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Abstract Weaddress the problemof outlying aspectsmining: given a query object and
a reference multidimensional data set, how can we discover what aspects (i.e., subsets
of features or subspaces) make the query object most outlying? Outlying aspects
mining can be used to explain any data point of interest, which itself might be an
inlier or outlier. In this paper, we investigate several open challenges faced by existing
outlying aspects mining techniques and propose novel solutions, including (a) how
to design effective scoring functions that are unbiased with respect to dimensionality
and yet being computationally efficient, and (b) how to efficiently search through the
exponentially large search space of all possible subspaces.We formalize the concept of
dimensionality unbiasedness, a desirable property of outlyingness measures. We then
characterize existing scoring measures as well as our novel proposed ones in terms of
efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the
effectiveness of different methods for outlying aspects discovery and demonstrate the
utility of our proposed approach on both large real and synthetic data sets.

Keywords Outlying aspects mining · Subspace selection · Outlier explanation

1 Introduction

In this paper, we address the problem of investigating, for a particular query object, the
sets of features (a.k.a. attributes, dimensions) that make it most unusual compared to
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the rest of the data. Such a set of features is termed a subspace or an aspect. In recent
works, this problem was also named outlying subspaces detection (Zhang et al. 2004),
promotion analysis (Wu et al. 2009), outlying aspectsmining (Duan et al. 2015), outlier
explanation (Micenkova et al. 2013), outlier interpretation (Dang et al. 2014), or object
explanation (Vinh et al. 2014b). It is worth noting, however, that this task is not limited
to query objects being outliers, as in Zhang et al. (2004),Micenkova et al. (2013). Also,
the outlying aspects need not be restricted to ‘good’ (i.e., favorable) characteristics, as
in promotion analysis (Wu et al. 2009). Indeed, it hasmany other practical applications
where the query can be just any regular object, with outlying aspects being potentially
‘bad’ (i.e., unfavorable) characteristics. For example, a sports commentator may want
to highlight some interesting aspects of a player or a team in the most recent seasons,
e.g., Alice scored many goals compared to the other defenders. A selection panel may
be interested in finding out the most distinguishing merits of a particular candidate
compared to the rest of the applicant pool, for instance, among other students with a
similar GPA, Bob has far more volunteering activities. An insurance specialist may
want to find out the most suspicious aspects of a particular claim, for example, the
claim comes from Carol, a customer who made many more claims among all those
who possess the same type of vehicle. A doctor may want to examine, for a cancer
patient, the symptoms that make him/her most different from other cancer patients,
thus potentially identifying the correct cancer sub-type and coming up with the most
appropriate medical treatment. A home buyer will be very interested in features that
differentiate a particular suburb of interest from the rest of a city.

Although having a close relationship with the traditional task of outlier detection,
outlying aspects mining has subtle but crucial differences. Here, we only focus on
the query object, which itself may or may not be an outlier with respect to the ref-
erence dataset. In contrast, outlier detection scans the whole dataset for all possible
unusual objects, most often in the full space of all attributes. Current outlier detection
techniques do not usually offer an explanation as to why the outliers are considered
as such, or in other words, pointing out their outlying aspects. As discussed, out-
lier explanation could be used, in principle, to explain any object of interest to find
any outlying characteristic (not necessarily just ‘good’ characteristics). Thus, in our
opinion, the term outlying aspects mining as proposed in Duan et al. (2015) is more
general. Outlying aspects mining can be considered as a task that is complementary
to, but distinct from, outlier detection. More discussion on the differences between the
current work on outlier detection and the novel task of outlying aspects mining can be
found in Duan et al. (2015).

The latest work on outlying aspects mining tackles the problem from two different
angles, which we refer to as the feature selection based approach and the score-and-
search approach. In the feature selection based approach, the problem of outlying
aspects mining is transformed into the classical problem of feature selection for classi-
fication. In score-and-search, it is first necessary to define ameasure of the outlyingness
degree for an object in any specified subspace. The outlyingness degree of the query
object will be compared across all possible subspaces, and the subspaces that score
the best will be selected for user further inspection.

While progress has been made in the area of outlying aspects mining, in our obser-
vation, there are still significant challenges to be solved:
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– For feature selection based approaches existing black-box feature selection meth-
ods, as employed in Micenkova et al. (2013), are often not flexible enough to
generate multiple outlying subspaces if requested by the user. Similarly, feature
extraction approaches, as in Dang et al. (2014), generally suffer from reduced
interpretability, nor do they offer multiple alternative explanatory subspaces.

– For score-and-search approaches the question of how to design scoring func-
tions that are effective for comparing the outlyingness degree across subspaces
without dimensionality bias remains open. In the next section we show that the
existing scoring functions may not be always effective nor efficient in evaluat-
ing outlyingness. Furthermore, the question of how to efficiently search through
the exponentially large sets of all possible subspaces is a long-standing challenge
shared by other problems involving subspace search, such as feature subset selec-
tion (Vinh et al. 2014b, a), subspace outlier detection (Aggarwal and Yu 2001;
Kriegel et al. 2009; Keller et al. 2012) and contrast subspace mining (Nguyen
et al. 2013; Duan et al. 2014).

In this paper, we make several contributions to advancing the outlying aspects min-
ing area. We formalize the concept of dimensionality-unbiasedness and characterize
this property of existing measures. We propose two novel scoring functions that are
proven to be dimensionally unbiased, suitable for comparing subspaces of different
dimensionalities. The first metric, named the Z-score, is a novel and effective strat-
egy to standardize outlyingness measures to make them dimensionally unbiased. The
second metric, named the isolation path score, is computationally very efficient, mak-
ing it highly suitable for applications on large datasets. To tackle the exponentially
large search space, we propose an efficient beam search strategy. We demonstrate the
effectiveness and efficiency of our approach on both synthetic and real datasets.

2 Related work

In this section, we first give a broad overview on the topic of outlier explanation, which
is a special case of outlying aspects mining. Next, we look deeper into several recent
works that are closely related to ours.

2.1 Overview on outlier explanation

The vast majority of research in the outlier detection community has focused on the
detection part, with much less attention on outlier explanation. Though there are also
outlier detection methods that provide implicit or explicit explanations for outliers,
such explanations are commonly a by-product of the outlier detection process.

A line of methods that offer implicit explanation involves identifying outliers in
subspaces. Subspace outlier detection identifies outliers in lowdimensional projections
of the data (Aggarwal and Yu 2001), which can otherwise be masked by the extreme
sparsity of the high-dimensional full space. High Contrast Subspace (HiCS) (Keller
et al. 2012) and CMI (Nguyen et al. 2013) identify high contrast subspaces where
non-trivial outliers are more likely to exist.
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Another line of methods offer explicit explanation for each outlier. The work of
Micenkova et al. (2013) is such an example, which identifies subspaces in which
the outlier is well separated from its neighborhood using techniques from supervised
feature selection. Similarly, the subspace outlier degree (SOD) method proposed by
Kriegel et al. (2009) analyze how far each data point deviate from the subspace that
is spanned by a set of reference points. Local outliers with graph projection (LOGP)
finds outliers using a feature transformation approach and offers an explanation in
terms of the feature weights in its linear transformation (Dang et al. 2014). Similarly,
the local outlier detection with interpretation (LODI) method proposed by Dang et al.
(2013) seeks an optimal subspace in which an outlier is maximally separated from its
neighbors.

All the aboveworks focus on the numerical domain. For nominal ormixed database,
frequent pattern based outlier detection methods such as that proposed by He et al.
(2005) can offer interpretability, as the outliers are defined as the data transactions that
contain less frequent patterns in their itemsets. Wu et al. (2009) developed a technique
to find the desirable characteristics of a product for effective marketing purposes.
More recently, Smets and Vreeken (2011) proposed a method for identifying and
characterizing abnormal records in binary or transaction data using the Minimum
Description Length principle.

It is noted that most of the above mentioned methods do not offer explicit mecha-
nisms to handle a particular query. Furthermore, the subspaces are sometimes found
using all possible outliers, and thus the explanation may not be tailored for the object
of interest.

2.2 An in-depth review of recent works

In this section, we review several recent works on outlying aspects mining in greater
detail and discuss their relative strengths and weaknesses, which will serve as moti-
vation for our work in the subsequent sections. The notation we use in this paper
is as follows. Let q be a query object and O be a background dataset of n objects
{o1, . . . , on}, oi ∈ Rd . LetD = {D1, . . . , Dd} be a set of d features. In this work we
focus on numeric features. A subspace S is a subset of features in D.

2.2.1 Score-and-search methods

The earliest work to the best of our knowledge that defines the problem of detecting
outlying subspaces is HOS-Miner (HOS for High-dimensional Outlying Subspaces)
by Zhang et al. (2004). Therein, the authors employed a distance basedmeasure termed
the outlying degree (OD), defined as the sum of distances between the query and its k
nearest neighbors:

ODS(q) �
k∑

i=1

DistS(q, oi ), oi ∈ kNNS(q) (1)
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where DistS(q, oi ) is the Euclidean distance between two points in subspace S, and
kNNS(q) is the set of k nearest neighbors of q in S. HOS-Miner then searches for
subspaces in which the OD score of q is higher than a distance threshold δ, i.e., sig-
nificantly deviating from its neighbors. HOS-Miner exploits a monotonicity property
of the OD score, namely ODS1(q) ≤ ODS2(q) if S1 ⊂ S2, to prune the search space.
More specifically, this monotonicity implies that if the query is not an outlier in a
subspace S, i.e., ODS(q) < δ, then it cannot be an outlier in any subset of S–and so
we can exclude all subspaces of S from the search. On the other hand, if the query
is an outlier in the subspace S, i.e., ODS(q) > δ, then it will remain an outlier in
any subspace that is a superset of S–and so we can exclude all subspaces that are a
superset of S from the search. Although the monotonicity property of the distance
measure with regards to the number of dimensions is desirable in designing efficient
search algorithms, it is unfortunately the property one wants to avoid when subspaces
of different dimensionalities are to be compared. The reason is because there is a
bias towards subspaces of higher dimensionality, as distance monotonically increases
when more dimensions are added.

In a recentwork,Duan et al. (2015) proposeOAMiner (forOutlyingAspectsMiner),
which employs a kernel density measure for quantifying outlyingness degree:

fS(q) � 1

|O|(2π)|S|/2 ∏
Di∈S hDi

∑

o∈O
e
−∑

Di∈S
(q.Di−o.Di )

2

2h2Di (2)

Here, the scoring metric fS(q) is a kernel density estimate of q in S using a prod-
uct of univariate Gaussian kernels (which is equivalent to a |S|-dimensional kernel
with a diagonal covariance matrix), with hDi being the kernel bandwidth and q.Di

being the value of q in feature Di . They stated that the density tends to decrease as
dimensionality increases, thus higher dimensional subspaces might be preferred. To
eliminate this dimensionality bias, they propose to use the density rank of the query
as a quality measure. That is, for each subspace, the density of every data point needs
to be computed from which a ranking will be tabulated. Subspaces in which the query
has the best rank are then reported.

The density rank exhibits no systematic bias w.r.t. dimensionality, i.e., adding more
attributes to an existing subspace can either increase or decrease the ranking of the
query. This desirable property comes with two fundamental challenges: (i) the density
rank is a much more computationally expensive measure, as the density of every
point in the data set needs to be computed for the global ranking to be established,
resulting in a complexity of O(n2d), (ii) because of the non-monotonicity of the
quality measure, there is no efficient way to prune the search space, thus an expensive
exhaustive search is necessary. Duan et al. (2015) overcome these difficulties by (a)
introducing a bounding method where the density rank of the query can be computed
without exhaustively computing the density rank of all other points, and (b) only
exhaustively searching the subspaces up to a user-defined maximum dimensionality.
Despite these improvements, scaling up OAMiner is still a major challenge. Apart
from computational inefficiency, another probably more fundamental concern with
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Fig. 1 Is the rank statistic most appropriate for comparing subspaces?. a Subspace {D1, D2}. b Subspace
{D3, D4}

the density rank is whether the rank statistic is always the appropriate outlyingness
measure for comparing different subspaces, as illustrated in the following example.

Example 1 Ranking does not preserve absolute degree of deviation Although in sub-
space {D1, D2} (Fig. 1a), the query point (red square) is ranked the first in terms of
kernel density measure in equation (2), users could possibly be more interested in
subspace {D3, D4} (Fig. 1b), where the query point only ranks the 5th, but deviates
markedly from the norm. Thus, while the rank provides a normalized measure for
comparing densities across subspaces, important information regarding the absolute
degree of deviation is lost.

2.2.2 Feature selection/transformation approaches

The first feature selection based approach for mining outlying aspects was introduced
inMicenkova et al. (2013).Outlying aspectsmining, or the outlier explanation problem
as termed therein, is cast as a two-class feature selection problem. More specifically,
for each outlier (query point) q, a positive class is constructed with synthetic samples
drawn from a Gaussian N(q, λ2I) distribution, where λ = α · 1√

d
· k-distance(q),

with k-distance(q) being the distance from q to its k-th nearest neighbor. Here, each
feature is assumed to be normalized to [0, 1], hence √

d is the upper bound on the
distance between any two points. The parameter α controls the spread of the positive
population while normalization by

√
d is intended to ensure that α has the same effect

in subspaces of different dimensionality. In their experiments, Micenkova et al. (2013)
found k = 35 andα = 0.35 toworkwell. The negative class is formed by a sub-sample
formed by the k nearest neighbors of q in the full feature space, plus another k random
samples from the rest of the data, for a total of 2k points. The number of positive and
negative samples are matched, so that the classification problem is balanced.
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Fig. 2 Pitfalls of nearest neighbors and synthetic samples. a Subspace kNN and full-space kNN become
less similar as the dimensionality of the full space increases. b The synthetic positive population heavily
overlaps with the nearby cluster of inliers in this subspace

While the feature selection based approach was shown to work well, two remarks
are in order. First, the k-nearest neighbors in the full space may be significantly dif-
ferent, or even totally different, from the k-nearest neighbors in the subspace. This is
especially true when the full space is of high dimensionality while the subspace has
low dimensionality, which is the case in outlying aspect mining—we are more inter-
ested in low-dimensional subspaces for better interpretability. In Fig. 2a we plot the
average percentage of common k nearest neighbors (k = 35) between the full space
and random subspaces of 3 dimensions, with the queries being randomly chosen from
a standard Gaussian population of 1000 points. As expected, the proportion of shared
nearest neighbors steadily decreases as the dimensionality of the full space increases.
Thus, the k-nearest neighbors in the full space are not necessarily representative of the
locality around the query in the subspaces. There could be situations where the query
appears to be well separated from its k-nearest full-space neighbors, while in fact
not being well separated from its subspace neighborhood. Following the same feature
selection approach, Vinh et al. (2014b) instead chose to keep the whole dataset as the
negative class, while over-sampling the synthetic positive class. The disadvantage of
this approach is reduced scalability compared to the sampling approach adopted by
Micenkova et al. (2013).

The second potential drawback of a feature selection based approach is with regard
to the spread of the positive synthetic distribution. As proposed in Micenkova et al.
(2013), the variance of the positive distribution is the same in every dimension and is
determined based on k-distance(q)—the distance from q to its k-th nearest neighbor—
in the full space. This choice is expected to affect all subspaces equally.However, in our
opinion, some subspacesmay be affected by this settingmore than others, for example,
subspaces in which the query is a local outlier with respect to its neighborhood, as
in Fig. 2b. The spread of the positive population is determined based on a statistic in
the full-space irrespective of the characteristics of the subspace. As such, although the
subspace in Fig. 2b is a good explaining subspace (for the query clearly being a local
outlier), the feature selection approach may eventually rule out this subspace as the
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positive synthetic examples (of which the standard deviation is represented by the red
circle) heavily overlap with the negative examples.

Dang et al. (2014) recently introduced Local Outliers with Graph Projection
(LOGP). LOGP is an outlier detection method that offers outlier explanation at the
same time. More specifically, for each data point, LOGP seeks a linear transformation
in which that point is maximally separated from its nearest full-space neighbors. Then,
in that transformed space, an outlier score is computed for that point as the statisti-
cal distance from the point to its neighbors. Finally, the outlier scores for all objects
are sorted to identify the outliers. As for outlier explanation, the weight vector in the
linear transformation can be employed to sort the features according to their degree
of contribution to the outlyingness of the point. Dang et al. (2014) suggested taking
the features corresponding to the largest absolute weight values accounting for 80%
of the total absolute weight. LOGP can be straightforwardly applied in the context of
outlying aspects mining for finding the most outlying subspace of the query. A critical
observation regarding LOGP is that, similar to the feature selection approach, LOGP
also attempts to separate the query from its full-space neighborhood. Again, we note
that the neighborhood in the full space can be significantly different to the neighbor-
hood in the subspace (cf. the example in Fig. 2a). In such cases, using the full space
as a ‘reference point’ to predict what will happen in subspaces can be misleading.

Compared to score-and-search basedmethods, themajor advantage of feature trans-
formation/selection approaches is that they often do not perform an explicit search over
the space of all subspaces, thus are generally faster. However, this also entails a major
drawback in that suchmethods generally cannot provide alternative solutions, i.e., a list
of high-ranked subspaces, if requested by the user. Furthermore, we point out that the
issue of feature redundancy should be handled differently in the two paradigms: fea-
ture selection for classification versus feature selection for outlying aspects mining. In
the former, feature redundancy can reduce classification accuracy (Peng et al. 2005),
while in the latter, feature redundancy does not necessarily reduce interpretability.
None of the previous feature selection approaches considers this issue.

3 Problem definition

Before developing new measures and algorithms for outlying aspects mining, we
formalize the problem, by defining the following concepts.

Definition 1 Top k-outlying subspaces: Let ρS(q) denote an outlyingness scoring
function that quantifies the outlyingness degree of the query q in a subspace S. The
top k-outlying subspaces are the k subspaces in which the query deviates most from
the rest of the data, as ranked by the scoring function ρ(·).

Note that in this definition, the ranking is carried out on the subspaces. The degree
of deviation might be either sufficient or insufficient to declare the query to be a
subspace outlier. Such a declaration is not our main interest, however. It is our focus to
identify the top k-outlying subspaces, ranked by the degree of deviation of the query
for user inspection. Further, we categorize the features into 3 non-overlapping groups
as follows:
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Definition 2 Feature classification: Given an outlyingness scoring function ρ(·) and
a percentile ranking threshold ε ∈ [0, 1],
1. A trivial outlying feature Di is an individual feature in which the query q’s out-

lyingness score is ranked within the top (ε × 100)% among all the data points
according to ρDi (·).

2. The top-k non-trivial outlying subspaces are subspaces which (a) comprise no
trivial outlying features and (b) have the top-k highest outlyingness score, as ranked
by ρ(·), amongst all the possible subspaces.
A feature is called a non-trivial outlying feature if it forms part of at least one top-k
non-trivial outlying subspace.

3. Inlying features are features that are not trivial outlying features, nor do they form
part of any top-k non-trivial outlying subspace.

This explicit categorization will be helpful in guiding our subsequent approaches.
Indeed, we now propose that trivial outlying features should be discovered first (using
a likely straightforward approach), then taken out of the data, leaving only non-trivial
outlying features and inlying features. The rationale for this proposal is as follows.
First, trivial outlying features by themselves have high explanatory value for the users,
as they can be easily visualized and interpreted. In a trivial outlying feature, the query
either has an extreme value, or lies deep within the data but far away from any nearby
clusters. Coupling trivial outlying features with other features can potentially increase
confusion and false discoveries. An illustration is in Fig. 3a. The feature D1 is a trivial
outlying aspect w.r.t. the query. This can be seen by observing the histogram of D1
alone. When coupled with another (either non-trivial outlying or inlying) feature D10,
the resulting subspace will still likely have a good outlyingness score for the query,
but this does not offer any additional insight. Second, when a trivial outlying feature
exists, the top scoring subspace list can be swampedwith different combinations of that
trivial feature with other features, thus preventing the discovery of other interesting
subspaces.

Example 2 Effect of trivial outlying featuresWe take the UCI Vowel data set with n =
990 objects in d = 10 features (data details given in Sect. 7.4). We then linearly scale
and shift all features to the range [0,1] and pick a randomdata point as the query. For the
query,we artificially increase its value in feature D1 to 1.1 (i.e., outside the [0,1] range).
Thus, it can be seen that D1 is a trivial outlying feature for the query. We then employ
the density rank measure (Duan et al. 2015) and carry out an exhaustive search over
all subspaces of up to 5 features. The top-10 outlying subspaces for the query are {D1},
{D1, D10}, {D1, D9}, {D1, D7}, {D1, D6}, {D1, D2, D3}, {D1, D4}, {D1, D3} and
{D1, D2}, which are all combinations of D1 and other features. When D1 is explicitly
identified and removed, using the same search procedure, other outlying subspaces
can be revealed, for example, {D3, D6, D9} in Figure 3b.

4 Outlyingness scores

As measures for outlyingness, one can consider a variety of scoring metrics in the cur-
rent outlier detection literature. Before considering several such measures, we discuss
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Fig. 3 Trivial outlying features can hinder the discovery of interesting outlying subspaces. a Combination
of a trivial outlying feature and other features likely results in highly-scored subspaces. b A non-trivial
outlying subspace for the query discovered after D1 is removed

several desiderata that a measure should possess in the context of outlying aspects
mining.

4.1 Desiderata

– (i) Dimensionality unbiasedness As outlyingness measures are used to compare
subspaces of potentially different dimensionalities, an ideal measure should have
nobias towards any dimensionality.An example of a dimensionally biasedmeasure
is the Outlying Degree (OD) score built upon the Euclidean distance employed in
Zhang et al. (2004), which monotonically increases as dimensionality increases,
thus it is biased towards higher dimensional subspaces.

Definition 3 Monotonic scoring function: An outlyingness scoring function ρ(·)
is monotonically increasing (decreasing) w.r.t. dimensionality if ρS1(q) ≥ ρS2(q)

(respectively ρS1(q) ≤ ρS2(q)), where S1 ⊃ S2, for all queries.

Theorem 1 The outlying degree defined in equation (1) using the Euclidean distance
is a monotonically increasing scoring function.

This result is straightforward, given that the Euclidean distance is a monotonic mea-
sure, in the sense that DistS1(q, o) ≥ DistS2(q, o) if S1 ⊃ S2. The kernel density
measure defined in (2), on the other hand, is not a monotonic measure. Despite the
common belief that the density tends to decrease as dimensionality increases, the ker-
nel density measure can actually increase with dimensionality. To see this, we note
that the kernel density in (2) can be rewritten as a sum of distance-like terms:

fS(q) = 1

n

∑

o∈O

⎛

⎜⎜⎝
e
−∑

Di∈S
(q.Di−o.Di )

2

2h2Di

(2π)|S|/2 ∏
Di∈S hDi

⎞

⎟⎟⎠ (3)
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where the kernel density values in the parentheses can be considered as the ‘distances’
between oi ’s and q. Now note that

fS∪Dj (q) = 1

n

∑

o∈O

⎛

⎜⎜⎝
e
−∑

Di∈S
(q.Di−o.Di )

2

2h2Di

(2π)|S|/2 ∏
Di∈S hDi

⎞

⎟⎟⎠ · e
−(q.Di−o.Di )

2

2h2D j

(2π)1/2hDj

(4)

is a weighted sum of ‘distances’. Note further that the kernel density value in the

newly added dimension Dj , i.e., (
√
2πhDj )

−1e

−(q.Di−o.Di )
2

2h2D j , unlike probability mass,
is not restricted to lie within [0, 1] and in fact can be much larger than 1, hence
increasing the density value. While the kernel density is not a monotonic function
w.r.t. dimensionality, its values can be orders ofmagnitude different in scale at different
dimensionalities. To demonstrate this point, let us consider the following example.

Example 3 Effect of dimensionality We generate a 10-dimensional data set of 1000
points, with 10 equal-sized spherical Gaussian clusters with random mean in [0, 1]10
and diagonal covariance matrix σ I10 × 10 with σ ∈ [0, 1]. We randomly choose 10
d-dimensional subspaces for d from 1 to 10. For each subspace, we compute the
average OD score and log kernel density score for all data points. The mean average
scores over 10 subspaces at different dimensionalities are presented in Figure 4a,
where the outlying degree is monotonically increasing while the kernel density is
monotonically decreasing.Next, using theOutlyingDegree, kernel density and density
rank as the scoring functions, for each data point in turn being designated as the query,
we carried out an exhaustive search on subspaces of up to 5 dimensions to find out
the top outlying subspace for each query. The dimensionality distribution of the top
subspaces according to each scoring function is presented in Figure 4b, where it can
be observed that both the outlying degree and kernel density exhibit a bias towards
higher-dimensional subspaces. The density rank measure, on the other hand, shows
a more balanced result set, with top-scoring subspaces being present in considerable
number at each dimensionality.
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– (ii) Efficiency As search algorithms will likely have to search through a large
number of subspaces, it is desirable for the scoring function to be evaluated effi-
ciently. It is worth noting that certain normalization strategies, such as ranking,
require computing the raw outlyingness values of all data points, and thus can be
computationally expensive.

– (iii) Effectiveness The scoring metric should be effective for ranking subspaces in
terms of the outlierness degree of the query.

– (iv) Interpretability The numeric score given by a measure should be interpretive
and easily understood. In this respect, rank-based measures, such as the density
rank, are arguably the most interpretable measures. The main drawback of rank-
based measures is that the absolute degree of outlierness is lost.

Of these desiderata, efficiency can be formally analyzed in terms of time and space
complexity. Effectiveness can be quantitatively assessed when some ground truth is
known. Interpretability is arguably a semantic concept that is notoriously evasive to
formal analysis and quantification. Thus, we will only be discussing this desideratum
qualitatively. Dimensionality unbiasedness is a novel and important concept that was
either totally neglected (Zhang et al. 2004) or only casuallymentioned in previouswork
(Duan et al. 2015). We provide a formal description of dimensionality unbiasedness
in Sect. 5.

4.2 Existing scoring measures

We next consider several scoring metrics. One of the most popular outlyingness mea-
sures is the local outlier factor (LOF) (Breunig et al. 2000). As the name implies,
LOF was designed to detect local outliers, i.e., points that deviate significantly from
their neighborhood. LOF is built upon the concept of local density: points that have
a substantially lower density than their neighbors are considered to be outliers. Since
the exact technical definition of LOF is quite intricate, we do not give its definition
here. Interested readers are referred to the original work of Breunig et al. (2000).

In the context of outlying aspects mining, LOF has several desired features. First,
points lying deep within a cluster, i.e., inliers, have a baseline value of approximately 1
regardless of the subspace dimensionality. This suggests that a normalization scheme
such as converting a raw score to ranking, which requires computing the scores for
all data points, might not be needed. Second, the LOF for a query can be efficiently
computed in O((nd+n log n) · (MinPtsUB)2) time whereMinPtsUB is the maximum
neighborhood size parameter in LOF. This is the time required to compute the distances
from q to its MinPtsUB neighbors, and the distance from each of these neighbors
to their own MinPtsUB neighbors, and also the time required to sort the distances
to answer kNN queries. When LOFs for all data points in the data set need to be
computed, one can consider some data indexing structure that helps to reduce the
computational complexity of kNN queries. However, when the LOF of a single query
point is to be computed on demand as in outlying aspects mining, one must also
take into account the overhead of building indexing structures. LOF can detect local
outliers, i.e., points that deviate significantly from their neighborhood but need not
deviate significantly from the whole data set. For high-dimensional data sets, Kriegel
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et al. (2008) recently introduced the Angle-Based Outlier Detection (ABOD) score.
In the context of outlying aspects mining, we focus mainly on subspaces of lower
dimensions (for improved interpretability), thus we do not consider ABOD further.

We have already discussed the density rank measure in the previous section. The
drawback of the density rank is that while it might be a good measure for comparing
different objects in the same subspace, it might not be always relevant for comparing
the outlyingness of the same object in different subspaces (c.f. example in Fig. 1). As
an alternative for the density rank, we introduce the density Z-score in the next section.
We then introduce another novel measure that we term the isolation path score.

4.3 Density Z-score

We propose the density Z-score, defined as:

Z( fS(q)) � fS(q) − μ fS

σ fS
(5)

whereμ fS and σ fS are, respectively, the mean and standard deviation of the density of
all data points in subspace S. A larger negative Z-score corresponds to a lower density,
i.e., a possible outlier. As observed in Fig. 1, the density Z-score correctly points
out that subspace {D3, D4} is more interesting than subspace {D1, D2}. Compared
to the density rank, the density Z-score retains some information on the absolute
degree of deviation while still being dimensionally-unbiased, with the latter point
being demonstrated later in the experiments. The density Z-score is, however, an
expensive statistic with O(n2d) time complexity, requiring the density of every data
point to be computed. For the density rank, certain computational shortcuts can be
applied to compute the correct ranking just for the querywithout computing the density
(and rank) for all other data points (Duan et al. 2015). This is because the rank is a
coarse-grained statistic that does not require precise values for the raw density, but just
their relative ordering. However, for the density Z-score it is unlikely that a similar
computational shortcut exists.

4.4 The isolation path score

We now introduce a novel scoring function named the isolation path score. This
score is inspired by the isolation forest method for outlier detection (Liu et al. 2008).
The isolation forest method is built upon the observation that outliers are few and
different, and as such they are more susceptible to being isolated. In Liu et al. (2008),
an isolation tree is a binary tree with each inner node having a random feature and
a random splitting point, and leaf nodes having only a single data point (or identical
points). Outliers tend to lie closer to the root, thus having a shorter path length from
the root. The isolation forest does not rely on distance computation, thus it is fast.
Also, it employs sub-sampling quite aggressively with each tree being suggested to
use only 256 examples, which makes it highly scalable. In the context of outlying
aspects mining, the motivation for the isolation path score is as follows: in an outlying
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Fig. 5 Isolation path illustration. The query is the red square. a A random isolation path for an outlier. b
A random isolation path for an inlier (Color figure online)

subspace, it should be easier to isolate the query from the rest of the data (or a data
sub-sample). When employing random binary trees as the isolation mechanism, the
expected path length from the root should be small. The difference here is that in this
context, since we only care about the path length of the query, we focus on building
only the path leading to that query point while ignoring other parts of the tree, hence
the name isolation path.

The procedure for computing the isolation path length of the query point with
respect to a random sub-sample of the data is given in Algorithm 1. This algorithm
isolates the query by a series of random binary splits, each divides the data space
into two half-spaces, until the query is isolated, or until all the remaining data points,
including the query, have the same value in the random feature selected at that stage. In
the latter case, the path length is adjusted by an amount of ζ(|X|) = 2(ln |X|+γ )−2,
where γ 	 0.5772 is the Euler constant. This is the average tree height of a random
sample of the same size as the remaining data points (c.f. Sec. 5 Theorem 4). This
adjustment takes into account the fact that the more points there are with the same
value as the query, the less outlying it is. In order to have an accurate estimation of
the path length, we employ an ensemble approach using multiple sub-samples of the
original data set and compute the average. This final statistic is called the isolation
path score.

The working mechanism of the isolation path is illustrated in Fig. 5. In Fig. 5a, the
query (red square) is an outlying point in a 2D space {x, y}. Each split is illustrated as a
numbered vertical or horizontal line (corresponding to an x-split or y-split). Each split
divides the space into two half-spaces. The half-space that does not contains the query
point is discarded, and the process repeats until the query is isolated. The series of
splitting operations for Fig. 5a are, {horizontal split-retaining bottom half-space} →
{vertical split-retaining right half-space}→ {vertical split-retaining right half-space}.
The number of splits is 3. Similarly, in Fig. 5b, 7 splits are needed to isolate a random
inlier.

The proposed isolation path score possesses several desired characteristics:
Dimensionality unbiasednessWegive a theoretical analysis on dimensionality unbi-

asedness for the isolation path score in the next section. Dimensionality unbiasedness
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Algorithm 1 Isolation Path: iPath(X,q)

1: Inputs: data sub-sample X ⊂ O, query q
2: len ← 0
3: while TRUE do
4: if |X| == 1 then break;
5: Select a random attribute Di with range [min,max]
6: if min == max then {len ← len + ζ(|X|); break}
7: split ← Sample a point within [min,max] uniformly at random
8: X ← {∀o ∈ X on the same side with q w.r.t split in Di }
9: len ← len + 1
10: end while
11: Return len

implies that an expensive standardization scheme such as converting raw scores to a
ranking or Z-score is not necessary.

Efficiency the isolation path score is computationally very fast as it requires no
distance computation.

Theorem 2 The average-case time complexity of iPath(X,q) on a subsampleX of ns
records is O(ns), while its worst-case time complexity is O(n2s ).

Proof We can define the following recurrence for the average case computational
complexity of building a isolation path on ns samples:

T (ns) =
{
0, if ns = 1.

ns + T ( ns2 ), if ns > 1.
(6)

where we have employed the assumption that by choosing a random data point as
a split point, the sample size reduces on average by a factor of 1/2 after each split,
and in order to realize a split over ns data points, we need to make ns comparisons.
This is the 3rd case of the master theorem (Cormen et al. 2009), where a = 1,
b = 2 and f (ns) = ns . According to the master theorem, if T (ns) = aT ( nb ) + f (n),
f (n) = Ω(nc), c > logb a and ∃k < 1 such as f ( nb ) ≤ k f (n), then T (n) = O( f (n)).
In our case, f (ns) = Ω(ncs) = Ω(ns), c = 1 > logb a = log2 1 = 0, and f ( nsb ) =
f ( ns2 ) = ns

2 = k f (ns), with k = 0.5 < 1. Therefore, T (ns) = O(ns).
In the worst case, each split separates only 1 data point while the query is the

last point to be separated in that sequence. This requires 2 + 3 + . . . + n = O(n2)
comparisons. ��

The average time complexity of building an ensemble of T paths is O(Tns), while
the space complexity is O(ns). The isolation path score admits a fixed time and space
complexity that is independent of the data size and dimensionality.

5 Dimensionality unbiasedness

In this section, wemake the first attempt, to the best of our knowledge, to formally cap-
ture the concept of dimensionality unbiasedness for outlying aspectsminingmeasures.
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At a high level, we require unbiased measures to have a baseline value that is inde-
pendent of dimensionality, or in other words, remaining constant w.r.t. dimensionality.
So what constitutes a baseline value?

Before answering this question, we shall briefly digress and consider a similar
problem: the problem of adjusting clustering comparison measures for cardinality
bias, i.e., bias towards clusterings with more clusters (Vinh et al. 2010). Clustering is a
fundamental task in data mining, which aims to group the data into groups (clusters) of
similar objects. In order to evaluate the quality of a clustering algorithm, its clustering
result can be compared with a ground-truth clustering. For the clustering comparison
problem, numerous measures exist. One issue faced by many measures, such as the
well-knownRand index, is that their baseline value for the case of no similarity between
two clusterings is not a constant. Further, this baseline tends to increase when one
or both clusterings have a higher number of clusters. As a result, these measures are
biased towards clusteringswith higher numbers of clusters. In order to correct different
measures for this cardinality bias, several adjusted measures have been introduced,
such as the adjusted Rand index, adjusted mutual information (Vinh et al. 2010) and
more recently, standardized mutual information (Romano et al. 2014). The commonly
adopted methodology for adjustment is by making these measures have a constant
baseline value, by subtracting their expected value obtained under a baseline scenario
(also termed the null hypothesis) of no similarity between two clusterings. In the
baseline scenario, it is assumed that the two clusterings are generated randomly subject
to having a fixed number of clusters and number of points in each cluster. As there is
clearly no correlation between the two clusterings, an unbiased clusterison comparing
measure should have a constant baseline value, independent of the number of clusters.

Similar to the clustering comparison problem, we shall also consider a baseline
case in which the data distributes in such a way that there is no greater outlyingness
behaviour in higher dimensional spaces. The average value of a measure over all data
points in a baseline case is called the baseline value. We require an unbiased score to
have a constant baseline w.r.t. the subspace dimensionality. A possible baseline case is
when the data is bounded and uniformly distributed. In such a case, it is reasonable to
expect that (i) no data point is significantly outlying and (ii) the average outlyingness
degree should not increase/decrease as dimensionality increases.

Definition 4 Dimensionality unbiasedness: A dimensionally unbiased outlyingness
measure is a measure of which the baseline value, i.e., average value for any data
sampleO = {o1, . . . , on} drawn from a uniform distribution, is a quantity independent
of the dimension of the subspace S, i.e.,

E[ρS(q)|q ∈ O] � 1

n

∑

q∈O
ρS(q) = const. w.r.t. |S|

We now prove some dimensionality-unbiasedness results for existing measures.
First, we show that the rank and Z-score normalization can turn any measure into a
strictly dimensionally-unbiased measure as per Definition 4.
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Definition 5 The Rank of an outlyingness scoring metric ρ is defined as

R(ρS(q)) � |{oi ∈ O, ρS(oi ) ≺ ρS(q)}| + 1 (7)

Here, we employ the notation ρS(a) ≺ ρS(b) to denote object a being more outlying
than object b according to ρ in subspace S, with ties broken arbitrarily.

Definition 6 The Z-score of an outlyingness scoring metric ρ is defined as:

Z(ρS(q)) � ρS(q) − μρS

σρS

(8)

where μρS and σρS are, respectively, the mean and standard deviation of the ρ-score
of all data points in subspace S.

The density rank and density Z-score that we have discussed in the previous section
are specific instantiations of these normalizations.

Theorem 3 Given an arbitrary scoring metric ρ, then Z(ρ) and R(ρ) are dimension-
ally-unbiased as per Definition 4.

Proof Given a data set O of n objects, we can show that

E[R(ρS(q))|q ∈ O] = 1 + 2 + · · · + n

n
= n + 1

2
,

which is independent of the dimensionality of the subspace S. Similarly,

E[Z(ρS(q))|q ∈ O] = 1

n

n∑

i=1

Z(ρS(oi )) = 1

n

n∑

i=1

ρS(oi ) − μρS

σρS

= 0 (9)

��
Note that for the Rank and Z-score normalization, not only the mean of the normal-

ized measures is a constant, but also the variance of the normalized measures is also a
constant w.r.t dimensionality. Indeed, it is easily seen that Var[Z(ρS(q))|q ∈ O] = 1
and Var[R(ρS(q))|q ∈ O] = 1

3n(n2 − 1). Also, we note that the proof of Theorem 3
did not make use of the uniform distribution assumption. In fact, the Z-score and Rank
normalization hold their constant average value for any data set under any distribution.
This raises the question whether these normalizations are overly strong normalization
schemes. Indeed, if the data was deliberately generated in such a way that there are
more outliers in higher dimensional subspaces, then the average outlyingness degree
should in fact increase w.r.t. dimensionality to reflect this.

Next, we prove that the isolation path score is intrinsically dimensionally unbiased
under Definition 4, without the need for normalization.
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Theorem 4 The isolation path score is dimensionally unbiased under Definition 4.

Proof First, it is noted that for computing the average isolation path within a data set,
we simply build a full isolation tree (since no point is designated as the query). Since
an isolation tree is built recursively, the average path length of its leaf nodes can also
be computed recursively as:

L(n) =
{
0, if n = 1.

1 + ∑
split P(split)

(
P(< split)L(< split) + P(≥ split)L(≥ split)

)
, if n > 1.

(10)
where L(n) denotes the average path length of a random tree built based on n samples.
Note that for a data set of n distinct points in any splitting attribute, there are in fact
at most n − 1 distinct split intervals that will result in non-empty subtrees, and within
any interval, all split points produce identical subtrees. P(split) is the probability that
a split interval is chosen. P(< split) and P(≥ split) denote the fraction of points
falling on each side of the split point, while L(< split) and L(≥ split) denote the
average path length of the left and right sub-tree respectively. Using the baseline-case
assumption of the uniform data distribution, if the split point is uniformly chosen at
random, then it has equi-probability to be in the interval between any two consecutive
data points, thus P(split) = 1

n−1 . Let 1 ≤ i < N be the index of split points such that

spliti ≤ spliti ′ ,∀i < i ′, then P(< spliti ) = i
n and L(< spliti ) = L(i), and similarly

P(≥ spliti ) = n−i
n and L(≥ spliti ) = L(n − i). We therefore arrive at the following

recurrence:

L(n) =
{
0, if n = 1.

1 + 1
n−1

∑n−1
i=1

( i
n L(i) + n−i

n L(n − i)
)
, if n > 1.

(11)

Due to the symmetry of the terms in the sum and by multiplying by n(n − 1):

n(n − 1)L(n) = n(n − 1) + 2
n−1∑

i=1

i L(i) (12)

By subtracting equation (12) for L(n − 1) from equation (12) for L(n), we obtain a
simplified closed form:

L(n) = L(n − 1) + 2

n
= 2

n∑

i=2

1

i
= 2Hn − 2

where Hn is n-th harmonic number, which can be estimated by ln(n) + γ , with γ

being the Euler’s constant. Since L(n) is independent of dimensionality, the isolation
path score is dimensionally unbiased under Definition 4. ��

Of the remaining outlyingness measures, LOF (Breunig et al. 2000) in its raw form
appears to also approximately satisfy our definition of dimensionality unbiasedness.
More specifically, in Breunig et al. (2000, Lemma 1), it has been proven that for a
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Table 1 Summary of desiderata for scoring measures (n = data size; d = #dimensions; T = #random paths;
ns = sample size)

Scoring measures Unbiasedness Efficiency Interpretability

Outlying degree ✗ ✓(O(nd)) ✓

Kernel density ✗ ✓(O(nd)) ✓

LOF ✓ ✓(O((nd + n log n)) ✗

Isolation path ✓ ✓(O(Tns )) ✓

Density Z-score ✓ ✗(O(n2d)) ✓✓

Density rank ✓ ✗(O(n2d)) ✓✓✓

compact cluster of points, most points have an LOF value of approximately 1 within a
small multiplicative factor independent of the space dimensionality. The distribution
of data in Definition 4 satisfies this requirement (a single uniform cluster).

5.1 Summary of desiderata for scoring measures

In Table 1, we give a brief summary for the desiderata of scoring measures. In terms
of interpretability, ranking is arguably the easiest-to-understand measure, followed by
the Z-score, which can be interpreted as the number of standard deviations from the
mean raw score. The other scores are generally less comprehensible to the average
user. Subjectively, we found LOF the least interpretable measure due to its rather
intricate technical definition. We experimentally evaluate the effectiveness of various
measures in Sect. 7.

6 The beam search procedure

For score-and-search approaches, after a scoring function has been determined, it
remains to use this score to guide the search within the set of all possible subspaces.
There are 2d − 1 such subspaces. When the maximum dimensionality dmax is speci-
fied, the number of subspaces to search through is in the order of O(ddmax ), i.e., still
exponential in dmax . While we have not attempted to formally prove the hardness of
the score-and-search problem using the proposed scoring metrics, it is reasonable to
assume that those problems are “hard”. In fact, the problem of searching for the best
outlying subspace using the raw kernel density score is a special case of the MAX
SNP-hard contrast subspace mining problem (Duan et al. 2015), where the positive
class reduces to a single query point. A heuristic approach is thus essential.

In this work, we propose a beam search strategy. Beam search is a breadth-first-
search method that avoids exponential explosion by restricting the number of nodes to
expand to a fixed size (i.e., the beam width) while discarding all other nodes (Russell
and Norvig 2003). The effectiveness of beam search depends mostly on the quality
of the heuristic pruning procedure. In this work, we design the heuristic rule based
on the following speculation: a highly-scored subspace will also exhibit good scores
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in some of its lower dimensional projections. Of course, there are exceptions to this
speculation. Take the example in Fig. 6a for example. Consider a point close to the
center of the circle, it is an outlier in the 2D space, yet does not exhibit any outlying
behaviour in its 1D projections. We can further generalize this example to the case
where the data distribute uniformly on the surface of a high dimensional hypersphere,
and the query lies at the center of the sphere. In this setting, in any lower dimensional
projection, the query will appear to be an inlier, thus that subspace will have a low
score. While this example shows that our speculation does not always hold true, we
point out that such an exception requires a careful and somewhat artificial setting.

In reality, it is reasonable to expect that a good outlying subspace will show some
telltale sign in at least one of its lower dimensional projections. For this reason, we
propose to build the subspaces incrementally in a stage-wise manner.

The overall search procedure is described as follows. In the first stage, all subspaces
of 1 dimension are inspected to screen out trivial outlying features for user inspection.
Theusermight thendecidewhether to take these trivial outlying features out of the data.
In the second stage, we perform an exhaustive search on all possible 2D subspaces. The
subsequent stages implement a beam search strategy: at the l-th stage, we keep only
theW top-scoring subspaces (the beamwidth) from the previous (l−1)-th stage. Each
of these subspaces is then expanded by adding one more attribute and then scored.
The search proceeds until a user-defined maximum set size has been reached. The
framework is presented in Algorithm 2. The number of subspaces considered by beam
search is therefore in the order of O(d2 +Wd · dmax ) whereW is the beam width and
dmax is the maximum subspace dimension.

Algorithm 2 Beam search framework
1: Inputs: data O, query q, maximum dimension dmax , number of top subspaces k, threshold for trivial

outlying aspect ε, beam width W
2: Stage 1: Filter out trivial outlying aspects (optional)
3: Stage 2: Exhaustively score all 2D subspaces.Update global result list of top k subspaces.Make candidate

list of top W subspaces L(2).
4: for l = 3 to dmax do
5: (l-th Stage)
6: - Initialize the candidate list L(l) ← ∅
7: - For each candidate subspace S ∈ L(l−1):
8: - For each attribute Di ∈ D\ S:
9: - If subspace {S∪ Di } not yet considered:
10: - Score {S∪ Di }.
11:

- If the worst-scored subspace in global result list is worse than {S∪ Di } then
replace.

12:
- If |L(l)| < W , append {S∪ Di } to L(l), else if the worst-scored subspace in the
candidate list L(l) is worse than {S∪ Di } then replace.

13: end for
14: Return {trivial outlying features, top k subspaces}

6.1 Filtering trivial outlying aspects

We now discuss possible approaches for filtering out trivial outlying aspects. This
problem is not a challenging one, both computationally and methodologically. Given
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that there are only d univariate variables to be screened, the computational requirement
is modest. Furthermore, most outlyingness scoring metrics work well on univariate
variables. Here, given a scoring metric, we propose to use a parameter ε ∈ [0, 1]
to specify the percentile ranking threshold for the query. Any attribute in which the
query’s outlierness score is within the top (ε × 100)% is deemed a trivial outlying
attribute.

7 Experimental evaluation

In this section, we design a series of experiments to assess the effectiveness and effi-
ciency of the proposed method and scoring metrics against the state of the art. For
scoring metrics, we compare with LOF (Breunig et al. 2000), with theMinPtsLB and
MinPtsUB parameters set to 10 and 30 respectively, and the density rank in Duan et al.
(2015). For outlying subspaces mining methods, we compare our framework with the
projection based approach LOGP (Dang et al. 2014) and the feature selection based
approach GlobalFS (Vinh et al. 2014b), with all parameters set as recommended in the
respective papers. For the isolation path, we have found that 500 paths on subsamples
of size 256 generally work well, thus we employ this setting unless otherwise stated.
In this work we focus on large datasets with the number of data points n � 256. How-
ever, in case n is not substantially larger or even smaller than 256, we have found that
setting the subsample size to ∼�n/4� yields reasonable results. All experiments were
performed on an i7 quad-core desktop PC with 16 GB of main memory. We imple-
mented the isolation path score, LOF, density rank and density Z-score in C++/Matlab.
TheBeam search frameworkwas implemented inMatlab.All source codewill bemade
available on our web site. Implementations of LOGP (Matlab) and GlobalFS (C++)
were kindly provided by the respective authors (Dang et al. 2014; Vinh et al. 2014b).

7.1 Basic properties

We first design several experiments on synthetic datasets to verify the basic properties
of different scoring functions.

• Experiment 1—Convergence of isolation path score The convergence property of
isolation forests was comprehensively established in Liu et al. (2008, 2012). Herein,
we briefly confirm this convergence in the context of isolation path. We generate 1000
random data points uniformly distributed on a circle with a small amount of Gaussian
noise as in Fig. 6. The query is at the center of the circle. In the first experiment, we
fix the subsample size for the isolation path algorithm to 256 while the number of
paths in the ensemble is varied from 1 to 10,000. In Fig. 6b it can be observed that the
average path length converges quickly using just approximately 100 paths. It is also
noted that the path length of the query q is significantly smaller than the average path
length of a random inlier o. This demonstrates that the isolation path length score is
able to characterize non-trivial outliers, i.e., outliers that cannot be characterized by
inspecting each feature separately. In the next experiment, we fix the number of paths
to 500, but vary the size of the subsample from 50 to 500. The average path length
grows as expected, approximately in the order of O(log ns)where ns is the subsample
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Fig. 6 Convergence of isolation path score. a Data on a circle; query q (red square), a random inlier o
(green square). b Average path length convergence (fixing subsample size to 256). c Effect of subsample
size (fixing the number of paths to 500) (Color figure online)

size. Nevertheless, the average path length of q is consistently smaller than that of the
inlier o.

• Experiment 2—Dimensionality unbiasednessWe generate 10 data sets, each con-
sisting of 1000 points from a uniform distribution U([0, 1]d). The space dimension is
varied within [2, 20]. We then compute the average mean isolation path score, density
Z-score LOF, outlying degree score and log density of all data points. In addition, we
also compute the average mean subspace size of the outlying subspace returned by
LOGP for all data points. In Fig. 7b, we note that the LOF score and isolation path
score shows a flat profile as the number of dimensions increases. For the Isolation path
score, note that the average isolation path score coincides with 2Hn − 2, as dictated
by Theorem 4. On the other hand, the outlying degree, log density score and LOGP
all exhibit clear bias towards subspaces of higher dimensionalities.

An interesting question to ask is how the scoring functions behave under an arbitrary
data distribution. Towards this end, we generate 10 data sets, each consisting of 1000
points from 10 equal-sized spherical Gaussian clusters with random mean in [0, 1]
and diagonal covariance matrix σ Id×d with σ ∈ [0, 1]. The space dimension is varied
within [2, 20]. The result is presented in Fig. 7a. Under an arbitrary data distribution,
it is not possible to predict whether the average outlyingness score should increase or
decrease as dimensionality increase. Nevertheless, the density Z-score, by construc-
tion, has zero-mean across all dimensionalities. The LOF score and isolation path
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Fig. 7 Dimensionality unbiasedness (best viewed in color). aDimensionality unbiasedness: baseline value.
b Average value under Gaussian mixture distribution (Color figure online)

score both show a slight tendency to increase as the number of dimensions increases,
but this variation is minor, compared to the outlying degree, log density score and
LOGP, which all exhibit a strong bias towards subspaces of higher dimensionalities.

• Experiment 3—Scalability In this experiment, we test the scalability of the isola-
tion path score in comparison with the next most scalable metric, namely LOF, with
respect to the number of data points. Note that we do not test scalability w.r.t. the
number of dimensions, as scoring metrics are often used for scoring low dimensional
spaces (i.e., d ≤ 5) in the context of outlying aspects mining. Higher dimensional out-
lying subspaces are hard to interpret.We generate n data points in a 5-dimension space
where the number of data points n ranges from 103 to 106 points (LOF) and 107 points
(isolation path score). The data distribution is a mixture of 100 equal-sized spherical
Gaussian clusters with random mean and covariance. For each n value, we randomly
take 100 points as queries and record the average time required for computing the LOF
and isolation path score for these queries. For LOF, we also test the KD-tree based
version for fast KNN queries. It is observed that the time for building the KD-tree is
negligible compared to the time for KNN queries when the data size is sufficiently
large. The result is presented in Fig. 8. It can be observed that the average cost for
computing the isolation path score is very small and does not increase appreciably
w.r.t. the data set size, thus making it suitable for mining very large data sets.

7.2 Identifying trivial outlying features

Wedemonstrate the usefulness ofmining trivial outlying features. For this experiment,
we employ the KDD Cup’99 data set. This benchmark data set is used commonly in
the anomaly detection community. Though it has been criticized for not reflecting real-
life conditions, we employ this data set since our primary goal is not about anomaly
detection. This data set was also analyzed byMicenkova et al. (2013)where the authors
extracted a small subset of 3500 records, and found a number of outlying aspects for
the anomalies. Here, we extract 100,000 normal records and 18,049 outliers of 40
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Fig. 8 Scalability w.r.t. dataset
size
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types of attacks from both the training and testing datasets. Each record is described
by 38 attributes. We demonstrate that it is an easy yet meaningful task to explicitly
identify trivial outlying aspects. We employ the LOF and isolation path score with the
rank threshold parameter set to 0.5 %, i.e., attributes in which the query’s score lies
within the top 0.5 % are deemed trivial outlying features. Note that the density rank
and Z-score are too expensive for data sets of this size. We search for trivial outlying
features for each of the total 118,049 records.

For the isolation path score, the results are summarized as follows: amongst 18,049
outliers, 6166 records are found to possess some trivial outlying features, i.e., 34.3 %.
This is in good contrast to only 4.1%of normal records having trivial outlying features.
Note again that here we do not attempt to declare whether any record is an anomaly.
In Fig. 9a we present the proportion of records in each type of attack sharing the same
trivial outlying features. Several intuitive insights can readily be extracted from this
table. For example, most land attacks share the trivial outlying feature named land.
Most guess password attacks (guess_passw) have an extreme number of failed
logins (num_failed_logins), as expected.

Explanations for other types of attacks require deeper domain knowledge. Take the
processtable DoS attack for example. The attack is launched against network
services, which allocate a new process for each incoming TCP/IP connection. Though
the standard UNIX operating system places limits on the number of processes that a
user may launch, there are no limits on the number of processes that the superuser can
create. Since servers that run as root usually handle incoming TCP/IP connections, it is
possible to completely fill a target machine’s process table with multiple instantiations
of network servers. To launch a process table attack, a client needs to open a connection
to the server and not send any information. As long as the client holds the connection
open, the server’s process will occupy a slot in the server’s process table (Garfinkel
et al. 2003). Most processtable attacks thus have extremely high connection
times, as seen in Fig. 9a.

Another example is thewarezmaster/warezclient attacks.Warezmaster
exploits a system bug associated with file transfer protocol (FTP) servers on which
guest users are typically not allowed write permissions. Most public domain FTP
servers have guest accounts for downloading data. The warezmaster attack takes
place when an FTP server has mistakenly given write permissions to guest users on
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Fig. 9 Trivial outlying aspects on KDD Cup’99 data set–shading scales indicate the proportion of points
sharing the same trivial outlying attributes in each attack type (best viewed in color). a Isolation path score.
b LOF (Color figure online)
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the system, hence any user can login and upload files. The attacker then creates a
hidden directory and uploads “warez” (copies of illegal software) onto the server for
other users to download (Sabhnani and Serpen 2003). A warezclient attack can be
launched after a warezmaster attack has been executed: users download the illegal
“warez” software that was posted earlier through a successful warezmaster attack.
The only feature that can be observed to detect this attack is downloading files from
hidden directories or directories that are not normally accessible to guest users on the
FTP server. The feature “hot” can be utilized to detect whether such suspicious activ-
ities took place: if many hot indicators are being observed in a small duration of time
during the FTP session, it can be concluded that warezclient attack is being exe-
cuted on the target machine (Sabhnani and Serpen 2003). In Fig. 9a it can be observed
that many warezclient attacks share the “hot” and “is_guest_login” trivial
outlying features.

For LOF, using the same 0.5% rank threshold, 29.6% of outliers were identified
as having trivial outlying features (compared to 34.3% when using the isolation path
score), while 13.6% of inliers were deemed to have trivial outlying features (which is
significantly higher compared to 4.1% when using the isolation path score). On this
data set, it tookLOF2524 s to score all 118,049 points in all features, compared to 120 s
when the isolation path score was used. Fig. 9b presents the proportion of records in
each type of attack sharing the same trivial outlying features. While LOF also detects
a number of ‘highlighted’ cells where a large proportion of attacks of the same type
share the same outlying features, somewhat surprisingly, several intuitive pairs, such
as land–land, guess_passw–num_failed_logins, and warezclient–
hot, warezclient–is_guest_login were not detected. A closer inspection
reveals that, as LOF is designed to detect local outliers, it is not sensitive towards
groups of global outliers, as in the above cases. When an anomaly cluster becomes
large and dense, the inner part of that cluster will be treated by LOF as inliers. This is
known as the masking effect (Liu et al. 2012). The isolation path score, on the other
hand, deals effectively with masking, since subsampling will thin out the anomaly
cluster for easier detection.

The consensus index In order to quantitatively assess the results, we propose the
Consensus Index (CI). It assesses the generalization performance of a method from
the query point to other data points of the same class. More specifically, if a set of
outlying features for a query point is good, then many other data points of the same
class should also share such features, i.e., distinguishing features of the class. Thus,
for each class, we count the number of times each feature is ‘voted’ as an outlying
feature by some query points in that class, and form the consensus matrix C , where
Ci j represents the number of times the j-th feature is selected as an outlying feature
by all query points in the i-th class. Normalizing each row of C by the number of
query points in the respective class gives the heatmap visualization in Fig. 9. For
each class, a small number of ‘highly-voted’ cells indicates better generalization. To
quantify this consensus between members of the same class, we employ an entropy-
based measure: for each class (i.e., row of C), we first add 1 to each cell (a Laplacian
smoothing factor) to prevent degenerate distributions, then we compute the entropy
for the row distribution as follows:
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H(i) =
d∑

j=1

−Ci j + 1

Ni
log

Ci j + 1

Ni

where Ni = ∑d
j=1(Ci j + 1). The consensus index is computed as the averaged

normalized row entropy

CI �
∑nC

i=1 H(i)

nC log d

where nC is the number of classes. CI ranges within (0, 1], with smaller values
indicating better consensus amongst queries of the same class, i.e., better general-
ization. For the KDD Cup’99 data set, the CI of LOF is 0.90 while for the isolation
path score, the CI is 0.75. Thus the isolation path score appears to also return bet-
ter results quantitatively. Note that, while these CI values seem high, i.e., close
to 1, the minimally achievable consensus (i.e., normalized entropy) for a class is
−[(d−1)/(ni +d) log(1/(ni +d))−(ni +1)/(ni +d) log((ni +1)/(ni +d))]/ log(d),
which is achieved when all ni queries of the i-th class vote for the same feature.
This baseline minimum value can be high, e.g., 0.44 when d = 40, ni = 100, and
approaches zero when ni → ∞.

7.3 Identifying non-trivial outlying high dimensional subspaces

We employ a collection of data sets proposed by Keller et al. (2012) for benchmarking
subspace outlier detection algorithms. This collection contains data sets of 10, 20,
30, 40, 50, 75 and 100 dimensions, each consisting of 1000 data points and 19 to
136 outliers. These outliers are challenging to detect, as they are only observed in
subspaces of 2 to 5 dimensions but not in any lower dimensional projection. Note
our task here is not outlier detection, but to explain why the annotated outliers are
designated as such. These data sets were also employed in several previous studies in
outlying aspects mining (Micenkova et al. 2013; Duan et al. 2015; Vinh et al. 2014b).
Since the data size is relatively small, here we employ a range of different approaches,
namely LOF score (including rank and Z-score variants), Outlying Degree (including
rank and Z-score variants), density score rank and density Z-score, the isolation path
score, GlobalFS (Vinh et al. 2014b) and LOGP (Dang et al. 2014).

For this data set, since the ground-truth (i.e., the annotated outlying subspace
for each outlier) is available, we can objectively evaluate the performance of all
approaches. Let the true outlying subspace be T and the retrieved subspace be P .
To evaluate the effectiveness of the algorithms, we employ the sensitivity, sen �
|T ∩ P|/|T | and the precision, prec � |T ∩ P|/|P|. The average sensitivity and pre-
cision over all outliers for different approaches on all datasets are reported in Fig. 10.
Note that since there are many methods being tested, we report the results for each
metric on two separate subplots.

On these data sets, the density Z-score performs competitively overall, and works
better than the density rank variant. The isolation path score also performs compet-
itively and is observed to work better than several previous approaches, including
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Fig. 10 Performance on identifying non-trivial outlying high-dimensional subspaces (best viewed in color).
a Precision. b Precision. c Sensitivity. d Sensitivity (Color figure online)

GlobalFS, density rank and LOGP. Of the two feature selection based approaches,
GlobalFS’s performance is close to the isolation path score and is significantly better
than LOGP. Again, we note that LOGP seeks a transformation that distinguishes the
query from its full-space neighbors. In this case, it appears that full-space neighbors
are not a relevant source of information to guide the search. To verify this hypothesis,
we test to see how similar the full-space neighborhood of the query is, compared to
its outlying-subspace neighborhood. It turns out that the average proportion of com-
mon neighbors drops steadily as the number of dimensions increases, from 22 % (10
dimensions) to just above 16 % (100 dimensions), similar to the trend observed in
Fig. 2a. Thus, the topology of the data in the full space needs not be similar to that in
the outlying subspaces. This observation can shed light on the poor performance of
LOGP. While GlobalFS also being a method in the feature transformation/selection
category, it does not rely on any statistic of the full space when building its synthetic
data. It therefore exhibits better performance.

The outlying degree performs competitively, and albeit being a biased score, it out-
performs LOF on these data sets. This is because all the artificial outliers are designed
to be global outliers. LOF appears to discover many ’local’ outlying aspects, in which
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Fig. 11 Parameter sensitivity: performance w.r.t. beam width parameter (best viewed in color) (Color
figure online)

the query appear to be locally outlying. Unfortunately, these findings cannot be veri-
fied using the ground truth. While the OD has high precision, its dimensionality bias
is also clearly exposed: for every query, the top subspace found by the OD always
comprises 5 features, which is the maximum cardinality allowed, whereas the ground-
truth subspace sometime comprises only 2-3 features. For this reason, the sensitivity
of the OD is low. Of the normalized variants, only the OD Z-score improves upon OD,
while the OD Rank degrades the results. We are also interested in seeing whether nor-
malizing the LOF (to rank or Z-score) could improve the performance, but the answer
appears to be negative in both cases: normalizing the LOF decreases the performance
significantly, especially at higher dimensionalities. A possible explanation could be
since LOF is already dimensionally-unbiased, normalizing LOF does not offer any
additional benefit but instead disrupting its values. It is observed, however, that the
LOF Z-score performs better than the LOF Rank.

Parameter sensitivity We test the performance of the beam search procedure w.r.t.
the beamwidth parameter on the 75-dimension data set of this benchmark. The results
are presented in Fig. 11, with the beam width ranges from 10 to 200. For most scor-
ing metrics, the performance improves gradually and stabilizes after the beam width
reaches 100. Note that increasing the bandwidth is guaranteed to return better solu-
tions in terms of the chosen scoring metric, but not necessary better performance w.r.t.
the ground-truth. Apparently, the performance of the density rank decreases slightly
as the beam width increases.

Execution time The wall clock execution time for various methods is presented in
Fig. 12. The two feature transformation/selection approaches GlobalFS and LOGP are
significantly faster than score-and-search approaches overall. Among the score-and-
search methods, the isolation path score based approach is the most efficient.

7.4 Other data

We have tested the methods on several real data sets from the UCI machine learning
repository (Bache andLichman2013), as summarized inTable 2.These are data sets for
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Table 2 Summary of UCI data
sets

Data set # Samples (n) # Features (d)

Ionosphere 351 33

Vowel 990 10

Breast 569 30

Image segmentation 2310 19

Satellite 6435 36

Digit 10,992 16

Letter 20,000 16

Shuttle 58,000 9

Forest 581,012 54

classification.We select a subset of the data points to act as queries. For each query, we
exclude all data points of the sameclass except the query, andmine the outlying features
for the query. For these data sets, since the annotated ground-truth outlying subspace
for each data point is not available, we employ the Consensus Index as a measure
of generalization performance. For all search and score methods, the parameters for
the beam search were set as dmax = 3 (maximum subspace dimension) and W =
100 (beam width), and the top scoring subspace was reported. For feature selection
(GlobalFS) and transformation (LOGP) approaches, we also extract an explaining
subspace of a maximum of 3 features. Note that for this experiment, whenever it takes
an excessive amount of time for a method to complete (e.g., several days or weeks)
based on an estimation from the first query, then we exclude that method from the
experiment (marked as ‘*’ in Table 3). Also, since other proposed methods do not
have any strategy for handling trivial outlying features, we did not filter out trivial
outlying features in this experiment.

A brief description for the data and the respective testing protocol is as follows: (1)
The pen digit data set consists of 10,992 samples of 16 features for the 10 digits 0–9,
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i.e., 10 classes. We randomly picked 100 samples from each class as query points. (2)
The vowel data set contains 990 samples of 10 features in 11 classes. We took all the
data points as queries. (3) The English letter data set contains 20,000 samples of 16
features for the 26 letters A–Z. We took 2291 samples corresponding to three random
letters as queries. (4) The forest cover type dataset consists of 581,012 samples of
54 features in 7 classes. We randomly took 100 data points in each class as queries.
(5) The Ionosphere dataset comprises 351 samples of 33 attributes. We took all data
points as queries. (6) The breast cancer data set consists of 569 instances of two
classes: malignant and benign, and 30 features. We took all data points as queries. (7)
The satellite dataset consists of 6435 data points of 36 features. We randomly took
100 data points from each class as queries. (8) The Shuttle data set contains 58,000
samples of 9 features in 7 classes. We randomly took 100 samples from each class as
queries (or all samples if a class contains less than 100 data points). (9) The image
segmentation data set consists of 2310 data points of 19 features in 7 classes. We
randomly took 100 data points from each class as queries.

Note that in this experiment, we are more interested in ‘long’ data sets (i.e., n �
d) rather than ‘wide’ data sets (i.e., n � d). The reason is that, when we have a
relatively small number of samples and extremely large number of dimensions, such
as a microarray data set comprising a few hundreds patients (samples) and a few tens
of thousands of genes (features), it is often the case that each sample will exhibit many
trivial outlying features, just by chance. That is because the data is so sparse. On the
other hand, it is much more meaningful and challenging to discover outlying features
when the data is dense. From the performance summary in Table 3, it can be observed
that the proposed density Z-score measure achieves good results whenever applicable,
but it is not very scalable, along with LOF and the density rank measures. For large
datasets, the isolation path score consistently achieves better results than the other two
scalable alternatives, namely LOGP and GlobalFS. Note that GlobalFS complexity is
exponential in log n, i.e., O(d log n), thus it is generally applicable up to medium-sized
data, but becomes infeasible when the data size becomes large, e.g., on the Forest
cover type data set.

We note that there is an important assumption underlying the Consensus Index as
a quantitative performance measure that deserves some discussion. The assumption is
that the classes are homogeneous, i.e., each class can be characterized by a relatively
compact set of features. It is useful to discuss the notion of ‘natural clusters’ here. A
natural cluster is a set of tightly coupled data objects in some subspace, ideally of a
small cardinality. A homogeneous class comprises a single natural cluster, or several
natural clusters all characterized by the same subspace. In the traditional context
of feature selection for classification, the goal is to identify this set of features that
characterize each class. Of course, itmay also happen that some class is heterogeneous,
i.e., comprising several natural clusters, each characterized by a different subset of
features. The Consensus Index works best when the classes are homogeneous. In such
cases, we can draw meaningful conclusions about the generalization performance
of different methods, from individual queries to the whole class. Studies on class
homogeneity are a challenging problem and fall outside the scope of this paper. It is
also worth noting that the Consensus Index on its own as a performance measure can
be misled by a malicious method which assigns the same feature to all queries, in such
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case the CI is maximized. Such a solution, however, will be poor in distinguishing
different classes of queries. To this end, we take the top 5 ‘voted’ features across
all queries and test the 10-fold cross validation error using a k-NN classifier (with
k =10). The result is presented in Table 4 where it can be observed that the isolation
path, LOGP and GlobalFS are the methods that perform better in terms of the cross
validation error rate.

8 Discussion and conclusion

In this paper, we have discussed the fundamental issues of outlying aspects mining.We
formalized the concept of dimensionality unbiasedness, and established this property
for several existing measures. We have also proposed two novel outlyingness scor-
ing metrics. The density Z-score exhibits good performance, but is computationally
expensive, thus is only applicable for small numeric data sets. On the other hand,
the isolation path score is an efficient measure that also exhibits good performance,
making it suitable for mining very large data sets.

While exhibiting desirable characteristics with respect to effectiveness and effi-
ciency, the methods presented herein is not without limitations. Most notably, the
isolation path, which is built upon the foundation of isolation forest, is not designed
to detect local outlying subspaces, i.e. subspaces in which the query is only a local
outlier w.r.t. its neighborhood. Second, scalability to both large and high dimensional
data set remain a significant challenge. This is true especially for the rank or Z-score
normalization, since the outlying score for all data points in all subspaces must be cal-
culated. Example application scenarios include text corpus of millions of documents
in tens to hundreds of thousands of words. Such large scale applications is currently
beyond the scope of many methods investigated herein.

The above limitations suggest several exciting avenues for future research. First,
a local version of the isolation path can be developed for local outlying subspaces.
Second, it is interesting to develop hybrid frameworks that combine the efficiency of
feature selection/transformation based approaches and the versatility and effectiveness
of score-and-search based methods, capable of generating multiple alternative expla-
nations and scalable to much larger high dimensional datasets. Third, in the spirit
of the no-free-lunch theorem, it is likely that no measure is optimal in all settings.
Therefore, an ensemble approach to outlying aspects mining, leveraging the strengths
of multiple scoring metrics and methods would likely be more effective.
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