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Abstract The goal of early classification of time series is to predict the class value
of a sequence early in time, when its full length is not yet available. This problem
arises naturally in many contexts where the data is collected over time and the label
predictions have to be made as soon as possible. In this work, a method based on
probabilistic classifiers is proposed for the problem of early classification of time
series. An important feature of this method is that, in its learning stage, it discovers
the timestamps in which the prediction accuracy for each class begins to surpass a
pre-defined threshold. This threshold is defined as a percentage of the accuracy that
would be obtained if the full series were available, and it is defined by the user. The
class predictions for new time series will only be made in these timestamps or later.
Furthermore, when applying the model to a new time series, a class label will only
be provided if the difference between the two largest predicted class probabilities is
higher than or equal to a certain threshold, which is calculated in the training step.
The proposal is validated on 45 benchmark time series databases and compared with
several state-of-the-art methods, and obtains superior results in both earliness and
accuracy. In addition, we show the practical applicability of our method for a real-
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world problem: the detection and identification of bird calls in a biodiversity survey
scenario.

Keywords Time series classification · Early classification · Gaussian process

1 Introduction

In recent years, the increasing proliferation in data collecting devices has generated a
new database type in which each instance consists of a time series. In order to extract
useful information from these databases, many common data mining tasks have been
extended and adapted to the specific characteristics of temporal data. One of the most
popular tasks is time series classification (Xing et al. 2010), a supervised learning
problem where the objective is to predict the class membership of time series as accu-
rately as possible. There are many application scenarios that naturally adapt to the
supervised classification of time series. Some examples are using electrocardiography
(ECG) data to predict whether a patient has heart disease or not (Kadous and Sam-
mut 2005) or sign language (Kadous and Sammut 2005) and motion (Li et al. 2006)
classification using multivariate time series data.

Over the years, many extensions of the time series classification problem have been
studied and early classification of time series (Xing et al. 2011a) is one of the most
notable and that which will be studied in this work. This problem arises in contexts
where the data is collected over time and it is preferable, or even necessary, to predict
the class labels of the time series as early as possible.

As the most typical example, in medical informatics, the patient’s clinical data is
monitored and collected over time, and the early diagnosis of some diseases is highly
correlated with a positive prognosis. For example, Evans et al. (2015) state that some
indicators of physiologic deterioration such as tachypnea, tachycardia, hypotension,
decreased oxygen saturation, and changes in level of consciousness are predictors of
other seriousmedical complications in hospitalized patients. In this context, they show
that the monitoring of patients and early identification of physiologic deterioration
can be used to raise alerts and prevent crises. In addition, there are also many other
applications apart frommedical informatics in which early classification can be useful.
For example, Ghalwash et al. (2014) mention early stock crisis identification. Bregón
et al. (2006) apply early classification to rapidly classify different types of faults in a
simulated industrial plant. Hatami andChira (2013) attempt to classify a set of different
odors as early as possible by using odor signals obtained from a set of sensors. This
could be used, for example, to identify chemical spills or leaks. Finally, in Sect. 7,
we show a case study related to the early identification of bird species, based on their
songs, which can be used to trigger the cameras deployed in their natural habitats and
make better use of their battery life.

It is easy to imagine that the earliness of the predictions may affect their accuracy.
As a general rule, as more data points become available, the class predictions become
more accurate because the information about the time series is more complete. In
view of this, in early classification of time series, the aim is to find a trade-off between
two conflicting objectives: the accuracy of the predictions and their earliness. Class
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predictions should be given as early as possible while maintaining a satisfactory level
of accuracy (Xing et al. 2011a).

In this paper, we present an early classification framework for time series based on
class discriminativeness and reliability of predictions (ECDIRE). As its name implies,
in its trainingphase, themethod analyzes the discriminativeness of the classes over time
and selects a set of time instants in which the accuracy for each class begins to exceed
a pre-defined threshold. This threshold is defined as a percentage of the accuracy
that would be obtained if the full length series were available and its magnitude is
selected by the user. The information obtained from this process will help us decide
at which instants class predictions for new time series will be carried out, and will be
useful to avoid premature predictions. Furthermore, ECDIRE is based on probabilistic
classifiers (PC), so the reliability of the predicted class labels is controlled by using the
class probabilities extracted from the classificationmodels built in the training process.

The rest of the paper is organized as follows. In Sect. 2, we formally introduce the
problemof early classification and in Sect. 3we summarize the relatedwork. Section 4,
presents the main contribution of this paper: the ECDIRE framework. In the following
section, we make a brief introduction of Gaussian Process classification models, the
specific probabilisticmodels used in thiswork, and present an adaptation for the task of
time series classification. In Sect. 6, the experimentation and validation of this method
is carried out, and in Sect. 7, we present a case study on a real problem regarding the
early identification of bird calls in a stream of recorded data. Finally, in Sect. 8, we
summarize the main conclusions and propose some future research directions.

2 Early classification of time series: problem setting

A time series is an ordered sequence of pairs (timestamp, value) of finite length L
(Xing et al. 2011a):

T S = {(ti , xi ), i = 1, ..., L}, (1)

where we assume that the timestamps {ti }Li=1 take positive and ascending real values.
The values of the time series (xi ) may be univariate ormultivariate and take real values.
Instead, if the {xi }Li=1 take values from a finite set, it is commonly denominated a
sequence. Finally, a database of time series is an unordered set of time series which
can all be of the same length, or can have different lengths.

With these definitions at hand, time series classification is defined as a supervised
datamining taskwhere, given a training set of complete time series and their respective
class labels X = {(T S1,CL1), (T S2,CL2), ..., (T Sn,CLn)}, the objective is to build
a classifier that is able to predict the class label of any new time series as accurately
as possible (Xing et al. 2010, 2011a).

As a variant of time series classification, early classification of time series consists
in predicting the class labels of the new time series as early as possible, preferably
before the full sequence lengths are available. This problem appears in many domains
in which data arrives in a streaming manner, and early class predictions are important
because of the cost of collecting data or due to the costs associated with making later
predictions.
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The earlier a prediction is made, fewer data points from the time series will be
available and, in general, it will be more difficult to provide accurate predictions.
However, as mentioned previously, in early classification of time series, the class
predictions should be carried out as soon as possible. In this context, the key to early
classification of time series is not only to maximize accuracy, but rather to find a trade-
off between two conflicting objectives: accuracy and earliness. The aim is to provide
class values as early as possible while ensuring a suitable level of accuracy.

In the following sections, for the sake of simplicity in the explanations and also
because the publicly available databases used in the experimentation are of this type,
we will focus on datasets conformed with time series of the same length L . However,
with a few changes, the ECDIRE method could also be applied to sequences that take
values from a finite set, databases with series of different lengths, and even to series of
unknown lengths. The necessary modifications will be commented on as we introduce
the method.

3 Early classification of time series: related work

The solutions proposed in the literature for the problem of early classification of time
series are varied. Some methods simply learn a model for each early timestamp and
design different mechanisms to decide which predictions can be trusted and which
should be discarded. To classify a new time series, predictions and reliability verifica-
tions are carried out systematically at each timestamp and the class label is issued at
the first timestamp in which a reliable prediction is made. For example, in Ghalwash
et al. (2012), a hybrid hidden Markov/support vector machine (HMM/SVM) model
is proposed and a threshold is set on the probability of the class membership to try to
ensure the reliability of the predicted labels. In Hatami and Chira (2013), an ensemble
of two classifiers is proposed, which must agree on the class label in order to provide
a prediction. Lastly, Parrish et al. (2013) present a method based on local quadratic
discriminant analysis (QDA). In this case, the reliability is defined as the probability
that the predicted class label using the truncated time series and the complete series
will be the same. At each timestamp, the method checks if this probability is higher
than a user pre-defined threshold and gives an answer only if this is so.

A slightly different strategy can be found in Xing et al. (2011b), Ghalwash et al.
(2014) and He et al. (2015), where the authors propose different methods to discover
a set of shapelets which are useful to discriminate between the classes early in time.
The concept of shapelet was first introduced by Ye and Keogh (2009) and refers to a
subsequence or subpattern of a time series that can be used to represent and identify a
given class. To classify a new time series in an environment where the data is collected
over time, each time a new data point arrives, the series is compared to the library of
shapelets and is classified if a match is found. The matching condition depends on the
required reliability level and is determined in the training process.

Finally, we must mention the early classification on time series (ECTS) method
presented by Xing et al. (2011a). This work formally defines the problem of early
classification for the first time, and analyzes the stability of the nearest neighbor
relationships in the training set as the length of the series is truncated. In its training
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(a) (b) (c)

Fig. 1 The idealized shapes that define the CBF synthetic database. The actual items are distorted by
random noise and warping. a Cylinder. b Bell. c Funnel

phase, the ECTS method calculates the minimum prediction length (MPL) for each
time series in the training set. This value represents the earliest timestamp in which
the given training series begins to provide reliable nearest neighbor class predictions.
To predict the class label of a new unclassified time series, at each early timestamp t ,
all the training series are truncated to the corresponding length and a simple nearest
neighbor classifier (1NN) is applied. However, once the nearest neighbor is found,
if its MPL is larger than t , the prediction is considered unreliable, no class label is
provided and the method simply waits until the next data point arrives.

Based on the characteristics and flaws of the methods proposed in the literature, in
this work, we design an early classification method that will focus on three aspects.
Firstly, note that a clear disadvantage of most of the early classification methods in the
literature is that, when trying to predict the class label of a new time series, forecasts
must bemade and checked at all timestamps. Only the ECTSmethod can avoidmaking
some predictions at the initial early instants, when the MPLs of absolutely all the
training series are larger than the given timestamp. This results in many unnecessary
calculations that could be avoided if the typology of the different classes were taken
into account. The synthetic CBF database (Keogh et al. 2011) is a clear example of the
disadvantage of issuing and checking the predictions at each timestamp. This database
is identified by three shapes, each of which represents a class (see Fig. 1). The series
that belong to each class are obtained by translating, stretching and compressing an
initial shape and adding noise at different levels. As can be seen, the three shapes
are identical until one point and, thus, it makes no sense to make predictions until
this time has arrived. In order to deal with this issue, our method incorporates a
mechanism to initially decide, for each class, after which time instant it makes sense
to make predictions and when we can avoid unnecessary calculations.

Secondly, our method includes a procedure that controls the reliability of the class
forecasts and is able to discard outlier series. We note that some proposals, such as the
ECTSmethod, which is based on theNN classifier, simply lack a strategy to control the
reliability of the issued class labels. As such, for example, if an outlier series arrives,
it will inevitably be assigned to one of the classes.

Finally, even if some methods, such as Ghalwash et al. (2012), Hatami and Chira
(2013), Parrish et al. (2013), Xing et al. (2011b), Ghalwash et al. (2014) and He et al.
(2015) do try to control the reliability of the prediction and discard outliers, most of
them are not able to provide a quantitative and interpretable measure of the uncertainty
of their predictions. As pointed out in Ghalwash et al. (2014), the ability of providing
such measures is a desirable property of early classification methods, because it helps
the users to assess the quality of the responses they receive. Our early classification
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method includes a strategy to discard unreliable predictions,which directly provides an
interpretable measure of the goodness of the issued predictions based on probabilities.

To sum up, although some of the existing methods deal with part of these three
issues, to the extent of our knowledge, none of them propose solutions to all of them.
Additionally, aswill be explained inSect. 7, ourmethod can easily be extended to detect
patterns early in streaming data, which can not be done with other early classification
methods.

4 Early classification framework for time series based on class
discriminativeness and reliability of predictions (ECDIRE)

As previously commented, early classification has to deal with two conflicting objec-
tives: earliness and accuracy. In this section, we introduce the ECDIREmethod, which
takes these two objectives into account.

4.1 Learning phase

The learning stage of the ECDIRE method is divided into three steps. In the first step,
we focus on designing a mechanism that will identify the timestamps from whence
it makes sense to make forecasts, for each class. In the second step we will design a
reliability condition that will control the goodness of the predictions and will directly
provide a measure for the uncertainty of the predictions. Finally, once this is done,
we train a set of probabilistic classifiers (PC), which will be used to issue the class
predictions for the new time series.

Step 1: Analysis of the discriminativeness of the classes

In the first step of our early classification framework, we propose analyzing the data-
base and the classes therein with the objective of deciding from which instant on it
makes sense to make predictions, and when we can avoid unnecessary calculations
when predicting the class label of a new time series.

We propose building a timeline that describes in whichmoment each class becomes
“safe”. This concept of safety refers to the moment in which we can begin to discrim-
inate a certain class from all the rest of the classes with a certain degree of accuracy.

Figure 2 shows an example timeline with four relevant timestamps: t1, t2, t3 and t4.
These instants are ordered in time and, at each of them, a class or set of classes becomes
safe. For example, at instant t3 we can begin to discriminate class C5 from the rest of
the classes. If we consider the classes that have appeared earlier in the timeline, we can
conclude that at timestamp t3, classes C2, C4, C1 and C5 can be predicted accurately.
As will be shown in the next steps, predictions will only be provided at the timestamps
that appear in the timeline or later and, by means of this mechanism, a large number
of calculations can be avoided when making predictions for new time series.

Fig. 2 An example timeline
built to represent at which
instant each class becomes safe
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Fig. 3 Illustrative examples of the most common behaviors of the accuracy of a classifier as the number
of available data points increases. The x axis refers to the percentage of the series available at the time of
prediction and the y axis refers to the accuracy obtained by the classifier

The problem is now reduced to finding a method to discover the timestamps which
constitute the timeline of each database. In order to do that, at each possible timestamp,
a multi-class PC, which considers all the classes in the training set, is trained. As will
be explained in Sect. 5.1, in this paper Gaussian Process classifiers are used, but any
other classifier that provides probabilistic outputs could be used. Then, we check at
which instant the accuracy becomes good enough for each class. Training a classifier at
a given early time instant simply implies learning the model using only the data points
collected up to that instant. We recall that in early classification problems the time
series are collected over time and so, at each early timestamp, only the corresponding
first points of each series are available.

To understand the intuition behind the method that we use to build this timeline,
we recall that the accuracy and earliness are usually conflicting objectives (Xing et al.
2011a). In this context, typically, the higher the accuracy requirements, the later the
predictions must be made. Therefore, it is common that the accuracy over time takes
a shape similar to that shown in Fig. 3a. However, in practice, depending on the
typology of the database and the shapes of the series therein, there are other trends that
the accuracy follows frequently. For example, in some cases, if the classes are easily
discriminable after a certain point, the improvement in accuracy becomes slower and
tends to stabilize (see Fig. 3b). On some other occasions, the accuracymight even drop
slightly after a point due to noise that the additional data may introduce (see Fig. 3c).
In these two last cases, it is possible to classify the time series early in time without
downgrading (or even improving) the accuracy that would be obtained if the full series
were available ( f ull_acc.). The accuracy could also be strictly decreasing, constant
or could take any other possible shape, although this is more unusual because there is
usually some degree of conflict between both objectives (accuracy and earliness).

Based on this intuition, a straightforward strategy to build the timeline could consist
in simply finding the first point in which the chosen reliability threshold is fulfilled
(in the figures f ull_acc.). However, in practice, the behavior of the accuracy tends to
be noisy, with peaks and outliers that disturb the perfect trends shown in the figures.
So, choosing the first point in which the accuracy threshold is fulfilled could result
in overfitting. In this context, it is advisable to require some sort of stability in the
behavior of the accuracy. In the following paragraphs the procedure followed to build
the timeline is explained in more detail.
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As we have mentioned, in a first step, a multi-class PC is trained within a stratified
10 times repeated 5-fold cross validation framework (10×5 cross validation, from
now on), following the recommendations of Rodríguez et al. (2013). This is done by
using the full length time series and considering all the classes. Once this is carried
out, the accuracy of the model is estimated separately and locally within each class.
Subsequently, the classes that yield an accuracy lower than 1/|C | are identified, C
being the set of different classes in the database. If a random classifier, which assumes
that the classes are equally distributed, were applied to the training data, the accuracy
that would be obtained within each class would tend to 1/|C |. In this context, the
predictions obtained for the identified classes are worse than those that would be
obtained by the random classifier. If we consider this random classifier the baseline,
these class values can not be predicted with enough accuracy, even when the whole
series is available. Because of this, their corresponding labels will never be given as a
prediction in our early classification framework.

Of course, if desired, this condition could be modified or removed by the user. For
example, note that, if the classes are unbalanced, the baseline presented above is stricter
with smaller classes than with larger ones. In this case, the class frequencies in the
training set could be used to define a different baseline accuracy value for each class.
Of course, this could result in very low baselines for some classes, which might result
in more unreliable class predictions. In this sense, one could also consider 1/|C | a very
low baseline and require higher accuracy values for all classes. Finally, these baseline
accuracy values could also be set manually using some sort of domain knowledge or
based on domain specific demands.

For the rest of the classes (c), a percentage (perc_accc) of the accuracy obtained
with the full length series ( f ull_accc) is chosen and, with this, the desired level of
accuracy is defined for each class as accc = perc_accc ∗ f ull_accc. The goal will be
to preserve this accuracy while making early predictions. With this information, the
timeline can be built by following these steps:

1. Select a set of timestamps. In our case, since we must deal with many databases
of which we have no domain knowledge, the timestamps in E are defined as a
sequence of equidistant percentages of the length of the series in the database:
E = {e1 %, e2 %, e3 %, . . . , 100%}. Nevertheless, the user could choose a spe-
cific subset of non-equidistant percentages, based on domain knowledge or other
information of the shape of the series. Additionally, if the lengths of the series are
different from each other and unknown, these values would have to be substituted
by the number of data-points collected from the beginning of the series, or the
time passed from the first timestamp. This last choice seems more adequate, for
example, for the cases in which the collection frequency of the series is different.

2. For each early timestamp ei ∈ E :
(a) Truncate the time series in the training set to the length specified by ei , starting

from the first point.
(b) Train an early PC within a stratified 10x5-fold cross validation framework

using these truncated sequences. The method followed to train these classifiers
is explained in detail Sect. 5.
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(c) For each class (c), save themean of the accuracies obtained in all the repetitions
and folds (accei ,c). For a more conservative solution, choose the minimum or
a low percentile of the accuracies obtained in all the repetitions and folds.

3. For each class c, choose the timestamp e∗
c ∈ E as:

e∗
c = min{ei ∈ E | ∀ j ≥ i , acce j ,c ≥ accc} (2)

These e∗
c values are the timestamps that appear in the timeline and will be crucial

to avoid useless predictions because, as will be shown in the next sections, forecasts
will only be made at these instants or later. Please, note that, if the accuracy for a class
strictly increases, then only the last timestamp in E (100%) will fulfill the condition
in Eq. 2. On the contrary, in the strictly decreasing accuracy case, all the timestamps
in E will fulfill the condition so, e∗

c will be the first timestamp in E .
The timeline provides valuable information about each class and, thus, incorporat-

ing it into the ECDIRE method improves the interpretability of the model, which is
a desirable property in early classification (Ghalwash et al. 2014). Finally, as we will
explain in Sect. 7, the timeline obtained in this first step provides the means to directly
apply the ECDIRE method to another scenario: the early detection of significant pat-
terns in streams of unknown length (possibly infinite).

Step 2: Prediction reliability

In this step, we concentrate on the second crucial aspect of our method: designing a
mechanism to control the reliability of the class predictions issued by the classifiers.
As commented previously, in this work we use classifiers which provide probabilistic
outputs. These values can be used to ensure the reliability of the class forecasts and
to provide a quantitative measure of the quality of our predictions. The idea is to set a
threshold to the differences between the probabilities assigned to the different classes
with the aim of requiring a sufficiently large difference between the predicted class
and the rest of the classes.

A separate threshold (θt,c) is defined for each class (c) and early timestamp (t)
and, for this, we use the set of classifiers built within the 10×5-fold cross validation
framework presented in the 2(b) item of the previous step.We recall that each classifier
corresponds to one early timestamp and, since a different threshold is sought for each
early time instant, we analyze each one separately.

First, the predicted class probabilities of all the correctly classified test instances
are extracted from all the folds and repetitions and they are grouped depending on the
class of the test instance. Within each group, the differences between the predicted
class probability of the pertinent class and the rest of the classes will be computed
and the minimum of these differences will be saved for each instance. These values
represent the distance in terms of differences in class probabilities of the winning class
and the next most probable class for all the test instances in the group. Finally, to define
the threshold for the given early timestamp and class, the minimum of all these values
is taken within each group:
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fi

Fig. 4 An example of the ECDIRE model obtained from the three steps that conform the learning phase

θt,c = minx∈Xc

(
pt1:k(x) − pt2:k(x)

)
, (3)

where pt1:k(x) and pt2:k(x) are the largest and second largest probability values obtained
for series x at time t , k is the number of classes, and Xc is the set of correctly classified
series from class c collected from all folds and repetitions.

It must be noted that choosing the minimum in this last step may lead to a very
loose threshold, that will only discard very uncertain predictions, because this value
is susceptible to outlier values obtained in the posterior probabilities of the training
instances. For a more conservative threshold, the mean or median could be chosen
by the user in this last step (see example in Sect. 7), or any other value that the user
considers appropriate for the problem at hand.

Step 3: Training the set of classifiers

In this last step, we will train a set of PCs, which will later be used to classify new
time series. To begin with, a classifier is built for each timestamp that appears in the
timeline constructed in the previous section. Contrary to Step 1, where the PCs are
learnt within a 10×5-fold cross validation scheme, in this case, the models are built by
using all the training instances. Additionally, if the last timestamp in the timeline (e∗

k )
does not coincide with 100% of the length of the series, the ensemble of classifiers will
be complemented with classifiers built at all the posterior timestamps in E , namely in
T = {ei ∈ E : (ei > e∗

k )}. This means that, after timestamp e∗
k , our method becomes

similar to those in the literature but, until this point, many unnecessary models will be
discarded. As for the models built in Step 1, in this case, all the classifiers will also
consider all the classes in the database.

In Algorithm 1, the pseudo-code for the entire learning step is provided. Addition-
ally, in Fig. 4, an example of the ECDIRE model obtained for a database with four
classes is represented. In this case, the last timestamp in the timeline is e∗

3. As can be
seen, PCs are only available at the timestamps that appear in the timeline, and later.
Furthermore, in each case, only the classes which are safe are considered.
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Algorithm 1 Pseudo-code for the learning phase of the ECDIRE method.

Input:

Training set: X = {(T S1,CL1), (T S2,CL2), ..., (T Sn ,CLn)}
Number of classes: numclass
Grid of timestamps to consider: E = {e1, e2, ..., ek }
Percentage of accuracies for each class: perc_accc, ∀c

1: for ei in E do
2: # 10x5 cross validation procedure
3: for repetition in 1:10 do
4: for fold in 1:5 do
5: # Build training and testing sets
6: traincv←training set for repetition and fold.
7: testcv← testing set for given repetition and fold.
8: # Train PC model
9: model←trainpcmodel(traincv, ei )
10: # Obtain predicted classes and posterior probabilities for testing set.
11: predicted.classes←predict.classes(model, testcv)
12: posterior.probabilities←predict.probabilities(model, testcv) #One line per test instance
13: for c in 1:numclass do
14: acc←intraclass accuracy for class c
15: Save acc in vector accvectorei ,c
16: probs←posterior probabilities of correctly classified series from class c
17: Save probs in matrix probsei ,c
18: end for
19: end for
20: end for
21: end for

22: # Calculate reliability threshold (Step 1)
23: for c in 1:numclass do
24: #Calculate mean accuracies.
25: for ei in E do
26: accei ,c←mean(accvectorei ,c)
27: end for
28: accc← perc_accc · acc100%,c
29: e∗c←Find timestamp that fulfills equation 2.
30: Add (e∗c , c) to list t imeline (each position has two components timestamp and classes)
31: end for
32: Sort timeline by timestamp (ascending).
33: # Calculate reliability threshold (Step 2)
34: for ei in E do
35: θei ,c←min(row.max(probsei ,c)-row.second.max(probsei ,c))
36: end for
37: # Train GP classifiers from Step 3
38: for t in 1:length(timeline) do
39: model ← trainpcmodel(X, timeline.timestamps[t])
40: Save model into list pcmodels
41: end for
42: for t ∈ E where t > timeline.timestamps[length(t imeline)] do
43: model←trainpcmodel(X, t)
44: Save model to list pcmodels
45: Save (t, {c1, c2, ..., ck }) to timeline
46: end for
47: return pcmodels, timeline, Θ
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4.2 Prediction phase

In this phase, the objective is to make early class predictions for new unclassified time
series. As commented previously, PC models are only available at the timestamps that
appear in the timeline obtained in Step 1 and at all the timestamps after the last point
in the timeline, so predictions will only be made at these time instants. Furthermore,
although the classifiers are built including all the classes, only those that are safe will
be considered at each instant. If the classifier assigns a non-safe label to a given test
series, the answer will be ignored and the time series will continue in the process and
wait until the next time step, when more data will be available.

Moreover, the series that are assigned to a safe class must pass the test of the pre-
diction reliability. The differences between the predicted class probabilities obtained
from the classification will be compared to the thresholds extracted in Step 2. Only if
they are larger, will a final class be given. If not, the series will not be classified and
will continue in the process and wait until enough new data points are available.

Finally, the class probabilities obtained for the classified test instances can be used
as an estimate of the uncertainty of the prediction. As commented previously and as
stated by Ghalwash et al. (2014), the availability of measures of this type is a desirable
property for early time series classification problems, and providing these values may
be useful and informative for users.

As a summary of this process, the pseudo-code of the prediction phase for ECDIRE
is shown in Algorithm 2.

Algorithm 2 Pseudo-code for the prediction phase of the ECDIRE method.

Input:

T S: new time series
pcmodels, timeline, Θ

1: for t in 1:length(timeline) do
2: # Predict class and posterior probabilities.
3: predicted.class←predict.classes(pcmodels[t],TS)
4: if (predicted.class is in timeline.classes[t]) then
5: posterior.probabilities←predict.probabilities(pcmodels[t], TS)
6: diff←max(posterior.probabilities)-second.max(posterior.probabilities)
7: if diff ≥ θt,predicted.class then
8: return (predicted.class, posterior.probabilities)
9: end if
10: end if
11: return (NA,NA)
12: end for

5 Probabilistic classifiers in the ECDIRE framework

Based on the general design of our early classification framework, any classification
algorithm with probabilistic outputs could be used to build the classifiers in Sect. 4.1.
In this case, we have chosen Gaussian Process (GP) models.
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GP models are probabilistic models and, unlike other kernel based models such as
SVMs, they output fully probabilistic predictions, which are directly applicable in our
framework. Although they have been extensively applied in many domains, they are
not commonly used in time series classification and, to the extent of our knowledge,
have never been applied to the task of early classification. However, these models are
well known for their ability to obtain good generalization results in the presence of few
labeled instances (Stathopoulos et al. 2014), which is common when working with
time series. Also regarding this, when working with GP models, the parameters of the
kernel function can be learnt from the data within the Bayesian inference framework,
whilst in SVMs this is generally done by using cross validation. Finally, in some cases,
thesemodels have shown superior performance for time series classification compared
to other kernel based models such as SVMs (Stathopoulos et al. 2014).

5.1 Gaussian Process classification

A Gaussian Process (GP) (Rasmussen and Williams 2006) is an infinite collection of
random variables that, when restricted to any finite set of dimensions, follows a joint
multivariate Gaussian distribution. A GP is completely defined by a mean function
m(x) and a covariance function k(x, x ′):

f (x) ∼ GP(m(x), k(x, x ′)) (4)

In machine learning, GPs are used as priors over the space of functions to deal with
tasks such as regression and classification by applying Bayesian inference. The idea
is to calculate the posterior probability of the classification or regression function,
departing from a GP prior and applying Bayes’ rule.

In this paper,we are interested in the use ofGPs to solve classification tasks. The idea
is similar to that of the logistic or probit regression. First, a continuous latent function
f with a GP prior is introduced, which is a linear combination of the input variables.
This function is then composed with a “link” function (σ ) such as the logistic or probit
function which transfers the values to the [0, 1] interval. The resultant function π is
the function of interest, and a prediction for a given test instance can be obtained by
calculating (Rasmussen and Williams 2006):

π̄∗ = p(y∗ = +1|X, y, x∗) =
∫

σ( f∗)p( f∗|X, y, x∗)d f∗ , (5)

where

p( f∗|X, y, x∗) =
∫

p( f∗|X, x∗, f)p(f |X, y)df, (6)

and f∗ is the value of the latent variable for the test instance and {x∗, y∗} and {X, y}
are the input and class values of the test instance and training instances respectively.
Contrary to the case of regression, this problem is not analytically tractable because the
class variables are discrete and a non-Gaussian likelihood appears when calculating
the posterior of the latent variable (p(f|X, y)). In any case, many methods have been
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proposed to find a solution to this inference problem, and some examples and relevant
references can be found in Rasmussen and Williams (2006).

Specifically the proposal shown in Girolami and Rogers (2006), which is valid for
both binary and multinomial classification, has been applied in this work to train the
GP models. Departing from a probit regression model, these authors apply a data aug-
mentation strategy, combined with a variational and sparse Bayesian approximation
of the full posterior. They first introduce a set of mk variables, similar to the f intro-
duced above but associated to each one of the possible class values k. Additionally,
they augment the model with a set of auxiliary latent variables yk = mk + ε, where
ε ∼ N (0, 1). In probit regression, this strategy enables an exact Bayesian analysis
by means of Gibbs sampling, but the authors additionally propose a variational and
sparse approximation of the posterior which improves the efficiency of the method.
The details of this numerical approximation will not be specified in this paper due to
lack of space but can be studied in the cited reference (Girolami and Rogers 2006).

5.2 Gaussian Process for time series classification

A straightforward way to apply GP classification to temporal data is to include the
raw time series directly into the model as input vectors. In this case, the covariance
function could be defined by any commonly used kernel function [see (Rasmussen and
Williams 2006)]. Themain drawback of this approach is that these common kernels are
not specifically designed for time series and, as such, they are not designed to deal with
shifts, warps in the time axis, noise or outliers, features that are commonly present in
temporal databases. Indeed, many of these kernels are based on the Euclidean distance,
and it has been proven in the past few years that this distance measure does generally
not provide the best results when working with time series databases (Wang et al.
2012).

In view of this and as shown in Pree et al. (2014) and Wang et al. (2012), it seems
interesting to be able to include different time series distance measures into the classi-
fication framework. A simple way of including different distance measures into a GP
classification framework is to directly replace the Euclidean distance that appears in
other common kernel functions by the distance measure of interest (Pree et al. 2014).
However, this solution is problematic for many time series distance measures because
the resultant kernel function does not necessarily create positive semi-definite covari-
ance matrices, which are a requirement when working with GP models (Rasmussen
andWilliams 2006). Thus, to deal with this issue, we propose the methodology shown
in Fig. 5.

In a preliminary step, a distance matrix is calculated by using any distance d of
interest. Each position of this matrix holds the distance (di j ) between two series T Si
and T Sj . This new feature matrix will be the input to the GP classification framework
and, now, any typical kernel function may be used and the problem of non-positive
semi-definite covariancematriceswill not be encountered.Additionally, this procedure
also allows us to combine different distance measures by concatenating the distance
matrices obtained from each of them (Kate 2015) or by combining them using some
operation such as a weighted sum, used in Stathopoulos et al. (2014).
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Fig. 5 Classification framework

This idea of building classifiers by using distance matrices was first introduced by
Graepel et al. (1998) and can be used to easily introduce different distance measures
into common classification models. Some applications of this methodology to time
series databases can be found in Stathopoulos et al. (2014) and Kate (2015), where
the popular dynamic time warping (DTW) distance is included into GP models and
SVMs, respectively.

Additionally, note that this trick also enables training probabilistic classifiers with
series of different lengths and also with series that take values from a finite set. We
only have to choose a suitable distance measure which is able to deal with time series
of these characteristics. As such, it allows extending the ECDIRE method to these
types of databases and series quite directly.

6 Experiments

In this section, the performance of the ECDIRE method is evaluated in terms of
accuracy and earliness. The complete code of the experimentation is readily available
in our web page.1

6.1 The data

The UCR archive (Keogh et al. 2011) collects the great majority of the publicly avail-
able synthetic and real time series databases and, since its creation, has provided the
baseline for evaluating new classification, clustering and indexing proposals. Some
datasets from this archive have also been used to validate most previous early time
series classification proposals. In this paper, the 45 time series databases from the
UCR archive available at the time of the experimentation are used for validation.

6.2 Parameters of the early classification framework

The early classification framework presented in this paper requires the definition of two
parameters. First of all, the number of early timestamps that ECDIRE considers have
to be chosen. In this case, since the length of the series in one of the databases of UCR

1 http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/ECDIRE.html.
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is of only 24 data points, we have chosen E ={5%, 10%, 15%,...,85%, 90%, 95%,
100%} in order to take a small enough granularity while avoiding repeated timestamps
in E . However, for databases with longer time series, a smaller granularity could be
chosen. A small set of experiments using different granularities has been included in
our website2 as supplementary material, which leads us to conclude that, in general
terms, as we lower the granularity we are able to obtain earlier predictions, while
maintaining the same accuracy requirements.

Additionally, recall that the desired level of accuracy (accc) must be tuned by the
user. This parameter was defined as a percentage of the full accuracy ( f ull_accc) for
each class. In this case, 100% of f ull_accc is chosen for all classes. This decision
has been made because the objective of many classification methods such as ECTS or
RelClass is to provide classifications as early as possible but without downgrading the
accuracy that would be obtained if the whole series were available. However, lower
accuracy values could be chosen by the user. In this line, a small set of experiments
has been included as supplementary material in our website setting perc_accc to 80,
85, 90 and 95%.

6.3 Parameters and implementation of the GP models

As commented in Sect. 5.1, the GP classifiers in the ECDIRE method have been
trained following themethodproposed inGirolami andRogers (2006) and, specifically,
based on its implementation available in the vbmp package of R (Lama and Girolami
2014). This package is designed for multinomial GP classification and only works
with datasets that have more than 2 classes. In view of this, we have completed the
code in order to also enable binary classification by following the formulation shown
by Girolami and Rogers (2006). After a small set of preliminary experiments using a
set of synthetic databases, the inner product kernel has been chosen as the covariance
function. This selection is by no means optimal, but the analysis of different kernel
functions has been postponed for future work. In this case, the hyperparameter of the
kernel function is a scaling factor which assigns a weight to each of the dimensions of
the input data. We recall that each dimension of the input distance matrix corresponds
to one of the series in the training set (see Fig. 5), so the hyperparameter has been fixed
to a uninformative vector of ones, that gives equal importance to all the dimensions.
All the remaining parameters for the vbmp function have been set to their default
values.

The distance measure used to built the input matrix is another parameter to be
chosen when building the GP classifiers. As explained in Sect. 5.2, any time series
distance could be used. Nevertheless, the evaluation of the performance of the different
time series similarity measures is not the objective of this paper and, with this in mind,
the basic Euclidean distance has been used in the experiments presented.

2 http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/parameters.
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6.4 Comparison to other early classification methods

In order to validate our proposal, we have compared its performance with the 1NN
algorithm which uses the full length series and 3 state-of-the-art early classification
methods with available source codes.3,4

The first early classification method is the ECTS method (Xing et al. 2011a). We
compare our method to two variants of this proposal, the strict and the loose version,
setting the only parameter (minimumSupport) to values 0, 0.05, 0.1, 0.2, 0.4 and 0.8.
The second method used for comparison is the Early Distinctive Shapelet Classifica-
tion (EDSC) method (Xing et al. 2011b). The authors propose two variants that show
similar results in their experimentation but, in this work, only the one based on the
Chebyshev Inequality is considered because of code availability. The bound for the
Chebyshev condition is set to 2.5, 3 and 3.5, since the authors report that the best values
are obtained within this interval. The third method is the reliable early classification
method (RelClass) proposed by Parrish et al. (2013). The values for the reliability
threshold τ are taken from the experimentation shown by the authors, which is also
based on the datasets from the UCR: 0.001, 0.1, 0.5 and 0.9. For each of these para-
meters, the Naive Gaussian Quadratic set method and the Gaussian Naive Bayes box
method (default method) are both used separately to calculate the reliability thresh-
old. Furthermore, the local discriminative Gaussian dimensionality reduction has been
enabled because it reduces computational costs and can reduce noise and yield higher
accuracy values (Parrish et al. 2013), and the joint Gaussian estimation method has
been chosen because it is more efficient and obtains similar results to those obtained
by the other estimation methods considered.

6.5 Evaluation method

The databases from the UCR archive used in this study are provided with pre-specified
training and testing sets. In order to enable reproduction of the results, it is common
in the literature to directly use these training and testing sets in the experimentation
and, in view of this, these sets have also been respected in this work. As such, the
evaluation of the classification framework has been done following a train/test valida-
tion methodology. However, some supplementary experiments have been carried out
using 10x5-fold cross validation on some datasets, to ensure that the results obtained
by our method are not specific to these specific train/test splits, and can be accessed
in our web page.

Two evaluationmeasures are given, each one corresponding to one of the conflicting
objectives of the early classification problem. The accuracy is calculated in terms of
the percentage of the correctly classified test instances:

3 ECTS and EDCS: http://zhengzhengxing.blogspot.com.es/p/research.html.
4 Rel.Class: http://www.mayagupta.org/publications/Early_Classification_For_Web.zip.
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Accuracy = 1

N

N∑

i=1

I (Ĉ Li = CLi ) (7)

Ci being the true class value for test instance i and Ĉi its predicted value. I (·) takes a
value of 1 if the condition is true, and 0 otherwise.

The earliness is measured by calculating the mean of the time instances ti in which
the test examples are classified. In order to give amore interpretable result, this value is
normalized by the full length of the series in the database (L) and given as a percentage:

Earliness = 1

N

N∑

i=1

ti
L

× 100 (8)

All the early classification methods are evaluated by using these two measures.
However, in the case of the full 1NN method, as it always uses the full length of the
series, we only provide the metric regarding the accuracy.

Apart from giving the raw values of these two performance measures, in order to
assess the statistical differences between the different methods in each objective, we
perform a set of statistical tests for each objective. First, the Friedman test is applied
to conclude if there are any overall statistical differences and to obtain a ranking of
the methods. Then, the Holm posthoc procedure (Demšar 2006) is applied to make
pairwise comparisons between the methods in each objective. The results will show
if there are statistically significant differences between each pair of methods in each
of the objectives separately. This will enable us to analyze if any of the methods leans
notably towards one of the objectives, or if any of them obtains particularly bad results
on one of the evaluation measures. All statistical tests have been carried out using the
scmamp package from R (Calvo and Santafé 2015), and setting the significance level
to α = 0.05.

Finally, in order to validate our proposal and compare it to the other state-of-the-art
early classification methods, we must necessarily take the multi-objective nature of
the early classification problem into account. The Pareto optimality criterion states
that a solution dominates another solution if it obtains better results in at least one
of the objectives while not degrading any of the others. Based on this criterion, by
counting the times in which our method dominates the others and vice versa, we
provide a multiobjective comparison of the ECDIRE method with the rest of the early
classification methods considered in this work. Additionally, we also provide some
further domination results, which compare ECDIRE against all the rest of the methods
together.

6.6 Results

In Tables 1 and 2 the accuracy and earliness results obtained from the experimentation
can be observed respectively. The results issued from Friedman’s test and Holm’s
method are summarized in Figs. 6 and 7, and the p-values of all the performed tests
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Table 1 Accuracy values for ECDIRE, ECTS, EDSC, RelClass and the full 1NN method

Dataset ECDIRE RelClass ECTS EDSC 1NN

50words 0.53 (99.12%) 0.66 0.57 0.48 0.61

Adiac 0.55 (98.98%) 0.63 0.40 0.16 0.61

Beef 0.50 (90%) 0.57 0.50 0.23 0.53

CBF 0.89 (100%) 0.64 0.85 0.84 0.85

Chlorine concentration 0.56 (98.44%) 0.82 0.62 0.52 0.65

CinC_ECG_torso 0.81 (99.78%) 0.85 0.87 0.55 0.90

Coffee 0.96 (100%) 0.89 0.75 0.75 0.75

Cricket_X 0.57 (99.74%) 0.61 0.56 0.52 0.57

Cricket_Y 0.63 (100%) 0.68 0.63 0.57 0.64

Cricket_Z 0.60 (100%) 0.66 0.59 0.0 0.62

Diatom size reduction 0.80 (92.48%) 0.94 0.8 0.85 0.93

ECG200 0.91 (100%) 0.89 0.89 0.85 0.88

ECG five days 0.60 (100%) 0.52 0.62 0.74 0.80

Face All 0.87 (99.88%) 0.69 0.76 0.66 0.71

FaceFour 0.61 (76.14%) 0.83 0.82 0.75 0.78

FacesUCR 0.74 (99.17%) 0.77 0.71 0.63 0.77

Fish 0.81 (100%) 0.79 0.75 0.68 0.78

Gun_Point 0.87 (100%) 0.91 0.87 0.94 0.91

Haptics 0.44 (91.56%) 0.41 0.37 0.34 0.37

Inline skate 0.26 (95.09%) 0.27 0.33 0.18 0.34

Italy power semand 0.93 (100%) 0.85 0.94 0.82 0.96

Lighting2 0.54 (88.52%) 0.62 0.70 0.80 0.75

Lighting7 0.48 (97.26%) 0.68 0.58 0.67 0.58

MALLAT 0.78 (100%) 0.73 0.85 0.59 0.91

Medical images 0.74 (100%) 0.67 0.68 0.60 0.68

Mote strain 0.80 (100%) 0.58 0.88 0.78 0.88

Olive oil 0.40 (100%) 0.77 0.90 0.6 0.87

OSU leaf 0.52 (100%) 0.48 0.49 0.56 0.52

Sony AIBO robot surface 0.83 (98.84%) 0.79 0.69 0.80 0.70

Sony AIBO robot surfaceII 0.74 (100%) 0.88 0.85 0.81 0.86

Star light curves 0.95 (100%) 0.95 0.15 − 0.85

Swedh leaf 0.87 (99.84%) 0.83 0.78 0.47 0.79

Symbols 0.81 (90.15%) 0.71 0.81 0.51 0.90

Synthetic_control 0.96 (100%) 0.98 0.88 0.89 0.88

Trace 0.77 (100%) 0.86 0.74 0.80 0.76

TwoLeadECG 0.81 (100%) 0.72 0.73 0.88 0.75

Two_Patterns 0.87 (99.98%) 0.93 0.86 0.80 0.91

uWaveGestureLibrary_X 0.77 (99.97%) 0.75 0.73 0.54 0.74

uWaveGestureLibrary_Y 0.70 (99.92%) 0.68 0.63 0.37 0.66

uWaveGestureLibrary_Z 0.71 (99.97%) 0.71 0.65 0.52 0.65
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Table 1 continued

Dataset ECDIRE RelClass ECTS EDSC 1NN

Wafer 0.97 (100%) 0.99 0.99 0.99 1.00

Words synonyms 0.52 (98.43%) 0.65 0.59 0.47 0.62

Yoga 0.85 (99.9%) 0.83 0.81 0.71 0.83

NIFECG_Thorax1 0.89 (99.85%) 0.87 0.81 − 0.83

NIFECG_Thorax2 0.93 (99.85%) 0.88 0.88 − 0.88

For the ECDIREmethod the percentage of classified series are included between parentheses. Themethod/s
with the highest accuracy in each database are shown in bold

Table 2 Earliness values for ECDIRE, ECTS, EDSC and RelClass

Dataset ECDIRE RelClass ECTS EDSC

50 words 40.30 92.20 72.86 58.89

Adiac 38.54 96.04 59.09 84.55

Beef 67.78 25.70 76.5 93.61

CBF 28.55 23.08 71.5 31.85

Chlorine concentration 14.42 97.59 66.07 33.33

CinC_ECG_torso 49.71 56.58 0.58 43.63

Coffee 82.14 38.44 83.94 54.23

Cricket_X 47.98 78.68 71.80 52.57

Cricket_Y 36.00 82.36 66.49 45.10

Cricket_Z 45.99 80.36 67.86 56.12

Diatom size reduction 24.26 33.49 14.88 27.04

ECG200 90.10 68.81 60.11 23.24

ECG five days 21.07 15.84 63.82 53.60

Face all 56.49 96.27 63.85 38.94

Face four 22.31 34.22 72.26 47.98

FacesUCR 59.15 92.71 87.21 51.58

Fish 55.17 85.42 60.94 47.70

Gun_Point 32.37 71.33 46.92 45.58

Haptics 86.52 57.89 93.87 12.53

Inline skate 33.83 87.31 85.08 46.69

Italy power demand 70.16 35.92 79.33 67.08

Lighting2 09.07 61.16 89.01 55.14

Lighting7 19.93 85.23 86.97 68.40

MALLAT 45.35 44.01 69.32 39.96

Medical images 21.20 88.96 53.87 31.95

Mote strain 12.10 90.94 79.06 38.08

Olive oil 30.00 18.76 87.34 38.82

OSU leaf 47.52 97.10 76.59 54.38

Sony AIBO robot surface 62.26 57.70 68.49 47.03
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Table 2 continued

Dataset ECDIRE RelClass ECTS EDSC

Sony AIBO robot surface II 17.66 70.86 54.54 35.51

Star light curves 53.10 90.02 82.25 −
Swedh leaf 45.97 91.96 76.27 62.34

Symbols 45.33 45.82 51.30 60.25

Synthetic_control 61.92 71.54 87.88 50.81

Trace 41.75 77.82 50.72 38.63

Two lead ECG 69.38 83.63 64.43 46.85

Two_Patterns 98.76 91.82 86.52 64.04

uWaveGestureLibrary_X 74.03 90.09 85.98 64.30

uWaveGestureLibrary_Y 97.09 81.96 86.29 70.14

uWaveGestureLibrary_Z 75.56 91.80 85.03 61.18

Wafer 10.87 30.75 44.38 27.99

Words synonyms 66.23 91.4 82.51 65.66

Yoga 100.0 87.28 69.41 38.57

NIFECG_Thorax1 64.33 93.47 78.22 −
NIFECG_Thorax2 56.58 92.16 76.84 −
The method/s with the lowest earliness value in each database are shown in bold

Fig. 6 Results from statistical tests for accuracy. The ranking is issued from the Friedman test and shows
the goodness of the methods from better to worse (left to right). The bold lines show the results issued from
the Holm procedure, and joins pairs of methods that do not yield statistically significant differences

can be found in our website.5 Note that, for the comparison methods, we only show
the results for the parameter configuration that dominates our method most times. If
there are ties within a method, the configuration that is dominated a lower number
of times by our method is chosen. Following this procedure, the following parameter
combinations have been selected: RelClass with τ = 0.5 and the Gaussian Naive
Bayes box method, the loose version of ECTS with the support set to 0, and the EDSC
method with a threshold value of 2.5. In any case, the raw results for all the rest of
parameter configurations can be found in our website.6

Note that the results for the “StarlightCurves”, “NIFECG_Thorax1” and “NIFECG
_Thorax2” databases are ommited for the EDSC method in both tables (accordingly,

5 http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/pvalues.
6 http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/ECDIRE.html.
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Fig. 7 Results from statistical tests for earliness. The ranking is issued from the Friedman test and shows
the goodness of the methods from better to worse (left to right). The bold lines show the results issued from
the Holm procedure, and joins pairs of methods that do not yield statistically significant differences

these databases have been removed from the statistical tests), because after more
than a month and a half of computation, we did not obtain any results from the code
provided by the authors. However, we do not mean to imply that the EDSC method
is computationally more expensive than our method or the others considered in the
paper. Our method has been programmed to perform the cross validation process in
parallel, whereas the code for EDSC has been used directly as provided by its authors.
In this context, some experiments on the running times of each method have been
performed and included as supplementary material in our website.7 Note that these
results are not conclusive and should be interpreted with care, since each method has
been programmed in a different language and by a different programmer.

If we analyze the accuracy results, it can be seen that the ECDIRE method obtains
the best results in 16 databases, only preceded by the RelClass method which obtains
the best accuracy in 19 databases. The ECTS and the EDSCmethods beat all the other
methods in only 2 and 4 cases, respectively. Furthermore, it should be noted that,
contrary to the other methods, in the ECDIRE method, it is common that at the end of
the process some series remain unclassified, due to the unreliability of their class label
(see values between parentheses in Table 1). In this work, we choose the worst possible
validation scenario for our method and include unclassified examples as incorrectly
classified instances. This includes the series that, at the end of the prediction process,
do not pass the reliability tests but also includes those that are assigned with one of
the initially discarded classes (see Step 1 of Sect. 4.1). However, it is possible that
in some cases, the cost of making an error is larger than that of not providing a class
value. Also, in some real contexts, outliers series that do not belong to any class could
be present. In these cases, if a cost sensitive measure were applied, the results of the
ECDIRE method regarding the committed error would further improve.

Figure 6 enables us to conclude that, most methods do not obtain significantly
higher or lower results in terms of accuracy. The only method that, overall, obtains
lower accuracy results than the other methods in this objective is EDSC.

If the results for earliness are observed in Table 2, it can be seen that ECDIRE
obtains the lowest value in 22 databases out of 45, followed by EDSC, that obtains
the best result in 17 cases. The other two methods obtain the best results in less cases,
6 (RelClass) and 1 (ECTS). If we observe the statistical tests for earliness, we can

7 http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/runtimes.
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Table 3 Summary of domination counts for ECDIRE versus RelClas, ECTS and EDSC

RelClass ECTS EDSC

ECDIRE 13/29/3 24/19/2 16/27/2

The first number corresponds to the number of times ECDIRE dominates the other method, the second
number refers to the the cases in which the Pareto optimality criterion gives us no information (draws) and
the third number counts the times the comparison method dominates ECDIRE

see that, our method is among the methods that obtain overall lower earliness values
(ECDIRE and EDSC).

Since ECDIRE obtains good results in both objectives separately, we can conclude
that it does not lean towards one of the objectives in particular. However, in order to
compare the early classifiers and obtain conclusive results, we must take both objec-
tives into account and consider them together by using domination counts. In Table 3
we provide a summary of the domination counts for the pairwise comparison between
ECDIRE and the rest of the early classification proposals considered in this study.
Based on the results shown in Table 3, it can be said that ECDIRE dominates the other
methods much more often than it is dominated by them. Furthermore, we have also
tested these results using theAsymptotic nonrandomizedUMP (ANU) test proposed by
(Putter 1955) obtaining significant differences in all cases using a significance value
of α=0.05.8 Hence, we conclude that our proposal improves the results obtained by
the other state-of-the-art methods, and is thus a good solution for performing reliable
and early classification of time series.

Additionally, if we calculate the times in which our method is dominated by any of
the comparison methods (taking into account all the possible parameter configurations
considered in the experimentation) we obtain a value of 8, which confirms the fact
that our method is not dominated many times by the other methods, even if we allow
the selection of different methods and parameter options for each database. If we
calculate the same value for the rest of the methods, the lowest value that appears is
15, obtained by the RelClass method with τ = 0.1 and the Naive Gaussian Quadratic
set method. Moreover, if we calculate the times in which our method dominates all
the remaining methods (considering all parameter configurations), we conclude that
this happens in 5 databases. This value is larger than 0, which implies that our method
dominates all the other methods with all their parameter configurations in at least one
occasion. Additionally, this value is also larger than the number of times in which any
other method considered dominates ECDIRE (see Table 3). All this indicates that our
method is a useful early classifier. Moreover, if we calculate this value for all the rest
of the methods, we obtain, at most, a value of 1, which is obtained in three cases:
RelClass with τ = 0.5 and with both the Gaussian Naive Bayes box method and the
Naive Gaussian Quadratic set method, and the loose ECTS method with the support
set to 0.

8 The p values for these tests can be seen in http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/
pvalues.
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Finally, we must include some information concerning the theoretical computa-
tional complexities of the methods. As previously mentioned, the running times of the
training phases of the early classifiers are not crucial in this context, as the models are
trained in batchmode. However, what should be taken into account is the time that each
method needs to provide an answer (class value or abstention) at a given time t . This is
because the data arrives in a streaming manner and the methods should be able to react
before the next data point arrives. In this context, we have calculated the theoretical
worst case complexities of this part of the execution for each of the considered early
classifiers, obtaining the following values: O(max{n · L , n2}) for ECDIRE, O(n · L)
for ECTS, O(S · l) for EDSC, O(max{n · D, D2}) for RelClass using dimensionality
reduction and O(max{n · L , L2}) for RelClass without dimensionality reduction. n is
the number of series in the training set, L is the length of the series in the training set
(we suppose for the sake of simplicity that all series are of the same length), S is the
number of shapelets that the EDSC method includes into its library, l is the length of
the largest shapelet in this library, and D is the dimension of the time series after LDG
dimensionality reduction in RelClass. Note that the complexities do not differ much
from method to method. Some experiments that show the actual runtimes for this part
of the prediction phase can be found in our website.9

7 Case study: early classification of bird songs

In addition to the experiments shown for the UCR archive, and taking into account the
ubiquity of streaming data, we consider it imperative to show how our system could
be applied to this type of data, which is of unknown and possibly infinite length. As a
case study, we have used a small size dataset that does not allow forceful statistically
significant claims. Our intention is simply to show the utility of our ideas outside of a
lab setting.

In various parts of the world, automatic audio and video monitoring stations are set
up in an attempt to record targeted species. For example, in Myanmar (Burma), the
Myanmar Jerdon’s babbler, Chrysomma altirostre (Collar et al. 2001), was believed
to be extinct, but in 2015 a small population was discovered (Dell’Amore 2015).
Discovery of such tiny populations is often made with a targeted search, placing
ruggedized video monitoring stations in the field. Since such devices have limited
computational resources, especially memory and battery-life, they are often designed
to be triggered by sound. A simple volume threshold is not suitable because it is easily
tricked by wind noise or non-target species. Clearly, it would be better for the video
recording to be triggered by the target species call. This appears to offer a paradox,
how can one get a recording of a bird that may be extinct? In many cases, it is possible
to get the recoding of a closely related species. For example, in the above case, there is
a closely related species, the Sind Jerdon’s babbler (Chrysomma altirostre scindicum)
that is common in the Indus basin of Pakistan.

9 http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/runtimes.
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Given this, we can approximately learn the typical call of the target species, and use
it to trigger image/video recording. This is a natural domain for early classification;
we would like to begin recording as soon as possible, before the bird can flit away.

Note that this problem setting differs slightly from the common early classification
problem. In this case, we have a unique stream of data of unknown and possibly infinite
length, and the aim is to detect certain patterns of interest within the stream as early
as possible.

This problem bears some similarities with the problem of stream classification.
Stream classification is a supervised learning task where the objective is to learn a
model that will classify each data point from an incoming (possibly infinite) stream
of data (Gaber et al. 2007). However, in many cases, such as in online human activity
recognition, one single data point from the stream is not informative enough to provide
a class value (Lara andLabrador 2012). In these cases, the stream is divided into a set of
timewindows and the data enclosedwithin eachwindow is considered an instance. The
size of these windows determines how early we will be able to make the classification.
However, this parameter is typically chosen using domain knowledge or by directly
analyzing the performance of different window sizes (Lara and Labrador 2012). In
this context, our method can be used to automatically fix the window size in order to
provide the class predictions as early as possible while maintaining a suitable level of
accuracy.

Most early classification methods in the literature can not deal with this specific
problem setting but, the design of the ECDIRE framework provides a direct exten-
sion to this very common problem setting, unlike most early classification methods
proposed in the literature.

To demonstrate this, we performed the following experiment. We select two dif-
ferent birds from the same species, namely the White Crowned Sparrow species
(Zonotrichia leucophrys pugetensis) from the Xeno-Canto database (Xeno-canto
Foundation 2005). Although the calls of birds from the same species are similar to
each other, there are clear differences between the calls of each individual bird. As
such, provided a stream containing forest noise and some occasional bird calls, the
goal is to try to detect and identify each bird call as early in time as possible.

We exploit the fact that we can convert high-dimensional (44,100Hz) audio into a
low dimensional Mel-frequency cepstral coefficients (MFCC) space (100Hz). It has
long been known that the MFCC space is amenable to bird song classification (Kogan
and Margoliash 1998; Ulanova et al. 2015). While most classification algorithms
attempt to use up to twelve coefficients, for simplicity and visual intuitiveness we
consider only one here. As Fig. 8 shows, a single MFCC coefficient does suggest that
little interclass variability is present, which bodes well for the task at hand.

To apply the ECDIRE method, we build a training set consisting of 5 and 8 calls
from each of the birds of length 200, respectively. As shown in Sect. 4.1, we apply a
cross validation process to this data and build the corresponding timeline. From this
process, we obtain one safe timestamp for each class, with values of 15% (t1) and
20% (t2) of the length of the bird calls, respectively. Additionally, we calculate the
reliability thresholds as explained in Sect. 4.1 for these early timestamps.

Now, we use the information obtained from this process to obtain class predictions
of a new testing stream of data. In this experiment, the length of the stream is of 1600
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Fig. 8 Three example calls from each class

points, but the method could be applied identically to a stream of unknown or even
infinite length. As previously commented, this stream will contain a few bird calls and
background noise from the forest in between the calls. Although the ECDIRE method
is initially defined to classify finite time series, the set of “safe” timestamps for each
class provides a direct way to apply it to this other problem setting. This is because
the “safe” timestamps directly define suitable sizes for the sliding windows that will
be used to analyze the incoming stream.

Thus, to identify the call of the first bird, we analyze the stream with a sliding
window of size t1 (15% of the length of the pattern, thus 30 data points). Every time a
new data point arrives, we slide the window one position, and, by using a GP classifier
built with all the training data for the corresponding earliness value t1 (see Sect. 4.1),
we obtain a class prediction for the data section enclosed within. Note that since the
test stream is 1600 data points long and the sliding window is 30 points wide, we
will perform 1571 class predictions. To finish, as shown in Sect. 4.2, we apply the
reliability test and decide whether we make a final prediction or choose to abstain. In
this case, given the high level of noise present in the incoming testing stream, instead
of using the minimum to calculate the reliability thresholds, we decide to use a stricter
threshold and calculate the mean of the differences between the posterior probabilities
of the target class and the next most probable class obtained in the training phase. In
Fig. 9 we show the results obtained for the first bird.

It can be seen in Fig. 9 that the first bird is identified perfectly and very early in
time, with a window size of only 15% of the length of the pattern. Additionally, for
this bird, our method issues no false positives.

For the second bird, we follow the same procedure, but take the sliding window of
size t2 (20%of the length of the patterns, thus 40 data points), provided by theECDIRE
method. Note that with this setting, in this case, we make 1561 class predictions. By
using themean difference between the posterior probabilities of the target class and the
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Fig. 9 Detection and identification of the first bird by using the ECDIRE method, using the mean to
calculate the reliability threshold. The presence of this bird in the stream is represented by an image of a
bird, and the first window in which the bird is identified is shown by a bold line. The arrows indicate the
length of the call and the portion used to detect it, respectively (from top to bottom)

Fig. 10 Detection and identification of the second bird by using the ECDIRE method, using the mean to
calculate the reliability threshold. The presence of this bird in the stream is represented by an image of a
bird, and the first window in which the bird is identified is shown by a bold line. The arrows indicate the
length of the call and the portion used to detect it, respectively (from top to bottom). False positives are
represented by round points in the stream. Note than when the method issues a false positive, it usually
commits the same mistake in several consecutive windows. In the image, for the sake of clarity, only the
first window is marked

next probable class obtained in the training phase to calculate the reliability threshold,
we obtain the result shown in Fig. 10.

This bird is also identified correctly in all cases, with a window size of only 20% of
the length of the bird call. However, contrary to the first case, for this bird we obtain
many false positives (176 from 1561 predictions). The reason for this is that, when
the training set is very small and unbalanced, the GPs that we use within ECDIRE
tend towards the largest and more variable classes, in this case that which corresponds
to the second bird. This results in many false positives for this bird and none for the
other, especially if the reliability thresholds are not very high.

The results obtained are still better than those that would be obtained by a simple
volume threshold, which would not be able to distinguish between birds and would
constantly be triggered by the background forest noise, but they could be improved
by better tuning the reliability threshold. For example, if we take the median instead
of the mean, we obtain a stricter reliability threshold and, thus, the results shown in
Fig. 11. In this case, the number of false positives is much lower (7 false positives from
1561 predictions) but the method fails to identify the bird on one of its appearances.
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Fig. 11 Detection and identification of the second bird by using the ECDIRE method, using the median
to calculate the reliability threshold. The presence of this bird in the stream is represented by an image of
a bird, and the first window in which the bird is identified is shown by a bold line. The arrows indicate
the length of the call and the portion used to detect it, respectively (from top to bottom). False positives
are represented by round points in the stream. Note than when the method issues a false positive, it usually
commits the same mistake in several consecutive windows. In the image, for the sake of clarity, only the
first window is marked

We insist on the fact that the aim of this section is to simply demonstrate the utility
and direct application of ECDIRE to a problem of this type, and that the small size of
the training set does not allow us tomake any claims regarding the results. Specifically,
recall that the reliability thresholds are calculated based on the differences between the
posterior probabilities obtained in the training process. The extremely small number of
training instances make the mean and median values not very robust in this example,
which is why the results change so drastically. However, with a larger training set,
we would be able to better tune the reliability thresholds in order to remove the
false positives while retaining the correct class identifications. Optimally tuning the
reliability threshold based on the level and type of noise in the incoming stream could
be an interesting area of study, which is proposed as future work.

8 Conclusions and future work

In this paper, we have proposed a method for early classification of time series based
on probabilistic classifiers. Our proposal incorporates two strategies that deal with two
of the main issues that arise with other early classification methods published in the
literature. On the one hand, in order to avoid excessive calculations in the prediction
phase, the discriminativeness of the classes is analyzed at different time intervals and
a methodology is proposed to identify the time instant at which we can begin to make
accurate predictions for each class. This procedure allows a direct application to infinite
streams of data, which had not been dealt with in other early classification works.
On the other hand, the goodness of the issued class labels is controlled, discarding
predictions that do not yield a sufficiently large class probability.

Contrary to the other early classificationmethods used for comparison, the proposal
fulfills the three desirable characteristics for early classification methods recom-
mended in Ghalwash et al. (2014). First, the method obtains competitive results with
respect to the earliness of the prediction in comparison with other state-of-the-art early
classification methods. Indeed, the few methods that obtain similar results in earliness
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are weaker than ECDIREwith respect to accuracy.When evaluating the methods from
a multi-objective point of view, it can be concluded that the ECDIRE method dom-
inates the rest of the methods much more frequently than it is dominated. All this
proves the usefulness of the method to obtain reliable and early classifications of time
series.

Secondly, with regards to understandability, our method is able to discover at which
time instant each class can be reliably discriminated from other classes. This infor-
mation is valuable and may help the user to understand the underlying patterns in
the data. In this sense, it could be interesting to perform a theoretical analysis of the
relation between the characteristics of the database and the evolution of the accuracy
over time, which could lead to characterizing the level of conflict between the two
objectives and could provide further information to the users.

Additionally, themethod can be applied by simply setting the perc_accc parameter
and a grid of early timestamps to consider. The first parameter can easily be understood
and fixed by any user, expert or otherwise. The granularity can be set to 5%, which
has provided good results in the experimentation, but could also be defined based on
domain knowledge or depending on other requirements. More experienced users may
also modify other parameters such as the distance measure d, the kernel function,
etc. but this is not a requirement. In this line, an obvious proposal for future work
consists of studying the behavior of different distance measures and kernels within
this framework. Additionally, it could also be interesting to try to find themost suitable
granularity for a certain database.

As a last point, a straightforwardmeasure for uncertainty of the predictions issuedby
our framework is provided by the probabilities extracted from the classifiers employed
within the framework. A more informative uncertainty measure could incorporate
additional knowledge acquired in the learning phase, such as information about the
discriminativeness of the classes in the database in different time intervals. The design
of this measure is proposed for future elaboration.
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