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Abstract Subgroup discovery is a key data mining method that aims at identifying
descriptions of subsets of the data that show an interesting distribution with respect
to a pre-defined target concept. For practical applications the integration of numer-
ical data is crucial. Therefore, a wide variety of interestingness measures has been
proposed in literature that use a numerical attribute as the target concept. However,
efficient mining in this setting is still an open issue. In this paper, we present novel
techniques for fast exhaustive subgroup discovery with a numerical target concept.
We initially survey previously proposed measures in this setting. Then, we explore
options for pruning the search space using optimistic estimate bounds. Specifically, we
introduce novel bounds in closed form and ordering-based bounds as a new technique
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to derive estimates for several types of interestingness measures with no previously
known bounds. In addition, we investigate efficient data structures, namely adapted
FP-trees and bitset-based data representations, and discuss their interdependencies to
interestingness measures and pruning schemes. The presented techniques are incorpo-
rated into two novel algorithms. Finally, the benefits of the proposed pruning bounds
and algorithms are assessed and compared in an extensive experimental evaluation on
24 publicly available datasets. The novel algorithms reduce runtimes consistently by
more than one order of magnitude.

Keywords Subgroup discovery · Pattern mining · Numerical data · Pruning ·
Data structures · Data mining · Algorithms

1 Introduction

Subgroup discovery aims at identifying descriptions of subsets of the data that deviate
from the overall dataset with respect to a certain property of interest, often also called
target concept. As an established method of data mining, it has been well-examined
concerning binary target concepts with a finite number of possible values (Klösgen
1996; Wrobel 1997; Lavrač et al. 2004). However, practical applications often involve
numerical data, i.e., attributes with a continuous domain. In this context, this paper
focuses specifically on the setting in which the target concept is given by a numerical
attribute. Transforming this problem setting to the standard binary one by using dis-
cretization techniques (Fayyad and Irani 1993; Kotsiantis and Kanellopoulos 2006)
in a pre-processing step can lead to a (possibly crucial) loss of information (More-
land and Truemper 2009; Freidlin and Gastwirth 2000). Therefore, a broad variety of
interestingness measures which directly consider the distribution of a numerical target
attribute has been proposed for pattern evaluation in the literature. Efficient subgroup
discovery using these measures is an open issue since the transfer of techniques devel-
oped for the binary target setting is challenging. In this paper, we discuss in particular
methods for exhaustive mining with guaranteed optimal results.

Beside the search strategy, discovery algorithms are characterized by the used data
structures and the applied pruning schemes that allow for skipping parts of the search
space in the discovery algorithm. An essential pruning technique that guarantees the
optimality of results is optimistic estimate pruning. It substantially reduces the number
of required subgroup evaluations based on the following principle: if it can be proven,
that no specialization of the currently investigated subgroup is interesting enough
(according to the chosen interestingness measure) to be included in the result set of
subgroups, then we can skip the evaluation of all these specializations.

In this paper, we first survey previously proposed interestingness measures for
numerical properties of interest from literature, includingmean-based, variance-based,
median-based, and rank-based interestingness measures as well as a measure based
on the Kolmogorov–Smirnov statistical test. For these interestingness measures, we
present a large set of optimistic estimate bounds that can be used for pruning the search
space. In that direction, we propose the formalism of interestingness measures that are
estimable by ordering of the target values as a means to derive optimistic estimates
for a variety of interestingness measures with no previously known bounds. For faster
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computation, we additionally introduce approximations that can be computed know-
ing only a subset of the subgroup instances. Since ordering-based bounds cannot be
determined with all data structures, we also discuss bounds in closed form that require
only few subgroup statistics. Besides optimistic estimate pruning, we show how pop-
ular data structures for subgroup discovery, i.e., FP-trees and bitset-based vertical data
structures, can be transfered from binary to numerical target concepts. The proposed
techniques are incorporated into two practical algorithms. An extensive experimental
evaluation of the discussed bounds and algorithms on 24 publicly available datasets
show substantial runtime improvements.

This paper does not consider the overall subgroup discovery process, but con-
centrates only on exact solutions of the central algorithmic step, ignoring heuristic
approaches for this task. Additionally, we assume that the set of describing selectors
for the search has already been determined beforehand.However, we acknowledge that
this can be a challenging task that also possibly involves loss of information especially
considering numerical attributes. Furthermore, we focus exclusively on classic inter-
estingness measures that are based only on the statistics of the evaluated subgroups
and do not take the subgroup description into account.

The rest of the paper is structured as follows: Sect. 2 discusses related work. Next,
Sect. 3 describes the basics of subgroupdiscoverywith an emphasis onnumerical target
concepts and introduces the used notations. Then, Sect. 4 provides an overview on
interestingness measures in this setting. Afterwards, Sect. 5 presents novel approaches
for efficient subgroup discoverywith numerical target concepts, that is, data structures,
optimistic estimate bounds, and their integration in algorithms. The benefits of the
suggested techniques are evaluated in-depth in Sect. 6. Finally, Sect. 7 concludes the
paper with a summary and an outlook for future research.

2 Related work

Mining supervised local patterns, e.g., discriminative patterns (Cheng et al. 2008), con-
trast sets (Bay and Pazzani 2001), emerging patterns (Dong and Li 1999) or subgroup
discovery (Klösgen 1996; Wrobel 1997; Klösgen 2002; Atzmueller 2015), has been
established as a versatile and effectivemethod in datamining.While this paper focuses
on subgroup discovery, recent research shows that many of these tasks differ mostly
in terminology and many techniques can be transfered between tasks with little effort,
cf. (Kralj Novak et al. 2009). Efficient mining algorithms can be classified in three
dimensions, i.e., search strategy, data structure, and pruning mechanisms. The search
strategy can directly be transfered from the binary to the numerical target case. The
algorithms described here apply depth-first-search, but the proposed improvements
regarding data structures and especially pruning bounds can easily be transfered to
other search strategies such as Apriori (Morishita and Sese 2000; Kavšek and Lavrač
2006) or exhaustive best-first-search (Webb 1995; Zimmermann and De Raedt 2009).

Generally, numerical data can be discretized (cf. for example works by Fayyad and
Irani (1993) and García et al. (2013)) in order to apply standard subgroup discovery
for binary target concepts. One method that was specifically designed for numerical
targets in subgroup discovery, is TargetCluster (Moreland and Truemper 2009). It uses
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a scoring of clustering solutions to find appropriate intervals for the target concept.
Nonetheless, discretizing the target concept still leads to a loss of information. Sub-
group discovery with numerical target concepts without discretization was applied in
the pioneering data mining system Explora (Klösgen 1996). It applied a variety of
enumeration strategies for subgroup discovery. Regarding numerical attributes, it was
able to identify “mean patterns”, that is, subgroups with a significantly deviating mean
value in the numerical target attribute in comparison to the total population. An exem-
plary case study for this system using mean patterns has been provided by Klösgen
(1994). That work, however, does not describe optimistic estimates or data structures
that are specific for the mining of subgroups with numerical target concepts.

Measuring the interestingness of patterns is a challenging and active research topic
in data mining. For most interestingness measures only binary target concepts are
considered, see a survey fromGeng and Hamilton (2006) for an overview. But also for
numerical target concepts a variety of different measures has been proposed. We will
provide a summary on these measures in Sect. 3.1, also providing references to the
original papers there. This includes and significantly extends the measures collected
by Klösgen (2002), Pieters (2010) and collaborators (Pieters et al. 2010).

Optimistic estimate pruning has been recognized as a crucial method for efficient
exhaustive pattern mining. This concept has originally been developed for general
search algorithms (Hart et al. 1968; Webb 1995), and has later been transfered to sub-
group discovery (Wrobel 1997; Grosskreutz et al. 2008). Regarding numerical target
variables, Webb (2001) exploited optimistic estimates to efficiently find association
rules with a numerical target variable in the rule head with a specific interesting-
ness measure, i.e., “impact rules”. By contrast, this paper presents upper bounds
for a wide variety of interestingness measures. Another technique to derive opti-
mistic estimates that is also applicable for numerical target concepts was proposed
by Morishita and Sese (2000). This approach is discussed in depth in Sect. 5.2.2. In
order to reduce the redundancy between result patterns, generalization-aware interest-
ingness measures have been proposed (Bayardo et al. 1999; Batal and Hauskrecht
2010). In previous work, we described difference-based optimistic estimates for
generalization-aware measures. This novel family of optimistic estimates is also
applicable to generalization-aware mean-based interestingness measures in case of
numerical target concepts (Lemmerich et al. 2013). By contrast, this paper focuses on
the well-established traditional type of interestingness measures that are only based
on the statistics of the evaluated subgroups and assumes that redundancy reduction
will be performed in a post-processing step.

The proposed two algorithms use different specialized data structures. One algo-
rithm employs FP-Trees (Han et al. 2000). These have been used before for subgroup
discovery with binary target concepts, i.e., in the algorithms SD-Map (Atzmueller and
Puppe 2006) and DpSubgroup (Grosskreutz 2008). In previous work, we introduced
an extension of FP-trees, called generalized pattern trees (GP-trees) (Lemmerich et al.
2012), to the exceptional model mining setting (Leman et al. 2008), also enabling
more complex target concepts for subgroup discovery (Atzmueller 2015). The SD-
Map* algorithm presented in this paper can be considered as a specialized version
of this algorithm that additionally incorporates the computation of optimistic esti-
mate bounds. The other algorithm, called NumBSD, adapts a vertical data structure
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based on bitsets (Zaki 2000; Lemmerich et al. 2010) also called bitmaps or bitvec-
tors to numerical target concepts. A related data structure is used by the CAREN-DR
algorithm (Jorge et al. 2006) to find “distribution rules”. In contrast to the NumBSD
algorithm, the bitsets are unordered and pruning is only applied with regard to the
support of patterns.

Aumann and Lindell (1999, 2003) investigated a related problem setting in the con-
text of association rules, described as quantitative association rules. For the discovery
of desired rules, they apply a three-stage process: (1) find all frequent patterns; (2)
compute an interestingness value of these patterns based on the deviation of the mean
or the variance of the target; (3) filter sub-rules that are contained in more general
rules. As a result, pruning is only based on the support of the patterns, in contrast to
the pruning techniques proposed in this work.

Numerical data in subgroup discovery has also been investigated for the set of
attributes defining the search space. In this context, the MergeSD algorithm, proposed
by Grosskreutz and Rüping (2009), is designed for exhaustive search. It exploits rela-
tionships between selectors of a single attribute by applying additional pruning based
on a specialized data structure, the boundTable. Mampaey et al. (2012) analyzed the
refinement step for greedy algorithms such as beam search with respect to online dis-
cretization of numerical search space attributes. They propose a method that allows
for finding the best interval of a numerical attribute that is added to the current sub-
group description in linear time of the number of potential cutpoints, in contrast to
the quadratic time required by the trivial approach. In the field of association rule
mining, related approaches have been discussed: Fukuda et al. (1996), for example,
investigated numerical attributes in the rule condition of optimized association rules.
This problem setting has been extended by Rastogi and Shim (2002) and by Brin
et al. (2003) to include disjunctions of intervals. In contrast to these works, this paper
focuses on subgroup discovery with numerical target attributes.

3 Background

This section introduces the used definitions and notations. Then, the general problem
setting of subgroup discovery with numerical targets is presented.

3.1 Subgroup discovery

Subgroup discovery aims to identify patterns having the most unusual statistical char-
acteristics with respect to the concept of interest, e. g., given by a (dependent) target
variable (Klösgen 1996; Wrobel 1997; Klösgen 2002; Atzmueller 2015). These pat-
terns are described by explaining (independent) variables.

A dataset D = (I,A) is formally defined as an ordered pair of a set of instances
(also called individuals, cases, or data records) I = c1, c2, . . . , cy and a set of attri-
butes A = A1, A2, . . . , Az . Each attribute Am : I → dom(Am) is a function that
indicates a characteristic of an instance by mapping it to a value in its domain. Am(c)
denotes the value of the attribute Am for the instance c. An attribute is called nominal,
if its values are only differentiated by their name. On the other hand, an attribute
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Anum is called numerical, if its domain contains exclusively real valued numbers, i.e.,
dom(Anum) ⊆ R.

A selector sel is a Boolean function I → {true, false} that describes a set of
instances with a selection expression over one attribute. Σ denotes the set of all
selectors. Typical selectors for nominal attributes are selections on single attribute
values, e.g., selgender=male, but selectors may also contain a set of attribute values,
negated values or (in case of numerical attributes) intervals. A subgroup description
or pattern P = {sel1, . . . , seld}, seli ∈ Σ, i = 1 . . . d, is then defined by a set of
selectors which is interpreted as a conjunction, i.e., P =̂ sel1 ∧ · · · ∧ seld . We call a
pattern Pgen a generalization of its specialization Pspec, iff Pgen ⊂ Pspec. For a fixed
dataset, a subgroup (the extension of P) sg(P) := {i ∈ I|∀sel ∈ P : sel(i) = true}
is now given by the set of individuals that are covered by the subgroup description P .
Trivially, a generalization covers all instances that are covered by its specializations:
Pgen ⊂ Pspec ⇒ sg(Pgen) ⊇ sg(Pspec). For shorter notation, we write the number of
instances covered by a pattern P as iP = |sg(P)|. Consequently, i¬P describes the
number of instances not covered by P , and i∅ denotes the number of instances in the
total population.

A subgroup discovery task can now be specified by a 5-tuple (D,Σ, T, q, k). D
is the dataset. The set of all selectors Σ defines the search space of 2|Σ | candidate
subgroup descriptions in the dataset. While the construction of appropriate selectors
can be a non-trivial task especially for numerical attributes, we do not focus on this
problem in this paper. Instead, we consider the set of basic selectors as fixed, computed
by a preprocessing step, e.g., using discretization.

The target concept T specifies the property of interest for the discovery task. In
classical subgroup discovery, the target concept is commonly given by a certain pat-
tern and the goal is to identify subgroups in which this target pattern occurs more/less
frequently (relative to the subgroup size) than in the overall set of individuals. The
value of the target concept (“target value”) for an instance c is denoted by T (c). For
binary target concepts, we write the target share, i.e., the share of instances with a true
target concept, in a subgroup (in the overall dataset) as τP (τ∅). In many applications
of subgroup discovery, the property of interest is given by a numerical attribute (Klös-
gen and May 2002; Grosskreutz 2008; Atzmueller and Puppe 2009; Lemmerich and
Atzmueller 2012; Atzmueller and Lemmerich 2013).

In general, the case of numerical target attributes can be transformed back to the
binary case using discretization techniques (García et al. 2013). E.g., using the target
variable age with dom(age) = [0, 140] the group “older people” could be defined
using the interval [70, 140]. A significant subgroup could then be formulated as “while
in the general dataset only 6% of the people are older than 70, in the subgroup
described by xy it is 12%”. However, such thresholds are often difficult to deter-
mine, and additional information on the distribution of the target attribute is lost. For
example, a subgroup that contains many people aged between 60 and 70 will not be
regarded as a subgroup containing “older people” – perhaps in contrast to some user’s
expectation. This discretization hides also the difference between subgroups in which
the majority is around 60 years old, and those in which the majority is around 20
years old. Therefore, using the complete distribution of the numerical target attribute
is potentially advantageous. The distribution of a numerical target attribute in a sub-
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group is more difficult to describe than the distribution of a binary target pattern: it is
given by a multi-set of real values instead of just the numbers of positive and negative
instances. Thus, the target distribution for a subgroup description P is often compared
in terms of one or more distributional properties, e.g., the mean value μP , the median
medP or the variance σ 2

P of the numerical target attribute. For example, an interest-
ing subgroup based on the mean values can be formulated as: “While in the general
dataset the mean age is 56 years, in the subgroup described by xy it is 62 years”.

Given a databaseD and a target concept T , the interestingnessmeasure q : 2Σ → R

maps every pattern in the search space to a real number that reflects the interestingness
of a pattern. To keep this paper concise, we focus on traditional interestingness mea-
sures which are purely dependent on the coverage of the subgroup, so q : 2I → R.
The authors are aware that this significantly restricts the scope of this paper, as more
recent variations that also include the description of the subgroup in the selection
process (Bayardo 1998; Atzmueller et al. 2009; Batal and Hauskrecht 2010; Lem-
merich and Puppe 2011) are left out. For simpler notations, q(sg(P)) and q(P) are
used equivalently. A popular family of interestingness measures for binary targets are
the Klösgen measures, which trade off the coverage of a subgroup with the deviation
of its target share: qa

Kl(P) = iP
a · (τP − τ∅), a ∈ [0, 1] (Klösgen 1996), see also

works by Wrobel (1997), Lavrač et al. (2004), Grosskreutz and Rüping (2009) and
Atzmueller (2015). Interestingness measures for numerical target concepts will be
discussed in detail in Sect. 4. Interestingness measures imply an ordering of the sub-
groups in the search space. Two interestingness measures q1(P) and q2(P) that imply
the identical order for any pair of subgroups in a dataset are called order equivalent,
denoted as q1(P) ∼ q2(P). Obviously, order equivalent interestingness measures lead
to identical results in an exhaustive top-k search.

Finally, the integer k gives the number of returned patterns of this task. The result
of a subgroup discovery task is the set of k subgroup descriptions with the highest
interestingness values according to the chosen interestingness measure. Note that even
if the score of a subgroup is only determined by the subset that is covered by a subgroup
description the result of the discovery algorithm is still a pattern with a description
that is interpretable by humans.

4 Interestingness measures for numerical target concepts

This section presents a concise and comprehensive survey on interestingnessmeasures
for numerical target concepts, substantially extending previous discussions byKlösgen
(1996, 2002) and Pieters et al. (2010).

For numerical target concepts, many interestingness measures extract certain data
characteristics, e.g., the mean or the median value, from the respective dataset and
compare those values obtained in the subgroup and in the overall dataset.We categorize
the interestingness measures for numerical target concepts with respect to the used
data characteristics:

1. Mean-based interestingness measures: A simple approach to score subgroups is
to compare the mean value in the subgroup μP with the mean value in the overall
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dataset μ∅. A pattern is then considered as interesting, if the mean of the target
values is (significantly) higher within the subgroup.
In that direction, several interestingness measures have been proposed:
(a) Generic mean-based functions: A generic formalization for a variety of such

measures can be constructed by adapting theKlösgen interestingnessmeasures
for binary targets: the target shares τP , τ∅ of subgroups and the general dataset
are replaced by the respectivemean values of the target variable in the subgroup
μP and in the overall dataset μ∅. This results in: qa

mean(P) = iP
a · (μP −

μ∅), a ∈ [0, 1]. Higher values of a favor larger subgroups, lower values favor
larger deviations in the target share.
These measures include the Klösgen measures for binary targets as a special
case, if the binary target concept is interpreted as an indicator function (T (c) =
1 for true target concepts, T (c) = 0, otherwise), since the mean values in the
formula are then equal to the respective target shares.
This generic family of functions is either equal or order equivalent to several
other interestingnessmeasures proposed in literature, such as the average func-
tion for a = 0, mean test (Grosskreutz 2008) and z-score (Pieters et al. 2010)
for a = 0.5, or impact (Webb 2001) for a = 1.

(b) Generic symmetric mean-based functions: To discover subgroups with
decreased as well as increased target values in a single run of the discovery
algorithm, the difference of the target shares can be replaced by the respective
absolute value: qa

sym(P) = iP
a · |μP − μ∅|. As an alternative, we can also

use the squared difference instead: qa
sq(P) = iP

a · (μP − μ∅)2. This results
in measures that are order equivalent to q

a
2

sym .
(c) Variance reduction: Another symmetric measure, which has been introduced

in the context of regression tree learning, is the variance reduction (Breiman
et al. 1984; Klösgen 1996): qvr (P) = iP

i∅−iP
· (μP − μ∅)2

(d) Interclass variance: The interclass variance was proposed to measure the
correlation between a pattern and a numerical target attribute: qiv(P) =
iP · (μP − μ∅)2 + i¬P · (μ¬P − μ∅)2, cf. (Morishita 1998; Morishita and
Sese 2000)

2. Variance-based measures: Aumann and Lindell (2003) proposed to identify pat-
terns with an unusual variance.
(a) Generic variance-based functions: This can be accomplished by replacing the

target shares τP , τ∅ with standard deviations σP , σ∅ in the Klösgen measures,
resulting in: qa

sd(P) = iP
a · (σP −σ∅), a ∈ [0, 1]. As before, this allows—but

also requires—controlling the coverage of the results using the size parameter
a. These measures do not directly correspond to a statistical significance test.
Aumann and Lindell propose to use an F-Test (Aumann and Lindell 2003) for
testing statistical significance, but this test should be applied carefully due to
its strong sensitivity to the non-normality of the distribution (Box 1953).

(b) t-score: The t-score qt (P) =
√

iP ·(μP−μ∅)
σP

(Pieters et al. 2010; Klösgen 2002)
incorporates the meanμP and the standard deviation σP of the target values in
a subgroup P . It reflects the significance of the deviation of target values in a
subgroup using a Student’s t-test. However, a direct statistical interpretation of
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the t-score should be avoided if the target concept is not normally distributed
and the subgroup size is small, e.g., iP < 30.

3. Median-based measures: Statistics based on the mean target value of subgroups
are known to be sensitive to outliers. Therefore, it can be favorable to use the more
stable median instead of the mean value.
(a) Generic median-based measure: A generic family of median-based inter-

estingness measures can again be derived by a small adaptation of qa
mean :

qa
med(P) = iP

a · (medP − med∅), where medP is the median of target val-
ues in the subgroup and med∅ the median in the total population. In general,
there is no direct interpretation of these measures with respect to a statistical
significance test.

(b) Median χ2 Test: As proposed by Pieters et al. (2010), the significance of a
χ2-test that uses the median of the target attribute in the total population as a
discretization cut-point can be applied as an interestingness measure. From a
computational point of view, this is accomplished by performing discretization
as a pre-processing step and running a subgroup discovery algorithm for binary
targets. Therefore, this measure will not be discussed with respect to efficient
mining in this work.

4. Rank-based measures: A variety of statistical tests for the deviation of numerical
variables use the ranks of the target attribute instead of the target values themselves.
That is, the instancewith the highest target value ismapped to rank one, the instance
with the second highest target value is mapped to rank two, and so on. This reduces
the sensitivity to outliers compared to mean-based tests. Additionally, rank-based
methods can also be applied to ordinal attributes.
(a) Mann–Whitney measure: Klösgen (1996) and later Pieters et al. (2010)

proposed an interestingness measure based on the Mann-Whitney (also
Wilcoxon–Mann–Whitney) rank sum test on statistical significance. The mea-
sure compares the difference of themean of ranks in the subgroupwith the over-
all mean of ranks and computes its significance using a z-statistic. It is defined
as:

qmw(P) = iP ·
RP
iP

− i∅+1
2

√

iP i¬P (i∅+1)
12

∼
√

iP

i¬P
·
(RP

iP
− i∅ + 1

2

)

:= qmw′(P),

where RP is the sum of ranks within the subgroup P .
(b) AUC measure: This interestingness measure proposed by Pieters et al. (2010)

determines the area under the ROC curve (Fawcett 2006). It can be computed
as:

qauc(P) = R¬P − i¬P ·(i¬P+1)
2

iP · i¬P
,

with R¬P being the sum of ranks in the complement of the subgroup P . This
measure is independent of the subgroup’s coverage.
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5. (Full) Distribution-based measure (Kolmogorov–Smirnov measure): The signifi-
cance according to a Kolmogorov-Smirnov statistical test has been proposed to
discover so called distribution rules (Lucas et al. 2007; Jorge et al. 2006).
The measure is order equivalent to the test statistic of this test: qks(P) =
√

iP ·i¬P
i∅ Δ(P,¬P), where Δ(P,¬P) is the supremum of differences in the empiri-

cal distribution function induced by the subgroup P and its complement ¬P . The
empirical distribution function is a function that computes for each value v in
the target attribute’s domain the fraction of pattern instances with a target value
smaller or equal to v. This measure can capture increases as well as decreases of
the target values.

Answering the question, when to use which measure, is left to future work. Instead,
we concentrate in this paper on the efficient mining with the presented measures.

5 Efficient exhaustive approaches for subgroup discovery with
numerical properties of interest

In this section, we investigate efficient subgroup discovery with numerical target con-
cepts.We first discuss the adaptation of data structures as well as options for optimistic
estimate pruning for the presented interestingnessmeasures. After that, we present two
algorithms that incorporate these approaches.

5.1 Data representations

Specialized data structures allow for the efficient computation of subgroup statis-
tics required by interestingness measures and optimistic estimate bounds. Below, we
introduce adaptations of two data structures to the setting of subgroup discovery with
numerical target concepts, that is, FP-trees and bitset-based data structures. We pri-
marily focus on generic mean-based interestingness measures and outline adaptations
for other measures only briefly.

5.1.1 Adaptations of FP-trees

FP-trees (Han et al. 2000) have been proposed as efficient data structures for the
mining of frequent itemsets. These extended prefix tree structures store the relevant
information in a compressed way. Each tree node contains a reference to a selector and
a frequency count. Additionally, links between nodes referring to the same selector are
maintained. An FP-tree is built in two passes over the dataset instances: the initial pass
sorts the selectors according to their frequency in the dataset. In the second pass, data
instances are inserted one-by-one into the FP-tree. The order of the selectors increases
the chance of shared prefixes between data instances, thus decreasing the overall
size of the FP-tree. The resulting FP-tree contains the complete condensed frequency
information for each pattern. Amining algorithm starts with creating an FP-tree for the
initial dataset. Patterns containing exactly one selector are evaluated by the frequencies
collected during the first pass over the dataset. Then, the algorithm recursively extends
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those patterns by adding further selectors in a depth-first manner, building conditional
trees conditioned on the current pattern prefix. In this way, compact and efficient
mining of the condensed tree structure is enabled. Formore detailed information onFP-
trees in general we refer to Han et al. (2000, 2004). In previous work, we have shown
how FP-trees can be transfered to subgroup discovery with binary targets (Atzmueller
and Puppe 2006) and to the exceptional model mining setting (Lemmerich et al. 2012).
These approaches, however, did not incorporate optimistic estimate bounds.

FP-trees consist of nodes, which are connected by two link structures, tree links and
auxiliary links. Modifications for subgroup discovery do not affect the link structures,
but extend the information that is stored in each node. In the case of a binary target, an
FP-tree node contains information on the number of positive and negative instances
for the respective instance set. In the case of a numerical target concept and a mean-
based interestingness measure, the sum of the target values and the instance count is
stored instead. This enables the computation of the mean target value of an instance
set and thus allows for determining the interestingness value. Using these adaptations
for numerical target variables, the case of a binary target is included as a special case,
if the value of the target is set to 1 for true target concepts, or set to 0 for false target
concepts, respectively.

In contrast to the binary case, additional information is required to efficiently com-
pute the optimistic estimates for numerical target concepts that will be introduced in
Sect. 5.2.4. This information can also be effectively stored in the tree nodes: to compute
the optimistic estimate oe1mean , that will be presented in Theorem 10, one additional
field is used, which is initialized with 0. For each instance c corresponding to the node,
the value max (0, T (c) − μ∅) is added to this field. Like the other stored values, this
field is then propagated recursively, when conditional trees are built. In doing so, the
value stored in this field of each node reflects the sum

∑

c∈P:T (c)>μ∅(T (c)−μ∅), that
is, the exact value of the optimistic estimate. Thus, the optimistic estimate is directly
available if pruning options are checked. Analogously, for the optimistic estimate
oea

mean(P) = p̃P
a · (T max

P − μ∅), see Theorem 12, each node must keep track of
the number of instances p̃ that have a target value greater than the population mean
target value, and the maximum target value corresponding to this node T max . These
are propagated accordingly and allow for the efficient computation of these bounds.

Adaptations for other interestingness measures For other interestingness measures,
different kinds of information need to be captured in the tree nodes. To apply a variance-
based interestingnessmeasure such as the t-scoremeasure qt (P), in addition to the sum
of values the sum of squared values needs to be stored to determine the variance within
the subgroup as shown in previous work (Lemmerich et al. 2012). Unfortunately, it is
difficult to determine optimistic estimates for this function in general, see Sect. 5.2.

To compute the symmetric genericmean-basedmeasures, no additional information
is required other than the sum of values and the frequency count of instances. In order
to determine optimistic estimates, it is required to additionally store the sum of target
values that are below the population target mean, and the minimum target value.
Similarly, for the variance reduction qvr (P) the instance count and the overall sum of
target values are required for computing the interestingness itself. For the computation
of optimistic estimate bounds, the sum of target values higher, resp. lower than the
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Table 1 A toy dataset used in
the illustrating examples below

Instance Target value selA selB selC

c1 100 true f alse f alse

c2 75 true f alse f alse

c3 60 f alse true f alse

c4 53 true true true

c5 40 f alse f alse f alse

c6 35 f alse f alse f alse

c7 25 f alse true f alse

c8 12 true f alse f alse

population mean as well as the minimum and maximum target value are then also
required.

The generic median-based measures cannot be computed by applying an FP-tree-
based data structure sincemore than one pass over the subgroup is required to compute
the median, see previous research (Lemmerich et al. 2012) for details.

For computing rank-based interestingness measures using a variation of FP-trees,
the ranks of instances must be determined in a preprocessing step. Afterwards, ranks
replace the original target values in the algorithm itself. In the FP-tree nodes, only
the instance count and the sum of ranks is stored and aggregated. For computing
optimistic estimates for the Mann–Whitney measure, see Theorem 17, additionally
the sum of ranks above the population’s mean rank, the maximum rank, and the
number of instances with a rank higher than the population’s mean rank need to be
stored.

Example 1 Consider the toy datasetwith 8 instances and 3 selectors in the search space
shown in Table 1. The initial FP-tree for this dataset (without header nodes) is depicted
in Fig. 1. The information stored in the nodes depends on the used interestingness
measure. For generic mean-based measures, each node stores the node count, the
sum of target values, the sum of target values above the population’s target mean, the
number of instances with a target value above the population’s target mean and the
maximum target value.

5.1.2 Adaptation of bitset-based data structures

Vertical data representations such as bitsets (Klösgen 1995; Lemmerich et al. 2010),
are an alternative to the FP-tree data structures discussed above. Here, the instances
that correspond to a subgroup pattern are stored in words of single bits. Each word
contains as many bits as the dataset contains cases. The i-th bit in each word belongs
to the i-th instance of the dataset. The bit is set to 1 if this instance is covered by the
respective subgroup description, and is set to 0 otherwise.

For each selector in the search space one such bitset is generated. To create bitsets
that correspond to conjunctive patterns a logical AND operation is performed on
the bitsets of the involved selectors. The size of a subgroup can then be derived by
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∅
count: 8, sum: 400

sum> µ∅: 88, count> µ∅: 4
maxValue: 100

selA
count: 4, sum: 240

sum> µ∅: 78, count> µ∅: 3
maxValue: 100

selB
count: 2, sum: 85

sum> µ∅: 10, count> µ∅: 1
maxValue: 60

selB
count: 1, sum: 53

sum> µ∅: 3, count> µ∅: 1
maxValue: 53

selC
count: 1, sum: 53

sum> µ∅: 3, count> µ∅: 1
maxValue: 53

. . .

. . .

. . .

Fig. 1 The initial FP-tree (without header nodes) for the example toy dataset. The information stored in
the nodes depends on the used interestingness measure. For generic mean-based measures, each node stores
the node count, the sum of target values, the sum of target values above the population’s target mean, the
number of instances with a target value above the target mean and the maximum target value

determining the cardinality of the bitset, that is, the number of bits set to 1. For
the efficient counting of bits in a bitset which are set to true, specialized algorithms
and even supporting hardware implementations have been developed (El-Qawasmeh
2003).

For subgroup discovery with binary targets, one additional bitset reflects the occur-
rence of the target concept. To adapt bitset-based, vertical data structures to numerical
target settings and to the introduced ordering-based bounds, see Sect. 5.2.2, two adap-
tations to the data structure in the binary setting are necessary. First, the instances of
the total population are initially sorted in descending order with respect to the target
variable. The ordering allows for an easy computation of ordering-based optimistic
estimate bounds. Second, the numerical target values are stored in an additional array
in descending order. This replaces the additional bitset used for the target concept in
the binary case. The array of target values and the bitsets for the selectors correspond to
each other via the position of the instances, i.e., the target value of an instance, which
is represented by the n-th bit of a bitset, is given at position n of the array of target
values. The computation of (for example) the mean value of a subgroup selA ∧ selB ,
requires one iteration over all bits that are set to true in the bitset that corresponds to
this subgroup. For each bit that is set to true the respective target value of the array
is added to a total sum and the count of instances is incremented. These statistics are
then used to compute the mean value. Internally, each bitset is divided into words (e.g.,
of 32 or 64 bits), on which logical boolean operations (such as OR and AND) can be
applied very efficiently. The fast bounds presented in Sect. 5.2.3 can be checked after
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Fig. 2 The adapted bitset-based
representation for the example
dataset from Table 1

Target:

selA:

selB:

selC :

100 75 60 53 40 35 25 12

1 1 0 1 0 0 0 1

0 0 1 1 0 0 1 0

0 0 0 1 0 0 0 0

each word. The construction of the bitsets and the target value array is accomplished
in one single pass through the database. The rest of the algorithm can then operate
exclusively on the generated data structure representation.

Example 2 As a simple example, the adapted bitset-based data structure for the exam-
ple dataset of Table 1 is shown in Fig. 2.

5.2 Optimistic estimates

Given an interestingness measure and a subgroup, an optimistic estimate is an upper
bound for the interestingness score of all specializations of this subgroup. It is used
to speed up subgroup discovery algorithms: if the optimistic estimate of a subgroup
is lower than the interestingness value required in the result set, then the specializa-
tions of this subgroup can be excluded from the search. As shown for binary target
concepts (Wrobel 1997; Grosskreutz et al. 2008) this can reduce the number of can-
didate subgroups in discovery algorithms by orders of magnitude. Nonetheless, for
subgroup discovery with numerical target concepts optimistic estimate bounds have
only received limited attention in the literature so far.

This section thoroughly analyzes optimistic estimate pruning for subgroup discov-
erywith numerical target concepts for a large variety of interestingnessmeasures.After
a short formal definition of optimistic estimates, we discuss an approach for deriv-
ing optimistic estimates for convex interestingness measures that has been proposed
by Morishita and Sese (2000). Extending this direction of research, we introduce the
formalism of ordering-based optimistic estimate bounds as a tool that allows for deriv-
ing optimistic estimates. With this formalism, optimistic estimates can be determined
easily for a wider range of interestingness measures, including previously unbounded
measures. This is demonstrated for several types of interestingness measures. After-
wards, we present a novel technique that provides a series of increasingly tighter
upper bounds, which is computed by using only a part of the instances covered by a
subgroup. Additionally, optimistic estimates in closed-form expressions are derived
for the discussed interestingness measures that can be used also in combination with
FP-tree-based data representations.

5.2.1 Formal definition

Given an interestingness measure q(P), an optimistic estimate oeq is a function 2Σ →
R, such that the interestingness score of each refinement, i.e., a subset of the current
subgroup, is lower or equal to the function value for this subgroup:
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∀S ⊃ P : q(S) ≤ oeq(P)

For efficient mining, more precise bounds are beneficial, since they allow for pruning
larger parts of the search space. Tight optimistic estimates are “estimates that are as
conservative as possible with respect to the information at hand” (Grosskreutz 2008).
In our scenario, we call an optimistic estimate tight if a subgroup contains a subset of
instances that attains the interestingness score given by the optimistic estimate.

∃r ⊆ sg(P) : q(r) = oe(P)

Tight optimistic estimates are the most precise optimistic estimates that can be derived
from the distribution of the target concept in the pattern alone.

5.2.2 Ordering-based bounds

Morishita and Sese (2000) proposed a general scheme for determining optimistic
estimates for a specific class of interestingness measures, that is, measures that are
convex in a certain space of dimensions defined by subgroup statistics. In that approach,
each subgroup is mapped to a so-called stamp point in the respective space according
to its respective statistics. Then, the interestingness measure maps each of these points
to a score. If this function is convex, it can be shown that its maximum values within
a convex polygon are attained at the vertices of the polygon.

Regarding numerical target concepts, the authors investigate the interclass vari-
ance which is a convex function in the two-dimensional parameter space (Σ T (c), i p)

constructed using the sum of the target values Σ T (c) and the number of subgroup
instances i p as its dimensions. A bounding convex polygon for all points in the space
that correspond to the specializations of a subgroup P can be constructed as follows:
the instances of the dataset are sorted according to their target values. Then, each
split point in the target values is considered. That is, for each different target value,
the refinement that contains all subgroup instances with target values higher than the
split point and the refinement of all instances lower than the split point is evaluated.
Since the stamp points of these refinements form a convex polygon that contains all
specializations of P , the maximum interestingness score of the evaluated refinements
is an optimistic estimate for P .

In this section, we show that a similar approach is more generally applicable and
can be used for many (but not all) interestingness measures including measures that
are not convex or are not even functions in the (Σ T (c), i p) space.

We start with a formal definition of the desired property.

Definition 1 Let sdesc
j (sasc

j ) be the set of instances that consists of the j instances
of sg(P) with the highest (lowest) target values. Then, an interestingness measure q
is one-pass estimable by ordering, if it holds for any subgroup P and any refinement
r ⊆ sg(P), that

q(r) ≤ max
(

q(sdesc
1 ), . . . , q(sdesc

iP
)
)

.
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An interestingness measure q is two-pass estimable by ordering, if it holds for any
subgroup P and any refinement r ⊆ sg(P) that

q(r) ≤ max
(

q(sdesc
1 ), . . . , q(sdesc

iP
), q(sasc

1 ), . . . , q(sasc
iP

)
)

.

In other words, for measures that are one-pass estimable by ordering, the interesting-
ness score never decreases if one of the instances is exchanged with another instance
that has a greater target value. For such measures, only iP candidates must be consid-
ered to find the best refinement of a subgroup P .

Thismotivates the following approach for subgroup discoverywith numerical target
concepts using such interestingness measures: in a preprocessing step, the instances in
the database are sorted in descending order with respect to their target values. When-
ever a subgroup is evaluated, instances are added one by one to the subgroup, starting
with the one with the highest target value. After each addition, the interestingness of
the instance set is evaluated. The maximum of these interestingness values is used
as a tight optimistic estimate. In doing so, only a single pass over each subgroup is
required. For measures that are two-pass estimable by ordering, the best subset of
instances is found by traversing the current subgroup twice— once in descending and
once in ascending order of the target values. In both passes, instances are added one
by one to the current set of instances. The overall optimistic estimate is then given by
the maximum of all those scores. In doing so, 2 · iP subsets of the instances of the
current subgroup are considered as candidates to find its best refinement. As shown
by Morishita and Sese (2000), measures that are convex in the (Σ T (c), i p) space are
two-pass estimable by ordering. The more general property defined here is not only
more generally applicable, but in the authors’ opinion also more convenient to prove.

First, we investigate the generic mean-based interestingness measure qa
mean . While

these measures are convex in the (Σ T (c), i p) space for the special case of a = 1,
they are not convex for the general case with arbitrary a, see the Appendix for a proof.
Nonetheless, the generic mean-based interestingness measures are one-pass estimable
by ordering.

Theorem 1 The interestingness measures qa
mean(P) = iP

a · (μP −μ∅) are one-pass
estimable by ordering.

Proof We consider any refinement r ⊆ sg(P) and compare it to the instance set
r∗ = sdesc|r | . This is the subset with the same number of covered instances as r , but the
highest target values contained in sg(P). Then, |r∗| = |r | and μr∗ ≥ μr . It follows
that according to a mean-based interestingness measure the refinement r∗ is at least
as interesting as r : qa

mean(r) = |r |a · (μr − μ∅) ≤ |r∗|a · (μr∗ − μ∅) = qa
mean(r

∗) ��
Example 3 Consider the pattern PA for the selector selA in the toy dataset of Table 1.
Here, the population mean isμ∅ = 50 and the target values for the subgroup instances
c1, c2, c4, and c8 are 100, 75, 53, and12.These instances are sorted in descendingorder
according to their target values (as already done in this case) to generate the subsets
sdesc

j . For example, the subset sdesc
3 contains the 3 instances c1, c2, and c4. For each of

the subsets sdesc
i , i = 1 . . . 4, the score of the interestingness measure is computed. In
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this example, themean testmeasureq0.5
mean(P) = √

iP ·(μP −μ∅) is used. The resulting
scores are: q0.5

mean(s
desc
1 ) = √

1(100 − 50) = 50; q0.5
mean(s

desc
2 ) = √

2(87.5 − 50) ≈
53; q0.5

mean(s
desc
3 ) = √

3(76 − 50) ≈ 45; q0.5
mean(s

desc
3 ) = √

4(60 − 50) = 20. The
maximum of these interestingness scores, in this case q0.5

mean(s
desc
2 ) ≈ 53, then defines

an optimistic estimate bound for the subgroup PA.

Theorem 2 The median-based interestingness measures qa
med(P) = iP

a · (medP −
med∅) are one-pass estimable by ordering.

Proof Analogously to Theorem 1, replacing the mean with the median. ��
Note, that median-based measures cannot be considered as functions in the (Σ T (c),
i p) space at all.

Theorem 3 The rank-based interestingness measures qmw(P) and −qauc(P) are one-
pass estimable by ordering.

Proof For any refinement r with |r | = j , the sum of the ranks gets maximized (or
minimized, depending on the ordering of the ranking) for sdesc

j , therefore q(sdesc
j ) ≥

q(r) for these interestingness measures. ��
The symmetric mean-based measures are two-pass estimable by ordering. This

could also be shownby the convexity of these functions.However, proving the property
directly is much simpler and more concise.

Theorem 4 The symmetric mean-based measures qa
sym(P) = i p

a · |μP − μ∅| are
two-pass estimable by ordering.

Proof Consider any refinement r ⊆ sg(P). Without loss of generality, let j = |r | be
the number of instances covered by r . If μr ≥ μ∅ then qa(sdesc

j ) ≥ qa(r) in analogy
to the proof of Theorem 1. Otherwise, μr < μ∅ and we can conclude that qa(sasc

j ) ≥
qa(r) since |sasc

j | = |r | and μsasc
i

≤ μr and therefore |μsasc
j

− μ∅| ≥ |μr − μ∅|. ��

Theorem 5 The interestingness measure variance reduction qvr (P) = iP
i∅−iP

· (μP −
μ∅)2 is two-pass estimable by ordering.

Proof For any refinement r ⊆ sg(P) that covers j = |r | instances, it holds that

(μP − μ∅)2 ≤ max
(

(μsdesc
j

− μ∅)2, (μsasc
j

− μ∅)2
)

. Thus, we can conclude that

qvr (r) ≤ max
(

qvr (sdesc
j ), qvr (sasc

j )
)

. ��
Theorem 6 The interestingness measure interclass variance qiv(P) = iP · (μP −
μ∅)2 + i¬P · (μ¬P − μ∅)2 is two-pass estimable by ordering.

Proof Shown by Morishita and Sese (2000) by the convexity of the measure. ��
Note that due to the symmetry of this measure between the subgroup and its comple-
ment, further optimizations in the implementation are possible.

Although the estimability by ordering seems like an intuitive property for interest-
ingness measures, it does not hold for all measures:
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Theorem 7 The generic variance interestingness measure qa
sd(P) = iP

a · (σP −σ∅)
is not one-pass or two-pass estimable by ordering.

Proof Assume that the standard deviation in a dataset is overall σ∅ = 1 and the
subgroup P4 covers 3 instances with target values T (c1) = 10, T (c2) = 0, and
T (c3) = −10. The subset r∗ with highest standard deviation and therefore the highest
score according to q0

sd(P) then consists of the two instances c1 and c3. Themean value

for this subset is μr∗ = 0 and its variance is sd2
r∗ = (10−0)2+(0−(−10))2

2−1 = 200. The
interestingness score for this subset is then q0

sd(r∗) = 20 · 200 − 1 = 199, which is
greater than the interestingness score of all subsets sdesc

j or sasc
j . ��

Theorem 8 The t-score interestingness measure qt (P) =
√

iP ·(μP−μ∅)
σP

is notone-pass
or two-pass estimable by ordering.

Proof Consider a dataset with μ∅ = 0 and a subgroup P within the dataset that
contains four instances i1, . . . , i4 with the target values T (i1) = 20, T (i2) = 10,
T (i3) = 10 + ε with 0 < ε � 0.1, and T (i4) = 0. Then the best refinement r∗
contains the instances i2 and i3. The interestingness of r∗ approaches infinity if ε

approaches 0. Thus, qt (r∗) > max(qt (sdesc
i ), qt (sasc

i )) for any i given a small ε. This
contradicts the definition of one-pass and two-pass estimability by ordering. ��

The novel algorithm NumBSD, which is introduced in Sect. 5.3, incorporates the
presented ordering-based estimates in an efficient algorithm.

5.2.3 Fast bounds using limited information

This section presents a novel method to speed up the computation process by applying
a sequence of less tight upper bounds, which are computed during the evaluation of a
single subgroup. The bounds are determined only using the refinements sdesc

j of P , that
is, the j instances in P with the highest target values. For that, we focus exclusively
on the generic mean-based interestingness measures qa

mean .
The main idea is as follows: as in the previous section, instances are consid-

ered for subgroup evaluation one-by-one in descending order of the target values.
After each instance, the interestingness score for the set sdesc

j of the already incor-
porated j instances is computed. By definition, the maximum of all interestingness
values q(sdesc

j ) is an optimistic estimate for interestingness measures that are one-pass
estimable by ordering. We now consider a certain point in time during this pass over
the dataset, at which the first n instances have already been processed. At this point, it
is guaranteed that the target values for all subsequent instances in the subgroup are not
greater than the target value of the current case. This fact is used to determine an upper
bound for all the interestingness values q(sdesc

j ) that have not yet been computed: for
all instance that have not been visited yet it is assumed that the target value of these
instances is equal to the target value of the instance, which was added last. By assum-
ing larger target values, the computed interestingness value according to any generic
mean-based interestingness measure qa

mean always increases, since the interestingness
measure is one-pass estimable. Thus, we compute the maximum value that is obtained
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by adding any number of instances with the current target value. This forms an upper
bound for the remaining interestingness values q(sdesc

j ), j > n. If this less tight upper
bound already indicates that none of the refinements of the current subgroup (nor the
current subgroup itself) will be added to the result set, then we can skip the rest of
the evaluation of this subgroup. More formally, we capture this approach using the
following theorem:

Theorem 9 For a subgroup P, let sdesc
n ⊆ sg(P) be the n instances with the highest

target values. Furthermore, let σ = ∑

c∈sdesc
n

T (c) be the sum of target values for sdesc
n

and θ the lowest target value for the instances in sdesc
n , that is, the nth-highest target

value in sg(P). Then, an optimistic estimate for generic mean-based interestingness
measures qa

mean(P) = iP
a · (μP − μ∅) is given by:

oea
fast(P) = max

(

qa
mean(sdesc

1 ), . . . , qa
mean(sdesc

n ), oea
remaining(P)

)

,

oea
remaining(P, n) = iP

a ·
(

σ + (iP − n) · θ

iP
− μ∅

)

Proof The theorem is proven by showing that for each subset r ⊆ sg(P) the inter-
estingness score is not higher than the provided optimistic estimate: qa

mean(P) ≤
oea

f ast (P). Since qa
mean(P) is one-pass estimable, for each r the interestingness is

lower than the interestingness of the subset that has the same number of instances but
covers the instances with the highest target values: qa

mean(r) ≤ qa
mean(s

desc|r | ). Thus,
the theorem holds for all r with |r | ≤ n.

For all refinements r with |r | > n, it remains to show that qa
mean(sdesc|r | ) ≤ oea

fast(P).

To do so, the interestingness of sdesc
j for any j = n +x with x > 0, x ≤ xmax , xmax =

iP − n is estimated. Let ck be the instance with the kth-highest target value. Then, it
holds that:

qa
mean(s

desc
j )(P) = ja ·

(
∑ j

k=1 T (ck)

j
− μ∅

)

= (n + x)a ·
(

∑n
k=1 T (ck) + ∑x

k=n+1 T (ck)

n + x
− μ∅

)

≤ (n + x)a ·
(

σ + x · θ

n + x
− μ∅

)

:= f a(x)

This inequality is based on the fact that the target values are in descending order and
it therefore holds for k > n that T (ck) ≤ T (cn) = θ . The function f a(x) describes
an upper bound for the interestingness of the instance set sdesc

j that consists of x

more instances than the last evaluated instance set sdesc
n . Unfortunately, the size j of

the instance set with the maximum interestingness and the respective x-value are not
known. However, an upper bound for the interestingness of q(sdesc

j )(P) is given by the
maximum value of f a(x). For this family of functions, it can be shown by computing
the first and second derivative that the maximum value is reached either at x = 0 or
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at x = xmax = iP − n. The formal proof is provided in the appendix of this paper.
This means that the maximum upper bound is reached, if either none or all remaining
instances are added to the last evaluated instancewith an assumed target value of θ . For
x = 0, the value of the function f a is equal to the interestingness score of the instance

set sdesc
n : f a(0) = (n + 0)a ·

(

σ+0·θ
n+0 − μ∅

)

= na · (μsdesc
n

− μP ) = qa
mean(s

desc
n ).

As a consequence it holds for all r ⊆ sg(P) with |r | = j > n that

qa
mean(r) ≤ q(sdesc

j )

≤ f a(x)

≤ max
(

f a(0), f a(iP − n)
)

= max

(

qa
mean(s

desc
n ), iP

a · (
σ + (iP − n) · θ

iP
− μ∅)

)

≤ oea
fast(P)

This proves the theorem. ��
This theorem provides an upper bound for the interestingness score of all special-

izations of a subgroup and also for the interestingness of the subgroup itself. It is
based only on a subset of the instances of a subgroup, that is, the ones with the highest
target values. Thus, the above estimates can be checked during an iteration over the
subgroup instances even before this iteration has finished. If after only a few instances
the computed upper bound indicates that the subgroup itself and all its specializations
do not have a sufficient interestingness for the result set, then the evaluation of the
subgroup can be stopped. In doing so the majority of the subgroup instances does
not need to be considered, thus speeding up the subgroup discovery process. To the
authors’ knowledge, this is the first approach that uses optimistic estimates that are
based only on a part of a subgroup’s instances.

Example 4 Again, consider the subgroup PA for the selector selA in the toy dataset
of Table 1. As before, the population mean is μ∅ = 50 and the target values for
the subgroup instances c1, c2, c4, and c8 are 100, 75, 53, and 12. Additionally, it is
assumed that a score of at least 150 is currently required by the result set using
the impact interestingness measure q1

mean . For the evaluation of PA, the instances
are added one-by-one, starting with the instance c1, since it has the highest target
value. The interestingness value of a subgroup that covers only this single instance
is q(sdesc

1 ) = 1 · (100 − 50) = 50. To compute the optimistic estimate oea
f ast (PA)

after the first instance, additionally the value of oea
remaining(PA) is required. This

is determined as iPA
a ·

(

σ+(iPA −n)·θ
iP1

− μ∅
)

= 4 1 ·
(

100+(4−1)·100
4 − 50

)

= 200.

Since 200 exceeds the minimum required interestingness of 150, the evaluation of PA

continues.
Next, the instance c2 is added, as it has the second highest target value. The corre-

sponding interestingness value is q(sdesc
2 ) = 2 · (87.5 − 50) = 75. Additionally, the

value of oea
remaining(PA) is updated: oea

remaining(PA) = 41 ·
(

175+(4−2)·75
4 − 50

)

=
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125. It follows that oea
f ast (PA) = max

(

q(sdesc
1 ), q(sdesc

2 ), oea
remaining(P)

)

=
max(50, 75, 125) = 125 is an optimistic estimate for the subgroup PA: PA itself
and all of its specializations are guaranteed to have interestingness scores not higher
than 125. As the minimum required interestingness value of the result set is 150, the
evaluation of PA can stop without considering the remaining instances c4 and c8.

The formula for the bounddescribed above requires the number of instances covered
by a subgroup. This number might not yet be known during the evaluation iteration of
the subgroup. However, a simple upper bound for the maximum number of instances
in a subgroup can be estimated, e.g., by the known number of instances covered by a
generalization of the subgroup.

5.2.4 Optimistic estimates with closed form expressions

In Sect. 5.2.2, we discussed a method to derive tight optimistic estimate bounds.
However, since these bounds require an ordering of the instances according to the
target concept, these bounds cannot be computed with FP-tree-based data representa-
tions (Lemmerich et al. 2012). This section presents optimistic estimate bounds that
have a closed-form expression that uses only a limited amount of statistics derived
from the subgroup. In particular, the bounds for a single subgroup are computable in
a distributed single-pass algorithm. Such statistics can also be determined efficiently
in FP-tree-based data structures, as shown in previous work (Lemmerich et al. 2012).
The information required by the different measures is described in Sect. 5.1.1.

Mean-based interestingness measures

Theorem 10 As described by Webb (2001), for any subgroup P a tight optimistic
estimate for the impact interestingness measure q1

mean(P) = iP · (μP − μ∅) is given
by: oe1mean(P) = ∑

c∈P:T (c)>μ∅(T (c) − μ∅).

Proof See previous work by Webb (2001) for a proof.

The tight optimistic estimate for the binary case presented by Grosskreutz et al.
(2008), i.e., pP · (1− τ∅), can be seen as special case of this formula, using T (c) = 1
for true target values and T (c) = 0 for false target values:

oe1mean(P) =
∑

c∈sg(P),T (c)>μ∅
(T (c) − μ∅) =

∑

c∈sg(P),T (c)=1

(1 − τ∅) = pP · (1 − τ∅).

This optimistic estimate bound can easily be extended to the other generic mean-
based interestingness measures qa

mean :

Theorem 11 oe1mean(P) is an optimistic estimate for any generic mean-based inter-
estingness measure qa

mean(P) = iP
a · (μP − μ∅) with arbitrary a ∈ [0, 1].

Proof For any refinement r ⊆ sg(P) with qa
mean(r) ≥ 0 and any a ∈ [0, 1], it holds:

qa
mean(r) = |r |a(μr − μ∅) ≤ |r |1(μr − μ∅) = q1

mean(r) ≤ oe1mean(P). ��
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Theorem 12 An alternative optimistic estimate bound for qa
mean(P) = iP

a · (μP −
μ∅) with arbitrary a ∈ [0, 1] is given by: oea

mean(P) = p̃P
a · (T max

P − μ∅), where
p̃P = |{c ∈ sg(P)|T (c) > μ∅}| is the number of instances in the subgroup with a
target value higher than the population mean of the target and T max

P is the maximum
target value in the subgroup.

Proof It is proven first that no instance with a target value lower than μ∅ is part of the
best refinement: consider any subset r ⊆ sg(P). Then, let r+ = {i ∈ r |T (c) > μ∅}
be the set of all instances in r that have a target value higher than the mean of the
population and r− = {i ∈ r |T (c) ≤ μ∅} the complement of this set, so r = r+ ∪ r−.
Then, the interestingness score according to any qa

mean is always equal or higher, if all
instances of r− are removed from the subgroup. So we need to show that:

qa
mean(r

+) ≥ qa
mean(r)

|r+|a(μr+ − μ∅) ≥ |r |a(μr − μ∅)

Similar to the proof of Theorem 10 this can be transformed as follows:

|r+|a
∑

i∈r+(T (c) − μ∅)
|r+| ≥ |r |a

∑

i∈r (T (c)−μ∅)
|r |

|r+|a
∑

i∈r+(T (c)−μ∅)
|r+| ≥ (|r+| + |r−|)a

∑

i∈r+(T (c)−μ∅)+∑

i∈r−(T (c)−μ∅)
|r+|+|r−|

For shorter notation, we define S+ := ∑

i∈r+(T (c) − μ∅) and S− := ∑

i∈r−(T (c) −
μ∅). Due to the construction of r+ and r− it holds that S+ ≥ 0 ≥ S−. Thus:

|r+|a S+

|r+| ≥ (|r+| + |r−|)a S+ + S−

|r+| + |r−|
(|r+| + |r−|)|r+|a S+ ≥ |r+|(|r+| + |r−|)a(S+ + S−)

(|r+| + |r−|)|r+|a S+ ≥ |r+|(|r+| + |r−|)a S+ + |r+|(|r+| + |r−|)a S−

Since S− ≤ 0, it holds that ((|r+| + |r−|)a S−) ≤ 0. Thus, the above inequality is
satisfied if

(|r+| + |r−|)|r+|a S+ ≥ |r+|(|r+| + |r−|)a S+

(|r+| + |r−|)1−a S+ ≥ |r+|1−a S+

(|r+| + |r−|)1−a ≥ |r+|1−a

|r+| + |r−| ≥ |r+|

This is always true. Therefore, the interestingness value of an instance set r accord-
ing to any qa

mean never decreases if all instances with a target value less than the mean
target in the overall population are removed. Consequently, there is always a best
refinement of a subgroup that does not contain any instance with target value equal
or less than the population mean. The largest possible number of instances of such a
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refinement is given by p̃P . Trivially, the mean value of this refinement never exceeds
the largest value of the original subgroup. Thus p̃P · (T max

P − μ∅) is an optimistic
estimate for P . ��
Example 5 Once more, we consider the subgroup PA for the selector selA in the toy
dataset of Table 1. The population mean in this dataset is μ∅ = 50 and the target
values for the subgroup instances c1, c2, c4, and c8 are 100, 75, 53, and 12. Then, the
optimistic estimate oe1mean sums over all instances with a target value greater than 50,
that is c1, c2 and c4:oe1mean(PA) = (100−50)+(75−50)+(53−50) = 78.Bycontrast,
the optimistic estimate oea

mean is computed as oea
mean(PA) = p̃PA

a · (T max
PA

− μ∅) =
3a · (100 − 50) = 3a · 50, since three target values are above the population mean.
Depending on the generality parameter a of the applied interestingness measures this
results in oe1mean(PA) = 150 for a = 1, in oe0.5mean(PA) ≈ 86.6 for a = 0.5, or in
oe1mean(PA) = 50 for a = 0. Comparing these bounds, it is evident that no bound is
superior in every case: for a high value of a such as a = 1, oe1mean(P) is tighter than
oea

mean(PA), for a low value of a such as a = 0, oea
mean(PA) is tighter.

As it is evident from the example, both optimistic estimates oe1mean(P) and
oea

mean(P) are not tight for arbitrary parameters a: for the subgroup P1 the best refine-
ment r∗ using the mean test measure q0.5

mean contains the first two instances and has
the interestingness score

√
2 · 37.5 ≈ 53, which is lower than both estimates. Both

estimates oe1mean(P) and oea
mean(P) are not exclusive, but can easily be combined:

one can compute the values for both bounds and use the tighter one, i.e., the one with
the smaller value, to apply optimistic estimate pruning.

Symmetric mean-based measures It is easy to extend the optimistic estimates pre-
sented above to symmetric variants:

Theorem 13 An optimistic estimate for the generic symmetric mean-based functions
qa

sym(P) = iP
a · |μP − μ∅| is given by:

oea
sym(P) = max

⎛

⎝

∑

c∈sg(P),T (c)<μ∅
(μ∅ − T (c)) ,

∑

c∈sg(P),T (c)>μ∅
(T (c) − μ∅)

⎞

⎠ .

This bound is tight for q1
sym. Another bound is given by:

oea
sym(P) = max

(

p̃P
a · (

T max
P − μ∅

)

, ñ P
a ·

(

μ∅ − T min
P

))

,

where T max
P , T min

P are the maximum and minimum target values in the subgroup P, and
p̃P = |{c ∈ sg(P)|T (c) > μ∅}|, ñ P = |{c ∈ sg(P)|T (c) < μ∅}| are the numbers of
instances in the subgroup with a target value greater (respectively smaller) than the
population mean of target values.

Proof This follows straightforward from Theorems 11 and 12 since for the inter-
estingness value of any subset r ⊆ sg(P) it holds that qa

sym(r) = |r |a|μr − μ∅| =
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max (|r |a(μr − μ∅),−(|r |a(μr − μ∅)). So in essence, one can just compute an upper
bound for qa

mean(r) and −qa
mean(r) separately and use the maximum of both bounds

as a bound for qa
sym . ��

Theorem 14 For the variance reduction qvr (P) = iP
i∅−iP

·(μP −μ∅)2, two optimistic
estimates are given by:

oevr (P) = max

(

iP

i∅ − iP
· (T max

P − μ∅)2,
iP

i∅ − iP
· (T min

P − μ∅)2
)

,

oevr (P) = max

⎛

⎜

⎝

(

∑

c∈sg(P), T (c)>μ∅(T (c) − μ∅)
)2

i∅ − 1
,

(

∑

c∈sg(P), T (c)<μ∅(T (c) − μ∅)
)2

i∅ − 1

⎞

⎟

⎠ ,

where T max
P (T min

P ) is the maximum (minimum) target value in the subgroup P.

Proof The proof of the first estimate is straightforward: The first factor is strictly
increasing with iP and thus reaches its maximum for all specializations of P at iP ,
since all specializations cover atmost asmany instances as P . Themaximumdifference
in the second factor occurs if the mean value in the specialization is either maximal or
minimal. Trivially, the maximum or minimum for each specialization is in the interval
[T min

P , T max
P ].

Regarding the second estimate, it holds for any subset r ⊆ sg(P) with positive

interestingness score that: qvr (r) = |r |
i∅−|r | (μr − μ∅)2 = |r |2

(i∅−|r |)|r | (μr − μ∅)2 =
|r |2

(i∅−|r |)|r |
(∑

i∈r (T (c)−μ∅)

|r |
)2 = 1

(i∅−|r |)|r |
(∑

i∈r (T (c) − μ∅)
)2

(i∅ − |r |)|r | gets minimized for |r | = 1. The squared sum is maximized if the
sum is either maximized or minimized. That is accomplished by either including only
positive or only negative summands, that is, only instances with a target value higher
than the population mean target value or with a lower target value, respectively. This
leads to the presented optimistic estimate. ��

Example 6 As in the previous examples, PA has four instances with target values
T (c1) = 100, T (c2) = 75, T (c4) = 53, and T (c8) = 12 in a dataset with an overall
targetmean ofμ∅ = 50. Additionally, it is assumed that the overall population consists
of 10 instances. Then, the upper bounds according to the above theorem are given by:

oevr (PA) = max
(

4
8−4 · (100 − 50)2, 4

8−4 · (12 − 50)2
)

= 502 = 2500, and

oevr (PA) = max
( 1
7 · ((100 − 50)2 + (75 − 50)2 + (53 − 50)2), 1

7 (12 − 50)2
) = 1

7 ·
(502+252+32) ≈ 447.7. In this case, the second bound is substantially tighter (lower)
and is therefore used for pruning.
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Median-based measures Formedian-based interestingnessmeasures, the practical use
of a direct estimate that can be computed in a parallel single pass algorithm is doubtful
since the median itself cannot be computed in such a way. Nonetheless, a very simple,
but loose estimate can be specified:

Theorem 15 An optimistic estimate for the generic median-based measure
qa

med(P) = iP
a · (medP − med∅) is given by: oea

med(P) = iP
a · (T max

P − med∅).
Proof Themaximummedian in any refinement cannot exceed themaximumoccurring
value in the subgroup, and the size of a refinement cannot exceed the size of the
subgroup. ��
In contrast to the generic mean-based functions, the best refinement for median-based
function can contain values with target values lower than the population mean as
demonstrated in the following example.

Example 7 Consider a subgroup P2 with target values {3, 2, 2, 0,−1,−1} in a dataset
with an overall median target value of 1. Then, for the interestingness measure q1

med
the best subset of instances contains the first 5 instances and has an interestingness
score of 5.

(Full) Distribution-based measures

Theorem 16 An optimistic estimate for the Kolmogorov–Smirnov interestingness

measure qks(P) =
√

iP ·i¬P
i∅ Δ(P,¬P) for any subgroup P with iP <

i∅
2 is given by

oeks(P) =
√

iP (i∅−iP )
i∅ .

Proof The interestingness value of qks is given by
√

iP ·i¬P
i∅ ·Δ(P,¬P). The test statistic

Δ(P,¬P) is computed as the supremumof differences in the empirical distribution func-
tions of P and its complement. Since the range of the empirical distribution function
is [0, 1], the supremum of the difference Δ(P,¬P) ≤ 1. For a fixed population, the left

term
√

iP ·i¬P
i∅ is only dependent on the number of instances covered by the subgroup.

We determine the maximum of this term for any refinement r of sg(P). If iP ≤ i∅
2 the

term is monotone. In particular, |r |(i∅ − |r |) < iP (i∅ − iP ). Otherwise a maximum is
reached at iP = i∅

2 . However, this is an overall bound for the interestingness measure
and is therefore not useful for pruning. ��

Given a minimum interestingness value required by the result set, the optimistic
estimate derived from this theorem implies a minimum number of instances that must
(at least) be covered by any subgroup that has a sufficiently high interestingness score.
In contrast to the other introduced optimistic estimates, this bound does not take the
distribution of the target variable in the subgroup into account. Therefore, it could be
expected that this bound is less tight than other optimistic estimates.

Example 8 Consider again the subgroup PA that covers 4 instances of the 8 instances
in the overall dataset. The optimistic estimate for the Kolmogorov-Smirnov interest-

ingness measure is then given by:
√

4·(8−4)
8 = √

2. The target values of the instances
covered by the subgroup do not influence the optimistic estimate.
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Rank-based measures

Theorem 17 Two optimistic estimate bounds for the Mann–Whitney interestingness

measure qmw′(P) =
√

iP
i¬P

· (RP
iP

− i∅+1
2 ) are given by:

oe1mw′(P) =
∑

c∈sg(P),ρ(c)>
i∅+1
2

(

ρ(c) − i∅ + 1

2

)

oemw′(P) =
√

i+P
(

ρmax
P − i∅ + 1

2

)

,

where ρ(c) is the rank of instance c in order of the target values, ρmax
P is the maximum

rank in the subgroup P and i+P = |{c ∈ sg(P) | ρ(c) >
i∅+1
2 }| is the number of

instances in the subgroup with a rank higher than the population’s rank mean.

Proof It holds for all refinements r with a positive interestingness value, that

qmw′(P) =
√

iP

i¬P

( R
iP

− i∅ + 1

2

)

≤ √

iP

( R
iP

− i∅ + 1

2

)

.

Since R
iP

is the mean of the ranks within the subgroup and i∅+1
2 is the mean of the

ranks in the overall population, the right part of this equation is equal to the mean test
function q0.5

mean if the target values are given by the ranks. Thus, we can transfer the
upper bounds from Theorem 11. However, these bounds are substantially less tight
for this interestingness measure due to the initial estimation. ��
Example 9 Consider again the subgroup PA in a dataset of 8 instances and assume
that the 4 instances covered by the subgroup have the ranks (in ascending order of
target values) ρ(c1) = 8, ρ(c2) = 7, ρ(c4) = 5 and ρ(c8) = 1. That means, for
example, that the instance c2 has the seventh lowest target value in the dataset. Then,
the optimistic estimates according to the above theorem are given by:

oe1mw′(PA) =
(

8 − 9

2

)

+
(

7 − 9

2

)

+
(

5 − 9

2

)

= 6.5

oemw′(PA) = √
3 ·

(

8 − 9

2

)

= √
3 · 3.5

The second bound is tighter in this example and is therefore used as the overall bound
for optimistic estimate pruning.

Theorem 18 If there are no ties in the ranks, then an optimistic estimate for the area-

under-the-curve interestingness measure qauc(P) = R¬P − i¬P ·(i¬P+1)
2

iP · i¬P
is given by:

oeauc(P) = i∅−ρmin
P

i∅−1 , where ρmin
P is the minimum rank for an instance in P.
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Proof Due to the construction of the area-under-the-curve the best subset of
sg(P) contains only one instance, which is the one with the lowest rank ρmin .

The interestingness of this refinement S is qauc(S) = R¬S − i¬S(i¬S+1)
2

iSi¬S
=

(i∅+1)i∅
2 − ρmin

P − i∅(i∅−1)
2

1 · (i∅ − 1)
= i∅ − ρmin

P

i∅ − 1
��

Note that these bounds in closed form for themeasure qauc are not guaranteed to return
optimal results in case of ties.

Example 10 Consider again the subgroup PA that covers instances with following
ranks with respect to the target concept. ρ(c1) = 8, ρ(c2) = 7, ρ(c4) = 5 and
ρ(c8) = 1 in a dataset that consists of 8 instances. Then, the above theorem provides
the optimistic estimate: oeauc(P) = 8−1

7 = 1. Since this is an overall bound for the
interestingness measure, pruning cannot be applied here.

5.3 Algorithms for subgroup discovery with numerical targets

Below, we present two novel algorithms for efficient subgroup discovery that integrate
the presented approaches regarding data structures and optimistic estimate bounds.
Both algorithms employ the same enumeration strategy, that is, depth-first-search
with one level look-ahead, but use different data structures and—as a consequence—
different optimistic estimate bounds.

5.3.1 The SD-Map* algorithm

The SD-Map* algorithm improves its predecessor SD-Map (Atzmueller and Puppe
2006) in several directions: while SD-Map focuses exclusively on binary targets, SD-
Map* extends the employed FP-tree data structure in order to determine statistics of
the numerical target concept as described in Sect. 5.1.1. The statistics contained in the
nodes of the FP-trees are used to compute not only the interestingness of subgroups,
but also their optimistic estimates. In that direction, SD-Map* allows the incorpora-
tion of pruning based on the bounds in closed-form expressions, which have been
presented in Sect. 5.2.4. Ordering-based bounds cannot be applied since the ordering
information is not captured by FP-tree representations (Lemmerich et al. 2012).

Pruning is applied in two different formswithin the algorithm: first, selector pruning
is performed in the recursive step, when a conditional FP-tree is built. A (conditioned)
branch is omitted if the optimistic estimate for the conditioning selector is below the
threshold given by the k best subgroup qualities. Second, header pruning is used,
when a (conditional) frequent pattern tree is constructed. Here, all the nodes with an
optimistic estimate below the mentioned interestingness threshold can be omitted.

To maximize the efficiency of pruning, the search strategy was also slightly
modified: instead of the basic depth-first-search used in the SD-Map algorithm,
SD-Map* applies amodifieddepth-first strategywith look-ahead, similar to theDpSub-
group algorithm proposed by Grosskreutz et al. (2008). Reordering of the search space
is performed by sorting of the header nodes: during the iteration over the candidate
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selectors for the recursive call, the selectors are reordered according to their optimistic
estimate value. In doing so, more promising selectors are evaluated first. In a top-k
approach, this helps to include high scoring subgroups early into the result set in order
to provide higher interestingness thresholds for more efficient pruning.

Algorithm 1 NumBSD algorithm
1: function NumBSD(maxDepth)
2: Sort(allInstances) // sort descendingly w.r.t. target values
3: TargetVal ← array of target values
4: for all sel in allSelectors do
5: bitsets(sel) ← createBitset(sel)
6: allT rue ← new bitset, all bits set to 1
7: recurse(allTrue, ∅, allSelectors, maxDepth)

1: function recurse(currentBitset, currentDescription, remainingSels, maxDepth)
2: next Selectors ← ∅
3: for all sel in remainingSels do
4: nextBitSet ← computeRefinement(currentSG,sel, result .minQ)
5: if nextBitSet.estimate > result.minQ then
6: next Bitsets(sel) ← nextBitset
7: next Selectors ← next Selectors ∪ sel
8: if nextBitSet.quality > result.minQ then
9: result.add (currentDescription ∪ sel)

10: if pre f i x .si ze < max Depth then
11: Sort(nextSelectors) // w.r.t. optimistic estimates
12: for all sel in next Selectors do
13: recurse(next Bitsets(sel), pre f i x ∪ sel, next Selectors \ sel, max Depth)

1: function computeRefinement(currentBitset, sel, minQualThreshold)
2: maxN ← Math.min(currentBitset, bitsets(sel).cardinality)
3: n ← 0
4: sum ← 0
5: maxEstimate ← 0;
6: refinement ← new bitset ()
7: for all i = 0 to countWords (currentBitset) do
8: refinement.word[i] ← currentBitset.word[i] AND bitsets(sel).word[i]
9: for all each bit b in refinement.bitset.word[i], that is set to true do
10: n ← n+1
11: currentValue ← TargetVal [global position of b]
12: sum ← sum + currentValue
13: maxEstimate = max (maxEstimate, computeQuality (n, sum))

14: sumEstimateAtEnd = sum + currentValue · (maxN - n);
15: maxOEatEnd = computeQuality (maxN, sumEstimateAtEnd)
16: if (maxEstimate < minQ ∧ maxOEatEnd < minQ) then
17: refinement.optEstimate = max (maxEstimate, maxOEatEnd)
18: return refinement % exploit fast pruning bounds

19: return refinement

5.3.2 The NumBSD algorithm

Although FP-tree-based approaches have shown excellent performance, they are not
applicable to all interestingness measures. Additionally, they cannot make use of the
tighter ordering-based pruning schemes. Furthermore, the construction of an initial
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FP-tree can require significant overhead, particularly if the search is limited to small
search depths. Therefore, we present the exhaustive subgroup discovery algorithm
NumBSD as an alternative: it uses an efficient vertical, bitset-based data structure as
described in the previous section. As search strategy, NumBSD employs a depth-first-
search approach with one level look-ahead, similar to the SD-Map* algorithm. The
algorithm applies efficient pruning strategies, including ordering-based bounds and
fast bounds, see Sects. 5.2.2 and 5.2.3.

The algorithm NumBSD and its sub-procedures are shown in Algorithm 1. It first
initializes the vertical data structures and then calls themain recursive function recurse.
This function consists of two parts. In the first part (lines 2–9) all direct specializations,
that is, all subgroups created by adding a single selector to the description of the
current subgroup, are considered. For these specializations the corresponding bitsets,
the interestingness value and the optimistic estimates are computed. This is achieved
efficiently in a single run through the subgroup by the method computeRefinement
described below. If the interestingness value of a specialization is sufficiently high,
then it is added to the result set. This potentially replaces a subgroup with a lower
interestingness score and increases the minimum required interestingness score of the
result set. Only if the optimistic estimate for a specialization exceeds the minimum
interestingness value of the result set, then this refinement is also considered for
the recursive search. In the second part of the function (lines 10–13), it calls itself
recursively for these candidate subgroups.

For the performance of the algorithm, an efficient computation of the bitset, the
interestingness score and the optimistic estimate of a refinement is essential. This is
performed in the function computeRefinement ofAlgorithm1. First, an upper bound for
the maximum number of instances of a refinement is given by the number of instances
for the current subgroup and for the additional selector. Each bitset technically consists
of words of 32 (respectively 64) bits. The bitset representing the instances of the
specialization spec is computed word by word by a logical AND between the bitset
of the current subgroup and the bitset of the new selector. Then, for each bit in this
word that is set to true (each instance of the refinement) the count and sum of target
values are adjusted. Based on these values the interestingness score of the current part
of the refinement is computed. When considering the i-th bit of the refinement, the
interestingness score is equal to q(sdesc

i ) for the refinement spec in the terminology
of Theorem 1. Thus the maximum of the interestingness scores computed in this
way determines a tight optimistic estimate for the subgroup under evaluation. Since
sdesc

iP
= sg(P), the last of these scores is equal to the interestingness of the overall

subgroup.
As a further improvement, the fast optimistic estimates, cf. Theorem 9 are checked

after each word of the bitset. If neither this bound nor any of the already computed
values q(sdesc

i ) are sufficiently high for the result set, then the evaluation of the current
subgroup can stop. Since the subgroup itself and all of its generalization will not
contribute to the result set, the exact values of the interestingness and the optimistic
estimate are not of interest anymore. Thus, parts of this computation can be safely
omitted using the fast bounds introduced previously. In the worst case, the method
computeRefinement requires one complete pass through the instances of the current
subgroup.
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Table 2 A summary of interestingness measure with respect to properties regarding efficient computation

Measure Notation Formula Estimate in
closed form

Estimable by
ordering

Computable
in SD-Map*

Impact q1mean(P) iP (μP − μ∅) Yes One-pass Yes

Mean-based qa
mean(P) iP

a(μP − μ∅) Yes One-pass Yes

z-score qz(P)
√

iP
(μP −μ∅)

σ0
Yes One-pass Yes

Variance-based qa
σ (P) iP

a(σP − σ∅) No No Yes

t-score qt (P)
√

iP
(μP −μ∅)

σP
No No Yes

Sym. mean-based qa
sym (P) iP

a |μP − μ∅| Yes Two-pass Yes

Variance reduction qvr (P)
iP

(i∅−iP )
(μP − μ∅)2 Yes Two-pass Yes

Generic median qa
med (P) iP

a(meds − med0) (Yes)a One-pass No

Kolmogorov–Smirnov qks (P)

√

iP ·i¬P
i∅ ΔP,¬P Yes Nob No

Mann–Whitney qmw(P)

√

iP
i¬P

(RiP
− i∅

2 ) Yes One-pass Yes

AUC qauc(P)
R̄− i¬P i¬P +1

2
iP i¬P

Yes One-pass Yes

a The generic measure itself cannot be computed by SD-Map*
b Not yet determined

This paper focuses on bitsets as vertical data representations. However, a very
similar algorithm could be obtained by employing other vertical data structures such
as TID-lists, see Zaki (2000). These could be expected to perform faster if the data is
sparse, i.e., if selectors cover only small fractions of the dataset.

5.4 Summary: interestingness measures and their computational properties

In the previous sections, we showed that efficiency optimizations for subgroup discov-
ery with numerical target concepts do strongly depend on the applied interestingness
measures.

Some interestingnessmeasures, such as the t-score, can be determined by SD-Map*,
taking full advantage of the more sophisticated, compressed FP-tree data structure.
Other interestingness measures in turn, cannot be determined by SD-Map* at all,
e.g., median-basedmeasures. Additionally, ordering-based optimistic estimate bounds
could be derived for a large variety of interestingnessmeasures, but for a fewexceptions
this was not possible, e.g., for the t-score.

Table 2 summarizes interestingness measures with respect to their computational
properties. In particular, the table shows for each interestingness measure if there is an
optimistic estimate in closed form presented in this work that can be computed using
FP-trees, if it is estimable by ordering, and if the measure itself is computable by the
SD-Map* algorithm.
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6 Evaluation

The benefits of the proposed improvements were evaluated in a wide range of exper-
iments. The algorithms were implemented in the open source subgroup discovery
environment VIKAMINE1 (Atzmueller and Lemmerich 2012). Runtime experiments
were performed on a standard office PC with a 2.2 GHz CPU and 2 GB RAM. Exper-
iments that count the number of evaluated candidates were executed on additional
machines since results are independent of the hardware performance.

The experiments used publicly available datasets from the UCI (Lichman 2013)
and KEEL (Alcala-Fernandez et al. 2011) data repositories. For nominal attributes,
attribute-value pairs were used as selectors. Numerical attributes in the search space
were discretized into ten intervals by equal-frequency discretization. Runtimes are
reported for the full algorithms including the initial sorting step (if required), but
excluding loading and pre-processing such as determining the selector set for the
search. No overlapping intervals were generated. Due to their popularity (Klösgen
1996;Wrobel 1997;Webb 2001; Grosskreutz 2008; Atzmueller and Lemmerich 2009;
Lemmerich and Atzmueller 2012; Atzmueller and Lemmerich 2013), a focus of the
experiments is on generic mean-based interestingness measures.

The evaluation section is structured as follows: we first investigate the influences
of the adapted data structures and optimistic estimate bounds separately, before the
runtimes of the full-featured algorithms are compared and specific findings on SD-
Map* and NumBSD are discussed. Then, the influence of the result set size and the
impact of the bounds using limited information, see Sect. 5.2.3, are evaluated. Finally,
we summarize the experimental results, and discuss implications for the application
of the proposed algorithms.

6.1 Effects of optimistic estimates

The first set of experiments evaluated the use of the introduced optimistic estimate
bounds. In that direction, a subgroup discovery algorithm with depth-first-search with
one level look-ahead and no reordering of the search space, cf. Sect. 5.3.1, was run.
Several interestingness measures were tested with a fixed maximum search depth,
that is, a maximum numbers of selectors in a description, of d = 5 (d = 4 for two
datasets due to long runtimes). For the optimistic estimate pruning, a top-1 approach
was applied, that is, only the one subgroupwith the top score was sought. Each runwas
executed three times in different variations: with no optimistic estimate pruning, with
optimistic estimate pruning using the bounds in closed form and with ordering-based
optimistic estimate pruning. For each variation, the number of evaluated candidates in
recursive calls, that is, after the initial evaluation of the basic selectors (not including
these), was counted. The respective results are summarized in Tables 3 and 4.

It is evident that the number of required evaluations is reduced substantially by
applying the presented optimistic estimate bounds. Regarding different mean-based
interestingness measures, optimistic estimate pruning has generally less impact if the

1 Available at www.vikamine.org.
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Table 3 Comparison of pruning schemes, i.e., no pruning (None), ordering-based bounds (Order.) and
bounds in closed form (Closed)

Dataset None 1.0 0.5 0.1 0.0

Closed Order. Closed Order. Closed Order. Closed Order.

Adults 8,503,218 253 253 87,800 1872 410,321 32,873 1252 1252

Ailerons 984,289,405 4298 4298 912,256 4384 46,081,383 148,830 1470 1470

Autos 12,316,190 17 17 8347 66 52,764 1884 134 134

Breast-w 219,993 12 12 427 19 6413 963 132 132

Census-kdd* 73,374,193 1815 1815 262,179 19,012 3,576,514 145,315 1554 1554

Communities* >2 × 109 22 22 384,142 92 22,581,558 79,187 2248 2248

Concrete_data 209,041 19 19 2532 131 3936 707 457 457

Credit-a 2231,118 277 277 26,358 940 17,105 867 777 777

Credit-g 8,389,271 364 364 88,883 906 84,227 383 319 319

Diabetes 350,466 17 17 5113 102 2008 316 342 342

Elevators 121,983,859 62 62 54,677 388 214,793 2389 1133 1133

Flare 101,946 29 29 446 446 1497 1497 5 5

Forestfires 1,209,242 30 30 1090 172 875 164 161 161

Glass 141,714 13 10 81 17 529 87 147 147

Heart-c 823,995 224 224 14,086 975 5942 516 357 357

House 173,768,450 21 21 182,583 482 465,228 13,424 769 769

Housing 1,554,972 43 43 4885 387 4011 273 127 129

Letter 69,157,431 8 8 10,226 9 183,379 3409 988 990

mv 5,542,943 34 29 60 35 2262 34 1499 1499

pole 47,553,142 48,077 48,077 144,353 72,851 650,349 146,175 270 270

Sonar 1,737,064,885 12 12 15,521 12 156,647 1253 1208 1208

Spambase 1,045,755,337 2,741,042 2,741,042 44,663,301 6,726,031 11,381,117 2,923,091 878 878

Ticdata 1,254,395,632 1,783,651 1,783,651 249,736,031 5,658,523 288,205,279 6,370,265 61 61

Yeast 291,042 23 23 1941 27 3190 259 217 217

The table provides numbers of subgroups that had to be evaluated in a depth-first-search with one level look-
ahead and no reordering of the search space (not counting the basic selectors). The search was restricted
to a maximum of 5 selectors (only 4 for the two datasets marked with a “*” due to long runtimes). For
the applied mean-based interestingness measures, different parameters a were evaluated as indicated in the
column headers. If no pruning is applied, the number of required candidate evaluations is independent from
the applied interestingness measure

parameter a in the interestingness measures is lower (e.g., a = 0.5 and a = 0.1), that
is, if deviations of the target concept are more important (see Table 3). This can be
explained by the fact that even small subgroups can achieve high scores in this scenario
and thus the anti-monotonicity of the subgroup size is more difficult to exploit in these
cases. An exception is the extreme parameter a = 0, which is equivalent to the average
interestingness measure: since the best refinement of a subgroup is already determined
by the single instance with the highest target value, all subgroups that do not cover
one of the instances with high target values can immediately be pruned by applying
the novel estimates of Theorem 12.

For the extreme settings a = 1 and a = 0, the bounds in closed form are tight,
that is, they allow for the same amount of pruning as ordering-based bounds. For the
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intermediate settings a = 0.5 and a = 0.1, bounds in closed forms are consider-
ably less precise. Therefore, often substantially more candidates must be evaluated
in comparison to ordering-based bounds. However, the optimistic estimate bounds in
closed form still reduce the number of required evaluations by orders of magnitude in
comparison to the unpruned search space. Note that ordering-based bounds cannot be
combined with all data structures and come at higher computational costs.

Also for other interestingness measures, see Table 4, applying optimistic estimate
bounds can lead to a significant reduction of necessary subgroup evaluations.However,
the amount of that reduction is of course heavily influenced by the utilized interest-
ingness measure. For the symmetric mean-based measure and the variance reduction,
the number of evaluated candidates is often decreased to less than 1000, if ordering-
based optimistic estimates are applied. The optimistic estimates in closed form are less
tight, but still reduce the number of required evaluations by an order of magnitude or
more. Ordering-based bounds are also very effective for the other investigated inter-
estingness measures, that is, the median-based measure q0.5

med(P), the Mann-Whitney
measure qmw(P), and the area-under-the-curve qauc(P). Regarding optimistic esti-
mates in closed form, even relatively simple-to-derive bounds can reduce the number
of required candidate evaluations substantially, as indicated by the results for the
Kolmogorov-Smirnov interestingness measure. The least effective bounds were by far
the optimistic estimates for the Mann–Whitney, which only was able to prune about
40% of the candidates on average. Overall, the reduction of required candidate evalu-
ations was substantial for almost all evaluated interestingness measures and datasets.
The remainder of the evaluationwill focus on themean-based interestingnessmeasures
with different parameterizations.

6.2 Influences of data structures

In the next series of experiments, the effects of different data structures were investi-
gated.Regarding that aspect, the runtimes of the presented algorithmswithout applying
optimistic estimate pruning were measured. This was performed for the NumBSD
algorithm, which is based on a bitset-based representation, as well as for the SD-
Map* algorithm, which is based on FP-trees. For comparison, the task was also solved
by a simple depth-first-search without any specialized data structure (repeated check-
ing of the selection expressions in memory). Since no optimistic estimate bounds
are exploited, the runtime was (almost) independent from the applied interestingness
measure and size of the result set k, similar to previous experimental evaluations (Lem-
merich et al. 2012). The experiments were performed with different maximum search
depths d = 2, . . . , 6. Table 5 displays representative results for the measure q0.5

mean
and a result set size of k = 1.

The results show that both introduced data structures—the bitset-based structure
as well as the FP-tree-based representation—substantially outperform the simple
approach. A direct comparison between the two approaches is more difficult: for
lower search depths (d = 2, 3, 4), bitset-based structures usually enable faster run-
times than FP-trees. The differences reach an order of magnitude for some datasets,
e.g., for the communities and spambase datasets. For higher search depths (d = 5, 6),
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the results are more ambiguous: for some datasets the bitsets perform better, for some
they performworse than FP-trees. In particular, for datasets with a high instance count,
the FP-tree-based approach is able to finish the tasks fast. In the census-kdd dataset,
which is the largest tested dataset (in terms of instances), FP-trees perform better than
bitsets already at a search depth of 4. This can be explained by the fact that the FP-
trees achieve a better compression of the data in datasets with a high instance count.
Additionally, for higher search depths, subgroups cover only small parts of a dataset
leading to sparsely populated bitsets. In these cases, using TID-lists (cf. Zaki 2000)
instead of bitsets might lead to improved runtimes. This is to be explored in future
work.

In summary, FP-trees are the data structure of choice if the dataset contains many
instances, and if the maximum allowed number of selectors in a description is large.
By contrast, bitsets are preferred if the search is restricted to low search depths, or
if the instance count is comparatively low. For some interestingness measure, it is
not possible to derive optimistic estimate bounds, e.g., for generic variance-based
measures or the t-score. Therefore, the runtimes of the algorithms without optimistic
estimate pruning shown in Table 5 reflect the actual algorithm runtimes for these
measures.

6.3 Runtimes of the full algorithms

Another series of experiments compared the runtimes of the full algorithms.Exemplary
results of these evaluations are shown in Tables 6 and 7. Experiments depicted in
Table 6 utilized different interestingness measures and a fixed search depth of d = 5
in a top-1 search . By contrast, experiments shown in Table 7 employed the fixed
interestingness measure q0.5

mean , but a variable search depth.
The results in Table 6 indicate that for a search depth of d = 5, the application of

optimistic estimate bounds leads to a substantial reduction of runtimes in comparison
to the variations without optimistic estimate pruning in almost all cases, cf. Table 5.
The largest improvements can be observed for the interestingness measures q1

mean
and q0

mean . This corresponds the respective reduction in necessary candidate evalua-
tions, see Table 3. Although the applied pruning bounds are in theory tighter for the
NumBSD algorithm, the speedups are often larger for the SD-Map* algorithm. This
has two reasons: first, pruning in SD-Map* is exploited twice, as header pruning and
as selector pruning when conditional trees are built. Since the size of the conditional
trees is reduced by pruning, not only fewer candidate evaluations are required with
optimistic estimates, but each candidate evaluation also takes less time to compute.
Second, the computation of the ordering-based bounds in NumBSD is more costly
in itself. In one single experiment with unfavorable pruning properties, the compu-
tational costs for determining the bounds in this algorithm outweighed the use of
pruning, that is, for the spambase dataset and the interestingness measure q0.5

mean . For
the interestingness measure q0

mean , the runtimes of SD-Map* are surprisingly high in
the datasets spambase and aileron. This could be explained by the fact that for this
interestingness measure and these datasets very specific subgroups have to be found
early to exploit the optimal bounds. Additionally many ties occur in the sorting based
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Table 6 Comparison of the full algorithms: the table shows the runtimes in seconds for NumBSD (BSD)
and for SD-Map* (SDM) with all pruning options enabled for different interestingness measures

Dataset No pruning q1mean q0.5mean q0.1mean q0mean

BSD SDM BSD SDM BSD SDM BSD SDM BSD SDM

Adults 103.8 42.5 0.8 2.3 11.1 6.1 19.7 14.1 1.3 2.5

Ailerons >4h 10,554.0 6.0 1.7 45.3 17.7 95.5 3345.9 0.6 147.0

Autos 20.6 36.3 <0.1 < 0.1 <0.1 0.1 <0.1 0.3 <0.1 <0.1

Breast-w 0.3 0.4 <0.1 <0.1 < 0.1 <0.1 < 0.1 <0.1 <0.1 <0.1

Census-kdd >4h >4h 53.3 52.6 5184.3 1110.2 > 4h 5795.2 35.0 52.1

Communities >4h >4h 0.1 0.9 0.1 4.3 2.0 108.0 0.3 0.9

Concrete_data 0.4 0.5 < 0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1

Credit-a 4.1 6.6 <0.1 <0.1 0.1 0.2 <0.1 0.2 <0.1 <0.1

Credit-g 18.8 40.8 <0.1 0.1 0.2 0.9 0.1 0.9 <0.1 0.1

Diabetes 0.5 0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Elevators 672.1 309.0 0.2 0.9 1.0 2.4 1.9 4.1 0.3 0.9

Flare 0.3 0.4 <0.1 <0.1 0.1 <0.1 0.1 <0.1 <0.1 <0.1

Forestfires 2.0 2.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Glass 0.2 0.3 < 0.1 < 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Heart-c 1.3 1.8 <0.1 < 0.1 <0.1 0.1 <0.1 0.1 <0.1 <0.1

House 1149.7 464.3 0.2 1.5 0.8 6.1 1.5 7.3 0.6 1.3

Housing 2.5 3.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Letter 436.6 275.2 0.1 1.3 0.2 3.9 0.7 10.5 0.5 1.5

mv 76.0 27.5 1.0 1.7 1.9 1.4 0.9 2.8 0.9 1.6

Pole 430.7 447.8 26.8 1.6 263.0 38.6 186.8 81.0 0.3 2.5

Sonar 2971.2 9084.8 <0.1 <0.1 <0.1 0.1 <0.1 0.4 <0.1 <0.1

Spambase 4626.0 >4h 692.9 609.5 7657.5 4269.1 3319.2 1900.3 0.2 151.2

Ticdata >4h >4h 820.4 56.9 12686.5 >4h 5588.2 >4h 0.1 1.0

Yeast 0.5 0.7 < 0.1 <0.1 <0.1 0.1 <0.1 0.1 <0.1 <0.1

The search was limited to a maximum search depth of d = 5. The first two columns show results of the
algorithms without optimistic estimate pruning for comparison

on the optimistic estimates, which are differently solved in the different algorithm
implementations. Therefore, SD-Map* explores more candidates than necessary in
the best case. However, there is still a substantial speedup in comparison to unpruned
algorithm variants.

The runtimes of both proposed algorithms differ significantly in several cases.
Unfortunately, a recommendation for choosing between the two novel algorithms for
a certain task remains difficult. As a tendency, SD-Map* is preferred for the inter-
estingness measures that select subgroups with higher coverage (q1

mean and q0.5
mean) if

the runtime is not very short (<5 s) anyway. On the other hand, NumBSD is in gen-
eral faster for q0.1

mean and q0
mean . However, there are several exceptions for this rule of

thumb.
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750 F. Lemmerich et al.

Table 7 Comparison of the full algorithms: the table shows the runtimes in seconds of NumBSD (BSD),
and SD-Map* (SDM) with all pruning options enabled for different maximum search depths d

Dataset d = 2 d = 3 d = 4 d = 5 d = 6

BSD SDM BSD SDM BSD SDM BSD SDM BSD SDM

Adults 2.5 3.7 5.0 4.3 8.4 5.1 11.1 6.1 12.5 7.0

Ailerons 3.1 4.6 7.9 5.8 20.9 9.1 45.3 17.7 78.4 41.3

Autos <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.1

Breast-w <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Census-kdd 92.2 96.6 353.6 199.1 1490.7 462.8 5184.3 1110.2 >4h 3469.5

Communities 0.2 4.0 0.2 4.0 0.2 4.1 0.1 4.3 0.2 4.4

Concrete_data <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Credit-a 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2

Credit-g 0.1 0.3 0.1 0.5 0.2 0.7 0.2 0.9 0.2 1.0

Diabetes <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Elevators 0.6 2.1 0.8 2.2 0.9 2.2 1.0 2.4 1.1 2.3

Flare <0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1

Forestfires <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Glass <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Heart-c <0.1 <0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1

House 0.7 5.3 0.7 5.5 0.7 5.6 0.8 6.1 0.7 5.6

Housing <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1

Letter 0.2 3.7 0.2 3.8 0.2 3.8 0.2 3.9 0.2 3.8

mv 1.7 1.4 1.7 1.2 1.7 1.2 1.9 1.4 1.7 1.3

Pole 3.5 2.7 18.6 5.9 79.8 14.7 263.0 38.6 699.2 90.2

Sonar <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1

Spambase 6.0 21.2 87.6 131.2 865.4 781.6 7657.5 4269.1 >4h >4h

Ticdata 10.0 88.5 125.9 539.1 1429.2 2939.1 12686.5 >4h >4h >4h

Yeast <0.1 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.1

As interestingness measure, the mean test q0.5mean was used

Table 7 displays the algorithm runtimes for different search depth using the inter-
estingness measure q0.5

mean . A comparison to the unpruned algorithms, see Table 5,
shows substantial runtime improvements in most cases. The improvements were in
particular strong for larger search depths, i.e., d = 5 and d = 6, where most run-
times decreased by more than an order of magnitude. For several datasets, the runtime
did not (or only marginally) increase with higher search depths, e.g., for the datasets
autos, communities, or elevators. This is a sharp contrast to the variants which do not
employ optimistic estimate pruning and can be explained by the fact that already at
search level two or three all further candidates can be pruned. Also for medium search
depths d = 3 and d = 4, substantial runtime improvements can be observed in most
cases with runtimes >5 s, but the performance gains are not as large as for the high
depth searches. For the minimum search depth d = 2, the gains for SD-Map* were
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Fast exhaustive subgroup discovery with numerical target concepts 751

only moderate, while NumBSD took even more time than its variation without prun-
ing. At this low search depth, the effects of the pruning seems to have less influence
than the additional computational costs for computing the bounds. However, for this
search depth the runtimes of NumBSD were very low in most cases anyway. For a
few datasets the costs for computing the optimistic estimates exceeded the gains from
utilizing the pruning bounds even for higher search depth, e.g., in the datasets ticdata
and spambase. This was never the case for the SD-Map* algorithm.

Comparing both novel algorithms with each other, SD-Map* excels for higher
search depths (d ≥ 4), where it outperforms NumBSD for most experiments with rel-
evant runtimes, that is, if tasks take more than five seconds to complete. By contrast,
for the lower search depths d = 3 and especially d = 2, NumBSD performs better.
In these cases, the overhead necessary for the FP-trees in SD-Map* seems to be too
high to be worth it. These results are in general in line with the previous recommen-
dations for the unpruned algorithm versions. However, since SD-Map* does profit
more from the optimistic estimate bounds than NumBSD, it also performs better at
the medium search depths d = 3 and d = 4 in several cases. The runtimes and thus
the preferences of the algorithms do not correlate as strongly with the dataset size as
in the unpruned variants, but also depend strongly on the pruning opportunities in the
respective datasets. Unfortunately, the respective properties are difficult to determine
beforehand.

In additional experiments, similar runtime improvements as for the mean-based
interestingness measure could also be observed for other interestingness measures,
such as median-based measures. As observed for the mean-based measures, the actual
algorithm runtimes are highly correlated with the number of required candidate eval-
uations for the respective measure, cf. Table 4.

6.4 Influence of the result set size

In a top-k approach, the size of the result set k influences the effects of optimistic
estimate pruning. Since it is exploited that candidates receive for sure a lower score
than the best k subgroups found so far, pruning can be applied less often and more
candidate subgroups must be explored for larger values of k. In another series of
experiments we studied the influence of the result set size k on the number of required
subgroup evaluations. Table 8 shows the number of candidate evaluations that were
performed in a depth-first-search with one level look-ahead for different mean-based
interestingness measures and different sizes k of the result set. The search depth was
limited to d = 5 (d = 4 for some datasets with high runtimes). For pruning, ordering-
based bounds were applied.

The results show that the number of evaluated candidates increases with the size
of the result set. Nonetheless, the number of evaluated candidates is still smaller by
orders of magnitudes than in a search without optimistic estimates. Fortunately, the
(relative) increase is much more moderate for datasets that require large numbers of
subgroup evaluations evenwith optimistic estimate pruning, see the datasets spambase
and ticdata. This can be explained by the fact that the large amount of evaluations is
required, because the dataset contains many subgroups with similar scores according

123



752 F. Lemmerich et al.

Ta
bl
e
8

C
om

pa
ri
so
n
of

ca
nd

id
at
e
ev
al
ua
tio

ns
fo
r
di
ff
er
en
ts
iz
es

of
th
e
re
su
lt
se
tk

if
or
de
ri
ng
-b
as
ed

op
tim

is
tic

es
tim

at
e
pr
un
in
g
is
ap
pl
ie
d

D
at
as
et

an
y

k
q
1.
0

m
ea

n
q
0.
5

m
ea

n
q
0.
1

m
ea

n
q
0.
0

m
ea

n

k
=

1
k

=
10

k
=

10
0

k
=

1
k

=
10

k
=

10
0

k
=

1
k

=
10

k
=

10
0

k
=

1
k

=
10

k
=

10
0

A
du

lts
8,
50

3,
21

8
25

3
99

0
64

53
18

72
47

93
21

,
85

4
32

,
87

3
50

,
81

1
72

,
00

1
12

52
32

60
14

,
85

3

A
ile

ro
ns

98
4,
28

9,
40

5
42

98
48

90
13

,
05

5
43

84
54

40
18

,
93

5
14

8,
83

0
17

3,
32

0
22

3,
99

3
14

70
21

77
84

26

A
ut
os

12
,3
16

,1
90

17
15

9
36

85
66

29
1

42
83

18
84

28
02

60
32

13
4

32
4

10
47

B
re
as
t-
w

21
9,
99

3
12

86
37

10
19

17
8

37
51

96
3

17
02

38
19

13
2

20
6

88
9

C
en
su
s-
kd

d*
73

,3
74

,1
93

18
15

34
13

10
,
29

1
19

,
01

2
22

,
47

4
42

,
81

5
14

5,
31

5
16

9,
73

4
19

6,
45

7
15

54
62

70
34

,
24

4

C
om

m
un

iti
es
*

>
2

×
10

9
22

29
0

10
,
84

9
92

12
66

32
,
85

2
79

,
18

7
12

6,
79

6
31

4,
54

6
22

48
31

67
36

64

C
on

cr
et
e_
da
ta

20
9,
04

1
19

33
6

47
44

13
1

86
6

42
94

70
7

97
1

40
34

45
7

56
4

39
21

C
re
di
t-
a

2,
23

1,
11

8
27

7
14

97
11

,
16

9
94

0
62

41
18

,
98

2
86

7
30

49
11

,
55

1
77

7
25

77
11

,
11

9

C
re
di
t-
g

8,
38

9,
27

1
36

4
17

67
16

,
37

5
90

6
87

03
24

,
60

4
38

3
49

0
17

93
31

9
41

4
17

43

D
ia
be
te
s

35
0,
46

6
17

35
1

88
91

10
2

29
71

80
01

31
6

43
0

41
53

34
2

43
4

39
35

E
le
va
to
rs

12
1,
98

3,
85

9
62

38
0

87
19

38
8

24
08

84
78

23
89

30
90

59
27

11
33

18
63

57
29

Fl
ar
e

10
1,
94

6
29

22
7

16
92

44
6

12
10

30
62

14
97

24
87

54
02

5
84

21
5

Fo
re
st
fir
es

1,
20

9,
24

2
30

30
3

31
46

17
2

33
0

21
28

16
4

41
1

20
51

16
1

41
5

20
51

G
la
ss

14
1,
71

4
10

14
3

47
50

17
36

0
46

78
87

16
8

11
57

14
7

23
3

11
38

H
ea
rt
-c

82
3,
99

5
22

4
10

77
5,
77

2
97

5
42

48
92

03
51

6
64

8
16

54
35

7
53

7
14

90

H
ou

se
17

3,
76

8,
45

0
21

22
5

11
,
53

4
48

2
42

98
27

,
14

0
13

,
42

4
18

,
54

4
35

,
00

4
76

9
83

2
23

87

H
ou

si
ng

1,
55

4,
97

2
43

11
6

81
,
06

5
38

7
68

8
81

,
70

6
27

3
43

0
80

,
45

7
12

7
42

7
80

,
17

1

L
et
te
r

69
,1
57

,4
31

8
38

1
14

,
79

8
9

10
98

20
,
22

9
34

09
57

97
13

,
85

4
98

8
16

78
48

52

m
v

5,
54

2,
94

3
34

12
99

94
50

35
20

73
9,
65

5
34

15
24

10
,
50

8
14

99
61

22
33

,
68

7

Po
le

47
,5
53

,1
42

48
,
07

7
52

,
89

0
3,
37

8,
45

8
72

,
85

1
10

8,
18

9
3,
41

6,
27

9
14

6,
17

5
19

6,
30

1
3,
66

4,
01

5
27

0
37

4
3,
28

7,
77

4

123



Fast exhaustive subgroup discovery with numerical target concepts 753

Ta
bl
e
8

co
nt
in
ue
d

D
at
as
et

an
y

k
q
1.
0

m
ea

n
q
0.
5

m
ea

n
q
0.
1

m
ea

n
q
0.
0

m
ea

n

k
=

1
k

=
10

k
=

10
0

k
=

1
k

=
10

k
=

10
0

k
=

1
k

=
10

k
=

10
0

k
=

1
k

=
10

k
=

10
0

So
na
r

1,
73

7,
06

4,
88

5
12

21
9

85
86

12
20

94
12

,
71

8
12

53
22

97
42

15
12

08
27

06
36

32

Sp
am

ba
se
*

35
,5
45

,8
51

30
4,
18

7
42

7,
42

9
58

3,
27

5
64

1,
29

6
64

6,
13

3
66

1,
43

9
31

0,
58

7
31

3,
09

4
32

2,
89

1
87

8
19

41
13

,
10

6

T
ic
da
ta
*

43
0,
96

6,
97

4
21

8,
92

1
22

8,
15

7
25

5,
67

5
65

0,
63

8
69

7,
81

2
92

9,
89

7
83

7,
23

9
91

6,
10

5
1,
04

6,
66

7
61

34
98

12
,
78

7

Y
ea
st

29
1,
04

2
23

48
1

31
82

27
65

6
30

22
25

9
77

2
29

85
21

7
52

2
27

87

A
s
in
te
re
st
in
gn
es
s
m
ea
su
re
,s
ev
er
al
m
ea
n-
ba
se
d
in
te
re
st
in
gn
es
s
m
ea
su
re
s

q
a m

ea
n
w
er
e
us
ed
.T

he
m
ax
im

um
se
ar
ch

de
pt
h
(m

ax
im

um
nu

m
be
ro

fs
el
ec
to
rs
in
a
de
sc
ri
pt
io
n)

w
as

lim
ite
d
to

d
=

5
(d
ue

to
lo
ng

ru
nt
im

es
d

=
4
fo
r
th
e
da
ta
se
ts
m
ar
ke
d
w
ith

“*
”)

123



754 F. Lemmerich et al.

to the applied interestingness measure. In this case, the number of required evaluations
is also less influenced by the size of the result set k.

Additionally, we also tested the runtime of the full algorithms for higher settings
of k. Table 9 shows the runtimes for k = 100. In comparison with the previous
results, see Table 6, the runtimes are in many cases only marginally increased. How-
ever, for some datasets and interestingness measures the algorithms take significantly
more time. In particular, for the average interestingness measure q0.0

mean the runtimes
for SD-Map* are increased in comparison to a top-1 search, see for example the
datasets census-kdd or ticdata. Nonetheless, the algorithms are still substantially
faster than their counterparts that do not employ optimistic estimate pruning. Overall,
the presented optimistic estimate bounds are also clearly useful for larger result set
sizes.

6.5 Effects of the fast pruning bounds

Section 5.2.3 introduced a new category of optimistic estimates that can already be
applied if only a part of the current subgroup is analyzed. These are incorporated in
the NumBSD algorithm and were also included in the previous experiments. To mea-
sure the effects of the novel bounds, the runtimes of the full NumBSD algorithm was
compared with a variation that did not employ these bounds. The search employed a
maximum search depth of d = 5 and differently parametrized mean-based interest-
ingness measures. The results are shown in Table 10. Datasets, for which the tasks
could be solved very fast (<0.2 s) by both variants, are omitted.

The results indicate that the influence of the additional bounds that can be com-
puted early in the evaluation process is somewhat limited. The runtimes are most
improved for the interestingness measure q1

mean : For this measure, the improvements
for most datasets are between 10 and 40%. Pruning bounds for this measure seem
to be more easily exploitable since this measure requires subgroups that cover many
instances.

For other interestingnessmeasure the benefits are less significant: they donot exceed
10% in many cases. However, only in a single setting (for the dataset mv), the com-
putational efforts of determining the additional bounds were higher than the saved
efforts. Potentially, this kind of pruning requires additional optimization in the imple-
mentations to show its full benefits, e.g., by checking the additional bounds only at
certain points in the evaluation.

Overall, it has to be reported that for now the novel advanced (“fast”) type of
bounds does not have the decisive effect yet. Instead, it is more of a minor addition in
order to optimize the algorithm. However, in the future, this kind of pruning could be
exploited with possibly stronger effects in distributed subgroup mining: if nodes are
assigned to computational units according to their target values, and pruning bounds
can already be applied at one unit, then the other units are not required to be involved,
thus potentially reducing the overall communication costs significantly.
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Table 9 Comparison of the full algorithms with a larger result set size: the table shows the runtimes
in seconds for NumBSD (BSD) and for SD-Map* (SDM) with all pruning options enabled for different
interestingness measures

Dataset q1mean q0.5mean q0.1mean q0mean

BSD SDM BSD SDM BSD SDM BSD SDM

Adults 3.1 4.3 24.6 8.4 32.8 15.8 1.7 9.0

Ailerons 6.8 2.4 57.7 19.9 219.7 3,379.0 0.7 459.1

Autos < 0.1 <0.1 0.1 0.1 0.1 0.3 <0.1 0.1

Breast-w < 0.1 <0.1 0.1 0.1 0.1 0.1 <0.1 0.1

Census-kdd 122.8 71.3 5505.0 1150.7 >4h 5914.2 36.1 1876.5

Communities 0.3 0.8 1.6 8.8 7.2 184.3 0.3 1.0

Concrete_data < 0.1 <0.1 0.1 0.1 <0.1 0.1 <0.1 0.1

Credit-a 0.1 0.1 0.3 0.3 0.1 0.3 0.1 0.1

Credit-g 0.2 0.1 1.3 1.9 0.1 1.3 <0.1 0.8

Diabetes < 0.1 <0.1 0.1 0.1 <0.1 0.1 <0.1 < 0.1

Elevators 0.7 1.4 3.6 2.9 3.9 4.5 0.4 1.5

Flare < 0.1 0.1 0.2 0.1 0.2 0.1 <0.1 0.1

Forestfires < 0.1 <0.1 <0.1 0.1 <0.1 0.1 <0.1 < 0.1

Glass < 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 0.1

Heart-c < 0.1 <0.1 0.2 0.2 <0.1 0.1 <0.1 0.1

House 0.9 2.7 3.4 9.9 2.7 8.7 0.6 2.3

Housing < 0.1 <0.1 0.1 0.1 <0.1 0.1 <0.1 0.1

Letter 0.8 2.6 2.8 7.9 1.1 11.8 0.5 3.4

mv 2.0 2.9 8.0 3.2 2.9 4.0 1.1 3.3

Pole 29.0 2.4 273.9 40.5 280.3 95.8 0.3 7.6

Sonar 0.1 0.1 0.2 0.3 0.1 0.5 0.1 < 0.1

Spambase 701.2 618.6 7708.3 4306.6 3338.9 1906.4 0.2 812.7

Ticdata 843.7 58.9 12,880.8 >4h 6354.5 >4h 1.1 2030.8

Yeast < 0.1 0.1 0.2 0.1 0.1 0.1 <0.1 0.1

The search was limited to a maximum search depth of d = 5 and used a result set size of k = 100

6.6 Evaluation summary

The experiments clearly showed the effectiveness of the proposed improvements.
The presented optimistic estimates were able to substantially reduce the number of
required candidate evaluations for almost all interestingness measures. As expected,
ordering-based bounds had even stronger effects, but bounds in closed formswere good
approximations most of the time. Regarding data structures, both novel data structures
outperformed a simple approach by far. While for searches with high search depths
and large datasets the FP-tree structure enabled faster completion of the tasks, a bitset-
based structure is better suited for the other tasks. A comparison of the full algorithms
showed that improvements on data structures and optimistic estimate bounds can
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Table 10 Evaluation of the full NumBSD (BSD) algorithm with a variation that does not employ the fast
pruning bounds that can already be exploited by evaluating a part of the subgroup (NoFP)

Dataset q1mean q0.5mean q0.1mean q0mean

NoFP BSD NoFP BSD NoFP BSD NoFP BSD

Adults 1.7 0.8 14.4 11.1 27.4 19.7 1.4 1.3

Ailerons 6.5 6.0 47.1 45.3 110.9 95.5 0.6 0.6

Census-kdd 89.6 53.3 5872.8 5184.3 >4h >4h 35.6 35.0

Communities 0.2 0.1 0.4 0.1 3.9 2.0 0.3 0.3

Credit-g 0.1 <0.1 0.4 0.2 0.1 0.1 < 0.1 < 0.1

Elevators 0.3 0.2 1.3 1.0 3.2 1.9 0.3 0.3

House 0.5 0.2 1.2 0.8 3.2 1.5 0.6 0.6

Letter 0.4 0.1 0.7 0.2 1.0 0.7 0.5 0.5

mv 0.7 1.0 1.3 1.9 1.0 0.9 0.8 0.9

Pole 34.0 26.8 282.6 263.0 204.8 186.8 0.3 0.3

Spambase 853.1 692.9 7989.2 7657.5 3555.2 3319.2 0.2 0.2

Ticdata 1019.4 820.4 >4h 12686.5 6440.6 5588.2 0.4 0.1

The comparison was performed with a maximum search depth of d = 5 and different mean-based inter-
estingness measures. Datasets, for which the tasks could be solved very fast (<0.2 s) by both variants, are
omitted

be combined well. The incorporation of the bounds further reduced the runtimes by
an order of magnitude. The SD-Map* algorithm did profit more from the additional
pruning bounds since also the computational costs for single candidate evaluations are
reduced. Although increasing the size of the result set reduces pruning possibilities,
still the vast majority of the search space can be pruned in most cases. Unfortunately,
a clear recommendation between the two novel algorithms remains difficult. As a
tendency, SD-Map* is to be preferred for more demanding tasks with higher search
depths, while NumBSD performs better for low search depths.

7 Conclusions

In this paper, we investigated efficient exhaustive subgroup discovery with numerical
target concepts. In order to provide a broad overview, we first surveyed interestingness
measures for this setting from literature. These included mean-based, variance-based,
median-based, and rank-based interestingness measures as well as a measure based
on the Kolmogorov-Smirnov statistical test.

After that, we presented novel techniques to enable efficient exhaustive mining:
we presented the adaptation of efficient data structures for the numerical target set-
ting, that is, FP-trees and bitset-based data structures. Additionally, we investigated
optimistic estimate bounds for pruning the search space and derived novel bounds for
the discussed interestingness measures. In this context, we introduced ordering-based
bounds as a flexible formalism that allows to derive optimistic estimates for interest-
ingness measures with no previously known bounds. Additionally, we presented fast
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bounds that require only limited information about a subgroup and bounds in closed
form that can also be determined in FP-trees. The proposed techniques, i.e., data struc-
tures and optimistic estimates, were incorporated in two novel algorithms, SD-Map*
and NumBSD. Using these, we provided an extensive experimental evaluation with 24
publicly available datasets. As a result, both novel algorithms outperformed simple
approaches by orders of magnitudes. Possible advantages of one algorithm over the
other were discussed.

For future work, a comparison of exhaustive and heuristic search algorithms in
terms of runtime and result quality is planned. Additionally, the integration of methods
for numeric attributes in the search space (Grosskreutz and Rüping 2009; Mampaey
et al. 2012), and numeric target concepts will be of high relevance for practical appli-
cations. Furthermore, case studies that show the advantages and disadvantages of
the discussed interestingness measures seem like an interesting direction for future
research. Finally, we aim to investigate the option of generalized optimistic estimates
for an extended view on subgroup discovery techniques, e. g., considering exceptional
model mining (Leman et al. 2008; Duivesteijn et al. 2010; Lemmerich et al. 2012;
Atzmueller et al. 2015), and generalization-aware methods (Lemmerich and Puppe
2011; Lemmerich et al. 2013).

Acknowledgments This work has been partially supported by the VENUS research cluster at the inter-
disciplinary Research Center for Information System Design (ITeG) at Kassel University.

Appendix

Lemma 1 Using the notations of Theorem 9, the function f a(x)(n+x)a ·
(

σ+x ·θ
n+x −μ∅

)

has no local maxima inside its domain of definition:

f a(x) ≤ max( f (0), f (xmax ))

Proof We distinguish three cases by the parameter a of the applied generic mean
interestingness measure:

first, for a = 1, it holds that

f 1(x) = (n + x)1 ·
(

σ + x · θ

n + x
− μ∅

)

= σ + θx − μ∅n − μ∅x

= (θ − μ∅) · x + σ − μ∅n

As this is a linear function in x , the function f 1(x) is strictly increasing for θ > μ∅
and strictly decreasing otherwise. Thus, the theorem holds for a = 1.

Second, we consider the case (a �= 1) ∧ (σ = θn), that is, the first n instances
all had the same target value. In this case, the function f a(x) is given by f a(x) =
(n + x)a(θ − μ∅). This is strictly monotone since n > 0, x > 0. Thus, again f a(x)

has no local maximum.
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Third, the case (a �= 1) ∧ (σ �= θn) is considered in detail: since σ was computed
as a sum of n values that are at least as large as θ it can be assumed that θ · n < σ . In
the following, the maxima of f a(x) is determined by deriving this function twice.

f a ′(x) = d

dx
f a(x) = (n + x)a ·

(

σ + x · θ

n + x
− μ∅

)

= (n + x)a
(

d

dx

(

θx + σ

n + x
− μ∅

))

+
(

θx + σ

n + x
− μ∅

)

·
(

d

dx
(n + x)a

)

= (n + x)a
(

d

dx

(

θx + σ

n + x

))

+
(

θx + σ

n + x
− μ∅

)

· a(n + x)a−1

= (n + x)a
(

θ

n + x
− θx + σ

(n + x)2

)

+
(

θx + σ

n + x
− μ∅

)

· a(n + x)a−1

= (n + x)a−2 ((θ(n + x) − (θx + σ)) + a (θx + σ − μ∅(n + x)))

= (n + x)a−2(θn − σ + aθx + aσ − aμ∅n − aμ∅x))

= (n + x)a−2 ((x(aθ − aμ∅) + aσ − aμ∅n + θn − σ)

In line 2, the product rule is used. In line 3 the chain rule is applied, substituting (n+x).
μ∅ can be omitted, as it is constant with respect to x . In line 4 the quotient rule is used.
Finally, in line 5 (n + x)a−2 is factored out.

Since x > 0, n > 0 by definition, the first factor is obviously greater than zero for
any valid x . For a = 0 or θ = μ∅, the second factor of this function is independent
from x , so it has no root, thus f (x) has no maxima except the definition boundaries
in this case. Otherwise the root of this function and therefore the only candidate for a
maximum of f a(x) is given at the point

x∗ = −aσ + anμ∅ − θn + σ

a(θ − μ∅)
.

In the following, it is shown that x∗ can not be a maximum value in our setting. For
that purpose, the second derivative of f (x) is computed at the point x∗:

f a ′′(x) = d

dx
f ′(x)

= (n + x)a−3(a − 2)(x(aθ − aμ∅)
+ aσ − an + θn − σ) + (aθ − aμ∅)(n + x)a−2

= (n + x)a−3((a − 2)(x(aθ − aμ∅)
+ aσ − anμ∅ + θn − σ) + (aθ − aμ∅)(n + x))

= (n + x)a−3(a2xθ − a2xμ∅ + a2σ − a2μ∅n + aθn − aσ − 2xaθ

+ 2axμ∅ − 2aσ + 2anμ∅ − 2θn + 2σ + aθn − anμ∅ + aθx − axμ∅)
= (n + x)a−3(a − 1)(aθx + aσ − anμ∅ − axμ∅ + 2θn − 2σ)

= (n + x)a−3(a − 1)(x(aθ − aμ∅) + aσ − anμ∅ + 2θn − 2σ)

123



Fast exhaustive subgroup discovery with numerical target concepts 759

Fig. 3 A surface plot of the mean test interestingness measure q0.5mean for μ∅ = 0 shows the non-convexity
of this measure

We now can determine the second derivative of f in x∗:

f a ′′(x∗) = (n + x∗)a−3(a − 1)(x∗(aθ − aμ∅) + aσ − anμ∅ + 2θn − 2σ)

= (n + x∗)a−3(a − 1)
(−aσ + anμ∅ − θn + σ

a(θ − μ∅)
(aθ − aμ∅) + aσ − anμ∅ + 2θn − 2σ

)

= (n + x∗)a−3(a − 1)(−aσ +anμ∅ − θn+σ + aσ − anμ∅+2θn − 2σ)

= (n + x∗)a−3(a − 1)(θn − σ)

= (n + x∗)a−3(a − 1)(θn − σ)

Since f a(x) is defined only for positive x , the first factor is always positive. Since
by premise a < 1 and θn < σ , the second derivative at point x∗ is always positive.
Thus, if x∗ is an extreme value of f (x), then it is a local minimum. Since it was shown
above that f (x) has no other candidates for extreme values besides x∗, this proves the
lemma.

Lemma 2 The generic mean-based measures qa
mean are convex for a = 1 in the

(
∑

T (c), iP ) space. They are not convex for arbitrary a.

Proof Fora = 1, the interestingnessmeasure is given byq1
mean(P) = iP ·(μP −μ∅) =

iP · (
∑

c∈P T (c)
iP

− μ∅) = ∑

c∈P T (c) − iPμ∅. This function is linear in both
∑

T (C)

and iP . Since linear functions are known to be convex, q1
mean is convex.

To show that generic mean-based measures are not convex in general, we show an
example where the definition of convex for a function f(x), that is, ∀x, y, λ ∈ (0, 1) :
f ((1 − λ)x + λy) ≤ (1 − λ) f (x) + λ f (y), is violated. In our case, x and y are each
two-dimensional points in the (

∑

T (c), iP ) space. In that regard, we consider a dataset
with μ∅ = 0 and the mean test interestingness measure q0.5

mean . Then, the considered

interestingness measure is given by q0.5
mean = i0.5P · (μP − μ∅) =

∑

c∈P T (c)√
iP

:= f (x).

As two points in the (
∑

T (c), iP ) space for which the convexity condition is violated
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we choose x = (−100, 2) and y = (−100, 10). Additionally, we choose λ = 0.5.
Then, the convexity inequality is violated:

f ((1 − λ)x + λy) ≤ (1 − λ) f (x) + λ f (y)

f ((0.5x + 0.5y) ≤ 0.5 · f (x) + 0.5 · f (y)

f ((−100, 6)) ≤ 0.5 · f ((−100, 2)) + 0.5 · f (−100, 10)

−100√
6

≤ 0.5 · −100√
2

+ 0.5 · −100√
10

≈ −40.82 ≤ ≈ −51.17

Since the definition of convexity is violated in at least one example, the mean test
interestingness measure q0.5

mean is not convex.
The non-convexity of q0.5

mean is also evident by a surface plot of the function for
μ∅ = 0, see Fig. 3. ��
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