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Abstract Dynamic time warping (DTW) has proven itself to be an exceptionally
strong distance measure for time series. DTW in combination with one-nearest neigh-
bor, one of the simplest machine learning methods, has been difficult to convincingly
outperform on the time series classification task. In this paper, we present a sim-
ple technique for time series classification that exploits DTW’s strength on this task.
But instead of directly using DTW as a distance measure to find nearest neighbors,
the technique uses DTW to create new features which are then given to a standard
machine learning method. We experimentally show that our technique improves over
one-nearest neighbor DTW on 31 out of 47 UCR time series benchmark datasets. In
addition, this method can be easily extended to be used in combination with other
methods. In particular, we show that when combined with the symbolic aggregate
approximation (SAX) method, it improves over it on 37 out of 47 UCR datasets. Thus
the proposed method also provides a mechanism to combine distance-based meth-
ods like DTW with feature-based methods like SAX. We also show that combining
the proposed classifiers through ensembles further improves the performance on time
series classification.
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1 Introduction

Time series classification has applications in many domains including medical, bio-
logical, financial, engineering and industrial (Keogh and Kasetty 2003). Due to the
enormous interest in this task, researchers have proposed several methods over the
past few decades. These methods broadly fall under two categories: distance-based
methods and feature-based methods. Under the distance-based methods, a distance
function is first defined to compute similarity between two time series. Then a time
series is typically classified as belonging to the same class as its nearest time series
present in the training data according to the distance function. Euclidean distance (ED)
(Faloutsos et al. 1994), dynamic time warping (DTW) (Berndt and Clifford 1994), edit
distance (Chen and Ng 2004), longest common subsequence (Vlachos et al. 2002) etc.
are some examples of distance functions that have been used for time series classifi-
cation. Under the feature-based methods, a statistical (Nanopoulos et al. 2001; Geurts
2001) or symbolic (Lin et al. 2007; Ye and Keogh 2009) feature representation is
first defined for time series. Then any one of the several machine learning methods is
employed that learns to classify time series from the training data using the feature-
based representation.

Interestingly, it has been found that in spite of numerous distance measures, feature
representations, and specialized machine learning methods that have been proposed
for time series classification, the decades old dynamic time warping (DTW) in com-
bination with one-nearest neighbor has not been easy to beat convincingly (Xi et al.
2006; Ding et al. 2008; Xing et al. 2010; Chen et al. 2013; Wang et al. 2013; Lines
and Bagnall 2014). Although one would expect, as in other classification tasks, that
a powerful machine learning method will significantly outperform one-nearest neigh-
bor, which is perhaps the simplest machine learning method, this has not been the case
for time series classification. We believe that the real problem has been that given the
sequential and numeric nature of time series, it is hard to come up with good features
for them that would work well with machine learning methods. On the other hand,
DTW being a distance measure between two time series, does not lend itself to be
used as a feature in representing a time series.

In this paper, we present a technique for time series classification which exploits the
strength of DTW on this task as well as uses a powerful machine learning method. The
idea is surprisingly simple. We represent a time series in terms of its DTW distances
from each of the training examples. Hence the DTW distance from the first training
example becomes the first feature, theDTWdistance from the second training example
becomes the second feature and so on. We then use support vector machine (SVM)
(Cristianini and Shawe-Taylor 2000) as the classification algorithm. Instead of relying
on the class of the nearest time series, this way the method is able to learn how the
class of a time series relates to its DTW distances from various training examples.
We present results that show DTW and its window-size constrained version used in
this way as features with SVM improves over DTW used directly with one-nearest
neighbor on 31 out of 47 (p < 0.051) UCR time series benchmark datasets (Keogh

1 Using two-tailed Wilcoxon signed-rank test.
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et al. 2011). Not just DTW, we show that even the Euclidean distance when used as
features with SVM improves over Euclidean distance when used directly with one-
nearest neighbor on 35 out of the 47 datasets (p < 0.051). Although this idea of
using DTW as features has been explored previously (Gudmundsson et al. 2008), this
paper is the first to report that it convincingly outperforms DTWused with one-nearest
neighbor.

In addition to being simple and easy to implement, our method can be easily
extended to be used in combination with other statistical and symbolic feature-
based methods by simply adding them as additional features. To demonstrate this,
we experimentally show that when our method is combined with Symbolic Aggregate
Approximation (SAX) method (Lin et al. 2012), it outperforms it on 37 out of the
47 UCR datasets (p < 0.051). The combination of DTW and SAX features itself
improves over 26 of the 47 datasets when compared to using DTW features alone. We
also created ensembles of various classifiers presented in this paper and show that they
further improve the performance. All our code to reproduce the results of this paper
and our detailed results are available online (Kate 2014).

We want to point out that it is not the DTW features themselves but their use
in conjunction with a better machine learning method like SVM that improves the
performance over one-nearest neighbor. However, without using DTW distances as
features it is not clear how one could use them in a learning method like SVM or
combine them with feature-based methods like SAX.

2 Background

This section gives a very brief overview of the DTW distance measure and the SAX
representation for time series.

2.1 Dynamic time warping

Given two time series Q = q1, q2, .., qi , ..., qn and C = c1, c2, .., ci , ..., cm , perhaps
the simplest distance between them is the Euclidean distance (ED) defined as follows:

ED(Q,C) =
√
√
√
√

n
∑

i=1

(qi − ci )2 (1)

which can only be computed if n = m. Its simplicity, efficiency, and being a distance
metric has made Euclidean distance a very popular distance measure for many data
mining tasks and it usually performs competitively. However, besides requiring the two
time series to be of equal lengths, Euclidean distance has another disadvantage that it is
very sensitive to even smallmis-matches among the two time series. For example, if one
time series is only slightly delayed or shifted from the other but otherwise exactly the
same, then Euclidean distance between them will be unreasonably large. Both these
disadvantages of Euclidean distance are elegantly overcome by the Dynamic Time
Warping (DTW) distance. This technique has been known to the speech processing
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community for a long time (Itakura 1975; Sakoe and Chiba 1978) and was later
introduced to time series problems (Berndt and Clifford 1994).

Given the two time series Q and C , DTW distance is computed by first finding the
best alignment between them. To align the two time series, an n-by-m matrix is con-
structedwhose (i th, j th) element is equal to (qi−c j )2 which represents the cost to align
the point qi of time series Q with the point c j of time series C . An alignment between
the two time series is represented by a warping path, W = w1, w2, ..., wk, ..., wK , in
the matrix which has to be contiguous, monotonic, start from the bottom-left corner
and end at the top-right corner of the matrix. The best alignment is then given by a
warping path through the matrix that minimizes the total cost of aligning its points,
and the corresponding minimum total cost is termed as the DTW distance. Hence,

DTW (Q,C) = argmin
W=w1,...,wk ,...,wK

√
√
√
√
√

K
∑

k=1,wk=(i, j)

(qi − c j )2 (2)

Theminimumcost alignment is computedusing adynamicprogramming algorithm.
Typically, some constraints are imposed on possible alignments that speed up the
computation and also improve the accuracy (Ratanamahatana and Keogh 2004b). One
of the simplest constraint is to not allow the warping path to drift very far from the
matrix diagonal (Sakoe and Chiba 1978). In this constraint, the distance the path is
allowed towander from the diagonal is restricted to awindow (also called Sakoe-Chiba
band) of size r , which is a parameter. In Equation 2, this constraint will manifest as
a restriction of |i − j | ≤ r for every wk . This window constraint not only speeds up
computation of DTW, but somewhat non-intuitively, also improves the accuracy of
time series classification (Ratanamahatana and Keogh 2004a). In the rest of the paper,
wewill refer to this window-size constrainedDTWasDTW-R and call the one-nearest
neighbor method based on DTW-R as 1NN-DTW-R. It should be noted that when the
window size parameter r is set to zero then the onlywarping path possible in thematrix
is the diagonal itself, and in that case DTW-R reduces to the Euclidean distance.

DTW-R has been widely used for time series classification using the simple one-
nearest neighbor (1NN) approach.2 A test time series is classified as belonging to the
same class as its nearest time series in the training set according to theDTW-Rdistance.
This simple classification technique, 1NN-DTW-R, has been well-acknowledged as
exceptionally difficult to beat (Xi et al. 2006; Ding et al. 2008; Xing et al. 2010; Chen
et al. 2013; Wang et al. 2013; Lines and Bagnall 2014). Often techniques that are
shown to outperform 1NN-DTW-R, are shown to do so either only on a few select
datasets or through an unfair comparison. Xi et al. (2006) give a brief review of various
techniques that were proposed and how they do not satisfactorily beat 1NN-DTW-R.
Also, some papers, for example, (Gudmundsson et al. 2008) and (Hills et al. 2013), do
not compare with the 1NN-DTW-R error rates available from (Keogh et al. 2011). In
some papers the experimental setting is not clear, for example, Baydogan et al. (2013)

2 Using more than one nearest neighbors has not been found to be helpful.
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took average of ten different error rates of their method and it is not clear which of the
settings is best.

In this paper, we show that a simple technique that employs DTW and DTW-R
as features, which enables it to use SVM, outperforms 1NN-DTW-R on 31 of the
47 UCR time series benchmark datasets (and ties on 1 dataset) which is also statis-
tically significant. We also want to point out that given that our method is simple
and extensible, any other method that does well on time series classification can be
potentially further improved by combining it with our method. In this paper, we show
improvement over the method based on the SAX representation of time series (Lin
et al. 2012).

2.2 Symbolic aggregate approximation

Symbolic aggregate approximation (SAX) is a method of representing time series in a
lower dimensional space of symbolic “words” (Lin et al. 2007). Given a piece of time
series of length n, SAXfirst normalizes it to have zeromean and unit standard deviation
and then divides it into w equal-sized segments, where w is a parameter representing
the word size. Next, the mean of each of these segments is computed which forms a
piecewise aggregate approximation (PAA) representation. Each segment mean is next
mapped to an alphabet froman alphabet size ofa (a parameter) using a table lookup that
divides the distribution space into a equiprobable regions. The distribution is assumed
to be Gaussian which has been found to work best for time series subsequences (Lin
et al. 2007). Thus the entire process maps a piece of time series of length n to a word
of length w consisting of alphabets from an alphabet size of a.

In order to convert an entire time series into its SAX representation, a window of
length n is slided over it (with overlaps) and a SAXword is computed for each piece of
time series covered by the window. Ignoring the order in which the words are obtained,
one thus obtains a “bag-of-words” representation of the time series (Lin et al. 2012),
a term borrowed from natural language processing and information retrieval. Such a
higher-level structural representation of time series is more appropriate for computing
similarity over long and noisy time series. Similarity between two time series thus
represented can be measured in terms of their Euclidean distance or cosine similarity
over their word histogram representations, similar to the way document similarity is
computed in information retrieval (Manning et al. 2008). Bag-of-words SAX can thus
be used for time series classification using one-nearest neighbor classifier. Besides
classification, SAX has been also employed for time series clustering and anomaly
detection (Keogh et al. 2005; Lin et al. 2012). The method has attracted much atten-
tion and has also been used and improved in multiple ways (Shieh and Keogh 2008;
Ordónez et al. 2011; Senin and Malinchik 2013).

In this paper, we first show that the performance of SAX can be improved on time
series classification by using it with a better machine learning algorithm, like SVM,
instead of 1NN. Unlike in the case of DTW, since SAX is already a feature-based
representation where features are the words, this is straightforward to do and forms a
stronger baseline. We next show that when DTW features as proposed in this paper
are used in combination with SAX features, the classification performance improves
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over either method when used alone. Thus the method is able to combine the strengths
of SAX and DTW to give the best performance.

3 Using DTW as features

Given that DTW works so well on time series classification task when used with
the simple one-nearest neighbor algorithm, one would want to use DTW with a more
advancedmachine learning algorithm hoping to improve the performance. But in order
to use othermachine learning algorithms, one needs to either represent a time series as a
vector of features or define a kernel between two time series.Given thatDTWis defined
between two time series, it cannot be computed as a feature for a time series using
only that time series, hence it cannot be directly used as a feature. On the other hand,
it is not clear how DTW could be used inside a kernel because a kernel matrix needs
to be positive semi-definite so that the implicit feature space is well-defined. There
have been attempts to define kernels directly using DTW (Gudmundsson et al. 2008)
but they obtained results inferior to 1NN-DTW. Although there have been plethora of
approaches that use advanced feature-based or kernel-basedmachine learningmethods
for time series classification, but they do not exploit DTW’s strength on this task.

In this paper, we propose a feature-based representation of a time series in which
each feature is its DTW distance from a training example. Besides features based on
DTW,wealso use features basedonDTW-RandEuclideandistances, aswell as various
combinations of these features. Once the features are obtained, any machine learning
algorithm can be used for classification. One can also use kernel-based methods where
a kernel is defined in terms of the dot-product of these explicit features and is thus
well-defined.

Formally, given a time series T , and the training data D = {Q1, Q2, ..., Qn}, the
feature vector, Feature-DTW(T ), of T constructed usingDTWwill be simply: Feature-
DTW(T ) = (DTW (T, Q1), DTW (T, Q2), ..., DTW (T, Qn)). Note that T could be
one of the training examples, in which case Feature-DTW(T ) will be its feature-based
representation which will be given to the machine learning method during training.

Analogously, if DTW-R or Euclidean distance (ED) is used as the distance measure
thenwewill get corresponding feature vectors Feature-DTW-R(T ) andFeature-ED(T )
respectively. We can combine features Feature-DTW(T ) and Feature-DTW-R(T ) by
simply concatenating the two vectors into a larger vector which we denote as Feature-
DTW-DTW-R(T ). Similarly, we can combine all three of them which we denote as
Feature-ED-DTW-DTW-R(T ). In the rest of the paper, we use this notation to also
represent the classifier that use these features, for example, Feature-DTW-Rwill mean
the classifier that uses DTW-R based features.

The rationale for defining such features is as follows.Although both 1NN-DTWand
Feature-DTW will get the same input for a query during testing: the DTW distances
of the query from each of the training examples, but while 1NN-DTW will use a
fixed “nearest neighbor” function over this input to decide the output label, Feature-
DTWwill use a complex function over this input (for example, a polynomial function
with SVM)which it would have specifically tuned tomaximize classification accuracy
using the training data. For example, it may easily learn during training to down-weigh
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a noisy training example even though it may be the nearest. It has been noted (Batista
et al. 2011) that some low-complexity time series (for example, an almost constant
time series or a sine wave) are often close to everything and hence could easily mislead
the nearest-neighbor based approach (Chen et al. 2013). But on these cases as well,
Feature-DTW may learn to down-weigh such training examples. Feature-DTW thus
searches for a more complex classification hypothesis than is used by 1NN-DTW and
hence we expect Feature-DTW to work better than 1NN-DTW in general. The above
holds for ED and DTW-R distances as well. Finally, by combining the features, the
method will be able to search for a complex hypothesis in terms of all the included
distances and may learn their relative importances to optimize classification accuracy
for a particular dataset.

One can use any machine learning method with the features thus defined. We chose
to use Support Vector Machines (SVMs) (Cristianini and Shawe-Taylor 2000) for
experiments reported in this paper because it is known to work well even with large
number of features. As mentioned before, kernel, k, between two examples is then
simply defined as the dot-product of the two feature sets. For our experiments, we
employed polynomial kernels with SVMs.

This method can be easily extended to work with any other time series classifica-
tion method that uses features by simply concatenating DTW-based features to those
features. In this paper, we demonstrate this by concatenating DTW-based features to
SAX features. The machine learning algorithm can then learn from the training data
which features are important for a particular dataset and thus combine the strengths
of the two methods.

4 Related work

Most of the previous work that has concentrated on designing features for time series
classification has not considered using DTW distances as features. For example, while
the method by Fulcher and Jones (2014) searches among thousands of various types
of features, it does not include DTW as features. A method automatically constructs
features through genetic programming in (Harvey and Todd 2014) but it does not con-
struct DTW features. We however note that any features designed in a previous work
can be readily combined with our proposed DTW features by simple concatenation of
feature vectors.

There are very few research papers that have explored using the type of DTW-
based features as defined in the previous section, and the ones that have used it report
performanceworse than 1NN-DTW.The closestwork to ours is byGudmundsson et al.
(2008). While they employ DTW-based features and also use SVMs, however, there
aremany differences.Most importantly, they report that their best technique (ppfSVM-
NDTW) performs worse than 1NN-DTW (it wins on only 8 of the 20 datasets, Table 2
ofGudmundsson et al. 2008).And, in fact, 1NN-DTWitself performsworse than 1NN-
DTW-R (Keogh et al. 2011)which theydonot even compare against.On the other hand,
our Feature-DTW-DTW-R method outperforms 1NN-DTW-R on 31 of the 47 UCR
datasets. Comparing their results with our results of Feature-DTW-DTW-R method
(Table 4) directly, they win on only 1 out of the 20 datasets. We believe the difference
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in performance is for the following reasons. Instead of simply considering the dot-
product of DTW-based features as defining the kernel (well-defined by definition)
and then expanding the feature space using simple polynomial kernels as we do, they
attempted at creating complex kernels that would be well-defined. They also did not
useDTW-R for creating featureswhichwe found to contribute to the good performance
more than DTW-based features. While they explored complex kernels, they did not
explore combining features which we found to be very useful. They also do not show
how their method can be used in combination with other time series classification
methods.

DTW-based features were also used in different ways in a few other papers. In
(Rodríguez and Alonso 2004), a method is used to select DTW features and then
decision trees are used for classification. However, it does worse than 1NN-DTW on
all the three UCR datasets they used. In (Hayashi et al. 2005;Mizuhara et al. 2006), the
DTW-based features are first embedded in a different space using Laplacian eigenmap
technique before classification. The authors did not useUCRdatasets and report results
on only two other datasets.

In contrast to the related work, in this paper, we present a very simple approach,
which is also easily extensible, and through comprehensive experiments we show
that it outperforms 1NN-DTW-R on two-third of all the available UCR datasets. In
addition, our method can be used in combination with other time series classification
methods. We show that when combined with the SAX method it improves over it. To
the best of our knowledge, no work has tried to combine DTW and SAX.

5 Experiments

In Sect. 5.1wedescribe the experiments inwhichweusedDTWas features. In Sect. 5.2
we describe the experiments in which we combined our method with SAX. In each of
these subsections, we first describe the experimental methodology which is followed
by the results and its discussion. In Sect. 5.3 we compare all the classifiers together. In
the last subsection we experiment with ensembles. Our code and our detailed results
are available online for download (Kate 2014).

5.1 DTW as features

5.1.1 Methodology

Weused theUCR time series datasets (Keogh et al. 2011)which have beenwidely used
as a benchmark for evaluating time series classification methods. These datasets vary
widely in their application domains, number of classes, time series lengths, aswell as in
sizes of the training and testing sets. Although gathered at UCR,many of these datasets
were originally created at different places and are thus diverse.We implemented DTW
and DTW-R using the simple dynamic programming algorithm. Since our focus was
not on timing performance, we did not use any faster algorithm. We used the exact
same values for the window-size parameter, r , for DTW-R computations for different
datasets as were reported on the web-page (Keogh et al. 2011) to be the best values.
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Thesewere foundby searchover the training sets.Besides in 1NN-DTW-R,weused the
same r values in all the feature based classifiers that usedDTW-R features.We used the
same training and testing sets as were provided in the datasets. The classification error
rates we obtained using our 1NN-DTW, 1NN-DTW-R and 1NN-ED implementations
perfectly matched the ones reported on the UCR time series datasets web-page on all
the datasets.

For all feature-based methods, we used LIBSVM (Chang and Lin 2011) implemen-
tation for SVMs with its default setting (type of SVM as C-SVC, misclassification
penalty parameter C as 1, and type of kernel as polynomial).We chose to use its default
setting because we did not want to make the results too dependent on parameter val-
ues. However, given how SVM’s accuracy depends on the degree of the polynomial
kernel, we used three different values for the degree parameter making the polynomial
kernel linear, quadratic and cubic. If a lower degree polynomial is used than needed
then the performance can suffer from under-fitting, and on the other hand, if a higher
degree is used than needed then it can over-fit. We defined our polynomial kernels
of degree n as (1 + k)n where k is the dot-product of the features. Note that this is
how polynomial kernels are defined in Weka (Hall et al. 2009) which does not require
any other parameter besides the degree. In all our results, the best degree for a dataset
was determined using a ten-fold cross-validation within the training set and ties were
resolved in favor of the smaller degree. All our results were obtained using this setting
for SVMs. We also tried Gaussian kernel with its default parameter values, however
its performance was very poor in comparison, whether on the internal cross-validation
of the training set or on the test set. It would perhaps need parameter tuning to get
reasonable results.

In our results, for every comparison between two classifiers, we also report its
statistical significance. Given that these comparisons belong to the “two classifier on
multiple domains” category, we used Wilcoxon signed-rank test which is the rec-
ommended statistical significance test for such comparisons3 (Japkowicz and Shah
2011). Besides considering which system did better on a dataset, this test also takes
into account the performance difference between them on the dataset. All our main
resultswere found to be statistically significant.However, for the less important results,
and in general, we want to point out that while low p-values for statistical significance
should be interpreted as sufficient to reject the null hypothesis (and hence conclude
that the two classifiers are different), however, high p-values should not be interpreted
as we accept the null hypothesis (and thus conclude that the two classifiers are not dif-
ferent) (Vickers 2010). In the latter case, all we can say is that the data is not sufficient
to reject the null hypothesis and consider only the actual performance numbers.

5.1.2 Results and discussion

We first show that using a distance measure to create features, as proposed in this
paper which enables the use of SVM, reduces the classification errors over using them
directly with 1NN. Table 1 shows the win/loss/tie numbers for the comparisons for

3 We compare all classifiers together using Friedman test in Sect. 5.3.
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Table 1 Comparing Euclidean (ED), DTWand DTW-R used as distance measures with one-nearest neigh-
bor against using them respectively as features with SVM as the learning method. They were compared
on the 47 UCR time series classification datasets. The results shown in bold were found to be statistically
significant at p < 0.05 using the two-tailed Wilcoxon signed-rank test

Comparison Win/loss/tie

Feature-ED vs. 1NN-ED 35/12/0

Feature-DTW vs. 1NN-DTW 27/18/2

Feature-DTW-R vs. 1NN-DTW-R 26/20/1

each of the three distance measures, Euclidean, DTW and DTW-R. In our results we
are showing only these three numbers formost of the comparisons because it is difficult
to show individual errors on every dataset for so many comparisons. We give those
details only for the most important comparisons later in Table 4 (but all the detailed
results are available on our website (Kate 2014)). In all our one-to-one comparison
tables, we show in bold all the results which were found to be statistical significant at
p < 0.05 using the two-tailed Wilcoxon signed-rank test. In Table 1 it is interesting
to note that even Euclidean distance when used as features with SVM significantly
improves the performance. We also found that Feature-ED performs comparable to
1NN-DTW (23/24/0), however it lags behind 1NN-DTW-R (17/29/1). Both Feature-
DTWand Feature-DTW-R perform better than their respective distancemeasures used
with 1NN.

Next, we show how the classifier accuracies are affected by combining various
features. Table 2 shows one-to-one comparisons between various classifiers. Each cell
in the table shows on how many datasets did the method in its row win/lose/tie over
the method in its column. Symmetric duplicate comparisons have not been shown for
clarity. The first two rows show the familiar results that 1NN-DTW outperforms 1NN-
ED (30/15/2) and 1NN-DTW-R outperforms 1NN-DTW (31/13/3) and also adds the
information that these are statistically significant.

The next two rows showwhat Table 1 already showed, that Feature-DTW improves
over 1NN-DTWand Feature-DTW-R improves over 1NN-DTW-R. In addition, it may
be noted that Feature-DTW-R outperforms Feature-DTW (28/16/3). Hence DTW-R,
the window-size constrained DTW, is a better distance measure than DTW even when
they are used as features. However, the next row shows an interesting result that when
both these types of features are combined, Feature-DTW-DTW-R significantly outper-
forms both Feature-DTW and Feature-DTW-R classifiers individually. And hence not
surprisingly, it outperforms 1NN-DTW-R with a wider margin (31/15/1) than either
Feature-DTW or Feature-DTW-R. This was also found to be statistically significant.

We consider this result that Feature-DTW-DTW-R outperforms 1NN-DTW-R on
31 of the 47 datasets as an important result of this paper. It may be noted that this per-
formance difference is similar in magnitude with which DTW outperforms Euclidean
distance in the one-nearest setting, and hence is very respectable. We further looked
into this result. While Feature-DTW-R does better than Feature-DTW on 28 datasets,
there are 16 datasets on which Feature-DTW does better than Feature-DTW-R, and
we found that on 15 of those datasets Feature-DTW-DTW-R also does better than
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Table 3 Comparing Feature-DTW-DTW-R and 1NN-DTW-R by varying the degree of the polynomial
kernel used in SVM. The comparison was done using the 47 UCR time series classification datasets. The
results shown in bold were found to be statistically significant at p < 0.05 using the two-tailed Wilcoxon
signed-rank test

Polynomial Kernel Win/loss/tie

Linear 28/17/2

Quadratic 31/16/0

Cubic 26/20/1

Internal cross-validation 31/15/1

Feature-DTW-R (the remaining dataset ties). As Feature-DTW-DTW-R does better
than Feature-DTW-R on 29 datasets out of the 47 datasets, it is very unlikely that all
15 datasets will fall on the “win” side by chance. This thus indicates that whatever
advantage DTW features have over DTW-R features on a few datasets, by combining
the two types of features the classifier is able to avail that advantage. Correspond-
ingly, Feature-DTW-R does better than Feature-DTW on 28 datasets and 26 of these
are also the datasets on which Feature-DTW-DTW-R does better than Feature-DTW
(which it does so on total 33). This is also very unlikely to happen by chance, hence
Feature-DTW-DTW-R is able to combine the advantages of both DTW and DTW-R
distances. In other words, the classifier is able to learn which features work better for
which datasets and hence is giving an overall better performance.

The last row of Table 2 shows that adding Euclidean distance as additional features
does not improve by much over the improvements already obtained by Feature-DTW-
DTW-R although it does a little better over it on one-to-one comparison (25/18/4).

Since degree of the polynomial kernel used with SVM was our only parameter, we
report in Table 3 how its value affects the comparison between Feature-DTW-DTW-R
and 1NN-DTW-R. In the last row we report again the comparison when the degree
is determined through internal cross-validation. The remaining rows show the results
when different degrees are used. An important thing to note is that Feature-DTW-
DTW-R outperforms 1NN-DTW-R with all the three degree values. It, however, does
best with degree of 2.

We give further details on the comparison between 1NN-DTW-R and Feature-
DTW-DTW-R in Table 4 where their classification errors on each of the 47 UCR
datasets are reported in sixth and seventh columns respectively (the next three columns
will be explained in the following subsections). The r values for 1NN-DTW-R4 and
the degree of the polynomial kernel used in Feature-DTW-DTW-R (as determined by
an internal ten-fold cross-validation within the training set) are also shown in brackets
for each dataset. It may be noted that linear kernel was found to be sufficient for
most of the datasets. Figure 1 visually shows the classification errors obtained by
these two classifiers. Note that the points above the diagonal line are the datasets on

4 The same r values were also used in Feature-DTW-DTW-R as well as in other feature-based classifiers
that used DTW-R.
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Feature-DTW-DTW-R Error

Feature-DTW-DTW-R is more
accurate on this side

Fig. 1 Comparing classification errors of the classifiers Feature-DTW-DTW-R and 1NN-DTW-R on the
47 UCR time series classification datasets. Points above the diagonal line are the datasets on which Feature-
DTW-DTW-R obtained lower error and points below the line are the datasets on which 1NN-DTW-R
obtained lower error

which Feature-DTW-DTW-R obtained lower error and the points below the line are
the datasets on which 1NN-DTW-R obtained lower error.

Given that our method creates number of features proportional to the number of
training examples, one may wonder whether very large number of training exam-
ples will lead to a difficult learning problem due to a correspondingly very large
feature space. To look into this issue, we plotted learning curves in Figs. 2 and 3
respectively for the two datasets NonInvasiveFatalECG_Thorax1 and NonInvasive-
FatalECG_Thorax2, which have the largest number of training examples (1800 each)
out of the 47 UCR datasets. The curves are shown for the classifiers Feature-DTW-
DTW-R and 1NN-DTW-R. To plot the curves, we increased the number of training
examples and measured percent accuracies on the same test data. We plotted percent
accuracies instead of errors so that the learning curves would look familiar with their
upward trends. For both the datasets, it may be noted that with around 600 examples
Feature-DTW-DTW-R starts outperforming 1NN-DTW-R’s best performance with
all the 1800 examples. This shows that all training examples may not be needed to
outperform 1NN-DTW-R. For datasets with very large number of training examples,
another possibility is to simply restrict the size of the training examples used to create
DTW-based features. Thus one may use all the training examples for training, but
use only a sample of them for creating features (note that for plotting the learning
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Fig. 2 Learning curves for accuracy of the classifiers Feature-DTW-DTW-R and 1NN-DTW-R on the
dataset NonInvasiveFatalECG_Thorax1
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Fig. 3 Learning curves for accuracy of the classifiers Feature-DTW-DTW-R and 1NN-DTW-R on the
dataset NonInvasiveFatalECG_Thorax2

curves we used reduced number of training examples for both creating features and
for training).

Figure 2 shows an interesting criss-crossing of the curves early on indicating that
Feature-DTW-DTW-Rmay need some minimum number of training examples before
it outperforms 1NN-DTW-R. This is not surprising since it is learning a more complex
hypothesis. However, the same trend is not visible in Fig. 3 and from Table 4 it may
be noted that Feature-DTW-DTW-R outperforms 1NN-DTW-R even on datasets with
very small number of training examples.
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Fig. 4 Texas sharpshooter plot showing expected accuracy gain calculated on the training data versus
actual accuracy gain on the test data if Feature-DTW-DTW-R classifier is used instead of 1NN-DTW-R
classifier over the 47 UCR time series classification datasets

When users have a new time series test set with unknown labels and they want to
use a classifier to predict labels, then in order to choose one classifier over another, it
is not sufficient to know that one classifier does better than another on multiple other
datasets.What a user really needs is the ability to predict ahead of timewhich classifier
will do better on their particular dataset. Simply showing that a new classifier is better
on multiple datasets and hoping that a new dataset will be one of them is falling for a
subtle version of the Texas sharpshooter fallacy (Batista et al. 2011). In order to avoid
this, Batista et al. (2011) recommend plotting expected accuracy gain of one classifier
over another (obtained by cross-validation on the training data) versus actual accuracy
gain (obtained on the test data) for each of the datasets. Accuracy gain is defined as
the ratio of the accuracies of the two classifiers. If the classifier which is expected to
do better actually does better on many datasets then we can say that we will be able
to reliably predict the better classifier on a new dataset.

In Fig. 4 we plot expected and actual accuracy gains of Feature-DTW-DTW-R
classifier over 1NN-DTW-R classifier for the 47 UCR datasets. Expected accuracy
gain for each dataset was computed by dividing the ten-fold cross-validation accuracy
obtained by Feature-DTW-DTW-R on the training set by the ten-fold cross-validation
accuracy obtained by 1NN-DTW-R on the training set. As before, we used the exact
same values for the window-size parameter, r , for DTW-R computations (for both
the classifiers) as were reported on the web-page (Keogh et al. 2011) to be the best
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values. For the Feature-DTW-DTW-R classifier, the best cross-validation accuracy
obtained by trying linear, quadratic and cubic degrees of the polynomial kernel was
used for each dataset. The exact same degree and r value were later used for computing
accuracy on the test set for each dataset. The actual accuracy gain for each dataset was
computed by dividing the accuracy obtained by Feature-DTW-DTW-R on the test set
by the accuracy obtained by 1NN-DTW-R on the test set.

The plot in Fig. 4 shows four regions which are marked according to the labels of a
contingency table and are interpreted as follows. In the true positive region, we claimed
from the training data that Feature-DTW-DTW-R will give better accuracy on the test
data and we were correct. This happened for 19 datasets. In the true negative region,
we correctly claimed that the new classifier will decrease accuracy, this happened for
8 datasets. In the false negative region, although we claimed that the new classifier will
decrease accuracy, it actually increased. This happened for 10 datasets. These cases
represent missed opportunity of gaining accuracy using the new classifier. Finally, in
the false positive region we claimed that the new classifier will do better but it did
worse. This is the worst and the only scenario in which we end up losing accuracy
because of using the new classifier. This happened for 5 datasets (CinC_ECG_torso,
FacesUCR, MedicalImages, TwoLeadECG and fish). The worst of these datasets was
TwoLeadECG on which we were expecting a big 21 % improvement in accuracy
but we ended up losing 4 %. This could be because that dataset has only 23 training
examples which may be insufficient for a good prediction. Five datasets fell on the
borders of the regions. We note that out of the four regions, the true positive region
got the most datasets and the false positive region got the fewest ones. From the plot
we can say that whenever we predicted that Feature-DTW-DTW-R will do better than
1NN-DTW-R, it did so for most of the datasets (19 out of 24 datasets, ignoring the
border cases).

5.2 Combining with SAX

5.2.1 Methodology

In order to demonstrate that our method of using DTW distances as features can be
easily combinedwith othermethodsof time series classification,we showexperimental
results of combining it with the SAX method (Lin et al. 2012). While the code for
computing SAX was available,5 we could not find code for computing bag-of-words
representation for time series. Hence we implemented it ourselves. But even with
the same parameter values we could not replicate the 1NN-SAX classification results
of (Lin et al. 2012) for 17 of the 20 UCR datasets for which they present results.
Perhaps this is because of differences in implementations details. Hence we refer to
our results as 1NN-SAX and their results as Lin-1NN-SAX. Since they obtained their
best results using the Euclidean distance to compute nearest neighbors (Table 7 of
(Lin et al. 2012)), we only compared with their results for Euclidean distance and
also used Euclidean distance in our 1NN-SAX. We used our own internal five-fold

5 http://www.cs.gmu.edu/~jessica/sax.htm.
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Table 5 Various comparisons between SAX representation used with one-nearest neighbor (including
original results from Lin et al. (2012), Lin-1NN-SAX) and when using SAX features by themselves (SVM-
SAX) and in combination with DTW-DTW-R features (Feature-SAX-DTW-DTW-R) with SVM as the
learning method. Results for 1NN-DTW-R and Feature-DTW-DTW-R are also shown for comparison. All
comparisons were done using the 47 UCR time series classification datasets except the comparisons with
(Lin et al. 2012) which had results for only 20 UCR datasets. Each cell in the table shows on how many
datasets did the classifier in its row win/lose/tie over the classifier in its column. The symmetric duplicate
comparisons have been omitted for clarity. The results shown in boldwere found to be statistically significant
at p < 0.05 using the two-tailed Wilcoxon signed-rank test

Method 1NN-DTW-R Feature-DTW-
DTW-R

Lin-1NN-SAX 1NN-SAX SVM-SAX

Feature-DTW-
DTW-R

31/15/1 –

Lin-1NN-SAX 9/11/0 8/11/1 –

1NN-SAX 12/35/0 8/38/1 9/11/0 –

SVM-SAX 19/27/1 12/32/2 12/7/1 36/8/3 –

Feature-SAX-
DTW-DTW-R

33/13/1 26/18/3 13/6/1 41/3/3 37/7/3

cross-validation within the training data to find the best parameter values for n (out of
8, 16, 24, ..., 160), w (out of 4 and 8) and a (out of 3, 4, 5, ..., 9). These possible values
of the parameters form a superset of the parameter values from (Lin et al. 2012). Once
the best parameter values were found for 1NN-SAX for each of the datasets, for fair
comparisonswe used the same values in other classifiers that used SAX representation.
For the classifiers that used SVMs, the best degree of the polynomial kernel (linear,
quadratic or cubic) was determined by cross-validation within the training data.

Besides using 1NN, we used SVM with SAX bag-of-words feature representa-
tion which we call SVM-SAX classifier. This is a stronger baseline than 1NN-SAX.
We used LIBSVM (Chang and Lin 2011) implementation for SVMs with its default
values as before. Finally, we added DTW and DTW-R features to SAX features to
combine these methods which we call Feature-SAX-DTW-DTW-R classifier that also
used SVM. The value for the parameter r was same as was used in 1NN-DTW-R
and obtained from (Keogh et al. 2011). Note that for a time series, its SAX features
are computed using only that time series, while its DTW and DTW-R features are
computed as its distances from the training examples.

5.2.2 Results and discussion

Table 5 shows the comparisons between SAXmethods when SAX features are used by
themselves and in combination with DTW and DTW-R features. From the third row,
it may be noted that our 1NN-SAX implementation is comparable to that of Lin-1NN-
SAX (Lin et al. 2012)withwin/loss/tie numbers of 9/11/0. However, both classifiers do
worse than 1NN-DTW-R and Feature-DTW-DTW-R as can be seen from the first two
columns. From the fourth row, it can be seen that SVM-SAX significantly outperforms
1NN-SAX (36/8/3)which is not surprising given that SVM is amore powerful learning
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algorithm than 1NN in general. Finally, the last row shows that Feature-SAX-DTW-
DTW-R significantly outperforms even SVM-SAX (37/7/3) and also improves on
Feature-DTW-DTW-R (26/18/3). This shows that the proposed method of using DTW
as features can be successfully combined with SAX. Also noteworthy is that the
combined method Feature-SAX-DTW-DTW-R outperforms 1NN-DTW-R by a wider
margin (33/13/1) than Feature-DTW-DTW-R (31/15/1) (although both outperformed
statistically significantly). We point out that Feature-SAX-DTW-DTW-R is our best
non-ensemble classifier reported in this paper which is clearly because it is utilizing
SAX bag-of-words features and DTW distances together with a powerful machine
learning method of SVM.

Table 4 includes the errors obtained by SVM-SAX and Feature-SAX-DTW-DTW-
R on all the 47UCR datasets.We looked into onwhich datasets which types of features
contribute in improving the performance. We found that on the 12 datasets on which
SVM-SAX does better than Feature-DTW-DTW-R, on 11 of those Feature-SAX-
DTW-DTW-R also does better than Feature-DTW-DTW-R (which it does on total 26
datasets). Correspondingly, on the 33 datasets on which Feature-DTW-DTW-R does
better than SVM-SAX, on 32 of those Feature-SAX-DTW-DTW-R also does better
than SVM-SAX (which it does on total 37 datasets). Given that it is very unlikely to
obtain such numbers by chance, as in Sect. 5.1.2, we conclude that when combined
sets of features are given to the method it is able to learn which features work best for
which datasets and thus combine their strengths.

In Fig. 5we plot expected and actual accuracy gains of Feature-SAX-DTW-DTW-R
classifier over 1NN-DTW-R classifier for the 47UCRdatasets. The samemethodology
as described in Sect. 5.1.2 was used to obtain this plot. For Feature-SAX-DTW-DTW-
R classifier, the same values for the SAXparameterswere used aswere obtained before
by cross-validation over the training sets by the 1NN-SAX classifier. In this plot, 22
datasets fell in the true positive region, 5 in the true negative region, 7 in the false
negative region and 4 in the false positive region (these were ECG200, FacesUCR,
MedicalImages and uWaveGestureLibrary_Y). The remaining 9 classifiers fell on the
borders between the regions,many of themclose to point (1,1)which are not of interest.
As before, out of the four regions, the true positive region got the most datasets, on
these we predicted correctly that the new classifier will do better. The false positive
region got the fewest datasets, on these we predicted that the new classifier will do
better but it did worse. From the plot we can say that whenever we predicted that
Feature-SAX-DTW-DTW-R will do better than 1NN-DTW-R, it did so for most of
the datasets (22 out of 26 datasets, ignoring the border cases).

Although timing performance was not the focus of this work, Table 6 shows the
training and testing times (without internal cross-validation) taken by various classi-
fiers on all 47 UCR time series classification datasets together. The classifiers were
run on a server with Intel Xeon X5675 3 GHz processor and 2GB RAM. The table
shows the CPU user times in minutes (m) and seconds (s). For DTW computations,
we used the basic quadratic time dynamic programming implementation and did not
employ any speed-up techniques. It can be seen from the first four rows of the table
that the testing times of Feature-DTW-R and Feature-DTW are only a few minutes
more than the testing times of 1NN-DTW-R and 1NN-DTW respectively. Both 1NN
and feature-based classifiers require the same O(st) number of DTW computations
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Fig. 5 Texas sharpshooter plot showing expected accuracy gain calculated on the training data versus
actual accuracy gain on the test data if Feature-SAX-DTW-DTW-R classifier is used instead of 1NN-DTW-
R classifier over the 47 UCR time series classification datasets

for s number of training examples and t number of testing examples. Hence from the
table it is clear that during testing the feature-based classifiers spent most of the time
in computing the distances and the overhead of using them as features with SVM was
only a few minutes. However, there is a big difference in the training times of these
classifiers. While 1NN classifiers require zero time for training because the training
of 1NN involves simply storing all the training examples, but the feature-based classi-
fiers require O(s2)DTWcomputations during training for s training examples. But we
want to point out that for many applications training can be done off-line in advance
and often it is the testing time which is more critical than the training time. Addition-
ally, as pointed out earlier using learning curves, not all training examples may be
needed for creating DTW features which can also help reduce the computational time
of training.

It may be noted that Feature-DTW-R and Feature-DTW classifiers took more
time to test than to train because many of the UCR datasets have a lot more test-
ing examples than training examples and thus correspondingly requiring more DTW
computations during testing than during training. Also, for all the classifiers includ-
ing 1NN-DTW-R and 1NN-DTW, most of the time was taken by the three largest
datasets (StarLightCurves, NonInvasiveFatalECG_Thorax1 and 2). It may be noted
that any DTW speed-up technique would have improved time taken by all 1NN and
feature-based classifiers.
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Table 6 Training and testing times of various classifiers on all 47 UCR time series classification datasets.
The times are shown in minutes (m) and seconds (s)

Classifier Training time Testing time

1NN-DTW-R 0 417 m 44 s

Feature-DTW-R 103 m 15 s 421 m 10 s

1NN-DTW 0 1370 m 44 s

Feature-DTW 480 m 13 s 1379 m 17 s

Feature-DTW-DTW-R 585 m 41 s 1783 m 23 s

SVM-SAX 1 m 07 s 2 m 56 s

Feature-SAX-DTW-DTW-R 583 m 26 s 1829 m 24 s

Feature-SAX-DTW-DTW-R (pre-computed distances) 2 m 15 s 5 m 58 s

The fifth row of Table 6 shows that the training and testing times of Feature-DTW-
DTW-R classifier is very close to the sums of the corresponding times of Feature-DTW
and Feature-DTW-R classifiers. This is mainly because this classifier requires both
DTW and DTW-R computations. In our implementation, we compute them separately
but it may be possible to compute these two distances together avoiding some duplicate
computations and thus reduce the time complexity perhaps close to that of DTW
computation. The next row shows that SVM-SAX is extremely fast and requires only
a fewminutes to train aswell as to test (we had employed hash tables for SAX features).
The training and testing times of Feature-SAX-DTW-DTW-R classifier shown in the
next row are close to that of Feature-DTW-DTW-R.

Finally, the last row shows that if we pre-compute all the DTW distances, Feature-
SAX-DTW-DTW-Rclassifier takes only a fewminutes to both train and test.Hence our
proposed feature-based methods that use SVMs do not add significant computational
time over what is needed for DTW computations. However, with longer time series
and with more examples, the computational times for DTW and SVM will be the
bottleneck in scaling it up. But we want to point out that any method that improves
efficiency of DTW computations or any faster machine learning algorithm that scales
with the data can be directly used by our method.

5.3 Comparing all classifiers

In the previous subsections we showed results in which we compared two classifiers
at a time and tested for their statistical significance using the Wilcoxon signed-rank
test. In this section, we show results comparing all the classifiers together. We com-
pared total thirteen classifiers that included baseline classifiers (1NN-ED, 1NN-DTW,
1NN-DTW-R, 1NN-SAX and SVM-SAX), their feature-based versions (Feature-
ED, Feature-DTW and Feature-DTW-R) and the combinations of their feature-based
versions andSAX (Feature-DTW-DTW-R, Feature-ED-DTW-DTW-R, Feature-SAX-
DTW-R, Feature-SAX-DTW-DTW-R, Feature-ED-SAX-DTW-DTW-R).

Friedman test is the recommended statistical test for comparing multiple classifiers
on multiple datasets (Demšar 2006; Japkowicz and Shah 2011). To compute Friedman
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statistic, we first computed rank of each of the thirteen classifiers on each of the
47 datasets. In case of ties, the average of the tied ranks was assigned to each of
the tied classifiers. For k classifiers and N datasets, if R j denotes the average rank
of the j th classifier over the N datasets, then Friedman statistic, χ2

F , is computed
as:

χ2
F = 12N

k(k + 1)

⎡

⎣

∑

j

R2
j − k(k + 1)2

4

⎤

⎦ (3)

Demšar (2006) points out that χ2
F is undesirably conservative and recommends the

following better statistic:

FF = (N − 1)χ2
F

N (k − 1) − χ2
F

(4)

Our value for the above statistic came out to be 16.72 which is far above the critical
value of 2.22 (for p < 0.01 fromF-distributionwith (k−1) and (k−1)(N−1) degrees
of freedom). Hence we can conclude that there is a significant difference among the
classifiers on the 47 datasets.

We also performed Nemenyi post-hoc tests to compare all the classifiers. Figure 6
plots all the thirteen classifiers according to their average ranks on the 47UCRdatasets.
In the figure, for the sake of shortness we have used prefix “F” instead of prefix
“Feature” to denote the corresponding classifiers. The 1NN-ED classifier was the
worst performing with an average rank of 10.35 and Feature-SAX-DTW-DTW-R was
the best performing with an average rank of 4.18. We group the classifiers which
showed no statistical difference in average ranks among themselves at p < 0.05 level
using the Nemenyi test (critical difference of 2.66 for thirteen classifiers). The groups
are shown in the figurewith thick horizontal lines. It can be seen that the top performing
group consists of all the classifiers that used DTW-R distances as features. The lowest
group included the baseline classifiers except for 1NN-DTW-R which fell in the two
intermediate groups.

We want to point out that performance difference of some pairs of classifiers which
were found to be statistically significant using theWilcoxon signed-rank test (Tables 2
and 5) were not found to be statistically significant by the Nemenyi test. For example,
this is true even for the pairs 1NN-ED and 1NN-DTW as well as for the pairs 1NN-
DTW and 1NN-DTW-R. However, if we compare fewer than thirteen classifiers using
the Nemenyi test then some of these pairs of classifiers show significant differences.
We also point out that while Wilcoxon signed rank test takes into account the differ-
ence in performances between the classifiers over each of the datasets, the Nemenyi
test only considers their ranks and not the differences in performances. Hence while
Nemenyi test can give a bigger picture comparing all the classifiers, to compare two
individual classifiers it is better to rely on the results of the Wilcoxon signed-rank
test.
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Fig. 6 Comparing thirteen classifiers using their average ranks on the 47 UCR time series classification
datasets. The feature-based classifiers are represented with prefix “F”. Groups of classifiers that are not
significantly different from each other at p < 0.05 using the Nemenyi test (corresponding to the critical
difference of 2.66) are shown connected

5.4 Experiments with ensembles

Ensemble-based classifiers combine multiple classifiers to do classification and typi-
cally outperform the component classifiers (Dietterich 2000). Lines andBagnall (2014)
created ensembles of 1NN time series classifiers that use different elastic distancemea-
sures, including DTW-R, and show that they significantly outperform 1NN-DTW-R.
We decided to create ensembles of the classifiers presented in this paper to see if they
would further improve the results. We used the Proportionalweighting scheme to cre-
ate ensembles which was shown to work best for time series classification (Lines and
Bagnall 2014). In this scheme, for every dataset, each component classifier is given a
normalized weight proportional to its cross-validation accuracy on the training set (we
used ten-fold cross-validation). Then for a test example, an output label is assigned
the same weight as that of the classifier that outputs it, and in case multiple classifiers
output a label then that label is assigned the weight equal to the sum of those classi-
fiers’ weights. The label with the highest weight is considered as the ensemble’s output
label. Thus in this scheme, if all component classifiers disagree on a test example’s
label then the output of the ensemble will be same as the output of the most accurate
component classifier. But in other cases, the decision of the most accurate classifier
will be over-ridden if other classifiers agree on a different label and their combined
weight exceeds the weight of the most accurate classifier.

Table 7 shows the results of comparing various ensembles among themselves and
with 1NN-DTW-R (strongest baseline) and Feature-SAX-DTW-DTW-R (our best
non-ensemble classifier) on the 47 UCR time series classification datasets. We cre-
ated the first ensemble using three baseline classifiers: 1NN-DTW, 1NN-DTW-R and
SVM-SAX, and call it Ensemble-baselines. It can be seen from the first row that it
outperforms 1NN-DTW-R with win/loss/tie of 38/4/5. This is not surprising because
an ensemble typically outperforms its component classifiers. But from the first row
it can also be seen that this ensemble does worse than Feature-SAX-DTW-DTW-R
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(win/loss/tie: 17/27/3 with p = 0.058). This shows that a classifier that merely com-
bines the outputs of the baseline classifiers does not perform as well as a classifier that
combines their distance features through SVM.

Next, we created an ensemble that combines classifiers Feature-DTW, Feature-
DTW-R and SVM-SAX, and call it Ensemble-features. Note that we included SVM-
SAX again in this ensemble because it is a feature based classifier besides being
a baseline. As it can be seen from the second row of the table, it outperforms the
Ensemble-baselines which is not surprising as it combines more accurate component
classifiers. However, it is interesting to note that it also outperforms Feature-SAX-
DTW-DTW-R (win/loss/tie: 26/17/4 with p = 0.079).

We created the next ensemble that combines classifiers 1NN-DTW, 1NN-DTW-R,
Feature-DTW, Feature-DTW-R and SVM-SAX, and call it Ensemble-baselines-
features. It outperforms the previous two ensembles (third row) which is not surprising
given that it includes their component classifiers. Finally, we added classifier Feature-
SAX-DTW-DTW-R to the forgoing five component classifiers to create an ensemble
we call Ensemble-final. It outperforms all other ensembles, including Ensemble-
baselines-features. This shows that Feature-SAX-DTW-DTW-R is an independent
accurate classifier and adds value to the ensemble of the other component classifiers.
This ensemble outperforms 1NN-DTW-R with win/loss/tie of 42/3/2. It may also be
noted from Table 7 that all our ensembles outperform 1NN-DTW-R, this is again
not surprising given that they include 1NN-DTW-R as a component classifier (except
for Ensemble-features which includes Feature-DTW-R). We have included detailed
results of Ensemble-final on all the 47 UCR datasets in the last column of Table 4.
That table also shows the error rate of the best classifier for each dataset in bold. Its
last row shows the number of wins (including ties) over all the datasets. Ensemble-
final obtains most wins (27). The detailed results of other ensembles are available
through our web-site (Kate 2014). It should be noted that for the ensembles we have
presented, all the DTW distances can be computed once which then could be used by
all their component classifiers. Given that the component classifiers are very fast with
pre-computed DTW distances, hence these ensembles do not have time compexity far
from that of say Feature-SAX-DTW-DTW-R classifier.

We found that our Ensemble-final performs better than the best ensemble (PROP)
of Lines and Bagnall (2014) (win/loss/tie: 27/16/3 with p < 0.05). It future, one may
combine our component classifiers with theirs to form bigger ensembles. One may
also create feature-based classifiers using all the distance measures they used and then
use them to create ensembles.

6 Future work

The contribution of this paper is not just a method that works very well on time series
classification, but a method that can also be easily combined with other machine
learning based methods to further improve the classification performance. While we
demonstrated this with SAX, our method can be easily combined with methods that
use any type of statistical or symbolical (including shapelets (Ye and Keogh 2009))
features by simply adding them as additional features. Many applications have partic-

123



310 R. J. Kate

ular patterns of time series fromwhich application-specific features could be extracted
that could help in classification. For example, Electrocardiogram (ECG) time series
have known up and down patterns of heartbeats from which important features could
be extracted that could help in classifying healthy heartbeats from unhealthy ones
(Nugent et al. 2002). Such features could be easily added to the DTW based features
in our method and this may further improve the classification performance. This is not
easy to do with the 1NN-DTW approach. Also, any kernel based time series classifi-
cation method could also be combined with our approach by simply defining a new
kernel which is a function (Haussler 1999) of the existing kernel and our DTW feature
based kernel. We also note that our method could take advantage of any existing or
future improvement in efficiency or accuracy on either DTW computation or on the
underlying machine learning algorithm.

One may also explore if other distance measures or other variations of DTW and
their combinations can further improve the performance when used as features. We
used SVMas ourmachine learningmethod, onemay explore if other machine learning
methods would do better on certain types of datasets. Using distance based features
for time series clustering or for searching time series data is another possibility of
future work. Given that methods for time series regression (either to predict a future
value or a numerical score) often use statistical features, one may also consider adding
DTW-based features to them. Finally, getting more insights into the conditions under
which this method outperforms 1NN-DTW-R and the conditions under which it lags
behind will also be a fruitful future work.

7 Conclusions

We presented a simple approach that uses DTW as features and thus combines the
strengths of DTW and advanced machine learning methods for time series classifica-
tion. Experimental results showed that it convincingly outperforms the DTW distance
based one-nearest neighbor method that is known to work exceptionally well on this
task. The approach can also be easily combinedwithmany existing time series classifi-
cation methods thus combining the strengths of DTW and those methods. We showed
that when combined with SAXmethod, it significantly improved its performance. We
also showed that ensembles of these classifiers further improve results on time series
classification.
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