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Abstract We consider online mining of correlated heavy-hitters (CHH) from a data
stream. Given a stream of two-dimensional data, a correlated aggregate query first
extracts a substream by applying a predicate along a primary dimension, and then
computes an aggregate along a secondary dimension. Prior work on identifying heavy-
hitters in streams has almost exclusively focused on identifying heavy-hitters on a
single dimensional stream, and these yield little insight into the properties of heavy-
hitters along other dimensions. In typical applications however, an analyst is interested
not only in identifying heavy-hitters, but also in understanding further properties such
as: what other items appear frequently along with a heavy-hitter, or what is the fre-
quency distribution of items that appear along with the heavy-hitters. We consider
queries of the following form: “In a stream S of (x, y) tuples, on the substream H
of all x values that are heavy-hitters, maintain those y values that occur frequently
with the x values in H”. We call this problem as CHH. We formulate an approximate
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formulation of CHH identification, and present an algorithm for tracking CHHs on a
data stream. The algorithm is easy to implement and uses workspace much smaller
than the stream itself. We present provable guarantees on the maximum error, as well
as detailed experimental results that demonstrate the space-accuracy trade-off.

Keywords Data stream mining · Correlation · Heavy-hitters

1 Introduction

Correlated aggregates (Ananthakrishna et al. 2003; Gehrke et al. 2001; Cormode et al.
2009) reveal interesting interactions among different attributes of a multi-dimensional
dataset. They are useful in finding an aggregate on an attribute over a subset of the
data, where the subset is defined by a selection predicate on a different attribute of
the data. On stored data, a correlated aggregate can be computed by considering one
dimension at a time, using multiple passes through the data. However, for dynamic
streaming data, we often do not have the luxury of making multiple passes over the
data, and moreover, the data may be too large to store and it is desirable to have an
algorithm that works in a single pass through the data. Sometimes, even the substream
derived by applying the query predicate along the primary dimension can be too large
to store, let alone the whole dataset.

Wefirst define the notionof a heavy-hitter on adata stream (this is considered in prior
work, such as Manku and Motwani 2002; Misra and Gries 1982; Charikar et al. 2004;
Cormode and Muthukrishnan 2005), and then define our notion of correlated heavy-
hitters (CHH). Given a sequence of single-dimensional records (a1, a2, . . . , aN ),
where ai ∈ {1, . . . ,m}, the frequency of an item i is defined as |{a j |a j = i}|. Given
a user-input threshold φ ∈ (0, 1), any data item i whose frequency is at least φN is
termed as a φ-heavy-hitter. We first consider the following problem of exact identifi-
cation of CHHs.

Problem 1 Exact Identification of Correlated Heavy Hitters Given a data stream
S of (x, y) tuples of length N (x and y will henceforth be referred to as the “primary”
and the “secondary” dimensions, respectively), and two user-defined thresholds φ1
and φ2, where 0 < φ1 < 1 and 0 < φ2 < 1, identify all (d, s) tuples such that:

fd = |{(x, y) ∈ S : (x = d)}| > φ1N

and

fd,s = |{(x, y) ∈ S : (x = d) ∧ (y = s)}| > φ2 fd

The above aggregate can be understood as follows. The elements d are heavy-
hitters in the traditional sense, on the stream formed by projecting along the primary
dimension. For each heavy-hitter d along the primary dimension, there is logically a
(uni-dimensional) substream Sd , consisting of all values along the secondary dimen-
sion, where the primary dimension equals d.We require the tracking of all tuples (d, s)
such that s is a heavy-hitter in Sd .
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Many stream mining and monitoring problems on two-dimensional streams need
the CHH aggregate, and cannot be answered by independent aggregation along single
dimensions. For example, consider a network monitoring application, where a stream
of (destination IP address, source IP address) pairs is being observed. The network
monitor maybe interested not only in tracking those destination IP addresses that
receive a large fraction of traffic (heavy-hitter destinations), but also in tracking those
source IP addresses that send a large volumeof traffic to these heavy-hitter destinations.
This cannot be done by independently tracking heavy-hitters along the primary and
the secondary dimensions. Note that in this application, we are interested not only
in the identity of the heavy-hitters, but also additional information on the substream
induced by the heavy-hitters.

In another example, in a stream of (server IP address, port number) tuples, identi-
fying the heavy-hitter server IP addresses will tell us which servers are popular, and
identifying frequent port numbers (independently) will tell us which applications are
popular; but a network manager maybe interested in knowing which applications are
popular among the heavily loaded servers, which can be retrieved using a CHH query.
Such correlation queries are used for network optimization and anomaly detection
(Cullingford 2009).

Another application is the recommendation system of a typical online shopping
site, which shows a buyer a list of the items frequently bought with the ones she has
decided to buy. Our algorithm can optimize the performance of such a system by
parsing the transaction logs and identifying the items that were bought commonly
with the frequently purchased items. If such information is stored in a cache with a
small lookup time, then for most buyers, the recommendation system can save the
time to perform a query on the disk-resident data.

Similar to the above examples, in many streammonitoring applications, it is impor-
tant to track the heavy-hitters in the stream, but this monitoring should go beyond
simple identification of heavy-hitters, or tracking their frequencies, as is considered in
most prior formulations of heavy-hitter tracking such as Cormode andMuthukrishnan
(2003), Manku and Motwani (2002), Misra and Gries (1982), Charikar et al. (2004),
Estan and Varghese (2002). In this work we initiate the study of tracking additional
properties of heavy-hitters by considering tracking of correlated heavy hitters.

1.1 Approximate CHH

It is easy to prove that exact identification of heavy-hitters in a single dimension is
impossible using limited space, and one pass through the input. Hence, the CHH
problem is also impossible to solve in limited space, using a single pass through the
input. Due to this, we consider the following approximate version of the problem. We
introduce additional approximation parameters, ε1 and ε2(0 < ε1 ≤ φ1

2 , 0 < ε2 <

φ2), which stand for the approximation errors along the primary and the secondary
dimensions, respectively.We seek an algorithm that provides the following guarantees.

Problem 2 Approximate Identification of Correlated Heavy-Hitters Given a data
stream S of (d, s) tuples of length N , thresholds φ1 and φ2:
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1. Report any value d such that fd > φ1N as a heavy-hitter along the primary
dimension.

2. No value d such that fd < (φ1 − ε1)N , should be reported as a heavy-hitter along
the primary dimension.

3. For any value d reported above, report any value s along the secondary dimension
such that fd,s > φ2 fd as a CHH.

4. For any value d reported above, no value s along the secondary dimension such
that fd,s < (φ2 − ε2) fd should be reported as a CHH occurring along with d.

With this problem formulation, false positives are possible, but false negatives are
not. In other words, if a pair (d, s) is a CHH according to the definition in Problem 1,
then it is a CHH according to the definition in Problem 2, and will be returned by the
algorithm. But an algorithm for Problem 2 may return a pair (d, s) that are not exact
CHHs, but whose frequencies are close to the required thresholds.

1.2 Contributions

Our contributions are as follows.

– We formulate exact and approximate versions of the problem of identifying
CHHs in a multidimensional data stream, and present a small-space approxima-
tion algorithm for identifying approximate CHHs in a single pass. Prior literature
on correlated aggregates have mostly focused on the correlated sum, and these
techniques are not applicable for CHH. Our algorithm for approximate CHH iden-
tification is based on a nested application of theMisra–Gries algorithm (Misra and
Gries 1982).

– We provide a provable guarantee on the approximation error. We show that there
are no false negatives, and the error in the false positives is controlled.When greater
memory is available, this error can be reduced. The space taken by the algorithm
as well as the approximation error of the algorithm depend on the sizes of two
different data structures within the algorithm. The total space taken by the sketch
is minimized through solving a constrained optimization problem that minimizes
the total space taken subject to providing the user-desired error guarantees.

Specifically, Let α =
(

1+φ2
φ1−ε1

)
.

– If ε1 ≥ ε2
2α , then s1 = 2α

ε
and s2 = 2

ε2
. In this case, the space complexity is

O

(
1

(φ1−ε1)ε
2
2

)
.

– If ε1 < ε2
2α , then s1 = 1

ε1
, and s2 = 1

ε2−αε1
. In this case, the space complexity

is O( 1
ε1ε2

).
– We present results from our simulations on (a) a stream of more than 1.4 bil-
lion (50 GB trace) anonymized packet headers from an OC48 link (collected
by CAIDA https://data.caida.org/datasets/oc48/oc48-original/20020814/5min/),
and (b) a sample of 240 million 2-g extracted from English fiction books (http://
storage.googleapis.com/books/ngrams/books/datasetsv2.html). We compared the
performance of our small-space algorithm with a slow, but exact algorithm that
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goes through the input data in multiple passes. Our experiments revealed that even
with a space budget of a few megabytes, the average error of our algorithm was
very small, showing that it is viable in practice.

Along each dimension our algorithmmaintains frequency estimates ofmostly those
values (or pairs of values) that occur frequently. For example, in a streamof (destination
IP, source IP) tuples, for every destination that sends a significant fraction of traffic on a
link, we maintain mostly the sources that occur frequently along with this destination.
Note that the set of heavy-hitters along the primary dimension can change as the stream
elements arrive, and this influences the set of CHHs along the secondary dimension.
For example, if an erstwhile heavy-hitter destination d no longer qualifies as a heavy-
hitter with increase in N (and hence gets rejected from the sketch), then a source s
occurring with d should also be discarded from the sketch. This interplay between
different dimensions has to be handled carefully during algorithm design.

Roadmap The rest of this paper is organized as follows. We present related work in
Sect. 2. In Sect. 3.1 we present the algorithm description, followed by the proof of
correctness in Sect. 3.2, and the analysis of the space complexity in Sect. 3.4. We
present experimental results in Sect. 4.

2 Related work

In the data streaming literature, there is a significant body of work on correlated aggre-
gates (Ananthakrishna et al. 2003; Gehrke et al. 2001; Cormode et al. 2009), as well
as on the identification of heavy hitters (Manku and Motwani 2002; Misra and Gries
1982; Charikar et al. 2004; Cormode and Muthukrishnan 2005). See Cormode and
Hadjieleftheriou (2009) for a recent overview of work on heavy-hitter identification.
None of these works consider correlated heavy-hitters.

Estan et al. (2003) and Zhang et al. (2004) have independently studied the problem
of identifying heavy-hitters from multi-dimensional packet streams, but they both
define a multidimensional tuple as a heavy-hitter if it occurs more than φN times in
the stream, N being the stream size—the interplay across different dimensions is not
considered.

There is significant prior work on correlated aggregate computation that we now
describe. The problems considered in the literature usually take the following form.On
a stream of two dimensional data items (x, y) the query asks to first apply a selection
predicate along the x dimension, of the form x ≥ c or x < c (for a value c provided at
query time), followed by an aggregation along the y dimension. The difference when
compared with this formulation is that in our case, the selection predicate along the
x dimension is one that involves frequencies and heavy-hitters, rather than a simple
comparison.

Gehrke et al. (2001) addressed correlated aggregates where the aggregate along the
primary dimension was an extremum (min or max) or the average, and the aggregate
along the secondary dimension was sum or count. For example, given a stream S of
(x, y) tuples, their algorithm could approximately answer queries of the following
form: “Return the sum of y-values from S where the corresponding x values are
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greater than a threshold α.” They describe a data structure called adaptive histograms,
but these did not come with provable guarantees on performance. Ananthakrishna
et al. (2003) presented algorithms with provable error bounds for correlated sum and
count. Their solution was based on the quantile summary of Greenwald and Khanna
(2001).With this technique, exact heavy-hitter queries cannot be used as the aggregate
along the primary dimension since they cannot be computed on a stream using limited
space. Cormode et al. (2009) presented algorithms for maintaining the more general
case of time-decayed correlated aggregates, where the stream elements were weighted
based on the time of arrival. This work also addressed the “sum” aggregate, and
the methods are not directly applicable to heavy-hitters. Other work in this direction
includes (Busch and Tirthapura 2007; Xu et al. 2008). Tirthapura andWoodruff (2012)
present a general method that reduces the correlated estimation of an aggregate to
the streaming computation of the aggregate, for functions that admit sketches of a
particular structure. These techniques only apply to selection predicates of the form
x > c or x < c, and do not apply to heavy-hitters, as we consider here.

The heavy-hitters literature has usually focused on the following problem. Given
a sequence of elements A = (a1, a2, . . . , aN ) and a user-input threshold φ ∈ (0, 1),
find data items that occur more than φN times in A. Misra and Gries (1982) presented
a deterministic algorithm for this problem, with space complexity being O( 1

φ
), time

complexity for updating the sketch with the arrival of each element being O(log 1
φ
),

and query time complexity being O( 1
φ
). For exact identification of heavy-hitters, their

algorithm works in two passes. For approximate heavy-hitters, their algorithm uses
only one pass through the sequence, and has the following approximation guarantee.
Assume user-input threshold φ and approximation error ε < φ. Note that for an online
algorithm, N is the number of elements received so far.

– All itemswhose frequencies exceedφN are output. i.e. there are no false negatives.
– No item with frequency less than (φ − ε)N is output.

Demaine et al. (2002a) and Karp et al. (2003) improved the sketch update time
per element of the Misra–Gries algorithm from O(log 1

φ
) to O(1), using an advanced

data structure combining a hashtable, a linked list and a set of doubly-linked lists.
Manku andMotwani (2002) presented adeterministic “LossyCounting” algorithm that
offered the same approximation guarantees as the one-pass approximate Misra–Gries
algorithm; but their algorithm required O( 1

ε
log (εN )) space in the worst case. For

our problem, we chose to extend the Misra–Gries algorithm as it takes asymptotically
less space than (Manku and Motwani 2002).

3 Algorithm and analysis

3.1 Intuition and algorithm description

Our algorithm is based on a nested application of an algorithm for identifying frequent
items fromanone-dimensional stream, due toMisra andGries (1982).Wefirst describe
the Misra–Gries algorithm (henceforth called the MG algorithm). Suppose we are
given an input stream a1, a2, . . ., and an error threshold ε, 0 < ε < 1. The algorithm
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maintains a data structure D that contains at most 1
ε
(key, count) pairs. On receiving

an item ai , it is first checked if a tuple (ai , ·) already exists inD. If it does, ai ’s count is
incremented by 1; otherwise, the pair (ai , 1) is added toD. Now, if adding a new pair to
D makes |D| exceed 1

ε
, then for each (key, count) pair inD, the count is decremented

by one; and any key whose count falls to zero is discarded. This ensures at least the
key which was most recently added (with a count of one) would get discarded, so the
size of D, after processing all pairs, would come down to 1

ε
or less. Thus, the space

requirement of this algorithm is O( 1
ε
). The data structureD can be implemented using

hashtables or height-balanced binary search trees. At the end of one pass through the
data, the MG algorithm maintains the frequencies of keys in the stream with an error
of no more than εn, where n is the size of the stream. The MG algorithm can be used
in exact identification of heavy hitters from a data stream using two passes through
the data.

In the scenario of limitedmemory, theMGalgorithm can be used to solve Problem 1
in three passes through the data, as follows. We first describe a four pass algorithm.
In the first two passes, heavy-hitters along the primary dimension are identified, using
memory O(1/φ1). Note that this is asymptotically the minimum possible memory
requirement of any algorithm for identifying heavy-hitters, since the size of output

can be Ω
(

1
φ1

)
. In the next two passes, heavy-hitters along the secondary dimension

are identified for each heavy-hitter along the primary dimension. This takes space

O
(

1
φ2

)
for each heavy-hitter along the primary dimension. The total space cost is

O
(

1
φ1φ2

)
, which is optimal, since the output could be Ω

(
1

φ1φ2

)
elements. The above

algorithm can be converted into a three pass exact algorithm by combining the second
and third passes.

Next let us consider Problem 2. Note that the MG algorithm cannot be used to
solve this problem in one pass due to the following reason. Let us consider running the
MG Algorithm using ε = φ1φ2. Let us also consider an element (x, y) such that the
frequency of the element (x, y) is greater than ε. However, this doesn’t guarantee that
the frequency of x in first dimension is greater than φ1 or the frequency of y in sub-
stream of x is greater than φ2. If such is the case, then this element will be reported by
theMGAlgorithm, leading to a false positive. To validate this, we generated a synthetic
dataset containing some elements that have relative frequency in first dimension less
than φ1 but have overall frequency higher than ε. Next we implemented the MG
algorithm and ran it using the synthetic dataset, with ε = φ1φ2. As predicted, the
elements having frequency less than φ1 in first dimension but overall frequency greater
than ε got reported. To overcome this limitation, we designed a novel single-pass
algorithm for Problem 2.

The high-level idea behind our single-pass algorithm for Problem 2 is as follows.
The MG algorithm for an one-dimensional stream, can be viewed as maintaining a
small space “sketch” of data that (approximately) maintains the frequencies of each
distinct item d along the primary dimension; of course, these frequency estimates
are useful only for items that have very high frequencies. For each distinct item d
along the primary dimension, apart from maintaining its frequency estimate f̂d , our
algorithm maintains an embedded MG sketch of the substream Sd induced by d, i.e.
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Sd = {(x, y)|((x, y) ∈ S) ∧ (x = d)}. The embedded sketch is a set of tuples of
the form (s, f̂d,s), where s is an item that occurs in Sd , and f̂d,s is an estimate of the
frequency of the pair (d, s) in S (or equivalently, the frequency of s in Sd ). While the
actions on f̂d (increment, decrement, discard) depend on how d and the other items
appear in S, the actions on f̂d,s depend on the items appearing in Sd . Further, the sizes
of the tables that are maintained have an important effect on both the correctness and
the space complexity of the algorithm.

We now present a more detailed description. The algorithm maintains a table H ,
which is a set of tuples (d, f̂d , Hd), where d is a value along the primary dimension,
f̂d is the estimated frequency of d in the stream, and Hd is another table that stores the
values of the secondary attribute that occur with d. Hd stores its content in the form of
(key, count) pairs, where the keys are values (s) along the secondary attribute and the
counts are the frequencies of s in Sd , denoted as f̂d,s , along with d. The tables H and
Hd can be implemented using the data structures we describe in detail in Sect. 3.3.

The maximum number of tuples in H is s1, and the maximum number of tuples in
each Hd is s2. The values of s1 and s2 depend on the parameters φ1, φ2, ε1, ε2, and
are decided at the start of the algorithm. Since s1 and s2 effect the space complexity
of the algorithm, as well as the correctness guarantees provided by it, their values are
set based on an optimization procedure, as described in Sect. 3.4.

The formal description is presented in Algorithms 1, 2 and 3. Before a stream
element is received, Algorithm 1 Sketch-Initialize is invoked to initialize the data
structures. Algorithm 2 Sketch-Update is invoked to update the data structure as
each stream tuple (x, y) arrives. Algorithm 3 Report-CHH is used to answer queries
when a user asks for the CHHs in the stream so far.

Algorithm 1: Sketch-Initialize(φ1, φ2, ε1, ε2)

Input: Threshold for primary dimension φ1; Threshold for secondary dimension φ2; Tolerance for
primary dimension ε1; Tolerance for secondary dimension ε2

H ← Φ1

Set 1
s1

≤ ε1;2

Set 1
s2

+ 1+φ2
s1(φ1−ε1)

≤ ε23

On receiving an element (x, y) of the stream, the following three scenarios may
arise. We explain the action taken in each.

1. If x is present in H , and y is present in Hx , then both f̂x and f̂x,y are incremented.
2. If x is present in H , but y is not in Hx , then y is added to Hx with a count of 1. If

this addition causes |Hx | to exceed its space budget s2, then for each (key, count)
pair in Hx , the count is decremented by 1 (similar to the MG algorithm). If the
count of any key falls to zero, the key is dropped from Hx . Note that after this
operation, the size of Hx will be at most s2.

3. If x is not present in H , then an entry is created for x in H by setting f̂x to 1, and
by initializing Hx with the pair (y, 1). If adding this entry causes |H | to exceed
s1, then for each d ∈ H, fd is decremented by 1. If the decrement causes f̂d to be
zero, then we simply discard the entry for d from H .

123



Identifying correlated heavy-hitters in a two... 805

Algorithm 2: Sketch-Update(x, y)
Input: Element along primary dimension x ; Element along secondary dimension y

if x ∈ H then1

f̂x ← f̂x + 1;2
if y ∈ Hx then3

/* Both x and y are present */
Increment f̂x,y in Hx by 1;4

else5
/* x ∈ H , but y �∈ Hx */
Add the tuple (y, 1) to Hx ;6
if |Hx | > s2 then7

foreach (s, f̂d,s ) ∈ Hx do8

f̂d,s ← f̂d,s − 1;9

if f̂d,s = 0 then10

discard (s, f̂d,s ) from Hx ;11

else12
/* Neither of x or y is present */
Hx ← Φ; Add (y, 1) to Hx ; f̂x ← 1;13
if |H | > s1 then14

foreach d ∈ H do15

f̂d ← f̂d − 1;16

if there exists s such that f̂d,s > 0 then17

Choose an arbitrary (s, f̂d,s ) ∈ Hd such that f̂d,s > 0;18

f̂d,s ← f̂d,s − 1;19

if f̂d,s = 0 then20

discard (s, f̂d,s ) from Hd ;21

if f̂d = 0 then22
Discard (d, Hd ) from H ;23

Algorithm 3: Report-CHH(N )
Input: Size of the stream N

foreach d ∈ H do1

if f̂d ≥ (φ1 − 1
s1

)N then2
Report d as a frequent value of the primary attribute;3

foreach (s, f̂d,s ) ∈ Hd do4

if f̂d,s ≥ (φ2 − 1
s2

) f̂d − N
s1

then5
Report s as a CHH occurring with d;6

Otherwise, when fd is decremented, the algorithm keeps the sum of the ˆfd,s counts
within Hd equal to fd ; the detailed correctness is proved in Sect. 3.4. To achieve
this, an arbitrary key s is selected from Hd such that such that f̂d,s > 0, and f̂d,s is
decremented by 1. If f̂d,s falls to zero, s is discarded from Hd .
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3.2 Algorithm correctness

In this section, we show the correctness of the algorithm, subject to the following
constraints on s1 and s2. In Sect. 3.4, we assign values to s1 and s2 in such a manner
that the space taken by the data structure is minimized.

Constraint 1

1

s1
≤ ε1

Constraint 2

1

s2
+ 1 + φ2

s1(φ1 − ε1)
≤ ε2

Consider the state of the data structure after a stream S of length N has been
observed. Consider a value d of the primary dimension, and s of the secondary dimen-
sion. Let fd and fd,s be defined as in Sect. 1. Our analysis focuses on the values of
variables f̂d and f̂d,s , which are updated in Algorithms 2 and used in Algorithm 3.
For convenience, if d is not present in H then we define f̂d = 0. Similarly, if d is not
present in H , or if (d, s) is not present in Hd , then we define f̂d,s = 0.

Lemma 1

f̂d ≥ fd − N

s1

Proof The total number of increments in the s1 counters that keep track of the counts
of the different values of the primary dimension is N . Each time there is a decrement
to f̂d (in Line 20 of Algorithm 2), s1 +1 different counters are decremented. The total
number of decrements, however, cannot be more than the total number of increments,
and hence is at most N . So the number of times the block of lines 19–31 in Algorithm 2
gets executed is at most N

s1+1 < N
s1
. We also know that f̂d is incremented exactly fd

times, hence the final value of f̂d is greater than fd − N
s1
. Note that this analysis is

obtained from the standard analysis for the Misra–Gries frequent items algorithm. �	
Lemma 2 Assume that Constraint 1 is true. If fd > φ1N, then d is reported by
Algorithm 3 as a frequent item. Further, if fd < (φ1 − ε1)N, then d is not reported
as a frequent item.

Proof Suppose fd ≥ φ1N . From Lemma 1, f̂d ≥ fd − ε1N ≥ φ1N − ε1N . Hence
Algorithm 3 will report d (see Lines 2 and 3). Next, suppose that fd < (φ1 − ε1)N .
Since f̂d ≤ fd , Algorithm 3 will not report d as a frequent item. �	
Lemma 3

∑
(s,·)∈Hd

f̂d,s ≤ f̂d
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Proof Let �d = ∑
(s,·)∈Hd

f̂d,s . Let C(n) denote the condition �d ≤ f̂d after n
stream elements have been observed. We prove C(n) by induction on n. The base case
is when n = 0, and in this case, f̂d,s = f̂d = 0 for all d, s, and C(0) is trivially true.
For the inductive step, assume that C(k) is true, for k ≥ 0. Consider a new element
that arrives, say (x, y), and consider Algorithm 2 applied on this element. We consider
four possible cases.

(I) If x = d, and d ∈ H , then f̂d is incremented by 1, and it can be verified (Lines
3–11) that �d increases by at most 1 (and may even decrease). Thus C(k + 1) is true.

(II) If x = d, and d �∈ H , then initially, f̂d and �d are both 1 (line 17). If |H | ≤ s1,
then both f̂d and �d remain 1, and C(k + 1) is true. Suppose |H | > s1, then both f̂d
and �d will go down to 0, since Hd will be discarded from H . Thus C(k + 1) is true.

(III) If x �= d, and x ∈ H , then neither f̂d nor �d change.
(IV) Finally, if x �= d and x �∈ H , then it is possible that f̂d is decremented (line

20). In this case, if �d > 0, then �d is also decremented (line 22), and C(k + 1) is
satisfied. If �d = 0, then C(k + 1) is trivially satisfied since f̂d ≥ 0. �	
Lemma 4 Subject to Constraint 1, f̂d,s ≥ fd,s − ε2 fd − ε1N.

Proof Note that each time the tuple (d, s) occurs in the stream, f̂d,s is incremented in
Algorithm 2. But f̂d,s can be less than fd,s because of decrements in Lines 9 or 19 in
Algorithm 2. We consider these two cases separately.

Let �d = ∑
(s,·)∈Hd

f̂d,s . For decrements in Line 9, we observe that each time this

line is executed, �d reduces by s2 + 1. From Lemma 3, we know that �d ≤ f̂d ≤ fd .
Thus the total number of times f̂d,s is decremented due to Line 9 is no more than fd

s2+1 .

From Constraint 2, we know 1
s2

< ε2, and
fd

s2+1 < ε2 fd .

For decrements in Line 23, we observe that f̂d,s is decremented in Line 23 no more
than the number of decrements to f̂d , which was bounded by N

s1
in Lemma 1. From

Constraint 1, this is no more than ε1N . �	
Lemma 5 For any value d that gets reported in line 3 of Algorithm 3, any value s of
the secondary dimension that occurs with d such that fd,s > φ2 fd , will be identified
by line 6 of Algorithm 3 as a CHH occurring along with d.

Proof From Lemma 4,

f̂d,s ≥ fd,s − ε2 fd − ε1N

> φ2 fd − ε2 fd − ε1N

= (φ2 − ε2) fd − ε1N

≥ (φ2 − ε2) f̂d − ε1N

where we have used fd ≥ f̂d . The lemma follows since (φ2 − ε2) f̂d − ε1N is the
threshold used in line 5 of Algorithm 3 to report a value of the secondary dimension
as a CHH. �	
Lemma 6 Under Constraints 1 and 2, for any value of d that is reported as a heavy-
hitter along the primary dimension, then for a value s′ along the secondary dimension,
if fd,s′ < (φ2 − ε2) fd , then the pair (d, s′) will not be reported as a CHH.
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Proof We will prove the contrapositive of the above statement. Consider a value s
such that (d, s) is reported as a CHH. Then, we show that fd,s ≥ (φ2 − ε2) fd .

If (d, s) is reported, then it must be true that f̂d,s ≥ (φ2 − 1
s2

) f̂d − N
s1

(Algorithm

3, line 5). Using fd,s ≥ f̂d,s , and f̂d ≥ fd − N
s1
, we get:

fd,s ≥ f̂d,s

≥
(

φ2 − 1

s2

)
f̂d − N

s1

≥
(

φ2 − 1

s2

)(
fd − N

s1

)
− N

s1

=
(

φ2 − 1

s2

)
fd − N

s1

(
1 + φ2 − 1

s2

)

≥
(

φ2 − 1

s2

)
fd − fd

(φ1 − ε1)s1

(
1 + φ2 − 1

s2

)

(
since d gets reported, by Lemma 2, fd ≥ (φ1 − ε1)N ⇒ N ≤ fd

φ1 − ε1

)

=
(

φ2 − 1

s2
− 1

(φ1 − ε1)s1

(
1 + φ2 − 1

s2

))
fd

≥ fd(φ2 − ε2)(using Constraint 2)

�	
Lemmas 6, 5, and 2 together yield the following.

Theorem 1 If Constraints 1 and 2 are satisfied, then Algorithms 1, 2 and 3 satisfy all
the four requirements of Problem 2.

3.3 Implementation

We discuss a data structure for implementing an element update in O(1) time, based
on the idea discussed by Demaine et al. (2002b). The data structure is a fixed pool
of counters, all of which start in the same “group” but eventually get clustered into
different groups. All counters in the same group are connected in a doubly linked list,
and all counters in the same group have the same frequency, so the frequency can
actually be stored on a per-group basis, and the individual counters need only store
the identifiers of the items they keep track of. The first group has the frequency of its
elements stored explicitly, and all the other groups maintain the difference between
the frequency of the items in that group and the frequency of the items in the previous
group. Groups are maintained in sorted order of the frequencies. This way, the task of
decrementing the frequency of all items can be performed by simply decrementing the
(absolute) frequency of the first group. Details are discussed in Sect. 3.3 of Demaine
et al. (2002b).

We note that a group is dropped when (a) it runs out of all counters it started with,
which happens with the initial group where all counters in the pool get placed into
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different groups, or, (b) it becomes the first group in the (sorted) order of groups at
some point but its “value” drops to 0 eventually. Since newly created groups need
to be inserted between existing groups (if the difference between “value” s of two
consecutive groups are more than 1), we suggest linking the groups also in a doubly
linked list, which can be accomplished by making the pointer from the last counter in
a group point to the first counter in the next group, and making a pointer from the first
counter in a group point to the last counter in the previous group.

Demaine et al. (2002b) it is assumed that given an item, its corresponding counter
can be looked up in O(1) time. To achieve this, we store the items in a hash table where
in the (key, value) pair in the hashtable entry, the “value” is a pointer to the counter
that stores the frequency of that item. Before a group is deleted, the corresponding
items should be first deleted from the hash table to maintain consistency between the
hashtable and the group-based data structure.

We demonstrate in Table 1 how the data structure changes as elements arrive in
a simple example stream: 10, 8, 9, 10, 8, 7, 6. Note that the decrement of counters is
accomplished by the decrement of the value of the first group in O(1). If the value
of the first group falls to 0 after decrement, then we will need to drop the items
in the first group from the hashtable, but it will typically be a few items for most
streams.

3.4 Analysis

We analyze the space complexity of the algorithm. In Theorem 1, we showed that
the Algorithms 2 and 3 solve the Approximate CHH detection problem, as long as
Constraints 1 and 2 are satisfied.

Space Complexity in terms of s1 and s2 In our algorithm, we maintain at most
s2 counters for each of the (at most) s1 distinct values of the primary dimension in
H . Hence, the size of our sketch is O(s1 + s1s2) = O(s1s2). We now focus on the
following question.What is the setting of s1 and s2 so that the space complexity of the
sketch is minimized while meeting the constraints required for correctness.?

Theorem 2 Let α =
(

1+φ2
φ1−ε1

)
. Subject to Constraints 1 and 2, the space of the data

structure is minimized by the following settings of s1 and s2.

– If ε1 ≥ ε2
2α , then s1 = 2α

ε
and s2 = 2

ε2
. In this case, the space complexity is

O

(
1

(φ1−ε1)ε
2
2

)
.

– If ε1 < ε2
2α , then s1 = 1

ε1
, and s2 = 1

ε2−αε1
. In this case, the space complexity is

O( 1
ε1ε2

).

Proof Let σ1 = 1
s1

, σ2 = 1
s2
. The problem is now to maximize σ1σ2. Constraints 1

and 2 can be rewritten as follows.

– Constraint 1: σ1 ≤ ε1
– Constraint 2: ασ1 + σ2 ≤ ε2
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First, we note that any assignment (σ1, σ2) = (x, y) that maximizes σ1σ2 must be
tight on Constraint 2, i.e. αx + y = ε2. This can be proved by contradiction. Suppose
not, and αx + y < ε2, and xy is the maximum possible. Now, there is a solution
σ1 = x , and σ2 = y′, such that y < y′, and Constraints 1 and 2 are still satisfied.
Further, xy′ > xy, showing that the solution (x, y) is not optimal.

Thus, we have:
σ2 = ε2 − ασ1 (1)

Thus the problem has reduced to: Maximize f (σ1) = σ1 (ε2 − ασ1) subject to
σ1 ≤ ε1.

Consider

f ′(σ1) = ε2 − 2ασ1

We consider two cases.

– Case I: ε1 ≥ ε2
2α .

Setting f ′(σ1) = 0, we find that the function reaches a fixed point at σ1 = ε2
2α . At this

point, f ′′(σ1) = −2α, which is negative. Hence f (σ1) is maximized at σ1 = ε2
2α . We

note that this value of σ1 does not violate Constraint 1, and hence this is a feasible
solution. In this case, the optimal settings are: σ1 = ε2

2α and σ2 = ε2
2 . Thus s1 = 2α

ε

and s2 = 2
ε2
. The space complexity is O( 1

σ1σ2
) = O( 4α

ε22
).

– Case II: ε1 < ε2
2α

The function f (σ1) is increasing for σ1 from 0 to ε2
2α . Hence this will be maximized at

the pointσ1 = ε1. Thus, in this case the optimal settings areσ1 = ε1, andσ2 = ε2−αε1.
Thus, s1 = 1

ε1
, and s2 = 1

ε2−αε1
. The space complexity is: O( 1

ε1(ε2−αε1)
).

Wenote that since ε2 > 2αε1,wehave (ε2−αε1) > ε2
2 , andhence the space complexity

is O( 1
ε1ε2

). �	
Theorem 3 The time taken to update the sketch on receiving an element of the stream
is O(1).

Proof The analysis is based on the data structure discussed in Sect. 3.3. While we
discussed it for one-dimensional streams, such a data structure can be maintained for
each substream Sd = {(x, y)|((x, y) ∈ S) ∧ (x = d)} induced by a distinct item d in
the primary dimension. In processing an element (x, y) of the stream by Algorithm 2,
the following three scenarios may arise.

1. x is present in H , and y is present in Hx . The time taken to look up and increment
f̂x from H and f̂x,y from Hx is O(1).

2. x is present in H , but y is not in Hx . Then y needs to be inserted into Hx , which
can be done in O(1) time, as explained in Sect. 3.3.

3. x is not present in H . Then x needs to be inserted into H , which again takes time
O(1), as explained in Sect. 3.3.

The time complexity to update the sketch on receiving each element is themaximum
of these three, which establishes the claim. �	
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4 Experiments

We implemented our algorithm for finding CHH using Java, and evaluated it using
two datasets.

– NGram is the “English fiction” 2-g dataset based on the Google n-gram dataset
(http://storage.googleapis.com/books/ngrams/books/datasetsv2.html), extracted
from books predominantly in the English language that a library or publisher
identified as fiction. We took a uniform random sample of size 944,598,580 from
this dataset. We will refer to the two elements of a 2-g as the “first gram” and the
“second gram” respectively.

– Synthetic We generated a synthetic dataset of 100 million tuples, each having a
pair of elements. The distribution of the primary dimension was as follows: there
were 500 items designated as heavy-hitters, each of them having a frequency of
approximately 9000.We introduced some randomness to make the actual frequen-
cies vary a little around 9000. For each heavy-hitter, we had 30 CHHs, and each of
the CHHs had a frequency of approximately 270. Once again, some randomness
was used to make the actual frequencies of the CHHs vary a little around 270. We
filled in the remaining of the streamwith non-heavy hitters tomake the distribution
a long-tailed one.

Objective The goal of our experiments were twofold. First, to learn about typi-
cal frequency distributions along both the dimensions in real two-dimensional data
streams; second, to demonstrate how the space budget (and hence, the allocated mem-
ory) influences the accuracy of our algorithm in practice.

For the first objective, we ran a naive algorithm on the “NGram” dataset, where
all the distinct first grams were stored, and for each distinct first gram, all the distinct
second grams were stored. We identified (exactly) the frequent values along both the
dimensions for φ1 = 0.001 and φ2 = 0.001. Only 91 of the 514,249 distinct first
grams were reported as heavy-hitters. For the secondary dimension, we ranked the
first grams based on the number of distinct second grams they co-occurred with, and
the number of distinct second grams for the top eight are shown in Fig. 1. The number
of distinct second grams, co-occurring with the first grams, varies between 10 million
and 100 million, but the number of CHH second grams vary between 10 and 100 only,
orders ofmagnitude lower than the number of distinct values of the second grams.Note
that the Y-axis in Fig. 1 is in log scale. This shows that the distribution of the primary
attribute values, as well as that of the secondary attribute values for a given value of
the primary attribute, are very skewed, and hence call for the design of small-space
approximation algorithms like ours.

Since the “NGram” dataset is based on English fiction text, we observed some
interesting patternswhileworkingwith the dataset: pairs ofwords that occur frequently
together, as reported by this dataset, are indeed words whose co-occurrence intuitively
look natural. We present some examples in Table 2, along with their frequencies:

For the second objective, we tested the small-space algorithm on both the datasets
(with different values of s1 and s2): “NGram” and “Synthetic”. To test the accuracy of
our small-space algorithm,wederived the “ground truth”, i.e., a list of theactualheavy-
hitters along both the dimensions along with their exact frequencies, by employing
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Fig. 1 Basic statistics for “NGram”. On the X-axis are the ranks of the eight (heavy-hitter) first gram
values, that co-appear with maximum number of distinct second grams. For each first gram, the Y-axis
shows (1) the number of distinct second grams co-occurring with it, (2) the number of heavy-hitter second
grams co-appearing with it. Note that the Y-axis is logarithmic

Table 2 Pairs of words
frequently occurring together

Gram1 Frequency
of Gram1

Gram2 Frequency of Gram2
along with Gram1

Are 1989774 Hardly 4717

Are 1989774 Meant 5031

Still 1601172 Remained 4798

Out 1777906 Everything 5497

Was 2373607 Present 7932

Was 2373607 Deserted 7641

Look 1226326 Outside 2052

Could 1215055 Suggest 5081

the naive algorithmwe have already mentioned above. For the “Synthetic” dataset, the
parameters in the naive algorithm were set to φ1 = 8.9× 10−2 and φ2 = 7.8× 10−3.

ObservationsWe define the error statistic in estimating the frequency of a heavy-

hitter value d of the primary attribute as fd− f̂d
N , and in Figs. 2 and 3, for each value of

s1, we plot the maximum and the average of this error statistic over all the heavy-hitter
values of the primary attribute. We observed that both the maximum and the average
fell sharply as s1 increased. For “NGram”, even by using a space budget (s1) as low
as 1000, the maximum error statistic was only 0.03%. For “Synthetic”, however, we
had to use larger values of s1, because φ1 was orders of magnitude lower. Intuitively,
when φ1 is lower, the result-set can have more heavy-hitters, and hence we need a
higher space budget to accommodate the heavy-hitters. As we have already discussed,
we had only 91 heavy-hitters in “NGram” but 5000 of them in “Synthetic”. However,
even with the lowest value of s1(20,000), the average error for the first attribute for
“Synthetic” was as low as 4.88972 × 10−5. Some theoretical lower bound for s1
actually follows from Constraint 1 in Sect. 3.4.
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Fig. 2 Error statistic in estimating the frequencies of the heavy-hitter first grams from “NGram”
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Fig. 3 Error statistic in estimating the frequencies of the heavy-hitters along the first dimension from
“Synthetic”

The graphs in Fig. 4 show the results of running our small-space algorithm with
different values of s1 as well as s2. We define the error statistic in estimating the
frequency of a CHH s (that occurs along with a heavy-hitter primary attribute d) as
fd,s− f̂d,s

fd
, and for each combination of s1 and s2, we plot the theoretical maximum, the

experimental maximum and the average of this error statistic over all CHH attributes.
Here also, we observed that both the maximum and the average fall sharply as s1
increases. Also, when we see the errors upon varying s2 for identical values of s1
in Fig. 4, we see that the error for the second attribute decreases with increasing s2.

For example, for the “NGram” data, for s1 = 1000, the average value of fd,s− f̂d,s
fd

is
0.002777 for s2 = 100, whereas it falls to 0.0018 for s2 = 300. The low error even for
s2 = 100 suggests like it is a reasonable value for space budget in a practical setting.
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Fig. 4 Error statistic in estimating the frequencies of the CHH second grams in “NGram”. The three graphs
are for s2 = 100, s2 = 200 and s2 = 300

For “Synthetic”, in Fig. 5, we present the change in the error statistic for the CHHs
as s2 increases, and the three subplots are each for a different value of s1. We see
that the error statistic decreases steadily as s2 increases, e.g., with s1 = 30,000, the
average error statistic is 0.02949 for s2 = 20, but falls to 0.012578 for s2 = 50. This
shows that although the s1 values are an order of magnitude higher for “Synthetic”
than that for “NGram”, the s2 values for “Synthetic” could be very well kept under
100 for errors less than 2.0%.

We experimented with a wide range of values for s2 and reported only a subset of
them here. The rate of change in the error statistic for the second attribute depends on
a number of factors, for example, on the distribution of the first attribute values and the
distribution of the second attribute values occurringwith different first attribute values.
Intuitively, once s2 becomes so large that the inner data structure Hx in Algorithm 2
does not need to go through the decrement and deletion steps in lines 7–11 very often,
then we will not see much difference between the fd,s and the ˆfd,s values, and hence
the error statistic for the second dimension will reach saturation. Another intuitive
explanation is as follows: the maximum theoretical error for the second attribute is
1

φ1s1
+ 1

s2
. Ifwe call this function f (s1, s2), then f (s1, s2) is amonotonically decreasing

functionof s2, and
∂ f
∂s2

= − 1
s22

,which implies the absolute value of the rate of changeof
f (s1, s2) also decreases with increasing s2. For example, for the “Synthetic” dataset,
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Fig. 5 Error statistic in estimating the frequencies of the CHH second grams in “Synthetic”. The three
graphs are for s1 = 30,000, s1 = 40,000 and s1 = 50,000. Note that the maximum theoretical error and
the actual maximum error look almost horizontal because the Y-axis is in the log scale

for s1 = 30,000, with s2 = 20, the average error statistic for the second attribute
is 0.02949, and for s2 = 50, it is 0.012578, so the relative change is (0.02949 −
0.012578)/0.02949 = 57.34%. However, with s1 = 30,000, when s2 is changed
from 70 to 100 (an increase of 30 points again), the error changes from 0.002554
to 0.001449, so the relative change is 43.26%, so the decrease in the rate of change
already starts showing.

5 Conclusion and future work

For two-dimensional data streams, we presented a small-space approximation algo-
rithm to identify the heavy-hitters along the secondary dimension from the substreams
induced by the heavy-hitters along the primary. We theoretically studied the relation-
ship between the maximum errors in the frequency estimates of the heavy-hitters and
the space budgets; computed the minimum space requirement along the two dimen-
sions for user-given error bounds; and tested our algorithm to show the space-accuracy
tradeoff for both the dimensions.

Identifying the heavy-hitters along any one dimension allows us to split the original
stream into several important substreams; and take a closer look at each one to identify
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the properties of the heavy-hitters. In future, we plan to work on computing other
properties of the heavy-hitters. For example, as we have already discussed in Sect. 4,
our experiments with the naive algorithm (on both the datasets) revealed that the
number of distinct secondary dimension values varied quite significantly across the
different (heavy-hitter) values of the primary dimension. For any such data with high
variance, estimating the variance in small space (Babcock et al. 2003; Zhang andGuan
2007) over a sliding window is an interesting problem in itself.Moreover, for data with
high variance, the simple arithmetic mean is not an ideal central measure, so finding
different quantiles, once again in small space, can be another problem worth studying.
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