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Abstract Active learning methods select informative instances to effectively learn a
suitable classifier. Uncertainty sampling, a frequently utilized active learning strategy,
selects instances aboutwhich themodel is uncertain but it does not consider the reasons
forwhy themodel is uncertain. In this article, we present an evidence-based framework
that can uncover the reasons for why a model is uncertain on a given instance. Using
the evidence-based framework, we discuss two reasons for uncertainty of a model:
a model can be uncertain about an instance because it has strong, but conflicting
evidence for both classes or it can be uncertain because it does not have enough
evidence for either class. Our empirical evaluations on several real-world datasets
show that distinguishing between these two types of uncertainties has a drastic impact
on the learning efficiency. We further provide empirical and analytical justifications
as to why distinguishing between the two uncertainties matters.

Keywords Active learning · Uncertainty sampling · Classification

1 Introduction

Active learning methods interact with labelers, guiding them to the most informative
instances to be annotated, to efficiently learn the correct classification function with
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minimum cost (e.g., time, money, and effort) (Settles 2012). Many active learning
strategies have been developed to date. Due to its simplicity, intuitiveness, and empir-
ical success in many domains, uncertainty sampling (Lewis and Gale 1994) is one of
the most frequently utilized ones in the literature (e.g. Bilgic et al. 2010; Tong and
Chang 2001), and Settles and Craven 2008). In a nutshell, it picks instances for which
the model is most uncertain. Though it has many limitations, such as sensitivity to
noise and outliers, it still works surprisingly well.

Traditional uncertainty sampling does not delve into the reasons for model’s uncer-
tainty on instances. In this article, we use the evidence-based framework to analyze
why the model might be uncertain about an instance. Specifically, we focus on two
types of uncertainties. In the first case, the model is uncertain due of presence of
strong, but conflicting evidence for each class. We call this type of uncertainty as
conflicting-evidence uncertainty. In the second case, the model is uncertain due to
insufficient evidence for either class. We call this type of uncertainty as insufficient-
evidence uncertainty.

For example, for a heart-disease diagnosis, the model can be uncertain because one
lab test result strongly suggests presence of heart-disease, while another lab test result
strongly suggests absence of heart-disease. In this case, the model is uncertain because
of conflicting evidence for both classes. Another reason that themodel can be uncertain
is that none of the lab test results provide any conclusive evidence for presence or
absence of heart-disease. In this case, the model is uncertain because of insufficient
evidence for either class. Similarly, in a bag-of-words document classification task, the
model can be uncertain because some terms in a document provide strong evidence
for one class, while some other terms provide strong evidence for the other class,
which makes the model uncertain due to conflicting evidence. On the other hand, the
model can be uncertain because none of the terms provide conclusive evidence for
either class, which represents model’s uncertainty due to insufficient evidence. Fig. 1
depicts this phenomenon for binary classification.

We provide a mathematical formalism to make a distinction between these two
types of uncertainties. We introduce an evidence-based framework to capture the
amount of evidence for each class provided by an instance, which facilitates distin-

Fig. 1 Conflicting-evidence
versus insufficient-evidence
uncertainty.
Conflicting-evidence uncertainty
represents a model’s uncertainty
on an instance due to strong
evidence for each class, whereas
insufficient-evidence uncertainty
represents a model’s uncertainty
on an instance due to insufficient
evidence for each class.
Traditional uncertainty sampling
does not care about the reasons
for uncertainty, and picks the
most uncertain instance Tradi�onal uncertainty sampling:

Does not consider the reasons for uncertainty, as 
long as E-1(x) E+1(x)

Insufficient-evidence uncertainty: 

E-1(x) E+1(x) 

Conflic�ng-evidence uncertainty: 

E+1(x) E-1(x) 
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guishing between these two types of uncertainties. Through empirical evaluations on
several real-world datasets, we show that distinguishing between conflicting-evidence
uncertainty and insufficient-evidence uncertainty makes a huge difference to the per-
formance of active learning. We show that conflicting-evidence uncertainty provides
the most benefit for learning, drastically outperforming both traditional uncertainty
sampling and insufficient-evidence uncertainty sampling.

This article builds upon our earlier work (Sharma and Bilgic 2013). Our contribu-
tions in (Sharma and Bilgic 2013) were:

– We introduced an evidence-based framework to distinguish between the two
types of uncertainties, namely conflicting-evidence uncertainty and insufficient-
evidence uncertainty.

– We empirically evaluated our methods on several real-world datasets and showed
that distinguishing between the reasons for uncertainty is useful to improve active
learning.

– We provided formulation of evidence for naïve Bayes, logistic regression, and
support vector machines, and extended the evidence-based framework for multi-
class classification.

Our additional contributions in this article include:

– Weprovide empirical and analytical justifications as towhydistinguishing between
different types of uncertainties matters. Specifically, we show that the instances
that are uncertain due to conflicting evidence have lower density in the labeled
set, compared to instances that are uncertain due to insufficient evidence. That
is, there is less support in the training data for the perceived conflict than for the
insufficiency of the evidence.

– We provide empirical results showing that the model’s variance on uncertain
instances with conflicting evidence is higher than the model’s variance on uncer-
tain instances that have insufficient evidence. This is partly because the parameters
that lead to conflict are not supported by a lot of labeled data and therefore they
lead to a higher variance.

– We compare performance of conflicting-evidence and insufficient-evidence uncer-
tainties to query-by-committee strategy, which is the most similar active learning
baseline for our study, because query-by-committee also chooses instances on
which model has high prediction variance.

– We present results of a user study that examines users’ performance on conflicting-
evidence and insufficient-evidence cases.

– We test sensitivity of the proposed approaches to hyperparameters and provide
more in-depth evaluation of rank of uncertain instances selected by different meth-
ods.

– We provide formulation of evidence-based framework for kernel-based support
vector machines where kernels do not need to be linear.

The rest of the article is organized as follows. In Sect. 2, we provide back-
ground on active learning and uncertainty sampling, and provide formulation for the
evidence-based framework. In Sect. 3, we provide experimental details and results
comparing conflicting-evidence uncertainty and insufficient-evidence uncertainty to
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the traditional uncertainty sampling. In Sect. 4, we present results of a user study that
examines the users’ performance while labeling instances selected by the two types
of uncertainties. In Sect. 5, we present empirical and analytical justifications as to
why distinguishing between conflicting versus insufficient evidence cases matters. In
Sect. 6,we extend the formulation for the evidence-based framework to other classifiers
and multi-class classification. Finally, we conclude and present future work in Sect. 7.

2 Background and problem formulation

In this section, we first provide background on active learning and uncertainty sam-
pling. Then we explain active learning and uncertainty sampling in the context of
classification. Then we provide the formulation for the evidence-based framework for
naïve Bayes.

Many active learning methods have been developed in the past two decades. A
number of approaches have been proposed to select informative instances for label-
ing, e.g. selecting uncertain instances (Lewis and Gale 1994), choosing instances for
which a committee of learners disagree (Seung et al. 1992), choosing representative
instances (Xu et al. 2003), selecting more informative data that optimizes expected
gain (MacKay 1992), selecting examples that minimize the expected error of the
model (Roy and McCallum 2001; Yu et al. 2006; Gu et al. 2012, 2014), and selecting
instances that minimize the bias of the learner (Cohn 1997) or minimize variance of
the learner (Cohn et al. 1996). We refer the reader to (Settles 2012) for a survey of
active learning methods.

Arguably, the most frequently utilized active learning strategy is uncertainty sam-
pling.1 It is often used as a baseline for comparing other active learning methods
and has been shown to work successfully in a variety of domains. Example domains
include text classification (Lewis and Gale 1994; Bilgic et al. 2010; Xu et al. 2003;
Hoi et al. 2006a), natural language processing (Thompson et al. 1999), email spam
filtering (Sculley 2007; Segal et al. 2006), image retrieval (Tong and Chang 2001),
medical image classification (Hoi et al. 2006b), robotics (Chao et al. 2010), informa-
tion retrieval (Zhang and Chen 2002), dual supervision (Sindhwani et al. 2009), and
sequence labeling (Settles and Craven 2008), among many others.

Even though uncertainty sampling is frequently utilized, it is known to be suscepti-
ble to noise and outliers (Roy andMcCallum2001).A number of approaches have been
proposed to make it more robust. For example, (Settles and Craven 2008) weights the
uncertainty of an instance by its density to avoid outliers, where density of the instance
is defined as average similarity to other instances. (Zhu et al. 2008) used a K-Nearest-
Neighbor-based density measure to determine whether an unlabeled instance is an
outlier. (Xu et al. 2003) and (Donmez et al. 2007) proposed a hybrid approach to
combine representative sampling and uncertainty sampling. Other approaches used
the cluster structure of the domain to choose more representative examples (Nguyen
and Smeulders 2004; Bilgic et al. 2010). (Senge et al. 2014) presented an approach
to distinguish between aleatoric and epistemic uncertainties using possibility theory,

1 1,507 citations on Google Scholar on April 4th, 2016.
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in which uncertainty is modeled in terms of two measures, namely possibility and
necessity. The aleatoric uncertainty results due to variability in the outcome of an
experiment due to inherently random effects, and epistemic uncertainty is caused by
lack of knowledge. While epistemic uncertainty can be reduced by gathering more
information, aleatoric uncertainty cannot be reduced further.

Our work is orthogonal to these approaches. We are not providing yet another
alternative approach to improve uncertainty sampling, but instead we are highlight-
ing that distinguishing between the two types of uncertainties (conflicting-evidence
vs. insufficient-evidence) has a big impact on active learning. One can imagine com-
bining uncertainty sampling, density weighting, and conflicting-evidence uncertainty
methods because they are not mutually exclusive.

Next, we explain active learning and uncertainty sampling in detail and introduce
the notations that will be used throughout the article.

2.1 Active learning

Let the uppercase X denote the random variable representing an instance and the
lowercase x represent a particular instantiation of X . Each instance is described as a
vector of f attributes X � 〈X1, X2, . . . , X f 〉. Similarly, let the uppercase Y repre-
sent the class variable of the instance and let the lowercase y represent a particular
instantiation of Y . Each Xi can be real-valued or discrete whereas Y is discrete; in
this article, we focus on the binary case, where Y ∈ {−1,+1}. In the pool-based
active learning setup, we are given a small set of instances whose labels are known:
L = {〈x (i), y(i)〉}, and a much larger collection of unlabeled instances whose labels
are unknown: U = {〈x (i), ?〉}.

A pool-based greedy active learning algorithm iteratively selects an informative
instance 〈x∗, ?〉 ∈ U to obtain its label y∗ from an expert, and incorporates the new
labeled instance 〈x∗, y∗〉 intoL. The informative instance, 〈x∗, ?〉, is selected by com-
puting utility of the unlabeled instances inU , where utility can be classifier uncertainty
(Lewis and Gale 1994), committee disagreement (Seung et al. 1992), expected reduc-
tion in error (Roy and McCallum 2001), etc. This process continues until a stopping
criterion is met, usually until a given budget, B, is exhausted. Algorithm 1 describes
this process more formally. The goal of active learning is to learn the correct classifi-

Algorithm 1 Pool-Based Active Learning
1: Input: U - unlabeled data, L - labeled data, θ - classification model, B - budget
2: repeat
3: for all 〈x(i), ?〉 ∈ U do
4: compute utility(x(i), θ )
5: end for
6: pick highest utility x∗ and query its label
7: L ← L ∪ {〈x∗, y∗〉}
8: U ← U \ {〈x∗, y∗〉}
9: Train θ on L
10: B = B − 1
11: until B == 0
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cation function θ : X → Y by carefully choosing which instances are labeled, subject
to budgetary constraints.

2.2 Uncertainty sampling

Uncertainty sampling selects instances for which the current model is most uncertain
how to label (Lewis and Gale 1994). These instances correspond to the ones that lie
close to the decision boundary of the current model. Uncertainty of an underlying
model can be measured in several ways. One approach is to use conditional entropy:

x∗ = arg max
x (i)∈U

−
∑

y∈Y
Pθ (y|x (i)) log

(
Pθ (y|x (i))

)
(1)

where Pθ (y|x (i)) is the probability that instance x (i) has label y. Another approach is
to use maximum conditional:

x∗ = arg max
x (i)∈U

(
1 − max

y∈Y Pθ (y|x (i))

)
(2)

The last approach we discuss uses margin of confidence:

x∗ = arg min
x (i)∈U

(
Pθ (ym |x (i)) − Pθ (yn|x (i))

)
(3)

where, ym is the most likely label and yn is the next likely label for x (i). More formally,
ym = arg max

y∈Y
Pθ (y|x (i)) and yn = arg max

y∈Y\ym
Pθ (y|x (i)).

When the task is binary classification, that is when Y ∈ {+1,−1}, all three uncer-
tainty approaches (Eqs. 1, 2, 3) rank instances in the same order and prefer the same
uncertain instance, i.e. the instance for which Pθ (+1|x (i)) = Pθ (−1|x (i)) = 0.5. In
this article, we distinguish between the two types of uncertainties that we define next.

2.3 Problem formulation

In this section, we define evidence that an attribute value provides for a class in the
evidence-based framework. The evidence, in its most general form, is the amount
of contribution that an attribute value provides to the prediction of belonging to a
particular class. Each classifier computes the prediction for a test instance differently,
and hence the evidence that an attribute value of an instance provides for a class
depends on the classifier. In this section, we provide the formalism of evidence using
naïve Bayes classifier. The formalism of evidence for logistic regression and support
vector machines is provided later in Sect. 6.

2.3.1 Evidence using naïve Bayes

A naïve Bayes classifier uses the Bayes rule to compute P(Y |X) and assumes that the
attributes X j are conditionally independent given Y :
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P(Y |x) = P(Y |x1, x2, . . . , x f ) =
P(Y )

∏
x j

P(x j |Y )

P(x1, x2, . . . , x f )
(4)

The instance x can be classified based on the ratio of P(+1|x)
P(−1|x) :

Y =

⎧
⎪⎨

⎪⎩
+1 if

(
P(+1)
P(−1)

∏
x j

P(x j |+1)
P(x j |−1)

)
> 1

−1 otherwise

(5)

FromEq. 5, it follows that the attribute value x (i)
j of the instance x (i) provides evidence

for the positive class if
P(x (i)

j |+1)

P(x (i)
j |−1)

> 1, and it provides evidence for the negative class

otherwise.
Note that it does not make sense to talk about the evidence the attribute X j itself

provides. Rather, the particular instantiation x j provides evidence for one class or
the other (or for none of the classes). For example, the cholesterol test itself does
not provide evidence for presence or absence of heart-disease; rather, the outcome
of the cholesterol test (e.g., high or low) provides the evidence for presence/absence
of heart-disease. Hence, we define the evidence at the instance level, rather than the
variable level.

Let Px (i) and Nx (i) be two sets, such that Px (i) contains the attribute values of the
instance x (i) that provide evidence for the positive class andNx (i) contains the attribute
values of the instance x (i) that provide evidence for the negative class:

Px (i) �
{
x (i)
j | P(x (i)

j | + 1)

P(x (i)
j | − 1)

> 1

}

Nx (i) �
{
x (i)
k | P(x (i)

k | − 1)

P(x (i)
k | + 1)

> 1

}

Note that in these definitions, the numerator for Px (i) is P(x (i)
j | + 1) and numerator

for Nx (i) is Px (i)
k | − 1).

The total evidence for the instance x (i) to belong to the positive class is:

E+1(x
(i)) =

∏

x (i)
j ∈Px(i)

P(x (i)
j | + 1)

P(x (i)
j | − 1)

(6)

and, the total evidence for the instance x (i) to belong to the negative class is:

E−1(x
(i)) =

∏

x (i)
k ∈Nx(i)

P(x (i)
k | − 1)

P(x (i)
k | + 1)

(7)
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With these definitions, we can rewrite the classification rule for naïve Bayes as:

Y =
{

+1 if
(
P(+1)
P(−1)

E+1(x (i))

E−1(x (i))

)
> 1

−1 otherwise
(8)

2.3.2 Conflicting-evidence versus insufficient-evidence uncertainty

In this article, we investigate whether the evidence-based framework provides a useful
criteria to distinguish between the uncertain instances and whether such an approach
leads to more or less effective active learning.

Traditional uncertainty sampling picks the most uncertain instance, x (i), for which
E+1(x (i)) ≈ E−1(x (i)), regardless of the magnitudes of E+1(x (i)) and E−1(x (i)). In
this article, we analyze if the magnitudes of E+1(x (i)) and E−1(x (i)) have an impact
on learning when E+1(x (i)) ≈ E−1(x (i)). Specifically, we consider two cases:

– Themodel is uncertain because of strong, but conflicting evidence for both classes.
This represents the case when both E+1(x (i)) and E−1(x (i)) are equal and large.

– The model is uncertain because of insufficient evidence for either class. This
represents the case when both E+1(x (i)) and E−1(x (i)) are equal and small.

When E+1(x (i)) and E−1(x (i)) are equal, there are a number of choices to mathe-
matically determine if both E+1(x (i)) and E−1(x (i)) are small or large by ranking all
the uncertain instances according to one of the Eqs. 9, 10, 11, or 12.

arg max
x (i)∈U

E+1(x
(i)) × E−1(x

(i)) (9)

arg max
x (i)∈U

E+1(x
(i)) (10)

arg max
x (i)∈U

E−1(x
(i)) (11)

arg max
x (i)∈U

min(E+1(x
(i)), E−1(x

(i))) (12)

Note that when E+1(x (i)) and E−1(x (i)) are equal, Equations 9, 10, 11, and 12 will
all provide the same ranking for uncertain instances, and it does not matter which one
of these functions is chosen to rank the uncertain instances based on evidence.2 In
Sect. 3.2, we present the results using multiplication of the evidence for each class,
i.e. according to Eq. 9.

Regardless of whether we want to maximize or minimize E+1(x) × E−1(x), we
want to guarantee that the underlying model is uncertain about the chosen instance. To
achieve uncertainty, we first rank the instances x (i) ∈ U in decreasing order of their
uncertainty score (measured by Eq. 1), and work with the top t instances, where t is a

2 In practice, however, E+1(x
(i)) and E−1(x

(i)) might not be exactly equal to each other for all uncertain
instances, and hence the ranking of uncertain instances based on evidence according to Eqs. 9, 10, 11, and
12 may be different.
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hyper-parameter. Formally, let S be the set of top t uncertain instances. Conflicting-
evidence uncertainty will prefer instances where both E+1(x (i)) and E−1(x (i)) are
large:

x∗ = arg max
x (i)∈S

E+1(x
(i)) × E−1(x

(i)) (13)

and, insufficient-evidence uncertainty will prefer instances where both E+1(x (i)) and
E−1(x (i)) are small:

x∗ = arg min
x (i)∈S

E+1(x
(i)) × E−1(x

(i)) (14)

3 Experimental methodology and results

We designed our experiments to test whether distinguishing between the conflicting-
evidence and insufficient-evidence uncertain instances makes a difference to the
performance of active learner. We experimented with the following approaches:

1. Random Sampling (RND): This is a common baseline for active learning, in which
instances are picked at random from the set of candidate unlabeled instances.

2. Uncertainty Sampling - 1st (UNC-1): This is the traditional uncertainty sampling
method that picks the instance for which the underlying model is most uncertain,
as defined in Sect. 2.2.

3. Conflicting-EvidenceUncertainty (UNC-CE):Among the top t uncertain instances,
this method picks the instance for which the model is uncertain due to conflicting
evidence (as defined in Eq. 13).

4. Insufficient-EvidenceUncertainty (UNC-IE):Among the top t uncertain instances,
this method picks the instance for which the model is uncertain due to insufficient
evidence (as defined in Eq. 14).

5. Uncertainty Sampling - t th (UNC-t): Among the top t uncertain instances, this
method picks the t th most uncertain instance.UNC-CE andUNC-IEmethods pick
one uncertain instance from the top t uncertain instances according to the amount
of evidence they provide. If UNC-CE and/or UNC-IE are better than UNC-1, then
this result would suggest that different types of uncertainties matter. Similarly,
if UNC-CE and/or UNC-IE are worse than UNC-t, then this result would also
suggest that different types of uncertainties matter.

We experimented with eight publicly available datasets. We chose four medium-
imbalanced (minority class% >10%) and four highly-imbalanced (minority class%
≤10%) datasets. The datasets include four active learning challenge datasets (Guyon
et al. 2011) (Ibn Sina, Nova, Zebra, and Hiva), and four additional datasets: LetterO
(Frey and Slate 1991), Calif. Housing (Pace and Barry 1997), Spambase (Frank and
Asuncion 2010), and a thyroid disease dataset, Sick (Frank and Asuncion 2010). The
description of these datasets is provided in Table 1. We evaluated the five methods
using three performance measures: AUC, accuracy, and F1. We computed F1 as a
harmonic mean of precision and recall using the minority class as positive labels. We
computed AUC for all the datasets, accuracy for only medium-imbalanced datasets
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Table 1 Description of the datasets: the domain, number of instances, number of features, types of features,
and the percentage of minority class in the datasets

Dataset Domain # of instances # of features Types of features Min. %

Spambase Email classification 4601 57 Numeric 39.4

Ibn Sina Handwriting recognition 20,722 92 Numeric 37.8

Calif. Housing Social 20,640 8 Numeric 29

Nova Text processing 19,466 16,969 Binary 28.4

Sick Medical 3772 29 Numeric + binary 6.1

Zebra Embryology 61,488 154 Numeric 4.6

LetterO Letter recognition 20,000 16 Numeric 4

Hiva Chemoinformatics 42,678 1617 Binary 3.5

The datasets are sorted in increasing order of class imbalance

(the top four in Table 1) and F1 for only highly-imbalanced datasets (bottom four in
Table 1).

3.1 Parameters and repeatability

We performed five-fold cross validation and the train split was treated as the unla-
beled set, U . 10 instances (five from each class) were chosen randomly and used as
the initially labeled set, L. For each fold, the experiment was repeated five times
using different sets of 10 randomly chosen instances at bootstrap. At each iteration
of active learning, the methods pick only one instance to be labeled. The budget, B,
in Algorithm 1 was set to 500 instances. UNC-CE and UNC-IE operate within top t
uncertain instances, as described in Sect. 2.3.2. We experimented with t = 5, 10, and
20. We evaluated each method using a naïve Bayes classifier with Laplace smoothing.
To speed up the experiments, at each iteration we computed uncertainty over a set of
randomly sub-sampled 250 instances, which is a common practice in active learning.
The source code for evidence-based framework for naïve Bayes is available at http://
www.cs.iit.edu/~ml/code/.

3.2 Results

In this section, we present the results for the five strategies presented in the begin-
ning of Sect. 3 and show that distinguishing between the two types of uncertainties
(conflicting-evidence uncertainty and insufficient-evidence uncertainty) makes a huge
difference to the performance of active learning. We compare UNC-CE and UNC-IE
strategies with both UNC-1 and UNC-t strategies. We use RND as a reference for the
UNC-1 strategy.

We present the learning curves for RND, UNC-1, UNC-CE, UNC-IE, and UNC-t
using t = 10. The learning curves for UNC-CE, UNC-IE, and UNC-t with t = 5
and t = 20 are similar and are omitted to avoid redundancy. We present the AUC
results in Fig. 2, and accuracy and F1 results in Fig. 3; these figures show the mean
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Fig. 2 AUC results for all eight datasets. UNC-CE significantly outperforms UNC-1 on seven out of eight
datasets ((a), (b), (c), (d), (f), (g), and (h)) and loses on Sick dataset (e). UNC-IE loses to UNC-1 on seven
out of eight datasets ((a), (b), (c), (d), (e), (f), and (g), and wins on Hiva dataset (h)
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Fig. 3 Accuracy results for four medium-imbalanced datasets (Spambase, Ibn Sina, Calif. Housing and
Nova). UNC-CE outperforms UNC-1 on three datasets ((a), (b) and (c)) and loses on Nova (d). UNC-IE
loses to UNC-1 on all four datasets. F1 results for four relatively skewed datasets (Sick, Zebra, LetterO and
Hiva). UNC-CE outperforms UNC-1 significantly on three datasets ((e), (f) and (h)), and loses on one (g).
UNC-IE loses to UNC-1 on all four datasets
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Table 2 UNC-CE and UNC-IE
with t = 5, t = 10, and t = 20
versus UNC-1

Number of datasets on which
UNC-CE and UNC-IE
significantly Win (W), Tie (T),
or Lose (L) compared to UNC-1
baseline

UNC-1 baseline AUC ACCU F1
Method W/T/L W/T/L W/T/L

UNC-CE with t = 5 7/0/1 4/0/0 3/0/1

UNC-CE with t = 10 7/0/1 3/0/1 3/0/1

UNC-CE with t = 20 6/0/2 3/0/1 2/1/1

UNC-IE with t = 5 1/0/7 0/0/4 0/0/4

UNC-IE with t = 10 1/0/7 0/0/4 0/0/4

UNC-IE with t = 20 1/0/7 0/0/4 0/0/4

performance and ± standard error. As these figures show, distinguishing between
conflicting-evidence and insufficient-evidence uncertain instances has a huge impact
on active learning for all datasets and performance measures. UNC-CE wins over
UNC-1 on most datasets and measures, whereas UNC-IE loses to UNC-1 on most
datasets and measures.

Next, we present the results of t-tests comparing UNC-CE and UNC-IE to UNC-1
and UNC-t. Table 2 presents a summary of pairwise one-tailed t-tests results under
significance level of 0.05, where the pairs are learning curves of the methods. If a
method is statistically significantly better than the baseline, it is a Win (W), if it is
statistically significantly worse than the baseline, it is a Loss (L), otherwise it a Tie (T),
meaning the differences are not statistically significant. Note that for each method, the
total counts of ‘W’, ‘T’ and ‘L’ should add up to 8 for AUC, 4 for accuracy, and 4 for
F1.

Table 2 presents a summary of ‘Win/Tie/Loss’ counts of UNC-CE and UNC-IE
with t = 5, t = 10, and t = 20 compared to UNC-1 baseline. With respect to
UNC-1, there is a clear difference between UNC-CE and UNC-IE. Our results show
that UNC-CE statistically significantly wins over UNC-1 on at least 6 out of 8 datasets
on AUC and loses on at most two datasets, whereas UNC-IE loses to UNC-1 on 7 out
of 8 datasets on AUC. On accuracy, UNC-CE wins over UNC-1 on at least 3 out of 4
datasets, and loses on one dataset (Nova), whereas UNC-IE loses to UNC-1 on all 4
datasets. On F1, UNC-CE wins on at least 2 out of 4 datasets and loses on one dataset
(LetterO), whereas UNC-IE loses to UNC-1 on all 4 datasets.

UNC-CE not only wins over UNC-1 for all performance measures, but is also
quite efficient in saving the number of labeled instances required to achieve a target
performance. For example, in order to achieve a target AUC of 80% for Calif. Housing
dataset, UNC-1 required 199 labeled instances, UNC-CE with t = 10 required only
59 labeled instances (70.4% savings in the number of labels), and UNC-IE could not
achieve this target AUC even with 500 labeled instances. As another example, in order
to achieve a target accuracy of 90% on Ibn Sina dataset, UNC-1 required 344 labeled
instances, UNC-CE with t = 10 required only 71 labeled instances (79.4% savings in
the number of labels), and UNC-IEwith t = 10 could not achieve this target accuracy
even with 500 labeled instances. On Sick dataset, in order to achieve a target F1 of
65%, UNC-1 required 127 labeled instances, UNC-CEwith t = 10 required only 100
labeled instances (21.3% savings in the number of labels), and UNC-IE with t = 10
required 345 labeled instances to achieve this target F1.
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Table 3 UNC-CE and UNC-IE
versus UNC-t with t = 5,
t = 10, and t = 20

Number of datasets on which
UNC-CE and UNC-IE
significantly Win (W), Tie (T),
or Lose (L) compared to UNC-t
baseline

UNC-t baseline AUC ACCU F1
Method W/T/L W/T/L W/T/L

UNC-CE with t = 5 6/0/2 4/0/0 3/0/1

UNC-CE with t = 10 7/0/1 4/0/0 3/0/1

UNC-CE with t = 20 6/1/1 4/0/0 3/0/1

UNC-IE with t = 5 0/0/8 0/0/4 0/0/4

UNC-IE with t = 10 1/0/7 0/0/4 0/0/4

UNC-IE with t = 20 1/0/7 0/0/4 0/0/4

Next, we compared UNC-CE and UNC-IE to UNC-t with t = 5, t = 10, and
t = 20. Table 3 presents the ‘Win/Tie/Loss’ results using UNC-t as the baseline. We
observe that UNC-CE significantly outperforms UNC-t on almost all datasets, which
is not surprising because even a strategy that selects instances randomly from the top
t uncertain instances has the potential to outperform UNC-t. However, it is surprising
to observe that UNC-IE performs statistically significantly worse than UNC-t for
almost all datasets and measures. Selecting uncertain instances that have insufficient
evidence often performs worse than selecting the least uncertain instance among the
top t uncertain instances. Note that UNC-1, UNC-CE, UNC-IE, and UNC-t do not
have much flexibility in choosing between uncertain instances; that is they all work
within the top t uncertain instances, and yet UNC-IE performs much worse than both
UNC-1 and UNC-t, whereas UNC-CE performs much better than both UNC-1 and
UNC-t.

UNC-CE clearly stands out as a winner strategy, whereas UNC-IE is clearly the
worst performing uncertainty strategy. UNC-CE improves over UNC-1 on almost
all datasets and measures, whereas UNC-IE loses to UNC-1 on almost all datasets
and measures. This result is surprising because one would not expect such a huge
difference betweenUNC-CE andUNC-IE strategies. After all,UNC-CE strategy picks
an uncertain instance that has large evidence for both classes and hence, intuitively,
labeling such instances is focused on correcting the mistakes of the learner. On the
other hand, UNC-IE strategy picks an uncertain instance that has little evidence for
both classes and hence, intuitively, labeling such instances is focused on teaching
new things to the learner. Both types of uncertainties are expected to be important
for improving the model. We provide analytical and empirical justifications as to why
UNC-CE outperforms UNC-IE in Sect. 5.

Next, we present a comparison of the ranks of the uncertain instances selected
by UNC-CE and UNC-IE. Note that UNC-1 will always pick the top most
uncertain instance, and hence would select rank 1 uncertain instance. UNC-t
on the other hand would always select rank t uncertain instance. UNC-CE and
UNC-IE work within the top t uncertain instances and select rank u uncertain
instance, where u is between 1 and t . Table 4 presents the mean rank of uncer-
tain instances selected by UNC-CE and UNC-IE with t = 10 for all datasets.
Figure 4 presents histograms for all eight datasets, showing the ranks of uncertain
instances selected by UNC-CE and UNC-IE with t = 10. The histograms with
t = 5 and t = 20 have similar trends and are omitted to avoid redundancy. These
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Table 4 The mean rank of
uncertain instances selected by
UNC-CE and UNC-IE for the
eight datasets over various
iterations of learning and 25
trials

Dataset UNC-CE UNC-IE

Mean Std. dev Mean Std. dev

Spambase 5.50 2.99 6.14 2.97

Ibn Sina 5.09 3.15 7.09 2.53

Calif. Housing 5.57 2.87 5.58 2.89

Nova 5.42 2.86 6.02 2.76

Sick 7.16 2.73 6.03 2.85

Zebra 5.92 2.88 6.03 2.85

LetterO 7.18 2.73 5.39 2.88

Hiva 5.27 2.95 6.83 2.73

histograms show that UNC-CE and UNC-IE choose a variety of ranks of uncer-
tain instances for most datasets and hence the differences between UNC-1 UNC-t,
UNC-CE, and UNC-IE do not stem from the rank of uncertain instances but rather,
they are due to the information content of the different instances chosen by each
method.

3.3 Scalability

We discuss the comparison of running times of UNC-1, UNC-CE, and UNC-IEmeth-
ods for naïveBayes for one iteration of active learning.GivendatasetD = {

x (i), y(i)
}m
1

where, x (i) ∈ R
f , and y(i) ∈ {+1,−1} is discrete valued. UNC-1 calculates uncer-

tainty score (measured through Eqs. 1 or 2). The time complexity of calculating the
conditional probabilities Pθ (Y |X) in each of these equations is proportional to the
number of attributes, which is O( f ). Since we compute uncertainty onm subsampled
instances, the time complexity of UNC-1 is O(m × f ).

UNC-CE and UNC-IE methods also calculate uncertainty on m instances, which
takes time O(m× f ). Additionally,UNC-CE andUNC-IEmethods calculate evidence
for each attribute of an instance, which again takes time O( f ). This additional step
is done only for the top t uncertain instances. Hence, the running time of UNC-CE
and UNC-IE methods is O((t +m) × f ). Given that t is a small constant (t << m),
the running times of UNC-CE and UNC-IE are comparable to the running time of
UNC-1. Table 5 presents the running times of UNC-1, UNC-CE, and UNC-IE for one
iteration of active learning with various t values for three datasets, Nova, Zebra and
Hiva.We omit the running times for other five datasets, as the running time per iteration
for them is less than 1 second. As presented in Table 1, these three datasets have the
highest number of features and thus it is not surprising that the running times are largest
for these three datasets. These experiments were run on a Windows 7 machine with
Intel Xeon processor (2.4 GHz). The results show that the running times of UNC-CE
and UNC-IE are comparable to UNC-1. Moreover, the running times of UNC-CE
and UNC-IE do not vary much with different t values. Interestingly, we observe
that sometimes UNC-CE and UNC-IE seem to take less time than UNC-1, but these
differences are not statistically significant and hence we attribute these differences to
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Fig. 4 Histograms showing ranks of uncertain instances selected by UNC-CE and UNC-IE for all eight
datasets
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Table 5 Running times (in seconds) for three datasets for one iteration of active learning, with various t
values

Dataset UNC-1 UNC-CE UNC-IE

t=1 t = 5 t = 10 t = 20 t = 5 t = 10 t = 20

Nova 15.02 ± 2.25 14.58 ± 1.44 14.81 ± 1.25 14.95 ± 1.24 15.48 ± 0.98 15.90 ± 0.93 15.72 ± 1.40

Zebra 1.34 ± 0.05 1.33 ± 0.05 1.32 ± 0.05 1.32 ± 0.05 1.36 ± 0.05 1.37 ± 0.06 1.38 ± 0.06

Hiva 1.95 ± 0.05 1.95 ± 0.04 1.95 ± 0.05 1.94 ± 0.05 1.94 ± 0.05 1.95 ± 0.06 1.98 ± 0.06

We present mean ± Std. dev of the running times over 25 trials

variances in the run times due to other uncontrollable factors such as other processes
that might be run by the OS. The overall conclusion is that the run time is dominated
by the number of features and the additional time cost that UNC-CE and UNC-IE
require on top of UNC-1 is negligible.

4 User study

Wedesigned and ran a user study to investigatewhether it is easier or harder for humans
to label conflicting-evidence cases versus insufficient-evidence cases. Specifically, we
were interested in two measures: i) how long does it take humans to label and ii)
how accurate are the humans on their labels for conflicting-evidence cases versus
insufficient-evidence cases.

It could very well be that conflicting cases can be harder for humans because they
contain conflicting information suggesting both classes, which might confuse humans
about the class label. It is also possible for insufficient-evidence cases to be difficult for
humans because they do not have enough information, e.g. neutral cases. We note that
we define conflicting-evidence and insufficient-evidence uncertainties with respect to
the underlying model and not with respect to the expert. Thus, it is possible that the
model has conflicting evidence or insufficient evidence but it still might be an easy
case for the expert. In this section, we investigate these questions through a user study.

We experimented with IMDB dataset consisting of 50K movie reviews (Maas et al.
2011), as labeling movie reviews does not require much domain expertise and hence
it is easier to recruit users for our user study. Moreover, this dataset contains full text
of the reviews whereas the other datasets we have used in Sect. 3 simply consist of
feature-value pairs.We trained amultinomial naïveBayesmodel, asmultinomial naïve
Bayes is known to outperformBernoulli naïve Bayes for text classification (McCallum
et al. 1998). The evidences for multinomial naïve Bayes are calculated similar to that
of Bernoulli naïve Bayes, which we describe in Sect. 6.

We bootstrapped the multinomial naïve Bayes model with 10 reviews, selecting 5
random reviews from each class and used tf-idf representation of the data. Figure 5a
presents the average AUC results of UNC-CE and UNC-IE strategies over 10 trials
simulated using ground truth. Out of the 10 trials, UNC-CE wins over UNC-IE on
6 of the trials. For the user study, we selected one of the 10 trials, shown in Fig. 5b,
for which UNC-CE and UNC-IE had the biggest difference in performance because
we wanted to test the case where UNC-CE and UNC-IE had the most difference in
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Fig. 5 aAverageAUCofUNC-CE andUNC-IE over 10 trials on IMDBdataset.bPerformance ofUNC-CE
and UNC-IE on the trial used in the user study

Table 6 Annotation time of all
users on UNC-CE and UNC-IE
movie reviews

The t test results show that
annotation times of UNC-CE
and UNC-IE reviews are not
significantly different. We report
the p-values obtained using
two-tailed unpaired t tests

Users Annotation time of
UNC-CE reviews

Annotation time of
UNC-IE reviews

p-value

User 1 14.27 ± 9.54 13.26 ± 11.03 0.49

User 2 55.40 ± 35.01 52.49 ± 36.64 0.57

User 3 81.03 ± 71.41 74.62 ± 61.55 0.50

User 4 21.86 ± 14.91 20.18 ± 15.82 0.45

User 5 25.79 ± 33.54 26.29 ± 29.68 0.91

Average User 39.57 ± 25.84 37.39 ± 24.25 0.54

impact on the learning. The accuracy of UNC-CE after labeling 110 (10 bootstrap +
100 budget) reviews was 73.5% and the accuracy of UNC-IE was 67.24%.

We shuffled these 200 movie reviews selected by UNC-CE and UNC-IE to make
sure that the users had no way of determining which was a conflicting versus insuffi-
cient evidence case with respect to the underlying model. In fact, users were not told
that they were part of a study to distinguish between conflicting versus insufficient
evidence cases. They were simply asked to label 200 movie reviews as positive or
negative. We had five users for our study and each user was shown movie reviews in
the same order. For each movie review, we recorded the response time and annotation
(positive/negative). We treated the actual labels as gold standard labels and measured
accuracy of the users by comparing their annotations with the gold standard labels.

We first compare whether UNC-CE and UNC-IE differ on the length of the docu-
ments chosen.We observe that the average length of reviews selected by UNC-CEwas
213.32 and the average length of reviews selected by UNC-IE was 205.04. The two-
tailed unpaired t-tests between the lengths of UNC-CE and UNC-IE reviews show that
the difference in lengths ofUNC-CE andUNC-IE reviews is not significantly different.

Next, we compare the average time taken by users, in seconds, to label UNC-CE
and UNC-IE reviews in Table 6. We also include the Average User as the mean of all
the users in the last row. We observe that even though users took slightly more time
(a few more seconds) on UNC-CE instances than UNC-IE instances, the differences
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Table 7 Accuracy of all users
on UNC-CE and UNC-IE movie
reviews

Users Accuracy on
UNC-CE reviews
(%)

Accuracy on
UNC-IE reviews
(%)

User 1 95 93

User 2 93 94

User 3 90 96

User 4 95 95

User 5 95 97

Average user 93.6 95

Majority vote accuracy 96 96
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Fig. 6 a Performance comparison of UNC-CE and UNC-IE strategies based on the annotation time of
Average User using ground-truth labels. b Performance comparison of UNC-CE and UNC-IE strategies
based on the annotation time of Average User and using majority vote labels

are not statistically significant as measured by two-tailed unpaired t tests and the p
values are reported in the last column of Table 6.

Table 7presents accuracyof the users on the 100movie reviews selected byUNC-CE
and UNC-IE. The accuracy of Average User is the average accuracy of all users. We
also present majority vote accuracy which is calculated by taking a majority voting of
all users on each movie review. The accuracy of all users, except User 3, was similar
for both UNC-CE and UNC-IE reviews.

We plot the same Fig. 5b again, this time the x-axis is not the number of instances
but rather the average time it took the 5 users (i.e., the Average User’s time). Fig. 6a
shows the results using the ground-truth labels and Fig. 6b shows the results using
majority vote labels.3 This result shows that even though labeling UNC-CE reviews
takes slightly more time than UNC-IE reviews, it is still worth labeling reviews using
UNC-CE strategy.

3 This figure does not correspond to a real-time simulation of active learning with users. When the user-
provided labels are used, the underlying active learning strategy, whether it be UNC-CE or UNC-IE, would
potentially take a different path per user based on their labels. Then, each user would potentially differ on
the documents they label, and therefore meaningful comparisons of time and accuracy across users would
not be possible.
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Overall, our user study focused on sentiment classification. Thoughwe cannot claim
that our results carry over to other document classification tasks or other domains,
we conclude that we did not observe significant differences between UNC-CE and
UNC-IE instances in terms of the annotation time and labeling difficulty for the
sentiment classification task.

5 Analytical and empirical justifications

Extensive experiments with real-world datasets presented in Sect. 3.2 clearly show
that UNC-CE provides significant improvements over UNC-IE. This is a bit startling
because one would expect that the model would benefit from both the UNC-CE cases
and UNC-IE cases. When the conflicting, UNC-CE, cases are annotated, the model
would have a chance to correct its perceived conflict, and when the inconclusive,
UNC-IE, cases are annotated, the model would learn about new feature-value class
correlations that it did not know before. In this section, we provide both analytical
and empirical results that shed light on why UNC-CE often outperforms UNC-IE.
Specifically,

– We show both analytically and empirically that UNC-CE cases have lower density,
with respect to the model trained on the labeled data, than the UNC-IE cases.
Density of an instance, x (i), is defined as the probability distribution, P(x (i)),
with respect to the model trained on the current training data.

– We show empirically that the model has higher variance on the UNC-CE cases
than on the UNC-IE cases.

These two results suggest that the conflict perceived by the model is supported by
less amount of training data than the insufficiency of the evidences. Put another way,
there is less labeled data that supports the conflict and there is more labeled data that
supports the inconclusiveness. This is further supported by the finding that UNC-CE
cases have higher variance than UNC-IE cases. That is, the parameter values that
support conflict have higher variance because they rely on smaller amount of labeled
data. Therefore, themodel ismore likely to be incorrect in its decision that the evidence
is conflicting than its decision that the evidence is inconclusive.

This is not to say that the UNC-IE cases are totally useless. Even though UNC-IE
cases are supported by more labeled data than the UNC-CE cases, the total amount
of labeled data is still fairly small in active learning settings. Therefore, the model
is likely to be incorrect in its decision that the case is inconclusive. However, the
UNC-CE cases have even less support than the UNC-IE cases and thus the model is
often better off labeling more of the UNC-CE cases.

5.1 Analytical justification

For simplicity, we first prove the density argument for binary variables using a two-
attributes case where out of four possible cases, one is UNC-CE and the other is
UNC-IE. We then provide explanation of density argument for continuous attributes.
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5.1.1 Binary attributes

Assume we have a single attribute, X1, that is binary with 〈T, F〉. Similarly, the class
variable Y is binary with 〈−1,+1〉. In this section, we prove that (i) X1 = T and
X1 = F cannot provide evidence for the same class at the same time, (ii) if X1 = T
provides evidence for one class, then X1 = F has to provide evidence for the opposing
class, and finally (iii) the amount of evidence that X1 = T provides for one class can
be larger/smaller than the evidence X1 = F provides for the opposing class. These
three properties will be needed to prove the density argument for the two-attributes
case. Let

P(X1 = T |Y = +1) = p; P(X1 = F |Y = +1) = 1 − p

P(X1 = T |Y = −1) = q; P(X1 = F |Y = −1) = 1 − q

The following propositions hold when both X1 and Y are binary.

Proposition 1 If X1 = T provides evidence for Y = +1, then X1 = F cannot provide
evidence for Y = +1 at the same time.

Proof Without loss of generality, assume p > q. Then, X1 = T provides evidence
for Y = +1 and the magnitude of the evidence is p

q . Can X1 = F provide evidence

for Y = +1 at the same time? That is, when p > q, can 1−p
1−q be greater than 1? The

answer is obviously no and hence two different values of X1 cannot provide evidence
for the same class at the same time. ��
Proposition 2 If X1 = T provides evidence for one class then X1 = F has to provide
evidence for the other class.

Proof When X1 = T provides evidence for one class, is it possible that X1 = F
provides evidence for no class? That is, is it possible to have p

q = 1 and 1−p
1−q = 1?

This is obviously impossible, and hence if X1 = T provides evidence for one class
then X1 = F has to provide evidence for some class. Given Proposition 1, we know
that X1 = F cannot provide evidence for the class that X1 = T supports. Therefore,
if X1 = T supports one class, then X1 = F has to support the other class. ��
Proposition 3 One value of an attribute can provide a greater evidence for one class
than the evidence the other value of the same attribute provides for the other class.

Proof Without loss of generality, assume p
q > 1. Then, X1 = T provides evidence for

Y = +1. Hence 1−q
1−p > 1 and X1 = F provides evidence for Y = −1. The evidence

that X1 = T provides for Y = +1 is greater than the evidence X1 = F provides for
Y = −1, that is, p

q >
1−q
1−p , if and only if p = q + ε ≤ 0.5 for ε > 0 or p = 0.5 + α

and q = 0.5 − β for 0 < α < β < 0.5. ��
For the two-attributes case, assumewe have two binary attributes, X1 and X2. In this

case, there are four possible instances (e.g., 〈X1 = T, X2 = T 〉, 〈X1 = T, X2 = F〉,
etc.). To compare UNC-CE and UNC-IEmethods, we need the model to be uncertain
on at least two of these instances and we want one of them to be a conflicting-evidence
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case and the other one to be an insufficient-evidence case. Assume the following
distributions for a naïve Bayes classifier:

P(X1 = T |Y = +1) = p; P(X1 = F |Y = +1) = 1 − p

P(X1 = T |Y = −1) = q; P(X1 = F |Y = −1) = 1 − q

P(X2 = T |Y = +1) = r; P(X2 = F |Y = +1) = 1 − r

P(X2 = T |Y = −1) = s; P(X2 = F |Y = −1) = 1 − s

Assume that the uncertain instances are 〈X1 = T, X2 = T 〉 and 〈X1 = F, X2 =
F〉. That is:

P(Y = +1)P(X1 = T |Y = +1)P(X2 = T |Y = +1)

P(Y = −1)P(X1 = T |Y = −1)P(X2 = T |Y = −1)
≈ 1

P(Y = +1)P(X1 = F |Y = +1)P(X2 = F |Y = +1)

P(Y = −1)P(X1 = F |Y = −1)P(X2 = F |Y = −1)
≈ 1

Without loss of generality, assume X1 = T provides evidence for Y = +1. Then,
Propositions 1 and 2 above show that X1 = F provides evidence for Y = −1. Assum-
ing P(Y ) is uniform with 0.5, for the instance 〈X1 = T, X2 = T 〉 to be uncertain,
X2 = T must provide evidence for Y = −1 and this evidence must be roughly equal
to the evidence that X1 = T provides for Y = +1. Invoking Propositions 1 and 2
again, X2 = F then must provide evidence for Y = +1 and for 〈X1 = F, X2 = F〉
to be uncertain, the evidence X1 = F provides for Y = −1 must be roughly equal to
the evidence X2 = F provides for Y = +1.

Without loss of generality, assume 〈X1 = T, X2 = T 〉 is the UNC-CE instance and
〈X1 = F, X2 = F〉 is the UNC-IE instance. Then, for both instances to be uncertain,
and for 〈X1 = T, X2 = T 〉 to be the conflicting case as opposed to 〈X1 = F, X2 = F〉,
we need

p

q
≈ s

r
>

1 − q

1 − p
≈ 1 − r

1 − s

Proposition 4 The density of UNC-CE instancewith respect to the naïve Bayes model
is less than the density of UNC-IE instance, i.e. P(X1 = T, X2 = T ) < P(X1 =
F, X2 = F).

Proof Assume that P(Y ) is uniform, P(Y = +1) = P(Y = −1) = 0.5. We need to
prove that

0.5 × p × r + 0.5 × q × s< 0.5 × (1 − p) × (1 − r) + 0.5 × (1 − q) × (1 − s)

0.5 × p × r + 0.5 × q × s
?
< 0.5 × (1 − p) × (1 − r) + 0.5 × (1 − q) × (1 − s)

p × r + q × s
?
< (1 − p) × (1 − r) + (1 − q) × (1 − s)

p × r + q × s
?
< 1 − r − p + p × r + 1 − s − q + q × s

0
?
< 2 − r − p − s − q

r + p + s + q
?
< 2
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Because p
q >

1−q
1−p and as we have shown in Proposition 3, either p = q + ε ≤ 0.5

for ε > 0 or p = 0.5 + α and q = 0.5 − β for 0 < α < β < 0.5. Similar arguments
apply to s and r : either s = r + ε ≤ 0.5 for ε > 0 or s = 0.5 + α and r = 0.5 − β

for 0 < α < β < 0.5.
Case 1: p = q + ε ≤ 0.5 for ε > 0. Then p+ q < 1. Similarly, if s = r + ε ≤ 0.5

for ε > 0, then s + r < 1.
Case 2: p = 0.5 + α and q = 0.5 − β for 0 < α < β < 0.5. Then p + q =

0.5+α+0.5−β = 1+α−β < 1. Similarly, s+r = 0.5+α+0.5−β = 1+α−β < 1.
Since in both cases, p+q < 1 and s + r < 1, we conclude that p+q + r + s < 2,

proving that the density with respect to the underlying naïve Bayes model is lower for
the UNC-CE case than the UNC-IE case. Our proof assumed that P(Y ) was uniform;
the proposition holds when P(Y ) is not uniform and the proof is similar. Moreover,
for simplicity, our proof focused on the two-attributes case. The same arguments can
be extended to multiple-attributes case by induction. ��

5.1.2 Continuous attributes

In this section we investigate the density hypothesis for continuous attributes. For con-
tinuous attributes,Gaussian naïveBayes assumes thatwithin each class, the continuous
attributes are normally distributed:

p(x |Y ) = N (x;μ, σ) = 1√
2πσ 2

e− (x−μ)2

2σ2

For simplicity of exposition, consider a training data with two continuous attributes,
X1 and X2, and a binary class variable, Y with 〈−1,+1〉. Let the mean of attribute X1
for class +1 be μ1,+1 and mean of attribute X1 for class −1 be μ1,−1. Similarly, let
mean of attribute X2 for class +1 be μ2,+1 and mean of attribute X2 for class −1 be
μ2,−1. Let the standard deviation of attribute X1 for class +1 be σ1,+1 and standard
deviation of attribute X1 for class −1 be σ1,−1. Similarly, let standard deviation of
attribute X2 for class +1 be σ2,+1 and standard deviation of attribute X2 for class −1
be σ2,−1. For each class and attribute, Gaussian naïve Bayes estimates the conditional
probability of attribute given class as:

p(X1|Y = +1) = N (μ1,+1, σ1,+1)

p(X1|Y = −1) = N (μ1,−1, σ1,−1)

p(X2|Y = +1) = N (μ2,+1, σ2,+1)

p(X2|Y = −1) = N (μ2,−1, σ2,−1)

Assume μ1,+1 = μ2,+1 = a and μ1,−1 = μ2,−1 = b, where b > a. This can
be easily achieved by rotating and shifting the axes. For simplicity, assume that both
attributes have equal variance in both classes, i.e.σ1,+1 = σ1,−1 = σ2,+1 = σ2,−1 = σ

(the case where each class and feature value pair has unequal variances is similar).
Hence the data for class +1 is centered around the point 〈a, a〉 and the data for class
−1 is centered around the point 〈b, b〉. Fig. 7 illustrates these points for the two classes.
The decision boundary represents the line where an instance has equal probability, 0.5,
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Fig. 7 Analysis of Gaussian
naïve Bayes using two
continuous attributes, X1 and
X2. The mean of both attributes
for class +1 is a, and the mean
of both attributes for class −1 is
b. We consider two instances,
〈 a+b

2 , a+b
2 〉 and 〈c, d〉 on the

decision boundary and we prove
that 〈 a+b

2 , a+b
2 〉 is

insufficient-evidence uncertain
instance and we refer to it as
xUNC−I E on this graph, and
〈c, d〉 is conflicting-evidence
uncertain instance and we refer
to it as xUNC−CE on this graph

of belonging to each class.We consider two instances on the decision boundary, where
one instance is 〈 a+b

2 , a+b
2 〉 and the other is 〈c, d〉, assuming c < a+b

2 and d > a+b
2 .

Next we provide analytical justification showing that conflicting cases have higher
evidence but lower density in the training data, whereas insufficient-evidence cases
have lower evidence and higher density in the training data.

Proposition 5 Instance 〈c, d〉 has higher total evidence than instance 〈 a+b
2 , a+b

2 〉.
Proof First, we show how the evidences for +1 (or −1) class can be computed. The
evidence provided by attribute X f for class +1usingGaussian naïveBayes is computed
as:

1√
2πσ 2

e− (X f −μ f,+1)2

2σ2

1√
2πσ 2

e− (X f −μ f,−1)2

2σ2

= e
−(X f −μ f,+1)2+(X f −μ f,−1)2

2σ2

= e
(X f −μ f,−1+X f −μ f,+1)(X f −μ f,−1−X f +μ f,+1)

2σ2

= e
(2X f −μ f,−1−μ f,+1)(μ f,+1−μ f,−1)

2σ2

For class -1, this ratio is reversed, hence the evidence provided by attribute X f for the
class -1 is:

e
(2X f −μ f,−1−μ f,+1)(μ f,−1−μ f,+1)

2σ2

First, we compute the evidences for instance 〈 a+b
2 , a+b

2 〉. The evidence that attribute
X1 of instance 〈 a+b

2 , a+b
2 〉 provides for class +1 is:

e

(
2( a+b

2 )−a−b
)
(a−b)

2σ2 = e0 = 1
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That is, X1 = a+b
2 does not provide evidence for either class, because

P(X1= a+b
2 |+1)

P(X1= a+b
2 |−1)

= 1. The same argument applies to X2 = a+b
2 . The overall evidence

provided by attributes of instance 〈 a+b
2 , a+b

2 〉 using Eq. 9 is 1 × 1 = 1.
Next we compute the evidences for instance 〈c, d〉. Note that c is closer to class +1

and d is closer to class -1. The evidence that X1 = c provides for class +1 is:

e
(2c−a−b)(a−b)

2σ2

Since c < a+b
2 and a < b, this evidence is greater than 1. The evidence that X2 = d

provides for class -1 is:

e
(2d−a−b)(b−a)

2σ2

Since d > a+b
2 and b > a, this evidence is greater than 1. The total evidence provided

by attributes of instance 〈c, d〉 using Eq. 9 is:

e
(2c−a−b)(a−b)

2σ2 × e
(2d−a−b)(b−a)

2σ2

which is greater than 1,whereas the total evidence provided by attributes of 〈 a+b
2 , a+b

2 〉
is equal to 1. ��

Similar reasoning applies to the instance 〈e, f 〉 in Fig. 7. We conclude that as we
move on the decision boundary away from its center, i.e. move away from 〈 a+b

2 , a+b
2 〉

in the direction of 〈c, d〉 (or 〈e, f 〉), the evidences for each class get higher and hence
the conflict grows.

Before we prove the density argument that conflicting-evidence cases have lower
density compared to the insufficient-evidence cases, we first establish a relationship
among c, d, a, and b. Note that for instance 〈c, d〉 to be uncertain, the evidence for
class +1 must be equal to the evidence for class −1. Hence,

e
(2c−a−b)(a−b)

2σ2 = e
(2d−a−b)(b−a)

2σ2

∴ 2c − a − b = a + b − 2d

c + d = a + b

Proposition 6 The density of instance 〈c, d〉 with respect to the underlying model is
lower than the density of instance 〈 a+b

2 , a+b
2 〉.

Proof Density of instance 〈X1, X2〉with respect to the underlying model can be com-
puted as follows:

P(X1, X2) =P(X1, X2,+1) + P(X1, X2,−1)

=P(+1)P(X1, X2| + 1) + P(−1)P(X1, X2| − 1)
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Naïve Bayes assumes that attributes are conditionally independent given class, hence,

P(X1, X2) =P(+1)P(X1| + 1)P(X2| + 1) + P(−1)P(X1| − 1)(X2| − 1)

=P(+1) × 1√
2πσ 2

e− (X1−μ1,+1)2

2σ2 × 1√
2πσ 2

e− (X2−μ2,+1)2

2σ2

+ P(−1) × 1√
2πσ 2

e− (X1−μ1,−1)2

2σ2 × 1√
2πσ 2

e− (X2−μ2,−1)2

2σ2

Assuming P(+1) = P(−1) = 0.5,

P(X1, X2) = 1

2
× 1√

2πσ 2

(
e− (X1−μ1,+1)2+(X2−μ1,+1)2

2σ2 + e− (X1−μ1,−1)2+(X2−μ1,−1)2

2σ2

)

Density of instance 〈 a+b
2 , a+b

2 〉 is:

1

2
× 1√

2πσ 2

(
e− ( a+b

2 −a)2+( a+b
2 −a)2

2σ2 + e− ( a+b
2 −b)2+( a+b

2 −b)2

2σ2

)

=1

2
× 1√

2πσ 2

(
e− ( b−a

2 )2

2σ2 + e− ( a−b
2 )2

2σ2

)

=1

2
× 1√

2πσ 2
× 2e− ( b−a

2 )2

2σ2

Density of instance 〈c, d〉 is:
1

2
× 1√

2πσ 2

(
e− (c−a)2+(d−a)2

2σ2 + e− (c−b)2+(d−b)2

2σ2

)

First, note that (c − a)2 + (d − a)2 = (c − b)2 + (d − b)2.

(c − a)2 − (c − b)2
?= (d − b)2 − (d − a)2

(c − a + c − b)(c − a − c + b)
?= (d − b + d − a)(d − b − d + a)

(2c − a − b)(−a + b)
?= (2d − b − a)(−b + a)

2c − a − b
?= b + a − 2d

c + d
?= a + b

We earlier established relationship among c, d, a, and b and proved that c+d = a+b.
Therefore, the density of instance 〈c, d〉 is:

1

2
× 1√

2πσ 2
2e− (c−a)2+(d−a)2

2σ2

123



190 M. Sharma, M. Bilgic

Next, we test whether density of instance 〈 a+b
2 , a+b

2 〉 is higher than density of instance
〈c, d〉.

1

2
× 1√

2πσ 2
× 2e− ( b−a

2 )2

2σ2
?
>

1

2
× 1√

2πσ 2
2e− (c−a)2+(d−a)2

2σ2

(b − a)2

2
?
< (c − a)2 + (d − a)2

(b − a)2
?
< 2(c − a)2 + 2(d − a)2

Since c + d = a + b, assume c = a + ε and d = b − ε, where ε is any real number.

(b − a)2
?
< 2(a + ε − a)2 + 2(b − ε − a)2

(b − a)2
?
< 2ε2 + 2(b − a)2 + 2ε2 − 4(b − aε)

0
?
< 4ε2 + (b − a)2 + −4(b − aε)

0
?
< (2ε − b + a)2

For any real numbers, a, b, and c, (2ε − b+ a)2 will always be greater than 0, except
when ε = b+a

2 , (2ε − b + a)2 will be equal to 0. When ε = b+a
2 , c = a + b−a

2 ,
i.e. c = a+b

2 . For any other value of ε, instance 〈 a+b
2 , a+b

2 〉 has a higher density, with
respect to the underlying model, than instance 〈c, d〉. ��

5.2 Empirical justifications

We have shown that the UNC-CE case has lower density than the UNC-IE case, with
respect to the underlying naïve Bayes model. Our proof assumed that the instances
were nearly perfectly uncertain, i.e. P(X |Y = +1) = P(X |Y = −1) = 0.5. In
reality, however, it is impractical to assume that the instances lie perfectly on the
decision boundary. To analyze such cases, we provide an empirical study to investigate
the correlation between density and evidence for instances that are close to decision
boundary but not necessarily on the decision boundary of the model.

We created a synthetic dataset using a Bernoulli Naïve Bayes model where the
number of features was 10. We assumed that each parameter had a Beta prior, and
hence the posterior was also a Beta distribution. Note that even though the joint pos-
terior distribution P(Y, X |L) has a closed-form solution, computing the conditional
P(Y |X,L) requires us to resort to sampling. Therefore, rather than plugging in the
mean of the posterior distributions for P(Y |L) and P(X |Y,L), we instead sampled
their values from their posterior distributions, which gave us a sample over P(Y |X,L),
rather than a single point estimate. Using this sample, we computed the variance of
P(Y |X,L).

We tested if, how, and how much the evidence, density, and variance are correlated
for the top uncertain instances. We used Eq. 2 to compute the uncertainty score of all
instances x (i) ∈ U and considered instances above the threshold of 0.45 uncertainty
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Table 8 Spearman rank
correlations between evidence
and density, and evidence and
prediction variance, with respect
to the model trained on L

|L| Evidence’s correlation with

Density Variance

Mean Std. dev Mean Std. Dev

20 −0.84 0.0353 0.91 0.0139

40 −0.93 0.0031 0.96 0.0018

60 −0.94 0.0025 0.97 0.0006

80 −0.95 0.0025 0.97 0.0006

100 −0.92 0.0092 0.95 0.0093

score to be the uncertain instances. We computed the evidence, which we earlier
defined as E+1(x (i)) × E−1(x (i)), for each uncertain instance x (i), and ranked them
in increasing order of evidence. Let this ranking be re. We compared this ranking with
the ranking with respect to variance, rv , and with the ranking with respect to density,
rd .

We computed the Spearman rank correlation between the evidence-based ranking,
re, and the variance-based ranking, rv . We also computed the Spearman rank cor-
relation between the evidence-based ranking, re, and the density-based ranking, rd .
We computed the correlations for various sizes of labeled data, L. We repeated each
experiment 10 times, each time randomly choosing the labeled data L. We report the
mean and standard deviation of the correlations over the 10 trials.

Table 8 presents the results for Spearman rank correlations between evidence and
density, and between evidence and variance of the posterior predictive distribution, of
the uncertain instances for various training data sizes, |L|. These results clearly show
that the amount of evidence the model has on uncertain instances and the densities of
these uncertain instances with respect to the model are highly negatively correlated
(ranging between −0.84 and −0.95), providing empirical evidence that uncertain
instances with higher evidence (UNC-CE instances) have lower density in the training
data than the uncertain instances with lower evidence (UNC-IE instances). These
results further show that the Spearman rank correlation between re and rv is positive
and quite high, ranging from 0.91 to 0.97 for various training data sizes, showing that
UNC-CE cases have higher variance than the UNC-IE cases.

In Fig. 8 we plot the histograms of the posterior predictive distributions P(Y =
+1|X,L) for two instances for which the model is uncertain for different reasons:
conflicting vs. inconclusive evidences. In both cases, the model is equally uncertain
on X where themean of P(Y = +1|X,L) is 0.49. However,UNC-CE instance (the red
histogram) has twice the variance of the UNC-IE instance (the blue histogram), 0.10
versus 0.05 respectively. Regular uncertainty sampling for active learning would not
make a distinction between these two instances as both have equally high uncertainty
of 0.49, but UNC-CE strategy would prefer the high variance one and the UNC-IE
strategy would prefer the low variance one.

We have seen that the underlying model has higher variance on UNC-CE cases.
Next, we compare UNC-CE and UNC-IE strategies to query-by-committee strategy
(Seung et al. 1992), which chooses instances on which the model has the highest
prediction variance.
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Fig. 8 The histogram of P(Y = +1|X,L) for two instances that are uncertain for two different reasons:
conflicting-evidence versus insufficient-evidence

5.3 Comparison to query-by-committee

Query-by-committee (QBC) (Seung et al. 1992) is another frequently used baseline
in active learning. QBC selects instances that reduce the version space size of the
underlying model class (Mitchell 1982). A committee of classifiers is formed by
sampling hypotheses from the version space, but since this is not always possible, an
approximate version of QBC can be formed by technique known as bagging which is
described in (Abe andMamitsuka 1998) and selects instances on which the committee
disagrees the most. The two most common approaches to measure the disagreement
between committee members are margin of disagreement, i.e. the difference between
number of votes for the most popular label and number of votes for the next most
popular label (Melville and Mooney 2004), and vote entropy (Dagan and Engelson
1995). Vote entropy is defined as:

x∗ = arg max
x (i)∈U

−
∑

y∈Y

V (y)

C
log

V (y)

C
(15)

where y ranges over all possible labels in Y , V (y) is the number of votes that a label
receives from the committee members, and C is the committee size.

We built a committee of 10 classifiers using bagging technique described in (Abe
andMamitsuka 1998) and used vote entropy (Dagan and Engelson 1995) as a measure
of informativeness of instances. Figures 9 and10present the learning curves comparing
UNC-CE and UNC-IE with t = 10 to QBC. These results show that for most datasets
andmeasures,UNC-CEoutperformsQBCwhereasUNC-IE isworse thanQBC. Table 9
presents the t-test results comparingUNC-1,UNC-CE, andUNC-IE toQBC. For AUC
measure, UNC-CE significantly wins over QBC on seven datasets and loses on one
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Fig. 9 AUC results for all eight datasets. UNC-CE outperforms QBC on seven out of eight datasets ((b),
(c), (d), (e), (f), (g), and (h)) and loses on Spambase dataset (a). UNC-IE loses to QBC on seven out of
eight datasets ((a), (b), (c), (d), (e), (f), and (g), and wins on Hiva dataset (h)
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Fig. 10 Accuracy results for four medium-imbalanced datasets (Spambase, Ibn Sina, Calif. Housing and
Nova). UNC-CE outperforms QBC on three datasets ((b), (c) and (d)) and loses on Spambase (a). UNC-IE
loses to QBC on all four datasets. F1 results for four relatively skewed datasets (Sick, Zebra, LetterO and
Hiva). UNC-CE outperforms QBC significantly on three datasets ((e), (f) and (h)), and loses on one (g).
UNC-IE loses to QBC on all four datasets
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Table 9 UNC-1, UNC-CE, and
UNC-IE versus QBC. Number
of datasets on which UNC-1,
UNC-CE, and UNC-IE
significantly Win (W), Tie (T),
or Lose (L) compared to QBC
baseline

QBC baseline AUC ACCU F1
Method W/T/L W/T/L W/T/L

UNC-1 3/0/5 2/0/2 4/0/0

UNC-CE 7/0/1 3/0/1 3/0/1

UNC-IE 1/0/7 0/0/4 0/0/4

(Spambase), whereas UNC-IE loses to QBC on all datasets except Hiva. For accuracy,
UNC-CE significantly outperforms QBC on three datasets and loses on one (Ibn Sina),
and for F1, it wins on three datasets and loses on one (LetterO). UNC-IE loses to QBC
for both accuracy and F1 measures for all datasets.

5.4 Discussion

We presented both analytical and empirical results showing that the conflicting cases
have lower density, with respect to the underlying model, than the inconclusive cases.
That is, the perceived conflict is supported by a small amount of labeled data whereas
the lack of evidence is supported by more labeled data. This suggests that the model is
more likely to be incorrect in its reasoning that there is a conflict than its reasoning that
there is not enough evidence. Further, we showed that themodel has higher variance on
the UNC-CE cases than on the UNC-IE cases. Put another way, the model parameters
are more “sure” about the uncertainty of the UNC-IE cases (lower variance) and
therefore the UNC-IE cases might indeed continue to be inconclusive even if more
labeled data is collected. We compared UNC-CE and UNC-IE strategies to QBC and
showed that UNC-CE outperforms QBC whereas UNC-IE loses to QBC.

6 Extension to other classifiers and multi-class classification

In this section, we describe how the evidence-based framework can be extended to
other classifiers. We formally define evidence using multinomial naïve Bayes, logistic
regression, linear support vector machines, and non-linear support vector machines.
Finally, we discuss how it can be generalized to multi-class classification domains.

6.1 Evidence using multinomial naïve Bayes

The probability of a document, d(i), belonging to a class +1 is computed using Eq. 16.

P(+1|d(i)) = P(+1)
∏

1≤k(i)≤n P(t (i)k | + 1)

P(d(i))
(16)

where, t (i)k is the kth term in a document, d(i), k(i) is the number of terms that appear
in document, d(i), and n is the dictionary size. A document d(i) can then be classified

based on the ratio of P(+1|d(i))

P(−1|d(i))
:
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Y =

⎧
⎪⎨

⎪⎩
+1 if

(
P(+1)
P(−1)

∏

1≤k(i)≤n

P(t (i)k |+1)

P(t (i)k |−1)

)
> 1

−1 otherwise

(17)

From Eq. 17, it follows that the term t (i)k of document d(i) provides evidence for the

positive class if
P(t (i)k |+1)

P(t (i)k |−1)
> 1, and it provides evidence for the negative class otherwise.

LetPd(i) andNd(i) be two sets, such that Pd(i) contains the terms that provide evidence
for the positive class andNd(i) is the set of terms that provide evidence for the negative
class:

Pd(i) �
{
t (i)k | P(t (i)k | + 1)

P(t (i)k | − 1)
> 1

}

Nd(i) �
{
t (i)k | P(t (i)k | − 1)

P(t (i)k | + 1)
> 1

}

Then, the total evidence the document, d(i), provides for the positive class is:

E+1(d
(i)) =

∏

t (i)k ∈Pd(i)

P(t (i)k | + 1)

P(t (i)k | − 1)
(18)

and, the total evidence the document provides for the negative class is:

E−1(d
(i)) =

∏

t (i)k ∈Nd(i)

P(t (i)k | − 1)

P(t (i)k | + 1)
(19)

6.2 Evidence using logistic regression

The parametric model assumed by logistic regression for binary classification is:

P(Y = −1|x) = 1

1 + e

(
w0+∑ f

j=1 w j x
(i)
j

) (20)

P(Y = +1|x) = e

(
w0+∑ f

j=1 w j x
(i)
j

)

1 + e

(
w0+∑ f

i=1 w j x
(i)
j

) (21)

An instance can then be classified using:

Y = sgn

(
w0 +

∑ f

i=1
w j x

(i)
j

)
(22)
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FromEq. 22, it follows that the attribute value x (i)
j of instance x (i) provides evidence

for the positive class if w j x
(i)
j > 0, and it provides evidence for the negative class

otherwise.
Let Px (i) and Nx (i) be two sets, such that Px (i) contains the attribute values that

provide evidence for the positive class and Nx (i) contains the attribute values that
provide evidence for the negative class:

Px (i) �
{
x (i)
j | w j x

(i)
j > 0

}

Nx (i) �
{
x (i)
k | wk x

(i)
k < 0

}

Then, the total evidence that instance x (i) provides for the positive class is:

E+1(x
(i)) =

∑

x (i)
j ∈Px(i)

w j x
(i)
j (23)

and, the total evidence that instance x (i) provides for the negative class is:

E−1(x
(i)) = −

∑

x (i)
k ∈Nx(i)

wk x
(i)
k (24)

6.3 Evidence using linear support vector machines

Support vector machines (SVM) maximize the margin of classification:

w = arg max
w

⎛

⎝y × (w0 +
f∑

j=1

w j x
(i)
j )

⎞

⎠ (25)

and the classification rule is identical to that of logistic regression (Eq. 22):

Y = sgn

⎛

⎝w0 +
f∑

i=1

w j x
(i)
j

⎞

⎠ (26)

Following the reasoning of evidence using logistic regression, the equations for
E+1(x (i)) and E−1(x (i)) for linear SVM are identical to those for logistic regression.

6.4 Evidence using non-linear support vector machines

Non-linear SVM maps the data on to a higher dimensional space and uses a linear
classifier in a higher dimensional space. For non-linear SVM, the optimization problem
is:
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w = arg min
w

λ‖ w ‖2 +
m∑

l=1

L(w.φ(x (l)), y(l)) (27)

where w = ∑m
l=1 βlφ(x (l)), λ = 1

C is the regularization parameter, and L(y, t) =
max(0, 1 − yt)p is a loss function. An instance, x (i), is then classified using:

Y = sgn
m∑

l=1

βl k(x
(l), x (i)) + b (28)

where k(x (l), x (i)) = φ(x (l))T .φ(x (i)) is a kernel function that defines weighted sim-
ilarity between x (l) and x (i) and βl is the coefficient which is non-zero for the support
vectors and zero for all other instances in the training data.

In case of non-linear SVMs, the evidence that instance x (i) provides for one class
or another is it’s weighted similarity to the support vectors, x (l), which is defined using
a kernel function, k(x (l), x (i)). Let Px (i) and Nx (i) be two sets for instance x (i), such
that Px (i) contains the support vectors that provide evidence for the positive class for
x (i) andNx (i) contains the support vectors that provide evidence for the negative class
for x (i):

Px (i) � {x ( j) | β j k(x
( j), x (i)) > 0}

Nx (i) � {x (k) | βkk(x
(k), x (i)) < 0}

Then, the total evidence that instance x (i) contains for the positive class is:

E+1(x
(i)) =

∑

x ( j)∈Px(i)

β j k(x
( j), x (i)) (29)

and, the total evidence that instance x (i) contains for the negative class is:

E−1(x
(i)) =

∑

x (k)∈Nx(i)

βkk(x
(k), x (i)) (30)

6.5 Evidence for multi-class classification

For binary classification, all three types of uncertainties (Eqs. 1, 2, 3) prefer instances
closest to the decision boundary as specified by Eqs. 5, 22, and 26. However, their pref-
erences differ in multi-class classification. The entropy approach (Eq. 1), for example,
considers overall uncertainty and takes into account all classes, whereas the maxi-
mum conditional approach (Eq. 2) considers how confident the model is about the
most likely class. To keep the discussion simple and brief, and as a proof-of-concept,
we show how the evidence for multi-class can be extended for naive Bayes (Eq. 4)
when used with the margin uncertainty approach (Eq. 3).

The margin uncertainty prefers instances for which the difference between the
probabilities of most-likely class ym and next-likely class yn is minimum. Let Mx (i)
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andNx (i) be two sets, such thatMx (i) contains the attribute values that provide evidence
for the most-likely class and Nx (i) contains the attribute values that provide evidence
for the next likely class:

Mx (i) �
{
x (i)
j | P(x (i)

j |ym)

P(x (i)
j |yn)

> 1

}

Nx (i) �
{
x (i)
k | P(x (i)

k |yn)
P(x (i)

k |ym)
> 1

}

Then, the total evidence that instance x (i) provides for the most-likely class (in com-
parison to the next-likely class) is:

Em(x (i)) =
∏

x (i)
j ∈M(i)

x

P(x (i)
j |ym)

P(x (i)
j |yn)

(31)

and, the total evidence that instance x (i) provides for the next-likely class (in compar-
ison to the most-likely class) is:

En(x
(i)) =

∏

x (i)
k ∈N (i)

x

P(x (i)
k |yn)

P(x (i)
k |ym)

(32)

7 Conclusion and future work

We introduced an evidence-based framework that can uncover the reasons for amodel’s
uncertainty.We used this framework to distinguish between two types of uncertainties:
a model is uncertain about an instance due to strong and conflicting evidence for both
classes (conflicting-evidence uncertainty) versus a model is uncertain because it does
not have sufficient evidence for either class (insufficient-evidence uncertainty). Tradi-
tional uncertainty sampling does not distinguish between these types of uncertainties,
but our empirical evaluations showed that making this distinction has a big impact on
the performance of learner: while insufficient-evidence uncertain instances provided
the least value to an active learner, actively labeling conflicting-evidence uncertain
instances significantly improved the learning efficiency.

We provided analytical and empirical results showing that the conflicting-evidence
instances are underrepresented in the labeled data compared to the insufficient-
evidence instances. We further provided empirical results showing that the model has
higher variance on the conflicting-evidence instances than on the insufficient-evidence
instances. These two results suggest that the model is more likely to be incorrect in its
decision that there is a conflict than its decision that the case is inconclusive.

We primarily focused on evaluating the performance of evidence-based framework
for naïve Bayes classifier. We provided empirical evaluations on several real-world
datasets and provided the analysis of the evidence-based framework using naïve Bayes
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on binary classification tasks. Evaluating our methods using other classifiers such
as logistic regression and support vector machines, and on multi-class classification
tasks is left as future work. Even though we observed on most datasets that UNC-CE
outperforms UNC-1 and UNC-IE was even worse than UNC-t, there was one case
(Hiva-AUC) for which UNC-IE outperforms UNC-1. The current framework cannot
predict which of the two uncertainties would help the learning the most. The evidence-
based framework is not specific to improving any particular performance measure and
is still a decision boundary approach.

We combined the evidence-based framework and uncertainty sampling using a two-
step approach in Sect. 2.3.2: we first ranked the instances according to uncertainty
and then applied the evidence-based framework on the top k instances. We observed
that this simple approach worked well, but it requires us to define what is uncertain,
e.g. defining a threshold for number of top uncertain instances. In future, we would
like to investigate multi-criteria optimization approaches (Steuer 1989) for combining
uncertainty sampling and the evidence-based framework.

It is well-known in the active learning community that uncertainty sampling is
susceptible to noise and outliers (Settles and Craven 2008). UNC-CE prefers instances
that have low density with respect to training data. We showed that UNC-CE performs
quite well on many datasets. However, we do not know whether preferring instances
selected by UNC-CE over instances selected by UNC-1 and UNC-IE makes it more
susceptible to noise and outliers. This needs to be verified using controlled experiments
with synthetic datasets.

Another interesting future work is to utilize the formalism of (Senge et al. 2014)
to investigate whether any parallels and similarities can be drawn between conflicting
versus insufficient-evidence and aleatoric versus epistemic uncertainty cases. In this
articlewe have distinguished between the two types of uncertainties and have evaluated
its benefit in selecting informative instances for active learning for classification. The
proposed framework may be applied to regression problems as well, but its discussion
is beyond the scope of this article.
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