
Data Min Knowl Disc (2017) 31:1–31
DOI 10.1007/s10618-016-0455-0

Generalizing DTW to the multi-dimensional case
requires an adaptive approach

Mohammad Shokoohi-Yekta1 · Bing Hu2 ·
Hongxia Jin3 · Jun Wang4 · Eamonn Keogh5

Received: 26 December 2014 / Accepted: 1 February 2016 / Published online: 15 February 2016
© The Author(s) 2016

Abstract In recent years Dynamic TimeWarping (DTW) has emerged as the distance
measure of choice for virtually all time series data mining applications. For example,
virtually all applications that process data from wearable devices use DTW as a core
sub-routine. This is the result of significant progress in improving DTW’s efficiency,
together with multiple empirical studies showing that DTW-based classifiers at least
equal (and generally surpass) the accuracy of all their rivals across dozens of datasets.
Thus far, most of the research has considered only the one-dimensional case, with
practitioners generalizing to themulti-dimensional case in one of twoways, dependent
or independent warping. In general, it appears the community believes either that the
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2 M. Shokoohi-Yekta et al.

two ways are equivalent, or that the choice is irrelevant. In this work, we show that
this is not the case. The two most commonly used multi-dimensional DTW methods
can produce different classifications, and neither one dominates over the other. This
seems to suggest that one should learn the best method for a particular application.
However, we will show that this is not necessary; a simple, principled rule can be used
on a case-by-case basis to predict which of the two methods we should trust at the
time of classification. Our method allows us to ensure that classification results are at
least as accurate as the better of the two rival methods, and, in many cases, our method
is significantly more accurate. We demonstrate our ideas with the most extensive set
of multi-dimensional time series classification experiments ever attempted.

Keywords Dynamic time warping · Classification · Multi-dimensional time series ·
Gesture recognition · Wearable devices

1 Introduction

The research community seems to have converged on the belief that Dynamic Time
Warping (DTW) is remarkably hard to beat as a time series distance measure, across
a host of domain applications, and a host of tasks; including clustering, classification
and similarity search (Ding et al. 2008; Papapetrou et al. 2011). Moreover, the most
often cited reason for not using DTW, its relatively high time complexity, has recently
become a non-issue. In particular, amortized over a subsequence search or subsequence
monitoring task, DTW is slower than Euclidean Distance by less than a factor of
two (Rakthanmanon et al. 2013). As a practical matter, carefully optimized DTW is
much faster than all but the most carefully optimized implementations of Euclidean
Distance (Aach and Church 2001). For example, a modern cell phone, using the state-
of-the-art DTW subsequence monitoring algorithm (Rakthanmanon et al. 2013), can
easily process streams arriving at several thousand Hertz. However, such devices only
produce data at about 100Hz.

Virtually all attempts to improve time series classification in the last two decades
have focused on the single-dimensional case, with the assumption that the generaliza-
tion to the multi-dimensional case is trivial. There are two obvious ways DTW can be
generalized to the multi-dimensional case: Fig. 1 gives a visual intuition, which we
formalize later in this work. For clarity, we refer to the two methods as DTWD and
DTWI (with D standing for Dependent and I for Independent).

The vast majority of researchers seem to think that it makes no difference which
method is used, as evidenced by the fact that they usually do not explicitly bother to
tell the reader.

With some introspection we can see that there are actually several possibilities:

• There is no difference between DTWD and DTWI; they produce the same values
for all time series.

However, we can immediately dismiss this possibility; as shown in Fig. 1, the two
methods generally produce different distance values, and thus could produce different
class labels if classifying an object using the Nearest Neighbor (NN) algorithm.

The next possibility seems to be the one implicitly assumed by the community:
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DTWI(Q,C) = DTW(Qx,Cx) + DTW(Qy,Cy) = 2.4

DTWD(Q,C) = DTW({Qx,Qy},{Cx,Cy}) = 3.2
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Fig. 1 top left Two multi-dimensional time series. a The DTWD distance between them is 3.2. b The
DTWI distance between them is 2.4. All elements of this visual key are formally defined below

• DTWD and DTWI can produce different distance values, but this makes no dif-
ference in the classification accuracy.

As we shall show, this is not the case. The choice of DTWD vs. DTWI can make a
significant difference in the classification accuracy.

Given that DTWD andDTWI can have different classification accuracies, onemight
then imagine that the following is the case:

• While DTWD and DTWI can produce different classification accuracies, it so
happens that one of the two is always superior on all problems. If we could prove,
or experimentally demonstrate this, we could “retire” the weaker measure.

This idea is tempting and has some precedents in similar situations in the literature.
However, as we shall show, it is not the case. Datasets exist where DTWD significantly
outperforms DTWI and vice-versa.

This would appear to be the end of the discussion. For a given problem, we can
use cross-validation to determine which method to use, then simply hard-code it into
our classifier. However, there are two reasons why this is not the last word. First, we
do not have the luxury of cross-validation when we have very small training sets,
a situation that is very common when cold-starting a gesture recognition system or
when labeled data is expensive. Secondly, we are not done moving down the hierarchy
of possibilities. In particular:

• For any given domain, it may be that, on an individual class-by-class, or even
exemplar-by-exemplar basis, DTWD and DTWI can produce different results, and
that we could predict which of the two methods to trust at classification time.

This possibility is less intuitive than the others. It is not clear that the utility of the
measures should vary within a single domain, and, if it did, correctly predicting which
measure was most likely to have been correct on a case-by-case basis seems like an
untenable undertaking.
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DTWD

I II

Fig. 2 I Two pages from a sixteenth century family history. The heraldic shield featuring the golden deer
on a blue background is the family crest of Lucas Fugger. II A clustering of three of the shields under
DTWD shows an unintuitive result, the two examples of the Fuggers are not grouped together

In this work, we show for the first time that this last possibility is correct. The
utility of DTWD andDTWI varies on an instance-by-instance basis, and our technique,
DTWA(DTWAdaptive), can predict at run time with high accuracy in terms of which
of them is more likely to be correct (Shokoohi-Yekta et al. 2015; Shokoohi-Yekta
2015).

Before leaving this section, we will give a visual and initiative example of our
claims. While we normally think of DTW in the context of “true” time series, it has
also been used to classify (suitably represented) text, spectrographs, shapes (Keogh
et al. 2006), and, as shown in Fig. 2, colors (Zhu and Keogh 2010).

Because color is typically represented in a three dimensionalRGBspace, it naturally
forms a multidimensional time series, as shown The two pairs of examples shown
in Fig. 3 are markedly different. In the pair of heraldic shields, each color needs to
warp independently. A detailed, high-resolution examination of the images suggests
why. While the blue background appears identical in each shield, the gold coloring
of the deer is much darker in the uppermost example (this is easier to see in the
large format images available at Footnote 1). This difference is probably explained
by the fact that the book took four years to produce, and maintaining exact hues over
that time period would have been very difficult, especially with 16th century pigment
technology.

To make this clearer, we picked a single point just left of center on each channel of
the lighter shield and recolored and thickened the hatch line that illustrates thewarping.
As we can see, in the blue channel the line is vertical, indicating no warping, in the
green channel the line leans forward, and in the red channel the line leans backwards.
This observation immediately explains the unintuitive clustering shown in Fig. 2 right.
By using DTWD we forced all channels to warp in a single compromised way. If we
simply use DTWI we do obtain the correct clustering here.

This discussion seems to argue in favor of usingDTWI, at least for images.However,
there are examples inwhich all color channelswarp in the sameway, as in the butterflies
in Fig. 3 bottom (see also Fig. 5 of Zhu and Keogh (2010)). This happens if one image
is simply sun-faded, or it can be an artifact of the scanning process. In such situations
we are better off using DTWD which finds the best warping by pooling evidence from
all three sources of information.
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Generalizing dynamic time warping... 5

Fig. 3 The color histograms of four objects taken from sixteenth century manuscripts. From left to right
the red, green and blue channels are presented. Each channel has been independently aligned by DTW. top
The two examples from family crest of Lucas Fugger have radically different warpings in each of the three
color channels, perhaps reflecting the fact that the book was created over a 4 year period. bottom In contrast,
the two butterfly examples have essentially identical alignments (Albertus 1734) (Color figure online)

Our work has two implications for the time series research community: we free
researchers/implementers from having to decide which technique to use for their prob-
lem; and, because error(DTWA)will beminimum[error(DTWD), error(DTWI)], they
can use our method safe in the knowledge that they did not choose the suboptimal
method.

However, this greatly understates the case, as the correct inequality implied by our
work is themoreunintuitive error(DTWA) ≤minimum[error(DTWD), error(DTWI)].
That is to say, on some datasets our method can be significantly more accurate than
either of the rival methods.

2 Definitions and background

We present the definitions of key terms that we use in this work. For our task at hand,
each object in the dataset is a time series.

Definition 1 A Time Series T = t1, t2, . . ., tn is an ordered set of real values. The
total number of real values is equal to the length of the time series. A dataset D =
{T1, T2, . . ., TM} is a collection of M such time series.

We are interested in multi-dimensional time series:

Definition 2 Multi-Dimensional Time Series (MDT) consist of M individual time
series (M ≥ 2) where each time series has n observations:
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Q1 = q1,1, q2,1, q3,1, . . . qn,1
Q2 = q1,2, q2,2, q3,2, . . . qn,2
. . .

QM = q1,M, q2,M, q3,M, . . . qn,M

If we wish to compare two time series, we could use the ubiquitous Euclidean
distance. However, the DTW distance subsumes the Euclidean distance as a special
case and has been shown to be significantly more accurate in virtually all domains
(Ding et al. 2008; Rakthanmanon et al. 2013). Unlike the Euclidean distance’s strict
one-to-one alignment, DTW allows a one-to-many alignment, as illustrated in Fig. 1.
To align sequences using DTW, an n-by-nmatrix is constructed with the (i , j) element
being the squaredEuclidean distance d(qi , c j ) between the points qi and c j . Awarping
path P is a contiguous set of matrix elements defining a mapping between Q and C .
The t th element of P is defined as pt = (i, j)t , so we have:

P = p1, p2, . . . , pt , . . . , pT n ≤ T ≤ 2n − 1

The warping path that defines the alignment between the two time series is usually
subject to several constraints: the warping path must start and finish in diagonally
opposite corner cells of the matrix, the steps in the warping path are restricted to
adjacent cells, and the points in the warping path must be monotonically spaced in
time. In addition, virtually all practitioners using DTWalso constrain the warping path
in a global sense by limiting how far it may stay from the diagonal (Ding et al. 2008;
Papapetrou et al. 2011). A typical constraint is the Sakoe–Chiba Band which states
that the warping path cannot deviate more than R cells from the diagonal (Ding et al.
2008; Papapetrou et al. 2011; Rakthanmanon et al. 2013). This constraint prevents
pathological warpings (for example, a single heartbeat mapping to ten heartbeats) and
is at the heart of the LBKeogh lowerbounding technique, which is used in virtually all
speedup techniques for DTW (Aach and Church 2001; Ding et al. 2008).

While there are exponentially manywarping paths that satisfy the above conditions,
we are only interested in the path that minimizes the warping cost:

DTW (Q,C) = min

⎧
⎨

⎩

√
√
√
√

T∑

t=1

pt

⎫
⎬

⎭
(1)

This path can be found using dynamic programming to evaluate the following recur-
rence, which defines the cumulative distance D(i, j) as the distance d(i, j) found in
the current cell and the minimum of the cumulative distances of the adjacent elements
(Kruskal and Liberman 1983; Rabiner and Juang 1993):

D(i, j) = d(qi , c j ) + min{D(i − 1, j − 1), D(i − 1, j),

D(i, j − 1)} in which: d(qi , c j ) = (qi − c j )
2 (2)
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While this recursive function is elegant and can be tersely implemented, in practice the
community uses an iterative algorithm, which is faster and amiable to various early
abandoning optimizations (Aach and Church 2001; Ding et al. 2008). Moreover, the
iterative algorithm implementation only constructs and considers a single column of
the matrix at a time and, thus, has a space complexity of just O(n).

The Euclidean distance between two sequences is a special case of DTW, where
the t th element of P is constrained such that pt = (i, j)t, i = j = t . This review of
DTW is necessarily brief; we refer the interested reader to Aach and Church (2001),
Ding et al. (2008), Kruskal and Liberman (1983), and Rabiner and Juang (1993) for
more details.

2.1 Generalizing to the multi-dimensional case

The DTW distance, as formalized in Eq. 2, is applicable to only single-dimensional
time series, leaving open the question of how to extend it to the multi-dimensional
time series (MDT) case. Consider both Q and C as two M-dimensional time series;
we show two possible approaches for doing this, DTWI and DTWD:

Definition 3 DTWI is the cumulative distances of all dimensions independently mea-
sured under DTW. If DTW(Qm,Cm) is defined as the DTW distance of the mth
dimension of Q and the mth dimension of C , we can write DTWI as:

DTWI (Q,C) =
M∑

m=1

DTW (Qm,Cm) (3)

In Eq. 3, each dimension is considered to be independent, and DTW is allowed the
freedom to warp each dimension independently of the others. The case when M is two
was shown in Fig. 1b.
We can also compute the multi-dimensional DTW in a manner that forces all dimen-
sions to warp identically, in a single warping matrix. In other words, the independence
of dimensions is no longer allowed, and we assume mutual dependence between all
dimensions. We define DTWD as:

Definition 4 DTWD is calculated in a similar way to DTW for single-dimensional
time series (Eq. 2), except that we redefine d(qi , c j ) as the cumulative squared Euclid-
ean distances ofM data points instead of the single data point used in themore familiar
one-dimensional case. Formally, if qi,m is the i th data point in themth dimension of Q
and c j,m is the j data point in the mth dimension of C , we replace d(qi , c j ) in (Eq. 2)
with:

d(qi , c j ) =
M∑

m=1

(qi,m − c j,m)
2 (4)

Tomake our distancemeasure invariant to scale and offset,we need to z-normalize each
dimension of the time series before computing theirDTWdistance.As demonstrated in
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Keogh and Kasetty (2003), even tiny differences in scale and offset rapidly swamp any
similarity in shape. Note that this allows us to meaningfully compute either variant of
the multi-dimensional DTW, even if the individual dimensions are not commensurate
or are in different units, such as accelerations and rotations.

Using both DTWD and DTWI distance measures to classify a time series exemplar,
T , four different cases may occur:

(1) T gets correctly classified by both DTWI and DTWD.
(2) T gets misclassified by both DTWI and DTWD.
(3) T gets classified correctly by DTWI but misclassified by DTWD.
(4) T gets classified correctly by DTWD but misclassified by DTWI.

We are only interested in cases 3 and 4.We call such exemplars iSuccess and dSuccess,
respectively:

Definition 5 iSuccess is the set of time series exemplars that are classified correctly
under DTWI but misclassified under DTWD.

Definition 6 dSuccess is the set of time series exemplars that are classified correctly
under DTWD but misclassified under DTWI.

Having reviewed the necessary formal definitions, we are now in a position to
introduce our observations about the relative merits of DTWD and DTWI.

3 Observations

We begin with some informal notation. We say a dataset is “in D” if we expect DTWD
to achieve higher accuracy and “in I” if we anticipate DTWI will be more accurate.
In the introduction we claimed that there are datasets in which we expect DTWD to
outperform DTWI and vice versa. A natural question to ask is under what conditions
we can expect each of these methods to be superior. As we shall see, one of the
fundamental contributions of this work is to make this question moot by producing
an algorithm that is always at least as good as the better choice. Nevertheless, it is
instructive to ask and attempt to answer this question.

Assume that the data in question corresponds to an event. An event could be an
arrhythmic heartbeat, thewriting of the letter ‘Z,’ a golf swing, a bird call, a self-driving
car parallel parking, etc. Further assume that we have multi-dimensional time series
recordings of such events. It is possible that each dimension is simply recording two
views of the same physical phenomena. For example, consider the MFCC coefficients
of the bird call shown in Fig. 4.

It is clear thatwhile the coefficients are (somewhat) independent in theY-axis values
they can take on, they are not independent in the time axis. In the second bird call all the
relevant peaks and valleys move by exactly the same amount in the time axis. Because
of this structure, we strongly expect that this dataset is in D. In contrast, consider the
event shown in Fig. 5 of a cricket umpire signaling TV-Replay, in which the umpire
traces a rectangle representing a television screen.

Here we havemeasured amulti-d time series that consists of the X-axis acceleration
of sensors worn on each wrist. Note that, in contrast to the bird call example, the two
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1000 2000 3000 4000 50001000 2000 4000 5000

Fig. 4 Three coefficients from the MFCC space of a Southern Chestnut-Tailed Antbird (Myrmeciza
hemimelaena). This bird’s call is typically transcribed as “klee-klee” (Ridgely and Tudor 2009); thus,
the above shows two calls, the second being significantly briefer

Fig. 5 leftA cricket umpire signaling “TV-Replay.” right The Dynamic TimeWarping distance between
two time series of the X-axis from the right and left hand

time series are very unlikely to be perfectly dependent in how they evolve in the time
axis. Try as he might, the umpire could not move both hands in a perfectly symmetric
fashion. There are at least two possible and non-exclusive sources of difference:

• Lag Here, we imagine that the umpire favors his dominant hand, and the other
hand follows at a more or less constant speed, but a fraction of a second behind.

• Loose Coupling Here, the event does cause two or more things to happen, both of
which are recorded as a time series, but there is more freedom in the performance
of the event. For example, if the event is the umpire wishing to signal a Leg-Bye,
he will tap his raised knee with this hand. However, while he typically uses his
dominant hand to do this, hemay touch either knee.Moreover, his “free” handmay
rest by his side, or he may raise it, and even waive it slightly, to drawn attention
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distance = 4.82 distance = 4.83

Fig. 6 For the one-dimensional case, adding lag to one of the time series can change thewarping drastically,
without changing the distance by a significant amount

to the fact he is making a signal. This variability in performance means that two
wrist-worn sensors are only very loosely coupled for this event.

In the next section, we will explicitly test the effects of these factors with some
experiments. To do this we consider a dataset that we are sure is in D, and then we
synthetically add increasing amounts of lag and loose coupling to see if this would
move the dataset into I .

We consider a handwriting dataset, which we are confident is in D. Because we
are considering the X and Y accelerations of the point of the writing tip of a pen, the
two dimensions are physically coupled. Here, an event is the production of one of the
twenty-six lower-case letters. We estimate the error rate of classification by randomly
dividing the 5000 objects into a stratified 1000/4000 train test split thirty times and
reporting the average error rate.

It is critical to note that, in this dataset, if we were considering only the one-
dimensional case, our synthetic modifications of the data would make essentially no
difference to the distances DTW returns, or the overall error rate. As shown in Fig. 6,
even a huge change in the lag makes almost no difference to the single-dimensional
DTW case.

Thus, all effects shown in thenext two sections are duenot to the effects ofmodifying
the data objects per se, but to the effect this has on DTWD and DTWI.

3.1 The effect of lag

We induce lag in one of two ways. First, for each object we add Random Lag of K by
shifting just the Y-axis by an amount randomly chosen from the range [0, K ]. Second,
we add a Fixed Lag variant by shifting just the Y-axis by increasing values of K . For
clarity, in this variant all objects will have the same lag of exactly K . In Fig. 7 we
show the effect of varying the amount of Random Lag from zero to forty.

In Fig. 8 we show the effect of varying the amount of Fixed Lag, again from zero
to forty.

If we consider just the values at either end of the range, this provides us with
the first experimental evidence that datasets exist that are strongly in D, along with
datasets (albeit contrived here) that are strongly in I . More generally, the trend lines
in the figure confirm our claim that Lag is one of the elements responsible for datasets
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Fig. 7 The effect of adding Random Lag on the classification accuracy of DTWD and DTWI
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Fig. 8 The effect of adding Fixed Lag on the classification accuracy of DTWD and DTWI

falling in D or I . Note that the effects are not small; the wrong choice of DTWD or
DTWI here can almost double the error rate.

3.2 The effect of loose coupling

We create synthetic loose coupling by adding increasing amounts of random warping
to just the Y-axis of each exemplar. For brevity, and to enhance the flow of the presenta-
tion, we relegate the explanation (and the actual code) of howwe do this to the support-
ing website.1 However, we note that the modified data is plausible and realistic data.
For example, if we use it to regenerate the original letters, they are readable and believ-
able as a person’s handwriting. Fig. 9 shows the effect of increasingly loose coupling.

Once again, these results provide us with evidence that some datasets are in D and
some are in I , and that loose coupling can be a reason for this division.

3.3 Implication of observations

At first blush we might interpret the above results as implying that all datasets lie on
a spectrum between being strongly in D and strongly in I . If true, then the only task

1 Project webpage: https://sites.google.com/site/dtwAdaptive.
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Fig. 9 The effect of adding Fixed Warping on the classification accuracy of DTWD and DTWI

left to us is to discover where on the spectrum a dataset falls so that we can use the
correct technique.

However, this idea has two difficulties. For some datasets we may not have enough
training data to learn whether we are in D or in I with high confidence. The second
issue is simply that the assumption that all datasets lie on such a spectrum misses a
crucial point. It is possible that the suitability for DTWD or DTWI occurs at a class-by-
class level, or even an exemplar-by-exemplar level, not at a dataset-by-dataset level.

It is easy to imagine such examples. Supposewe have accelerometers on bothwrists
of a tennis player, and our classification task is to label data into the following shot
types {serve |forehand |lob |other}. For many exemplars we might expect
DTWI to work best, since the hands are generally loosely coupled in tennis. However,
for some classes, such as the backhand, most players use a two-handed grip, tem-
porarily coupling the two accelerometers. This would give us a class-by-class-level
difference in the suitability of the warping technique.Moreover, some players, notably
French professional Jo-Wilfried Tsonga, switch between one-handed and two-handed
back-hand shots during the game. This would give us an exemplar-by-exemplar level
difference in the suitability of the warping technique.

3.4 Further discussion

The reader may wonder why we need DTWD at all. It appears that DTWD is just
a special case of DTWI, and therefore unnecessary. In other words, if both warping
paths created by DTWI happen to be the same, the results are logically equivalent to
DTWD. Since there is nothing preventing this from happening, one might imagine
that DTWD is simply subsumed as a special case of DTWI, and the results above are
an error or anomaly of some kind.

The reason why we need both DTWD and DTWI is subtle and underappreciated.
When we perform a DTWI calculation and find it produces a relatively small distance,
it may have achieved this with radically different warpings for each axis.

In contrast, DTWD must use the same warping for both dimensions. Thus, in a
sense, the fact that it could achieve a small distance, in spite of the same warping
constraint, is extra evidence of similarity.
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0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0
1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1
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C

Fig. 10 Three 2-dimensional time series (raw values shown in inset) single-linkage hierarchically clustered
using DTWD (top) and DTWI (bottom). Here DTWDproduces an intuitive clustering, closely linking A
and B, whereas DTWI uses its greater representational flexibility to produce a bizarre result, finding A to
be identical to C

We can illustrate this with the simple experiment shown in Fig. 10. Here we have
three 2-dimensional time series. Subjectivelywewould surely group them {{A,B},C},
as B is created by simply copying A, shifting the “patterns” one place to the right, and
adding a tiny “bump” in the 3rd value of B. Nevertheless, if we cluster these objects
with DTWI, we get an extraordinarily unintuitive result, suggesting {{A,C},B}.

This may be easier to appreciate with an analogy. Imagine we have two distance
measures, NAMED and NAMEI, that measure the distance between a target person’s
name (say, “Anne Price”) and the set of names we find in a small address book.
The underlying measure we assume is a string edit distance. The NAMEI function
calculates the most similar first and last names independently, perhaps finding “Anne
Smith” and “Bob Price” in the address book to produce a distance of zero. In contrast,
theNAMED function calculates the distances dependently, that is to say, from the same
individual. Imagine thatNAMEI reports a distance of one, having found a person called
‘Anna Price’. While the latter distance of one is greater than the former distance of
zero, we would almost certainly be more impressed by the similarity of the latter.

The example illustrated in Fig. 10 showsDTWD outperformingDTWI so forcefully
that the readermaynowwonderwhyweneedDTWI at all.As previously noted,DTWD
uses the same warping path for all dimensions to measure their distances. Therefore,
DTWD may not be a suitable distance measure for instances with lag, simply because
of using only one warping path (recall the three diverse warping paths for each of the
color channels shown in Fig. 3 top). For exemplars including lag between dimensions,
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Fig. 11 Three 2-dimensional time series (raw values shown in inset) single-linkage hierarchically clustered
using DTWD (top) and DTWI (bottom). Here DTWIproduces an intuitive clustering, closely linking A and
B, whereas DTWD uses only one warping path to measure distances therefore producing a bizarre result,
finding A to be identical to C. Compare to Fig. 10

DTWI is capable of measuring the distances independently and being invariant to the
lag. We illustrate this in Fig. 11.

Here instances A and B should belong to the same cluster since both are the same,
except B includes a large lag in the second dimension (illustrated in red). As shown in
Fig. 11, DTWD clustersA andC into the same subtree, simply because there is no lag
in the second dimension of C. However, DTWI correctly clusters A and B the same
because the lag in the second dimension of B is ignored by DTWI.

The reader may wonder if our observations are true but irrelevant, as we have only
demonstrated our claims for contrived data up to this point. In our experimental section
we give compelling evidence on several real-world datasets, but herewe give a visually
intuitive example. In Fig. 12 we show two dimensions of the telemetry from an oil
refinery. In the first day shown, these two time series have near-perfect correlation,
suggesting a very tight coupling. However, in the first half of the next day a connecting
valve is closed, and the two time series become almost completely uncoupled.

More generally, we have made similar observations in many datasets in scientific
andmedical domains. It seems quite common that the strength and type of relationship
(correlation is not quite the right word here) between two time series can ebb and flow
over time, and neither DTWI nor DTWI is always best.

Finally, before continuing, we must discount a solution that may have occurred
to the reader, perhaps based on visual inspection of Fig. 1. One might imagine that a
large dissimilarity between thewarping paths inDTWI could indicate that the exemplar
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0 2 (days)

PR -15

PR -13

corr = 0.973 corr =  -0.361 

Fig. 12 Two dimensions from a two-day sequence from the telemetry of a Delayed Coker. In the last 12 h
of Day One, the two pressure readings are tightly coupled, but in the first twelve hours of Day Two, they
are almost completely uncoupled

A = [-1 -1 -1 1 1 -1 -1 -1]
B = [-1 1 1 -1 -1 1 1 -1]

Fig. 13 An example of two warping paths that are very different, but reflect identical DTW distances of
2.80

comparison in question is best suited toDTWI.However, this is not the case. In general,
it is possible that two warping paths could be arbitrarily different, but reflect identical
DTW distances. In Fig. 13 we illustrate this with a toy example. While this example
uses symmetric data to elucidate our point, this observation is more generally true.

4 Proposed framework

In essence, our task reduces to a meta-classification problem. Given an instance to
classify, we must first decide whether it is “an object best classified by DTWI” or “an
object best classified by DTWD.” More formally:

Problem Statement Given that we are using NN-DTW to classify an exemplar
Q, and that we have discovered the nearest neighbor to Q under both DTWI and
DTWD, if the classes of the two nearest neighbors differ, predict the distance
function most likely to be correct.

Our problem statement is superficially similar to a “gating network” in a Mixture
of Experts (ME), a technique frequently used in neural networks and some other clas-
sifiers (Yuksel et al. 2012). Using the divide and conquer principle, several “experts”
that are either regression functions or classifiers are created such that they specialize
in a particular region of the input space. The gating network defines those regions
where the individual expert opinions are trustworthy, and uses a probabilistic model
to combine the expert’s opinions.
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Table 1 Adaptive classification algorithm

Procedure   adaptive_Classifier (Q, trainData, threshold) 
Input:  A time series query, Q, the labeled data, trainData, a threshold; 
Output:  An adaptive distance measure to classify Q, DTWA ; 
1 
2 
3 
4 
5 
6 
7 
8 
9

minD ← Nearest_Neighbor_Distance_D (Q, trainData); 
minI ← Nearest_Neighbor_Distance_I (Q, trainData); 
S ← minD / minI; 
if S > threshold

DTWA ← DTWI ; 
else 

DTWA ← DTWD ; 
end if 
Return   DTWA

There are many variants of ME (see Yuksel et al. (2012) and references therein).
However, in contrast to most versions, we have a much narrower task.We have exactly
two experts, and we are “weighting” their opinions only in a strictly binary sense.

We propose the following solution to our problem. Offline, on the training data,
we will compute a threshold. At query time, we will compute a score S, and choose
which method to trust based on the value of S relative to the threshold. In order to best
explain our framework, we first explain how our classification model works, given that
a threshold has been learned from the trainData. Later, in Sect. 4.2, we consider the
task of learning the threshold. If we have a lack of labeled data, we outline two possible
approaches. We can either learn the threshold from a different dataset, from the same
or similar domain, or we can simply hardcode the threshold to one, which gives us
much of the benefit of our observation. We have explored both ideas in Footnote 1.

4.1 Adaptive classifier for MDT

Table 1 outlines our classification algorithm. In line 1 the algorithm finds the nearest
neighbor distance in the training set for Q under DTWD, minD. In line 2 we find the
nearest neighbor distance under DTWI, minI. In line 3 the procedure divides minD
by minI, which is our scoring function, S. In lines 4 to 8 the algorithm compares
our scoring function, S, to the previously learned threshold. If S is greater than the
threshold, we believe that Q is most likely in I and thus return DTWI as the distance
measure for classification, whereas if S is less than or equal to the threshold, we predict
that Q is most likely in D, and the function returns DTWD .

We formally define our scoring function as:

S = Nearest Neighbor Distance under DTWD

Nearest Neighbor Distance under DTW I + ε
(5)

The epsilon in the denominator is to prevent division by zero, a value that is theoret-
ically possibility but never observed. While S can change in the range of [ε,∞], in
practice we find its value to always be in the range of [0.5, 2].
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Table 2 Learning the adjusted threshold

Procedure   Learn_Threshold (trainData) 
Input:  Labeled data, trainData; 
Output:  Adjusted threshold, threshold; 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10

[S_iSuccess, S_dSuccess] ← find_Scores (trainData);  
if  (S_iSuccess ==  &&  S_dSuccess == )

threshold ← 1; 
else if  (S_iSuccess ==φ &&  S_dSuccess != )

threshold ← max(S_dSuccess) ; 
else if  (S_iSuccess !=  &&  S_dSuccess == )

threshold ← min(S_iSuccess) ; 
else if  (S_iSuccess !=  &&  S_dSuccess != )

threshold ← Decision_Tree (S_iSuccess, S_dSuccess); 
end if 

φ

φ φ

φ

φ

φφ

Having explained our simple classification algorithm, all that remains is to explain
how we set the threshold (and why). In fact, hardcoding the threshold to a value of
exactly one works very well and allows the algorithm in Table 1 to beat the rival
methods. However, we can further improve the accuracy by tuning the threshold, so
in the next section we will explain how that is done.

4.2 Learning the adjusted threshold

In order to learn the threshold we use in Table 1, we first need to identify the iSuccess
(def. 5) and dSuccess (def. 6) exemplars in the training set using cross validation
(Table 3). As shown in Table 2, we consider four cases based on whether iSuccess and
dSuccess are empty sets or not.

In line 1 we run the subroutine in Table 3 to find all the S scores for iSuccess and
dSuccess, and then we consider four cases on the two sets. Line 2 is the case in which
both sets are empty, so the problem (at least the training data) is independent of D or
I , and picking either DTWI or DTWD will make no difference in classifying the data.
Therefore, we assign the value one, an arbitrary number, to the threshold in line 3. We
note that this case is possible, but we never observed it.

In line 4 we test to see if S_i Success is empty and S_dSuccess is non-empty. If
so, the dataset is almost certainly in D, and we need to set the threshold such that the
S score for all dSuccess exemplars will be less than the threshold. Therefore, in line 5
the threshold gets assigned to the maximum value of S_dSuccess.

The opposite case, in which S_dSuccess is empty and S_iSuccess is non-empty (line
6), offers evidence that the dataset is in I , and we need to set the threshold such that
the S score for all iSuccess exemplars will be greater than the threshold. We ensure
this (in line 7) by assigning the threshold to the minimum value of S_iSuccess.

In practice, the three cases above are rare, and in lines 8 to 10 we find the threshold
for the most common case in which both S_iSuccess and S_dSuccess are non-empty
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Table 3 An algorithm to find iSuccess and dSuccess and compute S scores for all their exemplars

Procedure   find_Scores (trainData) 
Input:  Labeled data, trainData; 
Output:  S scores for iSuccess and dSuccess, S_iSuccess and S_dSuccess; 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12

for n ← 1 to size(trainData)   
minD ← Nearest_Neighbor_Distance_D (trainData(n),trainData); 

    minI ← Nearest_Neighbor_Distance_I (trainData(n), trainData); 
if   (trainData(n).label == Nearest_Neighbor_D ().label  && 

trainData(n).label != Nearest_Neighbor_I ().label ) 
S_dSuccess.add (minD / minI); 

end if  
if   (trainData(n).label != Nearest_Neighbor_D ().label  && 

trainData(n).label == Nearest_Neighbor_I ().label ) 
S_iSuccess.add (minD / minI); 

end if 
end for 

sets. The best threshold is a value that maximizes the total number of S_iSuccess with
values greater than the threshold and S_dSuccess with values less than the threshold.
Finding such a threshold is essentially the decision tree problem of maximizing the
information gain by finding the optimal split point. For more details on information
gain, we refer the interested reader to Ye and Keogh (2009) and Quinlan (1986).

Recall the function find_Scores (trainData) called in Table 2. The function uses
cross validation to find the two sets, iSuccess and dSuccess, then calculates the S
scores (Eq. 5) for all their exemplars. The algorithm is described in Table 3. In line
1 we apply cross validation to the entire trainData. In line 2 we calculate the nearest
neighbor distance under DTWD for each exemplar, and in line 3 we do the same
under DTWI. In lines 4 to 7, if the exemplar in the trainData is classified correctly
under DTWD and misclassified under DTWI, the S score (Eq. 5) is calculated and gets
added to S_dSuccess. In line 8 to 11, if the exemplar is misclassified under DTWD and
classified correctly under DTWI, we calculate the S score and add it to S_iSuccess.

4.3 The intuition behind our scoring function, S

In this section we explain the intuition behind our scoring function (Eq. 5), introduced
in Sect. 4.1. We will show how the ratio of the nearest neighbor distance under DTWD
(minD) andDTWI (minI) is capable of discriminatingmulti-dimensional time series in
I from exemplars in D. For any time series in I , each dimension is at least somewhat
independent; therefore, exemplars that are from the same class and are warped/shifted
independently in each dimension exist in the training set. Figure 14 top shows a time
series in I, QI and its nearest neighbor in the training set, CI .

Note that in our proposed algorithm in Sect. 4.1 the nearest neighbors under DTWI
and DTWD are not necessarily the same; however, for simplicity of presentation we
considerCI as the nearest neighbor under bothDTWI andDTWD. Since QI is in I and
its dimensions are warped independently, the DTWI distance will be less than or equal
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Fig. 14 top Computing the S score for a two-dimensional time series in I . bottom S score calculation of a
two-dimensional time series in D

to the DTWD simply because DTWI is allowed the freedom to find the nearest distance
independently in each dimension. In Fig. 14 top, DTWI calculates the distance in two
different paths, whereas DTWD has only one path to pick which is a combination of
the two paths in DTWI and eventually produces a larger distance. For any instance in
I , minD is larger and minI gets smaller; therefore, minD/minI tends to be larger.

In Fig. 14 bottom we show an instance, QD , which is in D. In this case the nearest
neighbor in the training set, CD , will be an exemplar in which both dimensions are
dependently warped. In such a case, the warping path for both dimensions in DTWI
are the same as, and similar to, the path in DTWD. In contrast to the previous case,
DTWI does not take advantage of different warping paths in order to achieve a lower
distance score compared to DTWD. However, we show for the same warping path,
the distance under DTWI is larger than the DTWD distance. Since DTWD and DTWI
both take the same path, we can compare their cumulative distances in a meaningful
way.

If qi,m is the i th data point in the mth dimension of QD and c j,m is the j th data
point in themth dimension of CD , for the two-dimensional case in Fig. 14 bottom,we
can show the following:

DTWD (QD,CD)

=
√

∑n

i, j=1

[(
qi,1 − c j,1

)2 + (
qi,2 − c j,2

)2
]

<

√
∑n

i, j=1

[(
qi,1 − c j,1

)2 + (
qi,2 − c j,2

)2 + 2
(
qi,1 − c j,1

) (
qi,2 − c j,2

)]
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=
√
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) + (
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)]2
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)]
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(
qi,1 − c j,1

)2 +
√
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(
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)2

= DTWI (QD,CD)

Accordingly, for a time series in D, minD is smaller and minI gets larger; therefore,
minD/minI tends to be smaller. We considered a two-dimensional time series here and
assumed that for a query in I , the path in DTWI and DTWD are exactly the same;
however, we can simply generalize the above illustration to dimensions greater than
two, and for queries in I , different but similar paths for both DTWI and DTWD.

We have shown that our scoring function, S (cf. Eq. 5), tends to produce larger
values for queries in I and smaller values for queries in D, as illustrated above; thus,
our scoring function is capable of discriminating time series in I from exemplars
in D. We will demonstrate the effectiveness of our scoring function with extensive
experiments in the next section.

5 Experiments

We have designed all our experiments to ensure that they are very easy to reproduce.
A supporting webpage (see Footnote 1) contains all the code, datasets, and raw data
spreadsheets used in this work. Moreover, although this work is completely self-
contained, the webpage contains additional experiments for the interested reader.

In addition to comparing to DTWD and DTWI, we also compare to the clas-
sification using each individual dimension, which we refer to using the notation
DTW(1st ),DTW(2nd), etc.

It is important to note that all experiments use exactly the same base algorithm, one
nearest neighbor, and exactly the same train/test splits. Thus, any differences in results
can be attributed solely to the distance measure used.

It is known that the warping window width can slightly affect the classification
accuracy. As this issue is orthogonal to our work, we simply set the warping window
constraint for DTW to be 20% for all experiments (Ding et al. 2008).

5.1 Recognition of cricket umpire signals

Cricket is a very popular game in British Commonwealth countries. The game requires
an umpire to signal different events in the game to a distant scorer/bookkeeper. The
signals are communicated with motions of the hands. For example, No-Ball is
signaled by touching each shoulderwith the opposite hand, andTV-Replay, a request
for an off-field review of the video of a play, is signaled by miming the outline of a
TV screen (cf. Fig. 5). A complete dictionary of signals can be found in Footnote 1.
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Fig. 15 X, Y and Z acceleration data from the right hand (left), a representation of the umpire’s body
position (center), and the X, Y and Z acceleration data from the left hand, for the two umpire signals Six
and Leg-Bye

Table 4 Classification error rates on the cricket data

Data DTW(1st ) DTW(2nd ) DTWI DTWD DTWA

Xright_Xle f t 0.26 0.27 0.13 0.20 0.11

Yright_Xle f t 0.17 0.27 0.07 0.04 0.03

Xright_Yle f t 0.26 0.14 0.07 0.10 0.06

Yright_Yle f t 0.17 0.14 0.04 0.03 0.03

Zright_Zle f t 0.18 0.18 0.07 0.06 0.04

Zright_Xle f t 0.18 0.27 0.07 0.04 0.04

The dataset introduced in Ko et al. (2005) consists of four umpires performing
twelve signals, each with ten repetitions. The data, recorded at a frequency of 184Hz,
was collected by placing accelerometers on the wrists of the umpires. Each accelerom-
eter has three synchronous measures for three axes (X,Y and Z). Thus, we have a
six-dimensional MDT from the two accelerometers and we can combine any number
of them to create a multi-dimensional classification problem. Figure 15 shows the data
for two example signals, Six and Leg-Bye. To signal Six, the umpire raises both
hands above his head. Leg-Bye is signaled with a hand touching the umpire’s raised
knee three times.

We used 40% of the data for training and use the rest as testing data. The classifi-
cation results using various combinations of dimensions are shown in Table 4.

Note that all combinations support our original claims that neither DTWD nor
DTWIdominates the other, and that on all datasets, DTWA is at least as accurate as
the better of DTWD and DTWI, and often more accurate.

Above we considered only pairs of dimensions, however, the results generalize for
any-sized subsets of dimensions. Obviously, addingmore dimensions does not guaran-
tee improved accuracy. In Hu et al. (2013) the authors outline a strategy for choosing
which dimensions to add to an MDT. Note, however, that this issue is completely
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1 2 3 4 5 6 7 8

Fig. 16 Gesture vocabulary adopted from Kela et al. (2006). The dot denotes the start and the arrow the
end of the gesture

Table 5 Error rates for gesture recognition

Data DTW(1st ) DTW(2nd ) DTW(3rd ) DTWI DTWD DTWA

X_Y 0.34 0.48 – 0.23 0.18 0.18

X_Z 0.34 0.41 – 0.13 0.13 0.12

Y_Z 0.48 0.41 – 0.26 0.24 0.23

X_Y_Z 0.34 0.48 0.41 0.11 0.09 0.08

orthogonal to our contributions; Table 4 suggests that whatever set of dimensions you
choose, you are better off with DTWA than any other method.

5.2 Accelerometer-based gesture recognition

There is increasing interest in using gesture commands for interacting with and con-
trolling external devices. The results in Kela et al. (2006) suggest that different people
often have different interpretations of even simple gestures, and thus it is necessary to
learn personalized classifiers on an individual basis.

A widely used benchmark dataset, introduced in Liu et al. (2009), consists of
the performances of the gestures shown in Fig. 16 by eight participants. To produce
realistic variability in performance, the data was collected on multiple days over three
weeks. On each day the participant held a Nintendo Wii remote and repeated each of
the eight gestures ten times.

The dataset consists of 4480 gestures in total: 560 for each participant. The
accelerometer has three axes (X,Y and Z); thus, we have a three-dimensional MDT
form, and we can combine them to create a two or three multi-dimensional clas-
sification problem. We combined every pair of dimensions to create all possible
two-dimensional time series and combined all three for the three-dimensional case.
The classification results are shown in Table 5.

As before, the results support our claim that DTWA is at least as accurate as the
better of DTWD or DTWI.

5.3 Word recognition from articulatory movement data

Silent “speech” recognition may potentially facilitate oral communication in people
with severe voice impairments, for example, after laryngectomy, a surgical removal of
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Fig. 17 The coordinate system and sensor locations on a participant’s forehead, tongue, lips, and jaw in
data collection using EMA. Labels are described in text

larynx due to the treatment of cancer (Wang et al. 2012, 2013, 2014). Silent speech
recognition is to recognize words or sentences from non-audio data (e.g., tongue and
lip movement data) (Wang et al. 2014). An Electromagnetic Articulograph (EMA)
(Yunusova et al. 2009) is an apparatus used to measure the movement of the tongue
and lips during speech. The motion tracking using EMA is registered by attaching
small sensors on the surface of the articulators (e.g., tongue and lips). The spatial
accuracy of motion tracking using EMA AG500 is 0.5 mm (Yunusova et al. 2009).
We consider the EMA dataset in Wang et al. (2013) which contains data collected
from multiple native English native speakers producing 25 words. Twelve sensors
were used in data collection, each providing X,Y and Z time-series positions with a
sampling rate of 200 Hz. As shown in Fig. 17 the sensors are located on the forehead,
tongue; from tip to back in the midline, lips and jaw. The three head sensors (Head
Center, Head Right, and Head Left) attached on a pair of glasses were used to calculate
head-independent movement of other sensors. Tongue sensors were named T1, T2,
T3, and T4, from tip to back. For more details about the data collection procedure and
description, please refer to Wang et al. (2013).

Of the total of 36 available dimensions, for brevity and simplicity, we show only
some random combinations of dimensions extracted from the sensors on the tongue
tip (T 1), the upper lip (UL) and lower lip (LL). The classification results are shown in
Table 6.

Yet again, the results support our claim that DTWA is at least as accurate as the
better of DTWD or DTWI.

5.4 Revisiting the semi-synthetic data

We reconsider the handwriting data set used in Sect. 3. Recall that the data is real, but
manipulated in ways such that it changed from being in D to being in I . In Fig. 18
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Table 6 Classification error rates on the continuous articulatory movement dataset

Data DTW(1st ) DTW(2nd ) DTW(3rd ) DTWI DTWD DTWA

T 1Z _ULX 0.34 0.59 – 0.25 0.31 0.25

T 1Y _ULY 0.38 0.55 – 0.22 0.15 0.13

T 1Z _LLZ 0.34 0.47 – 0.17 0.10 0.10

T 1Z _LLY 0.34 0.48 – 0.20 0.12 0.11

T 1Y _LLY 0.38 0.48 – 0.21 0.14 0.14

T 1Y _T 1Z 0.38 0.34 – 0.24 0.15 0.15

T 1X_T 1Y _T 1Z 0.32 0.38 0.34 0.15 0.10 0.10

T 1X_T 1Y _ULY 0.32 0.38 0.55 0.16 0.18 0.14

T 1Y _T 1Z _LLX 0.38 0.34 0.67 0.12 0.08 0.08

T 1Z _LLX_LLY 0.34 0.67 0.48 0.14 0.12 0.10

5 10 15 20 25 30 35 4000.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

DTWD

DTWI

DTWA

Er
ro

r R
at

e

Warp (%)Uniform Lag (K)Random Lag (K)

Fig. 18 The experiments shown in Figs. 7, 8 and 9, revisited using the DTWA technique

we revisit these problems, this time using DTWA. Once again these experiments offer
strong support for our claims about DTWA dominating DTWI and DTWD.

5.5 Human activity recognition using smart watches

Providing accurate and exploitable information on human activity has become an
active field in pervasive computing (Ding et al. 2008; Lara and Labrador 2013). Activ-
ity recognition using a smart watch has the potential to be highly useful in modern
healthcare by monitoring the patients’ activities and automatically reporting sum-
maries to healthcare providers (Rawassizadeh et al. 2014). In order to detect a specific
set of gestures or behaviors during daily activities we can simply use a rejection
threshold, which classifies the target gestures from (the much larger space of) non-
target activities (Hu et al. 2013). However, in order to detect such gestures/behaviors
we need to know the best distance measure to classify the gestures. For this purpose
we designed a simple experiment. We asked two users to wear a Samsung Gear 2 and
execute 100 performances of eight different gestures. We collected the accelerometer
data (X,Y and Z) with a sampling rate of 50 Hz. The eight gestures performed by
users and a sample accelerometer data is shown in Fig. 19.
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Fig. 19 left Sample accelerometer data (X, Y and Z) of a gesture.middleASamsung Gear 2 used to collect
activity data. right the eight different gestures considered in our experiments

Table 7 Error rates for activity detection using a smart watch

Data DTW(1st ) DTW(2nd ) DTW(3rd ) DTWI DTWD DTWA

X_Y 0.43 0.46 – 0.25 0.17 0.15

X_Z 0.43 0.50 – 0.28 0.15 0.12

Y_Z 0.46 0.50 – 0.33 0.15 0.15

X_Y_Z 0.43 0.46 0.50 0.22 0.12 0.12

We combined every pair of dimensions to create all possible two-dimensional time
series and combined all three for the three-dimensional case. The classification results
are shown in Table 7.

As with previous experiments, the results support our claim that DTWA is at least
as accurate as the better of DTWD or DTWI.

5.6 Learning the threshold with sparse training data

The reader may wonder if it is possible to learn the threshold if we have little labeled
data to work with. For example, this is a common situation when beginning to use a
new gesture-based system (the so-called “cold start” problem).

As noted in Sect. 4.1 in our paper, simply hardcoding the threshold to a value of
one gives us much of the benefit of our observation. However, tuning the threshold
does help, and we want to obtain the best possible accuracy.

Without claiming to have completely solved this problem, we outline one possible
approach here. Our idea is that we can learn the threshold from a different dataset from
the same or similar domain. In essence this is a simple form of transfer learning.

For example, if a company releases a smartwatch with gesture recognition capa-
bilities, a good “universal” threshold could be learned and set at the factory. This
would allow the system to work well “out-of-the-box,” and possibly be refined and
personalized over time.

We have conducted an experiment to demonstrate this idea. For theGesture Recog-
nition dataset in Sect. 5.2 in our paper, we combined all three dimensions of X,Y and
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Table 8 The first and second row correspond to results for classifying G2 with the threshold learned from
G2 and G1, respectively

Data DTW(1st ) DTW(2nd ) DTW(3rd ) DTWI DTWD DTWA

X_Y_Z(1) 0.30 0.45 0.37 0.08 0.06 0.05

X_Y_Z(2) 0.30 0.45 0.37 0.08 0.06 0.06

Z from the accelerometer and created two completely disjointed datasets, G1 and G2.
We learned the threshold from G1 and used the same threshold to classify G2. The
results are shown in Table 8.

The results tentatively suggest that by adopting the threshold value from a different
dataset in the same domain, we can achieve approximately the same accuracy we
would have achieved by learning the threshold from a (large sample) of the native
dataset.

5.7 What causes a time series to be in D or I?

For all of the experiments considered above, the data sets included a mixture of exem-
plars in I and D. If this was not true, DTWA could not have had a lower error-rate.
However, an interesting question we have glossed over thus far is what causes an
individual time series exemplar to be in D or I? Is it an intrinsic property of the
individual exemplar itself or a property of the exemplar in relation to a particular
data set? We conducted a wide-ranging investigation of the exemplars’ characteris-
tics in various domains to see if any feature(s) stands out as a discriminator of time
series in I vs. in D. We considered the correlation, complexity, Euclidean distance,
Minimum Description Length, etc. of dimensions and did not find any useful discrim-
inator.

We have designed a simple experiment which strongly suggests (at least for the
data set considered) that the existence of exemplars in I or D strongly depends on the
entire data set. A time series, which is in I, may later be in D if we use a different
training set for classifying that item. In addition, just the size of the training set can
have a significant impact on whether exemplars fall in I or D.

Once again we revisit the handwriting data set we used in Sect. 3. In all iterations
we randomly sample ten exemplars from each of twenty-six classes as the test set (a
total of 260 items). In the first iteration we randomly pick only a single instance for
each class and define it as the train set. Then we classify the test set using DTWD and
DTWI separately and also count the number of items in iSuccess and dSuccess (cf.
Definitions 5 and 6). In the second iteration we randomly pick two instances for each
class as the train set and repeat the same steps. We continue the iterations until we
reach seventeen exemplars per class. The results are shown in Fig. 20.

We believe we can interpret Fig. 20 as follows. First (and only incidentally here),
Fig. 20 right supports our claim that DTWA is at least as accurate as the better of
DTWD or DTWI, as the green curve for DTWA dominates all the other approaches
for the entire range of training data sizes. Note that all five approaches have almost the
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Fig. 20 left The number of elements in iSuccess and dSuccess for train sets of different sizes. right The
effect of data set size on accuracy of classification

same (very high) error-rate when the training set is very small. This is simply because
there is very little space for them to differ. In the limit, had we started one value to
the left, with zero data, all approaches would have had the exact same error-rate, the
default rate.

As the training dataset gets larger, all approaches benefit, just as we expect. How-
ever, DTWA benefits the most. This is because as the training dataset gets larger, there
is a greater possibility that some objects to be classified can benefit from choosing
the more suitable of the two multi-dimensional variants of DTW. To see this more
clearly, in Fig. 20 left we measured the number of objects in iSuccess and dSuccess
for the experiments shown in Fig. 20 right. We see that for small train sets the number
of items in iSuccess and dSuccess are low. However, when the size of the train set
increases, the number of instances in iSuccess or dSuccess begins to increase in spite
of the fact that the size of the test sets remains constant.

There is one observation in Fig. 20 left that we have to explain. After some point,
the number of items in iSuccess and dSuccess begins to decrease. Why is this? The
reason is that, for large enough training sets, there is a greater chance that the nearest
neighbor, under both DTWI and DTWD, will be the same (true) class. This will make
our DTWA unnecessary (but not harmful to accuracy). A similar effect has been shown
for the error-rates of (one dimensional) DTWversus ED classifiers (See Fig. 1 of Shieh
and Keogh (2009)). For small datasets, DTW and ED often make different decisions
about which item is the nearest neighbor, but as the datasets get larger they tend to
agree more and more often, eventually converging to the same error-rate (Shieh and
Keogh 2009; Ratanamahatana and Keogh 2004).

In a sense, these observations seem to cast limits on the utility of our proposed
ideas. DTWA will be no better (but critically, no worse) in the case that the training
dataset is pathologically small or is arbitrarily large. However, the situation in between
is clearly the most common. For example, in virtually all gesture recognition systems
it is assumed that the user is willing to provide at least five to ten examples of a gesture
so that we can estimate variability of performance (Kela et al. 2006; Liu et al. 2009;
Gillian et al. 2011; Ten Holt et al. 2007; Aach and Church 2001; Tang and Dannenberg
2014). But, clearly, we do not expect an individual user to provide one thousand labeled
examples of a gesture.
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6 Related work

Wehave deferred a discussion of relatedwork until nowwhen the reader can appreciate
the nature of our contributions. While there are hundreds of research efforts that use
DTW in a multi-dimensional setting (Ridgely and Tudor 2009; Kela et al. 2006; Ko
et al. 2005; Liu et al. 2009; Petitjean et al. 2012; Wang et al. 2013), we are not aware
of any work that discusses the relative merits of DTWI and DTWD, or even explicitly
notes that they are alternatives. The vast majority of researchers seem to think that it
makes no difference which method is used, as evidenced by the fact that they usually
do not bother to explicitly tell the reader (Liu et al. 2009; Aach and Church 2001; Kale
et al. 2012; Tang and Dannenberg 2014). In paper (Liu et al. 2009) they define DTW as
a dynamic programming algorithm, which calculates the matching cost and finds the
corresponding shortest path. However, it is not clear how they generalize it to themulti-
dimensional case. A handful of papers domention that there exist twoways of comput-
ing dynamic timewarping inmulti-dimensional time series. For example, the authors in
Petitjean et al. (2012) chooseDTWD for classifying satellite images because they argue
that satellite images have dependent dimensions in their time series. Other papers, such
as Gillian et al. (2011), Aach and Church (2001), and deMello and Gondra (2008), use
DTWDwithout pointing out the alternative approach ofDTWI. The authors in TenHolt
et al. (2007), Bashir and Kempf (2008), and McGlynn and Madden (2011) use other
methods similar to DTWI such as adding up all dimensions and dealing with a single
dimension time series. For instance, Bashir andKempf (2008) applies DTW to the data
obtained from the sum of all channels in different dimensions. The authors in Ten Holt
et al. (2007) normalize and smooth each dimension and then use the total difference
among dimensions to find the best synchronization with the regular DTW algorithm.

The ubiquity ofmulti-dimensional time series, especially given the recent explosion
of interest in wearable devices, has produced significant research in speeding up DTW
(Rakthanmanon et al. 2013), choosing which subset of dimensions to use (Hu et al.
2013), choosing a setting for the warping window constraint (Ding et al. 2008), etc.
However, all such work is orthogonal to (and compatible with) our contributions.
We have created an annotated bibliography of which papers use DTWI vs. DTWD
(Footnote 1).

As we noted above, there is significant research in “gating networks” and related
techniques for choosing which classifier to use on a given region of the input space
(Yuksel et al. 2012). However, to the best of our knowledge, these ideas have never
been applied to time series and are only superficially related to the task at hand.

7 Conclusions

In this work we demonstrate for the first time that of the two obvious ways to do
multi-dimensional NN-DTW classification, neither is always superior. We show that
the differences are not trivial, as the wrong choice can double the error rate. We
introduce a simple algorithm that can pick the method that is most likely to predict
the correct class on a case-by-case basis. Our algorithm is simple to implement, and
its overhead is inconsequential in terms of both time and space.
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For concreteness we have confined our remarks and empirical demonstrations to
classification problems, but note that distance measures are at the heart of many time
series data mining tasks, including clustering, summarization, motif discovery (Hao
et al. 2013), rule mining (Shokoohi-Yekta et al. 2015; Shokoohi-Yekta 2015), and
many forms of anomaly detection. In future work we will expand our consideration
of our ideas to these tasks.

Finally, in this work we have focused on intuitively explaining our observa-
tions/ideas and showing strong empirical evidence for them. However, we plan to
revisit our work with a more theoretical framework and prove several useful proper-
ties of DTWA.
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