performance of MAR is improved compared to the balanced
case and gets closer to the performance of DOS, which remains relatively stable.

6.3 Comparison on real-world networks

We now turn to an empirical evaluation of our proposed algorithm on real-world
datasets.

6.3.1 Datasets

We use the following networks.
Co-authorship networks the first dataset is the DBLP network,4 where vertices

represent researchers, and edges represent co-authorship relations.
From this co-authorship network we extract smaller instances. First, we consider

some ego-net graphs. We start with 13 high-profile computer scientists,5 and con-
sider their ego-nets of radius 2. We collectively refer to this collection of ego-nets as
DBLP.E2. Second, we consider the subgraphs induced by researchers who have pub-
lished in the ICDM and KDD conferences, respectively, giving rise to two networks
that form the DBLP.C dataset.

The remaining collections consist of networks distributed via the Stanford network
analysis project.6

4 http://dblp.uni-trier.de/xml/.
5 Namely, S. Abiteboul, E. Demaine, M. Ester, C. Faloutsos, J. Han, G. Karypis, J. Kleinberg, H. Mannila,
K. Mehlhorn, C. Papadimitriou, B. Shneiderman, G. Weikum and P. Yu.
6 http://snap.stanford.edu.
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Table 1 Performance of DOS and MAR on synthetic data

Methods Parameter NMI F1[t/d] F1[d/t] � NMI F1[t/d] F1[d/t] �

Erdős–Rényi Barabási–Albert

No overlap, noise-free

DOS 2.0 0.94 0.95 0.93 0.95 0.96 0.87 0.86 0.91

1.0 0.94 0.96 0.96 0.95 0.65 0.75 0.79 0.73

0.5 0.93 0.97 0.97 0.93 0.70 0.64 0.76 0.80

MAR 0.1 1.00 1.00 1.00 1.00 1.00 0.92 0.92 0.95

0.5 1.00 1.00 1.00 1.00 0.81 0.54 0.81 0.88

0.75 0.92 0.82 0.97 0.94 0.79 0.54 0.85 0.86

No overlap, noisy

DOS 2.0 0.84 0.83 0.72 0.87 0.72 0.71 0.69 0.93

1.0 0.69 0.87 0.81 0.62 0.66 0.65 0.70 0.95

0.5 0.81 0.91 0.90 0.95 0.57 0.61 0.68 0.93

MAR 0.1 0.90 0.93 0.88 0.98 0.98 0.90 0.89 0.98

0.5 0.88 0.93 0.92 0.98 0.57 0.67 0.76 0.93

0.75 0.74 0.83 0.87 0.94 0.45 0.57 0.73 0.92

With overlap, noise-free

DOS 2.0 0.27 0.72 0.72 0.41 0.34 0.71 0.69 0.75

1.0 0.27 0.82 0.79 0.20 0.33 0.72 0.73 0.75

0.5 0.25 0.87 0.83 0.22 0.24 0.70 0.72 0.66

MAR 0.1 0.19 0.56 0.51 0.51 0.24 0.56 0.56 0.68

0.5 0.28 0.66 0.70 0.44 0.12 0.58 0.60 0.68

0.75 0.22 0.71 0.72 0.33 0.04 0.53 0.56 0.63

With overlap, noisy

DOS 2.0 0.26 0.58 0.54 0.45 0.34 0.67 0.64 0.93

1.0 0.28 0.74 0.72 0.79 0.31 0.68 0.69 0.92

0.5 0.26 0.87 0.84 0.79 0.21 0.65 0.67 0.90

MAR 0.1 0.16 0.53 0.27 0.84 0.16 0.49 0.37 0.87

0.5 0.12 0.56 0.51 0.83 0.11 0.56 0.58 0.91

0.75 0.04 0.53 0.51 0.79 0.03 0.51 0.54 0.89

Bold numbers indicate best performance
For each dataset, we compare the detected subgraphs to the ground truth using the normalized mutual
information (NMI), F1 scores (F1[t/d] and F1[d/t]) and Omega index (�)

Social circles ego-nets collected from Google+ users who have shared their circles
are divided into two collections. The first one, G+.S, contains relatively small ego-
nets, having fewer than 42,000 edges, while the second, G+.L, contains ego-nets with
larger numbers of edges. The FB collection contains 10 ego-nets representing friend
lists from Facebook.

Location-based social networks we also consider a collection of location-based
networks from Brightkite and Gowalla, two websites that allow there users to share
their location. We extract smaller instances by applying the following procedure: we
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Table 2 Datasets statistics

Sets #G |E | |V | dens(G)

Min Max Avg Min Max Avg Min Max Avg

DBLP.E2 13 1427 13,251 6435.77 721 4598 2197.38 1.98 3.69 2.84

DBLP.C 2 10,689 11,208 10,948.50 2891 3140 3015.50 3.40 3.88 3.64

G+.S 41 204 41,123 13,146.22 35 1842 479.34 3.75 68.52 23.48

G+.L 22 42,810 176,691 96,124.32 1007 3799 1840.68 15.85 103.28 55.05

FB 10 146 30,025 8508.70 52 1034 408.90 2.81 40.19 14.31

BKGW 12 555 218,434 46,152.67 358 46,942 11,785.25 1.55 5.38 3.29

XL 4 1,992,636 11,095,298 5,099,402.25 281,903 1,696,415 997,230.25 2.63 7.07 5.29

For each dataset, we indicate how many graphs it consists of (#G), the number of edges (|E |) and vertices
(|V |), as well as the density (dens(G)) across all graphs in the collection

assign each user to their most frequent location and divide the network into 8 broad
geographic areas.7 We denote this collection of 16 networks as BKGW.

Large graphsfinally, denoted byXL, we consider a number of large graphs that were
used by Balalau et al. (2015): web graphs from Stanford and Google, the YouTube
social network, and the internet topology graph from Skitter.

Statistics on all datasets are provided in Table2.

6.3.2 Statistics

Againwe compare our algorithm to itsmain competitor, theMAR algorithm.We apply
both algorithms on every dataset to extract the top-k overlapping subgraphs, while
varying the overlap parameters β and σ . For each run we obtain a set of subgraphs
W = {W1, . . . ,Wk}. In some cases, MAR returns fewer than k subgraphs, therefore
|W| can be smaller than k.

For each solution W, we compute its coverage, that is, the ratio of vertices that
belong to at least one subgraph C(W) = ∣

∣∪k
i=1Wi

∣
∣/|V |, the average size of the

subgraphs |W | and the average vertex multiplicity over covered vertices, where the
multiplicity of vertex v, denoted as μ(v) , is the number of subgraphs it belongs to.

In addition, for each solution we compute (i) the average density dens(Wi ) over all
subgraphs, (ii) the average distance D

(
Wi , Wj

)
over all pairs of subgraphs, (iii) the

average Jaccard distance

J
(
Wi , Wj

) = 1 −
∣
∣Wi ∩ Wj

∣
∣

∣
∣Wi ∪ Wj

∣
∣
,

over all pairs of subgraphs, and (iv) the modularity

Q(W) = 1

2|E |
∑

W∈W

∑

u, v∈W

(

Auv − δ(u)δ(v)

2|E |
)

1

μ(u)μ(v)
,

7 Namely, Oceania, Latin-America, the USA, Europe, the Middle-East and East Asia.
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Table 3 Results for DBLP.E2, k = 20

Methods Parameter |W| dens D J Q C |W | μ(v)

DOS 1.0 20 5.09 2.00 0.99 0.098 0.71 96 1.33

0.1 20 7.59 1.93 0.90 0.034 0.50 168 3.08

0.01 20 9.72 1.50 0.49 0.008 0.24 232 9.52

0.001 20 10.01 1.06 0.06 0.003 0.11 200 15.91

MAR 0.25 20 4.64 2.00 0.98 0.142 0.63 81 1.22

0.5 20 4.97 1.96 0.93 0.111 0.66 118 1.66

0.75 20 6.28 1.85 0.81 0.066 0.49 140 2.77

0.95 20 8.82 1.55 0.52 0.017 0.21 156 6.92

For each algorithm/parameter pair we report the number of subgraphs (|W|), average density (dens), average
distance (D), average Jaccard distance (J), modularity (Q), coverage (C), average subgraph size (|W |) and
average vertex multiplicity (μ(v)) averaged across all networks in the collection

Table 4 Results for DBLP.C, k = 20

Methods Parameter |W| dens D J Q C |W | μ(v)

DOS 1.0 20 6.45 2.00 0.99 0.117 0.62 117 1.27

0.1 20 10.92 1.92 0.88 0.049 0.49 216 2.94

0.01 20 14.97 1.40 0.39 0.005 0.17 301 11.97

0.001 20 15.39 1.03 0.03 0.003 0.11 299 18.11

MAR 0.25 20 5.84 2.00 0.99 0.115 0.40 74 1.23

0.5 20 6.69 1.95 0.92 0.098 0.45 114 1.71

0.75 20 8.70 1.84 0.79 0.054 0.34 147 2.85

0.95 20 13.17 1.38 0.36 0.011 0.15 206 9.46

Columns as in Table3

where μ(v) is the number of subgraphs that vertex v belongs to, δ(v) its degree, and
A the graph adjacency matrix.

6.3.3 Results

Tables3, 4, 5 and 6 provide summaries of our experimental comparison for DBLP
and G+ datasets. We report the number of subgraphs (|W|), average density (dens),
average distance (D), average Jaccard distance (J), modularity (Q), coverage (C),
average subgraph size (|W |) and average vertex multiplicity (μ(v)) averaged across
all networks in the collection. Results for the remaining collections are similar, and
are thus omitted.

The profile of solutions obtained on five networks from different collections, for
a wide range of values of β and σ are shown in Fig. 3. Each row corresponds to the
profile of one network: the ego-net of C. Papadimitriou from DBLP.E2, the KDD
network from DBLP.C, the 1183,…,6467 ego-net from G+.S, the 1684 ego-net from
FB, and the Brightkite network of Latin-America from BKGW. The columns show
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Table 5 Results for G+.S, k = 20

Methods Parameter |W| dens D J Q C |W | μ(v)

DOS 1.0 20 11.08 2.00 0.99 0.036 0.98 37 1.71

0.1 20 42.81 1.83 0.78 0.010 0.96 130 6.38

0.01 20 67.41 1.22 0.21 0.002 0.55 172 14.67

0.001 20 68.60 1.04 0.04 0.001 0.43 168 18.53

MAR 0.25 14 13.11 1.98 0.96 0.059 0.91 36 1.29

0.5 17 16.45 1.91 0.87 0.038 0.90 42 1.91

0.75 19 27.42 1.75 0.71 0.020 0.79 62 3.55

0.95 20 55.74 1.34 0.32 0.005 0.53 121 10.81

Columns as in Table3

Table 6 Results for G+.L, k = 20

Methods Parameter |W| dens D J Q C |W | μ(v)

DOS 1.0 20 30.58 2.00 0.99 0.035 0.91 124 1.55

0.1 20 111.37 1.85 0.81 0.010 0.90 406 5.27

0.01 20 175.83 1.25 0.24 0.001 0.45 545 14.10

0.001 20 178.91 1.04 0.04 0.001 0.33 531 18.89

MAR 0.25 20 25.50 1.98 0.96 0.051 0.84 96 1.31

0.5 20 40.77 1.90 0.86 0.032 0.76 128 1.93

0.75 20 72.69 1.73 0.69 0.015 0.62 190 3.57

0.95 20 147.08 1.31 0.30 0.003 0.40 380 11.34

Columns as in Table3

the average distance (D), average Jaccard distance (J) and coverage (C) of solutions
plotted against average density (dens).

For reference, we added three points to the profiles, representing the solutions
obtained respectively with three baseline methods which do not allow to adjust the
overlap tolerance. Namely, we considered

Links: the algorithm of Ahn et al. (2010) discovers overlapping subgraphs by
performing a hierarchical clustering on the edges rather than the vertices
of the input graph. We consider the top 20 densest subgraphs returned by
this method.

Metis: we apply the popular spectral graph-partitioning algorithm by Karypis and
Kumar (1998) to obtain a complete partition of the graph vertices into k
disjoint sets.

Dense: this algorithm, used as a baseline by Galbrun et al. (2014), extracts dense
subgraphs in the same iterative process similar to the DOS algorithm but
edges are allowed to contribute to at most one subgraph and are assigned
where they benefit most.

At one end of the range of solutions returned by DOS lies the solution that corre-
sponds to setting λ = 0, i.e., focusing entirely on density. This solution consists of
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Fig. 4 Running times of DOS and MAR with different values of their overlap parameters, as well as the
three baselines, on networks of increasing sizes sampled from the seven datasets

copies of the densest subgraph. At the other end, for large values of λ, lies the solution
that does not tolerate any overlap.

Expectedly, we observe that the density of the subgraphs returned increases as
the distance decreases, that is, as more overlap is allowed, both algorithms can find
denser subgraphs. However, we note that DOS exploits the overlap allowance better,
returning subgraphs with greater average densities than MAR for similar values of
distance D and Jaccard distance. Additionally, we see that DOS tends to return larger
subgraphs and to achieve better coverage scores.

6.4 Running times

Finally, we evaluate the scalability of our method.
Figure4 shows running times for DOS and MAR, as a function of the size of

the network, measured by the number of edges, for different values of their overlap
parameters.

The same figure also provide running times for the baseline methods and we can
observe that both MAR and DOS scale better than Links and Dense but not as well
as Metis.

On average, our algorithm is faster than MAR. An added advantage is the better
stability of the running time across values of the overlap parameter, with the extreme
value σ = 0.95 resulting in much larger running time for MAR. We should also note
here that Balalau et al. (2015) offer a heuristic that is faster than MAR, but at the
expense of quality.

7 Concluding remarks

Westudied the problemof discovering dense and overlapping subgraphs.Our approach
optimizes density as well as the diversity of the obtained collection. Our solution,
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inspired by thework of Borodin et al. (2012) andCharikar (2000), is an efficient greedy
algorithmwith an approximation guarantee of 1/10.Ourmethod improves significantly
the previous work on the problem by Balalau et al. (2015). Not only do we provide an
approximation guarantee, while the baseline is a heuristic, but it also yields practical
improvements, both in terms of quality and efficiency. Our experiments, especially
Fig. 3, demonstrate that we obtain denser and more diverse subgraphs.

Our approach has two parameters: the number of subgraphs k and the parameter
λ controlling the relative importance of density and overlap. Since our method is
greedy, the problem of selecting k is somewhat alleviated as the first k subgraphs
will remain constant if we increase k. Selecting λ is more difficult as the relation
between the density and the diversity terms is not obvious. We approach this problem
by computing profiles as in Fig. 3 by varying λ and selecting values that provides a
good trade-off between density and overlap.

This work opens several new directions for future work. We have shown that a sub-
problem, Dense- Subgraph, is NP-hard, however, we did not establish the hardness
of the main problemDense- Overlapping- Subgraphs. We conjecture that it is also
NP-hard. Another open question is to improve the approximation guarantee, as well
as to study what other types of density functions and overlap distances can be used in
our framework.

Appendix: Proof of Proposition 1

Let us first define h(x; Y ) = [ f (x ∪ Y ) − f (Y )] /2 and

g(x; Y ) = h(x; Y ) + d(Y ∪ x) − d(Y ) = h(x; Y ) + d(x, Y ) .

For proving the proposition, we will need Lemma1.

Lemma 1 Let d be a c-relaxed metric. Let X and Y be two disjoint sets. Then

c(|X | − 1)d(X, Y ) ≥ |Y |d(X) .

Proof Let y ∈ Y and x, z ∈ X. By definition,

c(d(x, y) + d(z, y)) ≥ d(x, z) .

For a given x ∈ X, there are exactly |X | − 1 pairs (x, z) such that x �= z ∈ X.

Consequently, summing over all x, z ∈ X such that x �= z gives us

2c(|X | − 1)d(X, y) ≥ 2d(X) .

Summing over y ∈ Y proves the lemma. �

Proof of Proposition 1 LetG1 ⊂ · · · ⊂ Gk be the sets duringGreedy. Fix 1 ≤ i ≤ k.
Then Gi is the current solution after i th iteration of Greedy.
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Let O be the optimal solution. Write A = O ∩ Gi , C = O \ A, and B = Gi \ A.

Lemma1 implies that

c(|A| − 1)d(A, C) ≥ |C |d(A) ,

which in turn implies

|C |i(d(A) + d(A, C)) ≤ ci(|A| − 1)d(A, C) + |C |id(A, C)

= ci(|A| − 1 + |C |)d(A, C)

= ci(k − 1)d(A, C) .

Moreover, Lemma1 implies that

c(|C | − 1)d(B, C) ≥ |B|d(C) ,

c(|C | − 1)d(A, C) ≥ |A|d(C) ,

which, together with |C | = |B| + k − i, implies

|C |id(C) = (k − i)id(C) + |B|id(C)

= (k − i)(|A| + |B|)d(C) + |B|id(C)

= (k − i)|A|d(C) + |B|kd(C)

≤ c(k − i)(|C | − 1)d(A, C) + ck(|C | − 1)d(B, C)

≤ c(k − i)(k − 1)d(A, C) + ck(k − 1)d(B, C) .

Combining these two inequalities leads us to

|C |id(O) = |C |id(A) + |C |id(C) + |C |id(A, C)

≤ ck(k − 1)(d(A, C) + d(B, C))

= ck(k − 1)d (Gi , C) .

Submodularity and monotonicity imply

∑

v∈C
g (v; Gi ) =

∑

v∈C
[h (v; Gi ) + d ({v}, Gi )]

=
(

∑

v∈C
h (v; Gi )

)

+ d (C, Gi )

≥ 1

2
[ f (O) − f (Gi )] + i |C |

ck(k − 1)
d(O)

≥ 1

2
[ f (O) − f (Gk)] + i |C |

ck(k − 1)
d(O) .
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Let ui be the item added at the i+1th step,Gi+1 = {ui }∪Gi .Then, since g(ui ; Gi ) ≥
αg(v; Gi ) for any v ∈ C,

g (ui ; Gi ) ≥ α

2k
[ f (O) − f (Gk)] + iα

ck(k − 1)
d(O) .

Summing over i gives us

1

2
f (Gk) + d (Gk) =

k−1∑

i=0

g (ui ; Gi ) ≥ α

2
[ f (O) − f (Gk)] + α

2c
d(O) .

Since α ≤ 1 and c ≥ 1, we have

r (Gk) = f (Gk) + d (Gk) ≥ α

2
f (O) + α

2c
d(O) ≥ α

2c
r(O) ,

which completes the proof. �


Proof of Proposition 4

To prove the proposition we need to first show thatModify does not decrease the gain
of a set significantly.

Lemma 2 Assume a graph G = (V, E). Assume a collection of k distinct subgraphs
W of G, and letU ∈ W.Assume that k < |V | andG containsmore than k wedges, i.e.,
connected subgraphs of size 3. Let M = Modify(U, G, W, λ). Then χ(V ; W) ≥
2/5 × (χ(U, W) + λ).

Proof Write r = |U | and α = r
r+1 . We will split the proof in two cases. Case 1

assume that X, as given in Algorithm 3, is not empty. Select B ∈ X. We will show
that

dens(B) ≥ αdens(U ) and D(B, W ) ≥ α(D(U, W ) + I [U = W ]),

for anyW ∈ W,where I [U = W ] = 1 ifU = W, and 0 otherwise. This automatically
guarantees that

χ(B; W, λ) ≥ α(χ(U ; W, λ) + λ),

proving the result since α ≥ 1/2 and the gain of M is at least as good as the gain of B.

To prove the first inequality, note that

dens(B) = |E(B)|
r + 1

≥ |E(U )|
r + 1

= α
|E(U )|

r
= αdens(U ) .
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To prove the second inequality fix W ∈ W, and let p = |W |, q = |W ∩U |.
Define

Δ = D(U, W ) + I [U = W ] = 2 − q2

rp
= 2rp − q2

rp
.

Let v be the only vertex in B \ U. If v /∈ W, then D(B, W ) ≥ Δ. Hence, we can
assume that v ∈ W. This leads to

D(B, W ) = 2 − |B ∩ W |2
|B||W |

= 2 − (1 + q)2

(1 + r)p
= 2p(1 + r) − (1 + q)2

(1 + r)p
.

Let us define β as the fraction of the numerators,

β = 2p(1 + r) − (1 + q)2

2rp − q2
.

We wish to show that β ≥ 1. Since p ≥ q + 1,

β = 2p(1 + r) − (1 + q)2

2rp − q2
= 2rp − q2 + 2p − 2q − 1

2rp − q2

≥ 2rp − q2 + 2(q + 1) − 2q − 1

2rp − q2
= 2rp − q2 + 1

2rp − q2
≥ 1.

The ratio of distances is now

D(B, W )

Δ
= β

r

r + 1
≥ r

r + 1
= α.

This proves the first case.
Case 2 assume that X = ∅. Then we must have Y �= ∅ and r ≥ 2, as otherwise

|W| ≥ |V |, which violates the assumption of the lemma.
Assume that dens(U ) ≥ 5/3. Let B ∈ Y. Removing a single item of U decreases

the density by 1, at most. This gives us

dens(B)

dens(U )
≥ dens(U ) − 1

dens(U )
≥ 5/3 − 1

5/3
= 2

5
.

To bound the distance term, fix W ∈ W, and let p = |W |, q = |W ∩U |. Let v be
the only vertex in U \ V . Define Δ = D(U, W ) + I [U = W ]. If v ∈ W, then we
can easily show that D(V, W ) ≥ Δ. Hence, assume that v /∈ W. This implies that
q ≤ min p, r − 1, or q2 ≤ p(r − 1). As before, we can express the distance term as

Δ = 2 − q2

rp
= 2rp − q2

rp
,
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and

D(B, W ) = 2 − |B ∩ W |2
|B||W | = 2 − q2

(r − 1)p
= 2p(r − 1) − q2

(r − 1)p
.

The ratio is then

D(B, W )

Δ
= 2p(r − 1) − q2

2rp − q2
r

r − 1

≥ 2p(r − 1) − p(r − 1)

2rp − p(r − 1)

r

r − 1
= p(r − 1)

rp + p

r

r − 1
= r

r + 1
≥ 1/2,

where the first inequality follows from the fact that the ratio is decreasing as function
of q.

Assume that dens(U ) < 5/3. By assumption there is a wedge B outsideW. Since
dens(B) ≥ 2/3, we have dens(B) /dens(U ) ≥ 2/5. The distance terms decrease by a
factor of 1/2, since

D(U, W ) ≤ 2 = 2 × 1 ≤ 2D(B, W ) .

Combining the inequalities proves that

χ(B; W, λ) ≥ 2

5
χ(U ; W, λ) ,

which proves the lemma. �

Proof of Proposition 4 To prove the proposition, we will first form a new graph H,

and show that the density of a subgraph in H is closely related to the gain. This then
allows us to prove the statement.

Let us first construct the graph H : given a vertex v let us define

s(v) = −
∑

v∈Wj

2λ
∣
∣Wj

∣
∣
.

Let H = (V, E ′, c) be a fully connected weighted graph with self-loops where the
weight of an edge c(v, w) is

c(v, w) = I [(v, w) ∈ E] −
∑

j |v,w∈Wj

4λ
∣
∣Wj

∣
∣
,

for v �= w, and c(v, v) = s(v).

Next, we connect the gain of set of vertices U (w.r.t. G) with the weighted density
of U in H. Given an arbitrary set of vertices U, we will write c(U ) to mean the total
weight of edges in H. Each c(v, w), for v ∈ w, participates in degH (v; U ) and
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degH (w; U ), and each c(v, v) = s(v) participates (once) in degH (v; U ). This leads
to

2c(U ) =
∑

v∈U
degH (v; U ) + s(v).

We can express the (weighted) degree of a vertex in H as

degH (v; U ) = s(v) +
∑

w∈U
w �=v

c(v, w) = degG(v; U ) −
∑

j |v∈Wj

2λ
∣
∣Wj

∣
∣

−
∑

w∈U
w �=v

∑

j |v,w∈Wj

4λ
∣
∣Wj

∣
∣

= degG(v; U ) − λ
∑

j |v∈Wj

4
∣
∣U ∩ Wj

∣
∣ − 2

∣
∣Wj

∣
∣

.

(3)

Write k = |W|. These equalities lead to the following identity,

dens(U ; H) + 4λk = 1

|U |c(U ) + 4λk

= 4λk + 1

2|U |
∑

v∈U
degH (v; U ) + s(v)

= 4λk + dens(U ; G) − 1

2|U |
∑

v∈U
λ

∑

j |v∈Wj

4
∣
∣U ∩ Wj

∣
∣

∣
∣Wj

∣
∣

= dens(U ; G) − 2λ
k∑

j=1

2 −
∣
∣U ∩ Wj

∣
∣2

|U |∣∣Wj
∣
∣

= 2χ(U ; W, λ) + ε(U, W),

(4)

where ε(U, W) is a correction term, equal to 2λ if U ∈ W, and 0 otherwise.
Let O be the densest subgraph in H. Next we show that during the for-loop Peel

finds a graphwhose density close to dens(O; H) .Let o be the first vertex in O deleted
by Peel. We must have

degH (o; O) ≥ dens(O; H) ,

as otherwise we can delete o from O and obtain a better solution. Let R = Vi be the
graph at the moment when o is about to be removed. Let us compare degH (o; O) and
degH (o; R). We can lower-bound of the second term of the right-hand side in Eq. (3)
by −4kλ − s(v). Since O ⊆ R, this gives us
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degH (o; O) ≤ degG(o; O) ≤ degG(o; R)

≤ degH (o; R) + s(o) + 4kλ.

To upper-bound the first two terms, note that by definition of Peel, the vertex o has
the smallest degH (o; R) + s(o) among all the vertices in R. Hence,

degH (o; R) + s(o) ≤
∑

v∈R

degH (v; R) + s(v)

|R| = 2
c(R)

|R| = 2dens(R; H) .

To complete the proof, let O ′ be the graph outside W, maximizing the gain. Due
to Eq. (4), we have

2χ
(
O ′; W, λ

) = dens
(
O ′; H

) + 4kλ ≤ dens(O; H) + 4kλ

≤ 2dens(R; H) + 8kλ = 2(dens(R; H) + 4kλ)

= 4χ(R; W, λ) + 2ε(R; W).

Let S be the set returned by Peel.
If R /∈ W, then ε(R; W) = 0.Moreover, R is notmodified, and is one of the graphs

that is tested for gain. Consequently, χ(S; W) ≥ χ(R; W) , proving the statement.
If R ∈ W, then it is modified by Modify to, say, R′. Lemma2 implies that 5/2 ×

χ
(
R′, W) ≥ χ(R; W) + ε(R; W). Since, χ(S; W) ≥ χ

(
R′; W)

, this completes
the proof. �
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