Data Min Knowl Disc (2016) 30:403-437 @ CrossMark
DOI 10.1007/s10618-015-0415-0

Classification of streaming time series under more
realistic assumptions

Bing Hu! . Yanping Chen'! . Eamonn Keogh!

Received: 21 March 2014 / Accepted: 11 April 2015 / Published online: 3 June 2015
© The Author(s) 2015

Abstract Much of the vast literature on time series classification makes several
assumptions about data and the algorithm’s eventual deployment that are almost cer-
tainly unwarranted. For example, many research efforts assume that the beginning
and ending points of the pattern of interest can be correctly identified, during both
the training phase and later deployment. Another example is the common assump-
tion that queries will be made at a constant rate that is known ahead of time, thus
computational resources can be exactly budgeted. In this work, we argue that these
assumptions are unjustified, and this has in many cases led to unwarranted optimism
about the performance of the proposed algorithms. As we shall show, the task of
correctly extracting individual gait cycles, heartbeats, gestures, behaviors, etc., is gen-
erally much more difficult than the task of actually classifying those patterns. Likewise,
gesture classification systems deployed on a device such as Google Glass may issue
queries at frequencies that range over an order of magnitude, making it difficult to
plan computational resources. We propose to mitigate these problems by introduc-
ing an alignment-free time series classification framework. The framework requires
only very weakly annotated data, such as “in this ten minutes of data, we see mostly
normal heartbeats. . .,” and by generalizing the classic machine learning idea of data
editing to streaming/continuous data, allows us to build robust, fast and accurate any-
time classifiers. We demonstrate on several diverse real-world problems that beyond
removing unwarranted assumptions and requiring essentially no human intervention,
our framework is both extremely fast and significantly more accurate than current
state-of-the-art approaches.

Responsible Editor: G. Karypis.

B Bing Hu
bhu002 @ucr.edu

1 Department of Computer Science & Engineering, University of California, Riverside, CA, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-015-0415-0&domain=pdf

404 B. Hu et al.

Keywords Time series classification - Data dictionary - Anytime algorithms

1 Introduction

Time series classification has been a highly active research area in the last decade,
with at least several hundred published papers on this topic appearing in the liter-
ature (Batista et al. 2011; Bao and Intille 2004; Chen et al. 2005; Hu et al. 2013,
2011; Keogh et al. 2006, 2004a,b; Morse and Patel 2007; Niennattrakul et al. 2010;
Rakthanmanon et al. 2011; Ratanamahatana and Keogh 2004; Ueno et al. 2010). The
majority of research efforts test the utility of their ideas on the UCR classification
archive, which with forty-seven time series datasets, is the largest such benchmark
in the world (Keogh et al. 2006). We believe that the availability of this (admittedly
very useful) resource has isolated much of the research community from the realities
of deploying classifiers in the real world, and as a consequence, many claims for the
utility of time series classification algorithms have unwarranted optimism. The prob-
lem is that the UCR data is formatted in a canonical way that makes comparisons
between rival methods easy, but isolates researchers from certain problems that are
likely to reduce the performance of all algorithms when deployed in realistic settings,
by an amount that dwarfs the relatively minor differences between rival approaches.
Below we consider the four issues we have identified as creating a gulf between most
academic work and practical deployable systems.

In all the time series in the UCR classification archive, the time series has been
processed into short equal-length “template” sequences that are representative of the
class. For example, individual and complete gait cycles for biometric classification
(Andino 2000; Faezipour et al. 2010; Hanson et al. 2009; Koch et al. 2010), individual
and complete heartbeats for cardiological classification (de Chazal et al. 2004; Hu et al.
2011), individual and complete gestures for gesture recognition (Yang et al. 2009),
etc.

In most cases, the segmentation of long time series into these idealized snippets is
done by hand (Hanson et al. 2009; Koch et al. 2010; Lester et al. 2005; www.mocap.
cs.cmu.edu/). However, for many real-world problems this either cannot be done, or
only done with great effort (Gafurov and Snekkenes 2008; Liu et al. 2010; Parkka
et al. 2006).

As a concrete example, consider the famous Gun/Point problem (Keogh et al. 2006;
Ratanamahatana and Keogh 2004), which has appeared in well over one hundred works
(Chen et al. 2005; Keogh et al. 2004a; Morse and Patel 2007). To create this dataset,
the original authors (Ratanamahatana 2012; Ratanamahatana and Keogh 2004) used
a metronome that signaled every three seconds to cue both the actor’s behavior and
the start/stop of the recording apparatus (Ratanamahatana 2012). This allowed the
extraction of perfectly aligned data, containing all of the target behavior and only the
target behavior. Unsurprisingly, dozens of papers report less than 10 % classification
error rate on this problem. However, it seems unlikely that this error rate reflect our
abilities with real-world data.

Such contriving of time series datasets appears to be the norm in the literature. For
example, (Yang et al. 2009) notes, “one subject performed one trial of an action (in

@ Springer

www.mocap.cs.cmu.edu/
www.mocap.cs.cmu.edu/

Classification of streaming time series under more... 405

exactly) 10 s.” and (www.pamap.org/demo.html) tells us that human editors should
carefully discard “ all transient activities between performing different activities.”
Likewise, a recent paper states: “We assume that the trajectories are segmented in
time such that the first and last frames are already aligned (and) the resulting model
has the same length” (Usabiaga et al. 2007). Another recent paper that considers motion
capture data tells us “While the original motion sequences have different lengths, we
trim them with equal duration” (Li and Aditya 2011). Furthermore, the location of
this trimming is subjective, relying on the ability to find the region “most significant
in telling human motion apart, (as) suggested by domain experts” (Li and Aditya
2011). Note that these authors are to be commended for stating their assumptions so
concretely. In the vast majority of cases, no such statements are made, however it is
all but certain that similar “massaging” of the data has occurred.

We believe that such contriving of the data has led to unwarranted optimism about
how well we can classify real-time series data streams. For real-world problems, we
cannot always expect the training data to be so idealized, and we certainly cannot
expect the festing data to be so perfect.

Moreover, in virtually all time series classification research, the data must be
arranged to have equal length (Usabiaga et al. 2007). For example, in the world’s
largest collection of time series datasets, the UCR classification archive, all forty-
seven time series datasets contain only equal-length data (Keogh et al. 20006).

An additional assumption made in the vast majority of the literature is that all
objects to be classified belong to exactly one of two or more well-defined classes. For
example, in the Gun/Point problem, every one of the instances is either a gun-aiming
or a finger-pointing (unarmed) behavior. However, the vast majority of normal human
actions are clearly neither. How well do current techniques work when most of the
data is not from the well-defined classes? A handful of papers consider this issue at
testing time, using a rejection threshold to define the other class. However, to the
best of our knowledge, this issue has not been considered at training time. Instead,
as noted above, it is simply assumed that some mechanism is able to provide perfect
training data. With a handful of exceptions (i.e. some types of heartbeat extraction Yang
et al. 2012), this “mechanism” is costly and subjective human labor. A more realistic
idea for data gathering is to capture data “in the wild” as in Bao and Intille (2004),
Pham et al. (2010), Reiss and Stricker (2011), etc. However, this opens the problem
of data editing and cleaning. For example, a 1-h trace of data labeled “walking” will
almost certainly contain non-representative subsequences, such as the subject pausing
at a crosswalk, or introducing a temporary asymmetry into her gait as she answers
her phone. The current solution to preprocess such data requires human intervention
to examine and edit such traces, and keeping data that demonstrate the sought-after
variability (walking uphill, downhill, level, walking fast, normal,
slow), while discarding data that is atypical of the class.

The fourth and final unrealistic assumption that is common in the literature is
that queries to be classified are presented to the classification system at equal time
intervals. For example, if we know a system will produce queries ten times a second,
we can then plan the hardware resources needed, and the maximum size of the training
set. However, in many real world systems the available time for classification is not
known a priori and may change as a consequence of external circumstances (Shieh and

@ Springer

www.pamap.org/demo.html

406 B. Huetal.

Keogh 2010). For example, for some ECG classification systems, the individual beats
are detected, and then passed to the classification system. Given that human heart rates
vary from about 40 to 200 beats per minute, the query arrival rate can range between
0.6 and 3.3 Hz.! Another example that recently came to our attention involves insect
classification (Hao et al. 2013). The classification of flying insects can be fruitfully
considered a time series problem and there the arrival rates can vary by at least four
orders of magnitude (Batista et al. 2011; Hao et al. 2013). If we plan only for the fastest
possible arrival rate, then we may be forced to invest in computational resources that
are unused 99.99 % of the time, or to only consider a tiny training dataset, when
99.99 % of the time we could have availed of the larger dataset, and achieved a higher
accuracy.

To summarize, much of the progress in time series classification from streams in the
last decade is almost certainly optimistic, given that most of the literature implicitly
or explicitly assumes one or more of the following:

1. Copious amounts of perfectly aligned atomic patterns can be obtained (Hanson
et al. 2009; Vatavu 2011; Yang et al. 2009).

2. The patterns are all of equal length (Hanson et al. 2009; Keogh et al. 2006; Koch
et al. 2010; Parkki et al. 2006; Reiss and Stricker 2011).

3. Every item that we attempt to classify belongs to exactly one of our well-defined
classes. Moreover, even at training time we have access to data that belongs to
exactly one class (Gafurov and Snekkenes 2008; Keogh et al. 2006; Péarkka et al.
2006; Ratanamahatana and Keogh 2004).

4. The queries arrive at a constant rate that is known ahead of time (Kranen and Seidl
2009; Ueno et al. 2010).

In this work, we demonstrate a time series classification framework that does not
make any of these assumptions. This lack of assumptions means our system can
be deployed with much less human effort, and can significantly outperform other
approaches, which often relied on subjective choices in training set creation.

Our approach requires only very weakly-labeled data, such as “This ten-minute
trace of ECG data consists mostly of arrhythmias, and that three-minute trace seems
mostly free of them”, removing assumption (1). Using this data we automatically build
a “data dictionary”, which contains only the minimal subset of the original data to span
the concept space. This is because the data dictionary can contain, say, one example
of walking fast, one example of walking normal, etc. This mitigates assumption
2).

As a byproduct of building this data dictionary, we learn a rejection threshold,
which allows us to address assumption (3). A query item further than this threshold
to its nearest neighbor is assumed to be in the other class. We show that using the
Uniform Scaling distance measure (Keogh et al. 2004b) instead of Euclidean distance
also addresses assumption (2). Finally, we introduce a novel technique to search the

' Note that only some ECG classification systems do beat extraction then classification (Faezipour et al.
2010). Many researchers believe that robust beat extraction can be a harder problem than classification itself
(cf. Figs. 1 and 2), and thus present every subsequence extracted by a sliding window for classification.
This is the approach we consider in Sect. 4.2, as we assume bedside monitoring.

@ Springer

Classification of streaming time series under more... 407

data dictionary in an anytime manner (Shieh and Keogh 2010), allowing us to handle
dynamic arrival rates and addressing assumption (4).

The rest of this paper is organized as follows: In Sect. 2, we introduce definitions
and notation used in this paper. In Sect. 3.1, we show how classification is achieved
given our data dictionary model. In Sect. 3.2, we illustrate how to actually learn
the data dictionary by utilizing data editing techniques (Niennattrakul et al. 2010;
Rakthanmanon et al. 2011; Ueno et al. 2010; Ye et al. 2009). Section 3.3 demonstrates
how our framework learns the threshold distances. We demonstrate how we remove
the fourth assumption by using the algorithm introduced in Sect. 3.4. In Sect. 4, we
present a detailed empirical evaluation of our ideas. We discuss related work in Sect. 5.
Finally, in Sect. 6, we offer conclusions and directions for future work.

2 Definitions and notation

We begin by defining all the necessary notation, starting with the definition of the data
type of interest, time series:

Definition 1 (Time series) T =ty, ..., t,, is an ordered set of m real-valued variables.

We are only interested in local properties of a time series, thus we confine our
interest to subsequences:

Definition 2 (Subsequence) Given a time series T of length m, a subsequence Sj of
T is a sampling of length n < m of contiguous position from T with starting position
atk, Sp =tk .., tign—1 forl <k <m —n+ 1.

The extraction of subsequences from a time series can be achieved by use of a
sliding window:

Definition 3 (Sliding window) Given a time series T of length m, and a user-defined
subsequence length of n, all possible subsequences can be extracted by sliding a
window of size n across T and extracting each subsequence, Si. For a time series T
with length m, the number of all possible subsequences of length nis m —n + 1.

For concreteness, we take the step of explicitly defining training data, as our def-
inition of fraining data explicitly removes the assumptions inherent in most works
(Hanson et al. 2009; Keogh et al. 2006; Koch et al. 2010; Parkki et al. 2006; Reiss
and Stricker 2011; Usabiaga et al. 2007; www.mocap.cs.cmu.edu/).

Definition 4 (Training data) A Training Data C is a collection of the weakly-labeled
time series annotated by behavior/state or some other mapping to the ground truth.

By weakly-labeled we simply mean that each long data sequence has a single global
label and not lots of local labeled pointers to every beginning and ending of individual
patterns, e.g., individual gestures. There are two important properties of such data that
we must consider:

@ Springer

www.mocap.cs.cmu.edu/

408 B. Huetal.

PVC2 loumr—

Extraneous data A | PVC1

L | I I I I I I \)
0 1000 2000 3000

(a) (b)

Fig. 1 A snippet of BIDMC congestive heart failure database ECG—Record-08 (www.physionet.org/
physiobank/database/chfdb/). a Is weakly-labeled data, which exhibits both extraneous data, a section of
recording when the machine was not plugged in, and redundant data (only one pair of redundancies are
shown in bold (red/green). b A minimally redundant set of representative heartbeats (a data dictionary)
could be used as training data (Color figure online)

o Weakly-labeled training data may contain extraneous/irrelevant sections. For
example, after a subject reaches down to turn on an ankle sensor to record her
gait, there may be a few seconds before she actually begins to walk (Reiss and
Stricker 2011). Moreover, during the recording session, the subject may pause to
shop, or jump to avoid a puddle. It seems very unlikely that such recordings could
avoid having such spurious data. Note that this claim is not mere speculation;
we observed this phenomenon in the first few seconds of the BIDMC Congestive
Heart Failure dataset (www.physionet.org/physiobank/database/chfdb/) as shown
in Fig. 1, and similar phenomena occur in all the datasets we examined.

o Weakly-labeled training data will almost certainly contain significant redundan-
cies. While we want lots of data in order to learn the inherent variability of the
concept we wish to learn, significant redundancy will make our classification algo-
rithms slow when deployed. Consider Fig. 1 once more. Once we have a single
normal heartbeat, say pattern A, then there is little utility in adding any of the 14
or so other very similar patterns, including pattern B. However, to robustly learn
this concept (beats belonging to Record-08), we must add either example of the
Premature Ventricular Contraction (PVC).

Rather than these large weakly-labeled training datasets, we desire a smaller “smart”
training data subset that does not contain spurious data, while maintaining coverage
of the target concept by having one (ideally, exactly one) instance of each of the many
ways the targeted behavior is manifest. For example, from the training data shown in
Fig. 1, we want just one PVC example and just one example of a normal heartbeat
(perhaps either A or B). However, we do not want to require costly human effort to
obtain this. While the time series shown in Fig. 1 would be fairly easy to edit by
hand, it is only 0.16% of the full ECG dataset we consider in Sect. 4.2. Therefore, our
objective is to build this idealized subset of the training data automatically. We begin
by defining it more concretely as a data dictionary.

Definition 5 A Data Dictionary D is a (potentially very small) “smart” subset of the
training data. We allow an input parameter x, where x is the percentage of the training
data C used in data dictionary D. The range of x is (0,100 %], and a dictionary with
the percentage x of the original data is denoted as Dy.

@ Springer

www.physionet.org/physiobank/database/chfdb/
www.physionet.org/physiobank/database/chfdb/
www.physionet.org/physiobank/database/chfdb/

Classification of streaming time series under more... 409

S PVC Q

0 2000 4000 6000

Fig. 2 A snippet of BIDMC Congestive Heart Failure Database ECG: Record-03 (www.physionet.org/
physiobank/database/chfdb/). Note that this section of ECG data exhibits more variability than the data in
Fig. 1

As the Data Dictionary is at the heart of our contribution, we will take the time to
discuss it in detail.

2.1 A discussion of data dictionaries

As defined above, there are a huge number of possible data dictionaries for any per-
centage x, as any random subset of C satisfies the definition. However, we obviously
wish to create one with some desirable properties.

Clearly, the classification error rate obtained from using just D should be no worse
than that obtained from using all the training data. We do not wish to sacrifice accuracy.
As we shall show, this is a surprisingly easy objective to achieve. In fact, as we
shall show later, the classification error rate using a judiciously chosen D is generally
significantly lower than using all of C. This is because the data dictionary contains
less spurious -and therefore, potentially misleading-data.

Another very desirable property of D is that it be a very small percentage of the
training data. This is to allow real-time deployment of the classifier, especially on
resource limited devices (embedded devices, smartphones, etc. Bao and Intille 2004;
Gafurov et al. 2006). This requirement may be seen as conflicting with the above
classification error rate requirement; however, again we will show that in three diverse
real-world problems we can judiciously throw away more than 95 % of C to obtain a
Ds¢q, that is at least as accurate as using all the data in C.

Note that the number of subsequences within each class in D may be different.
That is to say, our algorithm for building D is not round-robin; rather the algorithm
adaptively adds more subsequences to cover the more “complicated” classes of D.
For example, the ECG data from Record-08 shown in Fig. 1 is relatively simple. In
contrast, the ECG of Record-03 shown in Fig. 2 has a more complicated trace, and
at least four kinds of beats (normal, S, PVC and Q). Therefore, we might expect the
number of subsequences for Record-03 in D to be greater than that for Record-08,
something that is empirically borne out in our experiments (Sect. 4).

Finally, there is the question of what value we should set x to. In fact, we can
largely bypass this issue by providing an algorithm that produces a “spectrum” of data
dictionaries in the range of x = (0, 100 %], together with an estimate of their error
rate on unseen data. The user can examine this error rate vs. value-of-x curve to make
the necessary trade-offs. Note that these data dictionaries are “nested”, that is to say,

@ Springer

www.physionet.org/physiobank/database/chfdb/
www.physionet.org/physiobank/database/chfdb/

410 B. Hu et al.

'd I N\ '4 N\
1L l ‘
,—‘ class bears
111, —
’— Iv. class bulls
class bears class bulls
A\ J A\ J
left) Data dictionary A right) Data dictionary B

Fig. 3 Left A toy example data dictionary which was condensed from a large dataset. These seven subse-
quences in data dictionary A span the concept space of the bulls/bears problem. Right Note that if we had
a distance measure that was invariant to linear scaling, we could further reduce data dictionary A to data
dictionary B

for any value of x we have Dy, € Dy,.. Thus, we can consider our data dictionary
creation algorithm an anyspace algorithm Ye et al. (2009).

Given the above considerations, how can we build the best data dictionary? As we
will later show, we can heuristically search the space of data dictionaries using the
simple algorithm in Sect. 3.2.

2.2 An additional insight on data redundancy

Based on our experience with real-world time series problems, we noted the following:
in many cases, D contains many patterns that appear to be simply (linearly) rescaled
versions of each other. For clarity, we illustrate our point with a synthetic example in
Fig. 3; however, we will later show some real examples.

This situation is a consequence of our requirement that data dictionary D has
the most representative subsequences of training data C. For example, if one class
contains examples of walk, we hope to have at least one representative of each
type of walk—perhaps one example of a leisurely-amble, one example of a
normal-paced-walk, one example of abrisk-walk, etc. Itis important to note
that in this example, the three walking styles are not simply linearly rescaled versions
of each other. They have different foot strike patterns, and thus produce different pro-
totypical time series templates (Cavagna et al. 1977; McMahon and Cheng 1990).
Nevertheless, within each sub-class of walk, there may also be a need to allow some
linear rescaling of the time series. Using the Euclidean distance our search algorithm
can achieve this by attempting to ensure that the data dictionary contains each gait
pattern over a range of speeds. This is what our toy example in Fig. 3 illustrates.

For example, when reducing a dataset of daily human activities, we may have to
extract examples of a brisk- walk at 6.0, 6.1, 6.2km/h, etc. However, by gen-
eralizing from the Euclidean distance to the Uniform Scaling distance (Keogh et al.
2004b), we allow our algorithm to keep just one example of the wa 1k, and still achieve
coverage of the target concept by using a flexible measure instead of lots of data. The
Uniform Scaling distance is a simple generalization of the Euclidean distance that
allows limited invariance of the length of the patterns being matched (Keogh et al.
2004b). The maximum amount of linear scaling allowed is a user-defined parameter

@ Springer

Classification of streaming time series under more... 411

r N Euclidean /
W Distance {||/ = 0ol |y/ T
N
W Uniform

Scaling
0 200 400} Distance

Fig. 4 Left A data dictionary learned from a 15-class ECG classification problem (just class 01 is shown
here). At first glance, the two exemplars seem redundant apart from their (irrelevant) phases. Right By using
the Euclidean distance between the two patterns we can see that the misalignment of the beats would cause
a large error. The problem solved by using the Uniform Scaling distance (Keogh et al. 2004b)

(Keogh et al. 2004b). As we later show, allowing just a small amount of scaling, say
25 %, can greatly improve accuracy.

To see this in a real dataset, consider Fig. 4 left, which shows one of 15 classes
that was processed into a data dictionary in an experiment we performed in Sect. 4.2.
At first glance, the two patterns seem redundant,? violating one of the requirements
stated above.

Instead of having two similar but different scaled patterns, just a single pattern
is kept using the Uniform Scaling distance. We have found that using the Uniform
Scaling distance allows us to have a significantly smaller data dictionary. In Fig. 4, we
could delete either one of the two patterns and cover the space of possible heartbeats
from Record-01. For example, in Fig. 3, we could further delete patterns I, IT and IV
and still cover the space of possible “bulls”.

However, beyond reducing the size of data dictionaries (thus speeding up classifica-
tion), there is an additional advantage of using Uniform Scaling; it allows us to achieve
a lower error rate. How is this possible? It is possible because we can generalize to
patterns not seen in the training data.

Imagine the training data does contain some examples of gaits at speeds from 6.1
to 6.5 km/h. As noted above, if the data dictionary has enough examples to cover
this range of speeds, we should expect to do well. However, suppose the unseen
data contains some walking at 6.7 km/h. This is only slightly faster than we have
seen in the training data, but the Euclidean distance is very sensitive to such changes
(Keogh et al. 2004b). Using the Uniform Scaling distance allows us to generalize our
labeled example at 6.5 km/h to the brisker 6.7 km/h instance. This idea is more than
speculation. As we show in Sect. 4, using the Uniform Scaling distance does produce
a significantly lower error rate.

2.3 On the need for a rejection threshold

As noted above, the training set may have extraneous data. Likewise, in most realistic
deployment scenarios, we expect some (often most) of the data to be classified as the

2 Note the fact that the two patterns are out of phase does not make them non-redundant, as at query time
only queries half their length are used, and they are sliding across the entire length of the patterns. Details
in Sect. 4.2.

@ Springer

412 B. Huet al.

other class. In these cases, we wish our algorithm to label the objects as such. To
achieve this, the data dictionary must have a distance threshold r beyond which we
reject the query as unclassifiable (i.e., the other class). As we will show, we can
learn this threshold as we build the dictionary.

3 Algorithms

In order to best explain our framework, we first assume a data dictionary with the
appropriate threshold has already been created and begin by explaining how our clas-
sification model works. Later, in Sect. 3.2, we revisit the more difficult task of learning
the data dictionary.

3.1 Classification using a data dictionary

Our classification model requires just a data dictionary with its accompanying thresh-
old distance, r.

For an incoming object to be classified g, we classify it with the data dictionary
using the classic nearest neighbor algorithm (Ueno et al. 2010). In Table 1, we show
how to determine the class membership of this query, including the possibility that
this query does not belong to any class in this data dictionary. For our purposes, there
are exactly two possibilities of interest:

If the query’s nearest neighbor distance is larger than the threshold distance, we
say this query does not belong to any class in this data dictionary (line 12).

If the query’s nearest neighbor distance is smaller than the threshold distance, then
it is assigned to the same class as its nearest neighbor (line 14).

The algorithm begins by initializing the bs £ distance to infinity and the predicted
class_label toNaNinlines 1 and 2. From lines 3 to 9, we find the nearest neighbor
of the query g in data dictionary D. The subroutine NN_search (shown in Table 2)
returns the nearest neighbor distance of g within a time series. If the nearest neighbor
distance within a time series in line 4 is smaller than the bs £, then in lines 6 and 7 we
update the bsf and the class_label.

From lines 11 to 15, we compare the nearest neighbor distance to the threshold
distance r. If the nearest neighbor distance is smaller than r, then this query belongs
to the same class as its nearest neighbor. Otherwise, this query does not belong to any
class within this data dictionary and is thus classified as the other class.

As we show in Table 1 line 4, the function NN__search is slightly different from the
classic nearest neighbor search algorithm (Keogh et al. 2006). NN_search returns
not only the nearest neighbor distance of a query, but also a distance vector that contains
distances between the query and all the possible subsequences in a time series. This
distance vector is not exploited at classification time, but as we show in Sect. 3.2, it is
exploited when building the data dictionary. For concreteness, we briefly discuss the
NN_search function in Table 2 below.

In line 1, using a sliding window (cf. Definition 3), we extract all the subsequences
of the same length as the query. From lines 3 to 5, the distances between g and all the
possible subsequences are calculated. We calculate the nearest neighbor distance in

@ Springer

Classification of streaming time series under more...

413

Table 1 Classification algorithm using data dictionary

Input: D, a data dictionary that has N classes; The
total number of time series in D is k
r, a threshold distance of D
q, a query
Output: | The class membership of q, including the

possibility of a special class ‘other’

1 bsf = «; //initialize the best-so-far distance

2 class label = NaN;

3 for i = 1 to k

4 dist = NN _search(qg, D(i));

5 if dist < bsf

6 bsf = dist;

7 class label = class of D(i);

8 endif

9 endfor

10 NN dist = bsf;

11 if NN dist > r

12 return g belongs to ‘other’ class;

13 elseif NN dist <= r

14 return g belongs to ‘class label’™ class;

15 endif

Table 2 Nearest neighbor search within a time series

Input: q, a query T, a time series
Output: | dist_vector,a vector that contains distances
between g and all possible subsequences in T
NN dist, the nearest neighbor distance
1 w = set of all possible subsequences in T;
2 dist vector = zeros(l,|w]);
3 for i = 1 to |w]
4 dist vector (i) = distance(qg,w(i));
5 endfor
6 NN dist = minimum(dist vector);
7 return dist vector ;
8 return NN dist ;

line 6. Note that in line 4, the distance could be Euclidean distance (Keogh et al. 2006),
or Uniform Scaling distance (Keogh et al. 2004b), etc. We will revisit this choice in

Sect. 4.

In addition to finding the nearest neighbor, this function also returns a distance
vector. This additional information is exploited by the dictionary building algorithm

@ Sprin,

ger

414 B. Hu et al.

Sliding window

o

S o 30

2.2

Lg—o 0 L Il L L L L L L
0 1000 2000 3000

Fig.5 Top A snippet of BIDMC Congestive Heart Failure Database ECG data: Record-08 (www.physionet.
org/physiobank/database/chfdb/). Bottom the distance vector of an incoming query. The nearest neighbor
and its distance of g is colored in red/bold (Color figure online)

discussed later in Sect. 3.2. Figure 5 bottom shows an example of such a distance
vector.

Having demonstrated how the classification model works in conjunction with the
data dictionary, we are in position to illustrate how to build the data dictionary, which
is a more difficult task.

3.2 Building the data dictionary

As discussed in Sect. 2, we want to build the data dictionary automatically. Using
human effort to manually edit the training data into a data dictionary is clearly not a
realistic solution: as it is not scalable to large datasets and invites human bias into the
process.

Before introducing our dictionary-building algorithm, we will show a worked exam-
ple on a toy dataset in the discrete domain. We use a small discrete domain example
simply because is it easy to write intuitively; our real goal remains large real-valued
time series data.

3.2.1 The intuition behind data dictionary building

Suppose we have a training dataset that contains two classes, C; and Cj:

C; = {hgtheorihdpacekfjwerklwalkfhtyelwalkklpacedalyutekwalksrhyuqtrj}
C, = {jhiuspuewrsltyjhleapashljumpokdttwtpdjklleaphfleapfjjumpacggwd}

In this toy example, the data is weakly-labeled. The colored/ bolded text is for the
reader’s introspection only; it is not available to the algorithm. Here the reader can see
that in Cy, there appears to be two ways a shorter subsequence query might belong to
this class; if it contains the word pace or walk. This is similar to the situation shown in
Fig. 1 where a query will be classified to the class of Record-08 if it contains pattern
A or pattern PVC.

We want to know whether any incoming queries belong to either class in this training
data or not. In our proposed framework, we search just the data dictionary.

@ Springer

www.physionet.org/physiobank/database/chfdb/
www.physionet.org/physiobank/database/chfdb/

Classification of streaming time series under more... 415

Recall that one of the desired properties of the data dictionary is that it contains a
minimally redundant set of patterns that is representative of the training data. In this
example for Cy, these are clearly the substrings pace and walk. Likewise for C,, leap
and jump seem to completely define the class. Thus, the data dictionary D should be
the following:

D = C; : {pace; walk}; C; : {leap; jump}, r = 1

Consider now two incoming queries ieap and kklp. The former is a noisy version of a
pattern found in our dictionary, but as it is within our rejection threshold of (hamming)
distance r of 1, it is correctly labeled as C». In contrast, kklp has a distance of 3 to its
nearest neighbor in D, so it is correctly rejected.

Note that had we attempted to classify against the raw data rather than the dic-
tionary, the query kklp would have been classified as C; (it appears in the middle
of ..Iwalkklpaced.). This misclassification is clearly contrived, but it does happen fre-
quently in the real data. Consider the flat section of time series at the beginning of
Fig. 1. As noted above, it is extraneous data, due to a temporary disconnection of the
sensor. However, many other patients’ ECG traces also have these flat sections, but
clearly that does not mean we should classify them as belonging to patient Record-08.

In our example, we have considered two separate queries; however, a closer ana-
logue of our real-valued problem is to imagine an endless stream that needs to be
classified:

..ttgpacedgrteweerjumpwalkflgrafertwghafhfahfahfbseebvdfuhreueruthrwew..

Up to this point we have not explained how we built our toy dictionary. The answer is
simply to use the results of leaving-one-out classification to score candidate substrings
(leaving-one-out classification is just a particular case of leave- p-out cross-validation
with p = 1). For example, by using leaving-one-out to classify the first substring
of length 4 in C; dpac, it is incorrectly classified as C, (it matches the middle of
..umpacgd.. with a distance of 1). In contrast, when we attempt to classify the second
substring of length 4 in Cy, pace, we find it is correctly classified. By collecting
statistics about which substrings are often used for correct predictions, but rarely used
for wrong predictions, we find that the four substrings shown in our data dictionary
emerge as the obvious choices. This basic idea is known as data editing (Niennattrakul
et al. 2010; Pekalska et al. 2006; Ueno et al. 2010). In the next section, we formalize
this idea, and generalize it to real-valued data streams.

3.2.2 Building the data dictionary

The high-level intuition behind building the data dictionary is to use a ranking func-
tion to score every subsequence in C. These “scores” rate the subsequences by their
expected utility for classification of future unseen data. We use these scores to guide
a greedy search algorithm, which iteratively selects the best subsequence and places
it in D. How do we know this utility? We simply estimate it by cross validation, e.g.

@ Springer

416 B. Huet al.

looking at the classification error rate and some additional information as explained
below.

As previously hinted, our algorithm iteratively adds subsequences to the data dic-
tionary. Each iteration has three steps. In Step 1, the algorithm scores the subsequences
in C. In Step 2, the highest scoring subsequence is extracted and placed in D. Finally,
in Step 3, we identify all the queries that cannot be correctly classified by the cur-
rent D. These incorrectly classified items are passed back to Step 1 to re-score the
subsequences in C.

There is an important caveat. Once we have removed the best subsequence in Step
2, the scores of all the other subsequences may change in the next iteration. To return
to our running example in Fig. 1, either subsequence A and B would rank highly.
However once we have placed one, say A, in D, there is little utility in adding B,
since having A in D is sufficient to correctly classify similar patterns in Step 3. Thus
we expect the scores of B will be low in the next iteration, given that the correctly
classified queries by the current D will not be used to re-score C in the next iteration.

The process iterates until we run out of subsequences to add to D or the unlikely
event of perfect training error rate having been achieved. In the dozens of problems
we have considered, the training error rate plateaus well before 10 % of the training
data has been added to the data dictionary.

Below we consider each step in detail.

Step 1 In order to rank every point in the time series, we use the leaving-one-out
classification algorithm.? However, we do not want to use just the classification error
rate to score the subsequences. Imagine we have two subsequences Sy and S», either
of which is found to correctly predict 70 % of the queries tested with them. Either
appears to be a good candidate to add to D. However, suppose that in addition to being
close enough to many objects with the same class label (friends), allowing its 30 %
error rate, further suppose that Sy is also very close to many objects with different
class labels (enemies). If S, keeps a larger distance from its enemy class objects, it is
a much better choice for inclusion in D.

This idea, that instead of using just the error rate of classification, you must also con-
sider the relative distance to “friends” and “enemies” has been investigated extensively
in the field of data editing (Pekalska et al. 2006; Ueno et al. 2010).

Given a query length /, we randomly choose a query g from the training data C.*
In Table 3, lines 2 and 3, we first split the training data into two parts, Part A (friends
only) and Part B (enemies only). Using the NN_search algorithm in Table 2, we
find nearest neighbor friend in Part A (lines 5—13) and nearest neighbor enemy (lines
14-22) in Part B.

In lines 23-27, the nearest neighbor friend distance and the nearest neighbor enemy
distance are compared. If the nearest neighbor friend distance is smaller than the
nearest neighbor enemy distance, we discover all the distances of the query g in Part
A that are also smaller than the nearest neighbor enemy distance. Such subsequences

3 Where tractability is an issue, we may sample a subset of the queries.

4 We defer the discussion on how to choose a query length to Sect. 6.

@ Springer

Classification of streaming time series under more... 417

Table 3 Classification of training data (best viewed in color, the red text describes nearest friend search,
the blue text describes nearest enemy search)

Input: C, the training data
Output: | likely true/false positive subsequences
1 g = a randomly selected subsequence in C;
2 A = friends ;
//all the time series in C that have the same class as g, g is removed from A;
3 B = enemies ; //allthe time series in C that have different class from q;
4 dists_A = []; dists_B = [];
5 bsf = o, //initialize the best-so-far distance
6 for i = 1 to |A]
7 [dist vector, NN dist] = NN search(q, A(i));
8 if NN dist < bsf
9 bsf = NN_dist;
10 endif
11 dists A = [dists A ; dist vector];
12 endfor
13 NN friend dist = bsf; // nearestneighbor distance in same class
14 bsf = «; //initialize the best-so-far distance
15 for j = 1 to |B|
16 [dist vector, NN dist] = NN search(q, B(3j));
17 if NN dist < bsf
18 bsf = NN dist;
19 endif a
20 dists B = [dists_B ; dist_vector];
21 endfor
22 NN enemy dist = bsf; / nearestneighbor distance in different class
23 if NN friend dist < NN _enemy dist
24 likely true positives = find(dists A < NN_enemy dist)
25 elseif NN friend dist >= NN enemy dist
26 likely false positives = find(dists B < NN friend dist)
27 endif

are likely true positives. That is to say, our confidence that these subsequences can
produce correct classifications of unseen data has increased.

Similarly, if the nearest neighbor friend distance is larger than the nearest neighbor
enemy distance, we find all the distances of the query g in Part B that are also smaller
than the nearest neighbor friend distance. We call the corresponding subsequences
likely false positives.

Given the likely true/false positives found in Table 3, we are now in a position to
discuss how to rank them. The algorithm to prioritize their inclusion in the training
set will use this ranking.

By utilizing the simple rank function introduced in Ueno et al. (2010), we generalize
an algorithm that gives positive score to likely true positives and negative score to the
likely false positives.

Note that subsequences that are not used to classify any queries (correctly or not)
get a zero score. Using a large number of queries, we compute a score vector for every
time series in C. We denote rank(S) as the score for a subsequence S in the time series.

@ Springer

418 B. Hu et al.

the point that has the highest score

the extracted subsequence
72 1 l/2

A1/

Fig.6 Top A snippet of BIDMC Congestive Heart Failure Database ECG data: Record-08 (www.physionet.
org/physiobank/database/chfdb/). Bottom the extracted subsequence has twice the query length

1, likely true positives
rank(S) = Z —2/(num_of _class — 1), likely false positives (D
k|0, other

In the next step, we demonstrate how to extract the current best subsequence using
the score vectors.

Step 2 We extract the highest scoring subsequence and place itin D. We demonstrate
this step by using the example in Fig. 6. Suppose in one of the iterations in Step 1,
the starting point of the red/bold heartbeat has the highest score. Therefore we need to
extract this heartbeat. Because the Euclidean distance is very sensitive to even slight
misalignments and our scoring function is somewhat “blurred” as to its exact location
in the x-axis. Extracting exactly the subsequence with query length / would be very
brittle. Therefore, we “pad” the chosen subsequence some time series from the left
and to the right, in particular with the //2 data points to either side.

Note that there is a slight difference between the first iteration and the subsequent
iterations. Before the first iteration, D is empty. After the first iteration, D should
contain exactly one subsequence from each class. This is the smallest D logically
possible. Therefore, instead of splitting C to the friends part and the enemies part, the
algorithm finds the most representative subsequence in each class in Step 1, and then
adds them into D in Step 2.

After the first iteration, we extract only the one subsequence that holds the highest
score in C and add it into D. Thus, the class sizes in D can be skewed, as the algorithm
adds more exemplars to the more diverse/complicated classes. While we are iteratively
building D, the size of C becomes smaller, as the extracted subsequence is removed
from C.

Step 3 The algorithm examines the quality of the current D by doing classification
using all the queries. The queries that are correctly classified by the current D will not
be used to re-score C in the next iteration Step 1, since the current D is sufficient to
correctly classify them. Only the misclassified queries will proceed back to Step 1 to
re-score C. In each iteration Step 3, we redo classification experiments on D using all
the queries, since the correctly classified queries in D, may become misclassified in
Dyte.

After building a data dictionary for a training data, our last obligation is to learn
the distance threshold.

@ Springer

www.physionet.org/physiobank/database/chfdb/
www.physionet.org/physiobank/database/chfdb/

Classification of streaming time series under more... 419

Nearest neighbor distances of
the correctly classified queries

600 Decision boundary

Nearest neighbor distances of

400 queries from other class

200

Number of
queries

Euclidean distance

Fig. 7 The green/left histogram contains the nearest neighbor distances of correctly classified queries for
the ECG data used in Sect. 4.2. The red/right histogram shows nearest neighbor distances for queries from
the other class (Color figure online)

3.3 Learning the threshold distance

After the data dictionary is built, we learn a threshold to allow us to reject future queries,
which do not belong to any of our learned classes. We begin by recording a histogram
of the nearest neighbor distances of testing queries that are correctly classified using
D, as shown in Fig. 7. Next, we compute a similar histogram for the nearest neighbor
distances of queries, which should not have a valid and meaningful match within D
(i.e., the other class). Where can we get such queries? In the example shown in
Fig. 7, we simply used gesture data as the other class, knowing gestures should not
match a set of heartbeats. Note that it is occasionally possible that a gesture will match
a heartbeat by coincidence; but our approach is robust to such spurious matches so
long as they are relatively rare. If external datasets are in short supply, we can also
simply permute subsequences of D to produce the other class, for example flipping
heartbeats upside-down and backwards.

Given the two histograms, we choose the location that gives the equal-error-rate as
the threshold (about 7.1 in Fig. 7). However, based on their tolerance to false negatives,
users may choose a more liberal or conservative decision boundary.

3.4 Anytime classification

For many time series problems, the available time to classify an instance may vary over
many orders of magnitude. As a concrete example, consider the task of flying insect
classification, which (Hao et al. 2013) recently suggested can be fruitfully considered
a time series problem. As Fig. 8 shows, the arrival rates of the insects can vary by at
least four orders of magnitude (Batista et al. (2011); Hao et al. (2013)). While handling
such a huge range is currently at the limit of what we can do, in Sect. 4.4 we show
that we can address the order of magnitude range that is common in medicine (ECGs
etc) and human behavior.

This variability in time available to classify an instance is particularly problematic
for a lazy learner such as nearest neighbor classification. If we plan only for the fastest
possible arrival rate, then we will be forced to invest in computational resources that
are unused 99.9 % of the time. Otherwise, we may consider a tiny training dataset,
when 99.9 % of the time we could have availed of the larger dataset, and achieved
a higher accuracy. To mitigate this issue we can cast our framework as an anytime
algorithm, as explained in the next section.

@ Springer

B. Hu et al.

420

IpmIuSew JO SIAPIO INOJ IIA0 JJJIP PUE ‘SA[IAD WYSIu/Aep YIIM PAJe[LI0d A[IABIY AJB SA)RI [BALLIE O [, "WAY) JUNOD A[AIsnnqoun ued jey) (¢1(g) '[e 12 OeH
I0SUDS © 1 DU0SOIpuiS1S X)) 9[eW JO)kl [BALLIE OU) paInseaul oA “snifeydoouy oumbyg u1e)sop Jo 10300a Arewd oy st yomym oynbsowr ay) st vuosopusys xamy) g “81

wdgzy wde wdg wdg wdgzy weeg weg weg wegl

B]\I’llo

& puosopuiss “xajny)

‘wrrd ¢ Je uey) 10)ea13 opnjuSew Jo SI9PIO INOJ ST

‘urd ()] Je 9)el [RALLIE 103sul) o[IYA\ "wrd ¢ Je ueyy 19jeaIs
SpmuSew Jo SIOPIO OM) ST "UI'E § J& 3Bl [EALLIE JOOSUT O],

ysnpV<— umop

pringer

As

Classification of streaming time series under more... 421

Fig. 9 Anytime algorithms are
interruptible after a short
initialization. This idealized
figure shows the result quality
increases with computation time

Initialization

Result Quality

Termination of Computing

| _»
T »

Time
3.4.1 Anytime classification

Anytime classification algorithms are algorithms that can sacrifice the quality of results
(here accuracy) for a faster running time (Grass and Zilberstein 1995; Shieh and Keogh
2010; Zilberstein and Russell 1995). The algorithm becomes interruptible after a short
time of initialization, then as shown in Fig. 9 offers a tradeoff between the quality of
experimental result and the computation time.

An anytime classification algorithm can mitigate the assumption that the arriving
rate of queries is known ahead of time, since the computation can be interrupted
any time after a short period of initialization. For example, suppose that the Data
Dictionary D contains 1000 exemplars, we begin to search the nearest neighbor for
a query through all the 1000 exemplars. If the computation is not interrupted during
this search, we can report the class label of the nearest exemplar as the predicted class
(i.e Table 1). However, if the computation is interrupted before seeing all the 1000
exemplars, we can instead simply report the class label of the nearest exemplar with the
bsf distance as the predicted class. Table 4 formalizes this intuition. The algorithm
begins by initializing the bs £ distance to infinity and the predicted class_label
to NaN in lines 1 and 2. In line 3, we extracted all the possible subsequences in
the training data in a specific order. Note that the order of all the subsequences can
be defined by any arbitrary methods. For example, in Table 2 line 1, all possible
subsequences are extracted in a left-to-right order using a sliding window. Thus the
search process in Table 2 is essentially sequential search. Likewise, we could search in
random order to make the algorithm invariant to some arbitrary order of data collection
etc. To approximately maximize the desirable diminishing returns property of anytime
algorithms, in Sect. 3.4.2, we propose to index all the possible subsequences using a
novel technique.

In Table 4 line 4, we start to calculate the distance between g and each subsequence.
If the distance in line 6 is smaller than the bsf, then in lines 7 and 8 we update the
bsf and the class_label accordingly. From lines 10 to 12, if the stopFlag is
true, then the computation will be terminated and return the current class_label
associated with the bs f distance.

3.4.2 Using complexity to order the anytime search
In Table 4 line 3, we noted that the subsequences in the data dictionary can be sorted
in any order. It is easy to see that some orders can result in very poor performance. For

example, suppose we have a balanced two-class problem with 1,000 exemplars. If the
data is sorted such that all the training exemplars belonging to class-1 are searched

@ Springer

422 B. Hu et al.

Table 4 Anytime nearest neighbor classification algorithm

Input: T, the training data
g, a query
stopFlag = 0, the value of stopFlag can be changed during the
computation process;
Output: | The class membership of q;
1 bsf « =; // initialize the best-so-far distance
2 class label ~ NaN;
3 subs « some_order of all possible subsequences(T);
4 for i « 1 to |subs|
5 dist « distance(q,subs(i));
6 if dist < bsf
7 bsf = dist;
8 class label = subs(i).class;
9 end B
10 if stopFlag == 1 //an interrupt indicates a new object to be classified
11 return class label; //hasarrived, so we stop working on current object
12 end B
13 end

first, then any interruption before we have seen more than 500 objects will result in the
algorithm predicting class-1. Either random ordering or round robin ordering can
easily fix this pathological problem. However, this invites us to consider if there is an
optimal ordering? In Ueno et al. (2010) the author argue that in the face of unknown
objects to classify that the idea of an optimal ordering is ill-defined, however we can
still (as they do) attempt to find a good ordering.

We propose to use the complexity of each subsequence as the ordering key. The
idea is to compute the complexity of all objects in the data dictionary (this needs to
be done just once, offline during the dictionary creation). When the query arrives, we
measure its complexity, and then search the data dictionary in order to find the training
exemplar that has the closest complexity with this query. The intuition is that if two
sequences have very different complexities, then they must surely also have very high
Euclidean distances (note the converse need not be true).

The complexity of a time series can be calculated by different methods, such as
Kolmogorov complexity (Liand Vitanyi 1997), variants of entropy (Andino 2000; Aziz
and Arif 20006), etc. There are several desirable properties of a complexity measure
(Batista et al. 2011), such as,

e Low time and space complexity;
e Few parameters, ideally none;
e Intuitive and interpretable;

Given the above consideration, we propose to use one complexity measure shown in
Eq. (2), which has O(1) space and O(n) time complexity (Batista et al. 2011). More
importantly, this complexity measure has a natural interpretation and no parameters.

n—1
CE(q) = 7| > (i —qi+1)?)

i=1

@ Springer

Classification of streaming time series under more... 423

Table 5 Using complexity as the search order key

Input: T, training data
q, an incoming query
Output: | indexing Order,the indexing using complexity for all the
subsequences in T
CE g « CE(q); //equation (2)
subs « all possible subsequence (T);
for i « 1 to |subs|
CE _subs (i) < CE(subs(i));
diff CE(i) « abs|CE subs(i) - CE gl;
end
indexing Order = ascend sort(diff CE);

~N o0 W N

We are not claiming this is the optimal ordering technique. We simply want to
show an existence proof of an ordering technique that can mitigate the assumption (4).
Table 5 outlines the algorithm. In line 1, we calculate the complexity of the incoming
query. Line 2 shows that we extract all the possible subsequences in the data dictionary
using a sliding window. The sliding window length is the same length as the query. This
extraction is the same as the one in line 1 in Table 2. From lines 3 to 6, we calculate the
absolute difference of the complexity between the query and each subsequence. Last,
we sort the differences in an ascending order in line 7. After the sorting, the closer the
subsequence is to the query in terms of complexity, the higher rank it will have. In
other words, in Table 4 line 3, the subsequence that has the most similar complexity
to the query, will have the highest priority for calculating its Euclidian distance with
that query.

Before moving on, we will preempt a possible misunderstanding. The ordering
calculated in Table 3, orders the data for our anyspace technique. If you can only
afford to use D% of the full dataset, the first D% of the ordered data is what you
should take. This ordering is computed exactly once, during training time.

In contrast, the ordering discussed in this section is used at festing time. Given a
query, if we want to find its class label quickly, we should compare it to its nearest
neighbor in each class. However finding the nearest neighbor requires a nearest neigh-
bor similarity search. One could do this search in random order, but our claim is that if
we do it in the complexity-based order, we are likely to find a “near enough” neighbor
more quickly. In Sect. 4.4, we show that this ranking technique is very effective.

3.5 The utility of the uniform scaling technique

Finally, we can trivially replace the Euclidean distance with Uniform Scaling® distance
in the above data dictionary building and threshold learning process (Keogh et al.

5 The reader may ask why not Dynamic Time Warping? Empirically, we tried it and it does not help.
Moreover, we should not expect it to help this problem; https://sites.google.com/site/dmkdrealistic/.

@ Springer

https://sites.google.com/site/dmkdrealistic/

424 B. Huet al.

2004b). We choose the maximum scaling factor based on the variability of time series
in the domain at hand, see discussion in Sect. 4. A naive implementation of Uniform
Scaling would be slow, but Keogh et al. (2004b) shows that it can be computed in
essentially the same time as Euclidean distance.

4 Experimental evaluation

We begin by discussing our experimental philosophy. To ensure that our experiments
are easily reproducible, we have built a website, which contains all the datasets and
code (https://sites.google.com/site/dmkdrealistic/). In addition, this website contains
additional experiments, which are omitted here for brevity. Our experimental results
support our claim that using only the data dictionary is more accurate and faster than
using all the available training data. In Table 6, we summarize the datasets consider
in this work.

We compare our algorithm with several widely used rival approaches. The most
widely used rival approach extracts feature vectors from the data and reports the best
result among multiple models (Bao and Intille 2004; Pham et al. 2010; Reiss and
Stricker 2011). In addition, we compare with the obvious strawman of using all the
training data, which is just a special case of our framework, in which all the training
data is used (i.e. D1go%)-

To support our claim that the real-world streaming data is not as clean as the
contrived datasets used in most literature, we report the percentage of the rejected
queries produced by the learned threshold and show some examples.®

We report the error rate using both Euclidean distance and Uniform Scaling distance
to support our claim that the latter can be very useful for time series classification
problems.

While we are ultimately interested in the festing error rate, we also report the
training error rate, as this can be used to predict the best size of the data dictionary
for a given problem. However, for completeness, we build and test the data dictionary
D, for every value of x, from the smallest logically possible size to whatever value
minimizes the holdout error rate (this is generally much less than x = 10 %).

The reader may object that error rate is not the correct measure here. Imagine that
our rejection threshold is so high that we reject 999 of 1000 queries, and just happen
to get one classified object correct. In this case, reporting a 0 % error rate would be
dubious at best. This is of course what precision/recall and similar measurements are
designed to be robust to. However, in all our case studies, our rejection rate is much less
than 10 %, so reporting just the error rate is reasonable, and allows us to present more
visually intuitive figures. Moreover, we will show experiments where we consider the
correctness of rejections made by our algorithm.

Finally, we defer experiments that consider the scalability of dictionary building to
https://sites.google.com/site/dmkdrealistic/, noting in passing that this is done offline,

6 We only show the rejected queries in the first case study. See Project (https:/sites.google.com/site/
dmkdrealistic/) for examples of rejected queries from the other case studies.

@ Springer

https://sites.google.com/site/dmkdrealistic/
https://sites.google.com/site/dmkdrealistic/
https://sites.google.com/site/dmkdrealistic/
https://sites.google.com/site/dmkdrealistic/

425

Classification of streaming time series under more...

pringer

AQs

0SI
00¢
00¢

0L
0s¢
o1t

L
Sl
6

000°2€0°Y
000°SL9
008°€9L

000°8¥0°9
000°STT
000711

(¥007) oTMUT pue ovg STewydudq LT
(/qp3yo/eseqerepsueqorsAyd/siojuorsAyd-mmm) DINAILD
(Tuny owdp/310-dewred mmm) JVINVI

sarang) jo ysua

(zH) Aouanbaig

SOsSe[d JO WNN

eyep Sunsay,

vyep Jurureay,

jasereq

syasejep jo uonduosaq 9 dqey,

www.pamap.org/demo.html
www.physionet.org/physiobank/database/chfdb/

426 B. Huet al.

0.6
Using all the training data, the testing error rate

is 0.22

0.4
Test error : randomly built D

Error Rate

02 I Test error

| 0.39% —
rain error

0

0.0% 4.0% 8.0% 12.0%
Percentof the training data used by the data dictionary

Fig. 10 The classification error rates for D from D 399, to D14.29, for the physical activity dataset (www.
pamap.org/demo.html)

and that in any case we can do this fasfer than real-time. In other words, we can learn
the dictionary for an hour heartbeats in much less than one hour.

4.1 An example application in physiology

We consider a physical activity dataset called ‘PAMAP’, which contains eight subjects
performing activities such as: normal-walking, walking-very-slow,
descending-stairs, cycling, and inactivity (an umbrella term for
lying-in-bed/sitting-still/standing-still), etc (www.pamap.org/demo.html). Approxi-
mately eight hours of data at 110 Hz was collected from wearable sensors on the
subjects’ wrist, chest, and shoes.

For simplicity of exposition, we consider only a single time series, recording the
roll-axis from the sensor placed in the subjects’ shoe. However, our algorithm trivially
extends to multi-dimensional data (examples appear at https://sites.google.com/site/
dmkdrealistic/). Note that although our algorithm only uses a single axis from the
sensor, we demonstrate that our results are significantly better than rival algorithms
that use all three-axis data (roll, pitch and yaw) from the same sensor (Reiss and
Stricker 2011).

We randomly choose 60 % of the data as training data, and treat the rest as testing
data. We repeat this randomly sampling of training and testing data twenty times and
in Fig. 10 we show the average results over all this twenty training and testing sets.
In Fig. 10, we show the training/testing error rates as our algorithm grows D from
the smallest logically possible size (about 0.39 % of all the training data) to the point
where it is clear that our algorithm can no longer improve. Although our algorithm
bottoms out earlier in the plot, we wish to demonstrate that the output is very smooth
over a wide range of values.

We compare with the widely-used rival approach (Bao and Intille 2004; Koch
et al. 2010; Reiss and Stricker 2011), which extracts signal features from the sliding
windows. For fairness to this method, we used their suggested window size Reiss and
Stricker (2011), and tested all of the following classifiers: K-nearest neighbors (K =
5), SVM, Naive Bayes, boosted decision trees and C4.5 decision tree (Bao and Intille
2004; Pham et al. 2010; Reiss and Stricker 2011). The best classification result is 0.364
achieved by the C4.5 decision tree.

@ Springer

www.pamap.org/demo.html
www.pamap.org/demo.html
www.pamap.org/demo.html
https://sites.google.com/site/dmkdrealistic/
https://sites.google.com/site/dmkdrealistic/

Classification of streaming time series under more... 427

0.4r Euclidean train

error (from Fig.10)
for reference

= Test error : Uniform Scaling

— Train error : Uniform Scaling

Error Rate
(=]
38

| 0.39

0 L L % 1 L L
0.0% 4.0% 8.0% 12.0%

Percent of the training data used by the data dictionary

L !

Fig. 11 The /green(bold) curves are train/test error rates obtained when we replaced Euclidean dis-
tance with Uniform Scaling distance (Color figure online)

For the commonly used strawman of using all the training data, the testing error
rate is 0.221. However, our framework equals this testing error rate using only 1.6 %
(i.e. D1.6%) of the training data and obtains the significantly lower error rate of 0.152
at Dg 3¢, . Moreover, given that we are using only about one-twelfth the data, we are
able to classify the data about twelve times faster.

Our algorithm is clearly highly competitive, but does it owe its performance to
choice of which subsequences are placed in D by our algorithm? To test this, we
built another D by randomly extracting subsequences from C. As Fig. 10 also shows,
our systematic method for ranking subsequences is significantly better than random
selection.

A final observation about these results is that the training error rate tends to be a
very good predictor of the test error rate. As Fig. 10 shows, the training error is only
slightly optimistic.

We are now ready to test our claim that Uniform Scaling (c.f. Sect. 2.2) can help in
datasets containing signals acquired from human behavior/physiology. We repeated
the experiments above under the exact same conditions, except we replaced Euclidean
distance with Uniform Scaling distance in both the training and testing phases.

Based on studies of variability for human locomotion (Aspelin 2005; Cavagna et al.
1977; McMahon and Cheng 1990), we chose a maximum scaling factor of 15 %; that
is to say, queries are tested at every scale from 85 to 115 % of their original length.
Uniform Scaling obtains a 0.085 testing error rate at Dg ¢, significantly better than
Euclidean distance, as shown in Fig. 11.

We learned a threshold distance of 14.5 for D.” With this threshold, our algorithm
rejects 9.5 % of the testing queries. In Fig. 12, we see that the vast majority of rejected
queries do belong to the other class and are thus correctly rejected.

We do not present formal numerical results for the rejected queries, as the weakly-
annotated format of the original data does not provide the label of the objects with
certainty. Approximately 9.5 % of the queries where rejected, we carefully looked at
arandom sample of 100, and we are very confident they are true rejections.

This dataset draws from sporting activities. In Sect. 4.3 we also consider a simi-
lar but independent dataset, call the MIT benchmark Bao and Intille (2004), which

7 Experimental results show that the threshold distances for D built with Euclidean distance and Uniform
Scaling distance are almost identical. Therefore, we only report one threshold distance.

@ Springer

428 B. Hu et al.

4 4 8
6 i)
2 2 4 Nordic walkin,
0 0 2
0
-2
2 . -2 Ascending stairs
4 0 100 200 300 0 100 200 300 0 100 200 300

Fig. 12 Left and middle Two examples of rejected queries, assigned to other. Both queries contain
significant amount of noise. By visually comparing 100 such rejected queries to known true queries right)
we are confident that the vast majority (if not all) of the rejected queries, are true rejections

0.6 —— Using 20% of the data as training data
~ Using 30% of the data as training data
0.4 Using 40% of the data as training data

: — Using 50% of the data as training data
0.2

0.39% — Using 60% of the data as training data

\ (Note that this is the same as
the test error line in Fig. 10)

0 —t I 1 1 1 3
0.0% 4.0% 8.0% 12.0%
Percent of the training data used by the data dictionary

Fig. 13 The experiment considered in Fig. 10, repeated for increasing smaller training set sizes

additionally considers more quotidian activities such as tooth-brushing etc. We
achieve near identical improvements on this dataset, giving us some confidence that
the results here are not a happy coincidence.

Finally, we consider how much the size of the training data affects our algorithm.
To do this we repeated the experiment shows in Fig. 10, which used 60 % of the all
the data for training, but with progressively less training data. As shown in Fig. 13
using a smaller pool of data from which to build the classifier does hurt somewhat,
but surprisingly little. Even if the training data is one-third the original size (just 20 %
instead of 60 %) our algorithm can still learn a classifier that, while using only about
5 % of the data, is better than the strawman of using all the training data (the horizontal
line at 0.221 in Fig. 13).

4.2 An example application in cardiology

We apply our framework to a large ECG dataset: the BIDMC Congestive Heart Fail-
ure Database (www.physionet.org/physiobank/database/chfdb/). The dataset includes
ECG recordings from fifteen subjects with severe congestive heart failure. The indi-
vidual recordings are each about 20 h in duration, sampled at 250 Hz.

Ultimately, the medical community wants to classify patient-independent fypes of
heartbeats. However, in this experiment, we classify individuals’ heartbeats. This is
simply because we are able to obtain huge amounts of labeled data this way. Note that
as hinted at in Fig. 2, the data is complex and noisy. Moreover, a single (unhealthy)
individual may have many different types of beats. Cardiologist Helga Van Herle from
USC informs us this is a perfect proxy problem.

@ Springer

www.physionet.org/physiobank/database/chfdb/

Classification of streaming time series under more... 429

0.6 -
04 Using all the training data, the testing error rate is 0.102
© 041
s
4 L
é 0 Test error : randomly built D
0 0~?8% Train error . ‘

Il
- T
0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Percent of the training data used by the data dictionary

Fig. 14 The classification error rates for D from Dy 289, to D5 gr¢, for BIDMC Congestive Heart Failure
Database (www.physionet.org/physiobank/database/chfdb/)

03 Euclidean train — Test . i i
error (from Fig. 12) est error : uniform scaling
% 0.2 for reference
: \
—
o
5 o1
0.28%
oLt | 1 1 I I
0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Percent of the training data used by the data dictionary
Fig. 15 The /green(bold) curves are train/test error rates obtained when we replaced Euclidean dis-

tance with Uniform Scaling distance (Color figure online)

We use a randomly selected 150 min of data for training, and 450 min of data for
testing.

In Fig. 14, we show the training/testing error rates as our algorithm grows the data
dictionary from the smallest possible size (Dg.28¢9) to the point where it is clear that
our algorithm can no longer improve.

Note that the testing error rate is 0.102 using the strawman of using all the training
data, which is significantly better than the default error rate 0.933. However, our
framework duplicates this error rate using only 2.1 % (i.e. D2.1¢) of the training data,
and obtains the much lower error rate of 0.076 at D4 5¢9,. From Fig. 14 we again see
that our method for building dictionaries is much better than random selection.

We again test the Uniform Scaling distance instead of Euclidean distance
in both the training/testing phases. Based on studies of variability for human
heartbeats (www.physionet.org/physiobank/database/chfdb/; http://en.wikipedia.org/
wiki/Electrocardiography) and advice from a cardiologist, we chose a maximum scal-
ing factor of 25 %. In Fig. 15, Uniform Scaling obtains a 0.035 testing error rate at
Dy4.6%, significantly better than using the Euclidean distance.

As illustrated in Fig. 7, the threshold distance for D is 7.1. With this threshold,
the algorithm rejects 4.8 % of the testing queries. Once again, these rejections (which
can be seen at https://sites.google.com/site/dmkdrealistic/) all seem like reasonable
rejections due to loss of signal or extraordinary amounts of noise/machine artifacts.

@ Springer

www.physionet.org/physiobank/database/chfdb/
www.physionet.org/physiobank/database/chfdb/
http://en.wikipedia.org/wiki/Electrocardiography
http://en.wikipedia.org/wiki/Electrocardiography
https://sites.google.com/site/dmkdrealistic/

430 B. Huetal.

0.6+ Using all the training data, the testing
error rate is 0.237

L 04f
S Test error : randomly built D
g | Test erro
m 02}

L Train error

0 0.17% ‘ ‘ ‘ ‘
6.0% 1.0% 2.0% 3.0% 4.0% 5.0%

Percent of data dictionary to all the training data

Fig. 16 The classification error rates for D from Dg 17¢, to D5 379, for the MIT dataset Bao and Intille
(2004)

0.6 Euclidean train error (from Fig.14 in the
additional experiment) for reference

0.4 — Test error : uniform scaling
\ — Train error : uniform scaling
0.2
0.17%
olc

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Percent of data dictionary to all the training data

Error rate

Fig. 17 The blue/brown(bold) curves are train/test error rates obtained when we replaced Euclidean
distance with Uniform Scaling distance. Note the other curves are taken from Fig. 16 for comparison
purposes (Color figure online)

4.3 An example application in daily acitivies

We apply our framework to a widely studied benchmark dataset from MIT that
contains 20 subjects performing approximately 30 h of daily activities (Bao and
Intille 2004), such as running, stretching, scrubbing, vacuuming,
riding-escalator, brushing-teeth, walking, bicycling, etc.
The data was sampled at 70 Hz. We randomly chose 50 % of the data as training
data, and treated the rest as testing data.

In Fig. 16, we show the training/testing error rates as our algorithm grows the
data dictionary from the smallest size (Dg.17¢,) to the point where it is clear that
our algorithm no longer improves. The use-all-the-training-data strawman (Bao and
Intille 2004; Pham et al. 2010; Reiss and Stricker 2011), has a testing error rate of
0.237; however, we duplicate this error rate at D119, and obtain the significantly lower
error rate of 0.152 at D3.g¢,.

We also compare with the widely used rival approach discussed in Sect. 4.1 (Bao
and Intille 2004; Reiss and Stricker 2011). The best result is error rate of 0.314 achieved
by C4.5 decision tree (https://sites.google.com/site/dmkdrealistic/).

In Fig. 17, we show that using Uniform Scaling distance again beats Euclidean
distance, obtaining a mere 0.091 testing error rate at D4.6¢. The threshold learned
for D is 13.5, which rejects 6.3 % of the testing queries (https://sites.google.com/site/
dmkdrealistic/).

@ Springer

https://sites.google.com/site/dmkdrealistic/
https://sites.google.com/site/dmkdrealistic/
https://sites.google.com/site/dmkdrealistic/

Classification of streaming time series under more... 431

4.4 Improving the anytime properties using complexity as search order

To evaluate the performance of our proposed ordering method, we simulate the clas-
sification of queries with varying arrival rates k. For the purpose of generality over
all datasets, the arrival rates are modeled in Eq. (3) as a function of the number of
all the subsequences |subs]| in the data dictionary (Shieh and Keogh 2010). This is
because using the concrete numerical values (e.g. the frequency of the data generated
at 250 Hz) may not always be meaningful or applicable, due to the wide variability in
dataset characteristics.

ArrivalTime(k) = |subs|xk, 0.1 <k<1 3)

For k = 1, the arrival rate of the streaming queries is exactly the time needed to
calculate all the data dictionary, which is the same amount of time for the sequential
search in Table 1. For k = 0.1, the arrival time of the streaming queries is only one-tenth
the time of calculating the entire data dictionary.

We show the classification results using our ordering approach and the round robin
approach (Shieh and Keogh 2010) in Fig. 18. With the round robin approach, the
classification accuracies decrease a lot with faster query arrival time. This result is
generally expected and can be attributed to the reduced computation time on each
query for faster streams. In comparison, the classification accuracy of our ordering
approach does not decrease significantly with faster arrival time.

4.5 Time and space complexity analysis

The time complexity for training and testing is O (N?) and O (N), respectively. The
reasoning is as follows:

In the training phase, we first equally split the training data into two sections, part
A and B. From part A, we randomly sample a large number of queries with length
w. In order to cover more training data, the number of queries is proportional to the
size of the training data. We use the randomly sampled queries to rank each object in
B. Using the algorithm in Table 3, we need to find the nearest neighbor friend and
nearest neighbor enemy for each query. Thus, the running time it takes for ranking
every point in B is O (N/2) « O (N/2) ~ O (N2). In addition, it will take a constant
time to extract and put the subsequences with highest scores into the dictionary. Thus,
the time complexity in the training phase is O (N?).

We note that the training times are not that important in this case. Consider the two
main datasets we considered in our experiments:

e Physiology It took days to collect this data, minutes to train on it.
e Cardiology It took 150 minutes (of sensor time) to collect this data, a few tens of
minutes to train on it.

Thus, we can typically train on data faster than we can collect it. In fact, we could
have made our training faster with various lower bounding, caching and indexing tricks
(Keogh et al. 2004b), but having past the real-time threshold there is little motivation
to do so.

@ Springer

432 B. Hu et al.

PAMAP Dataset

1 == RoundRobin == |ndexing using Complexity
0.8
> e
§ 0.6
3 04
Q
< 02
0
1 0.9 08 0.7 06 05 04 03 02 0.1
Arrival Time (k)
ECG Dataset
1 == RoundRobin == |ndexing using Complexity
0.8
oy N
s 0.6
:;3 0.4
0.2
0
1 0.9 08 07 06 05 04 03 02 0.1
Arrival Time (k)
MIT Dataset
1 == RoundRobin == |ndexing using Complexity
> 0.8
Q
g 0.6
S 04
<
0.2
0

1 0.9 08 07 06 05 04 03 02 0.1
Arrival Time (k)

Fig. 18 Classification accuracy using complexity as the ordering key in the anytime classifier on query
streams with different arrival rates for datasets in Sects. 4.1, 4.2, and 4.3

In the testing phase, we perform a linear search for the nearest neighbors of the
incoming queries on the data dictionary that was built in the training phase. The running
time in the testing phase is O(N), although the size of the data dictionary is only a very
small percent of the training data. As with the training phase, we could make at least
constant time improvements to this using with various lower bounding, and indexing
mechanisms (Keogh et al. 2004b), however we are already more than fast enough to
classify gestures on a smartphone, while using only a tiny fraction of its computational
resources (memory and CPU), thus we have little incentive to further optimize this.

The space complexity for both training and testing phases is O (N). The reason is
that during training we need to keep record of the scores for every point in the training
data. In the testing phase, we need a small space to store the dictionary, which is a
very small fraction of the training data.

@ Springer

Classification of streaming time series under more... 433

5 Related work

There is significant literature on time series classification (Bao and Intille 2004; Chen
et al. 2005; Gafurov et al. 2006; Morse and Patel 2007; Ratanamahatana and Keogh
2004; Song and Kim 2006) both in the data mining community and beyond. However,
almost all of these works make the four assumptions we relaxed in this work, and are
thus orthogonal to the contributions here. Our algorithm can be seen as building a data
dictionary of primitives for the very long streaming/continuous time series (Raptis
et al. 2011, 2008). Other works have also done this, such as Raptis et al. (2008), but
they use significant amount of human effort to hand-edit the time series into patterns. In
contrast, we build dictionaries automatically, with no human intervention.

In the following, we hint at the wide existence of the unrealistic assumptions in
literature, a more exhaustive would require a survey paper.

Many research efforts assume a large number of perfectly aligned atomic patterns
are available. Our proposed concepts of weakly-labeled data and the data dictionary do
not require such well-processed patterns. However, some researchers either propose
non-trivial algorithms to extract such patterns from the original raw data or simply
assume a data generation process to produce such patterns exists. For example, Hanson
etal. (2009) notes, ... itis desirable to identify the boundaries of single gait cycles, or
steps, and process them individually...” However, the task of segmenting the data can be
more difficult than classifying them. In Hanson et al. (2009), the authors acknowledge
this, ““ Finding gait cycle boundaries requires identification of landmark features in
the waveforms that occur each cycle. Natural gait variation and differences between
normal and pathological gait make this task non-trivial.”

Researchers often “clean” datasets before publicly release them (Hu et al. 2013).
This is a noble idea, but one that perhaps shields the community from the realities of
real-world deployment. Indeed, authors have been critiqued for releasing less than ideal
data. For example, authors in Zhang and Sawchuk (2012) criticize the UC-Berkeley
WARD dataset (Yang et al. 2009) by noting “part of the sensed data is missed due to
battery failure”.

There are many examples of human intervention of the data generation procedure
to produce the perfectly aligned data. For example, Zhang and Sawchuk (2012) has
a very rigid data generation process, by noting that “When the subject was asked to
perform a trial of one specific activity, an observer standing nearby marked the starting
and ending points of the period of the activity performed.” In addition, the subject was
asked to repeat each activity multiple times. However, in most real-world scenarios,
we cannot expect people to perform daily activities in this way.

Another widely existing unrealistic assumption is that the patterns to be classified
are all of equal length (Hanson et al. 2009; Keogh et al. 2006; Koch et al. 2010;
Parkkd et al. 2006; Reiss and Stricker 2011). The most famous and widely used time
series benchmark is the UCR archive (Keogh et al. 2006). All the forty-seven datasets
are well preprocessed and are of equal length. However, in reality, patterns can be
of different lengths. For example, the human heart rate can be different. People can
walk at different speeds, etc. The authors in Koch et al. (2010) observed, “It is clearly
visible that despite the normalization steps taken, there is still considerable variation
within the same gesture type from the same person.”

@ Springer

434 B. Huet al.

The assumption that exists in almost all the time series classification literature
is that they assume every item to be classified belongs to exactly one of the well-
defined classes (Gafurov and Snekkenes 2008; Keogh et al. 2006; Pirkki et al. 2006;
Ratanamahatana and Keogh 2004). We can consider a typical example to demon-
strate the wide existence of this assumption. For example, in Parkka et al. (2006),
authors report the classification result of seven daily activities, 1ie, row, bike,
sit/stand, run, nordic-walk, walk.However,in reality, there are much
more human activities than the mentioned above. For example, hand-shake,
open-the-door, etc. If the query with a concept other than the seven listed con-
cepts, their classifier will still mistakenly report some class label. In our proposed
framework, we use a rejection threshold to prevent this problem.

Our work is superficially similar to the idea of time series shapelets (Ye and Keogh
2009), which do not make assumption 1, that some external agency (almost invariably
a human) has annotated the beginning and ending the relevant patterns. However, we
can list some of the key differences between shapelets and the proposed work:

e Shapelets discover a single pattern to represent each class. In this work, we learn
a dictionary to represent each class.

e Shapelets assume that every pattern belongs to some class. Here we make no such
assumption.

e Shapelets assume that every pattern is the same length. This work does not make
that assumption; we simply give upper and lower bounds on how long the patterns
can be. Moreover, different classes can have different length templates in their
dictionary.

e Shapelets assume that a single template can represent every class. This work does
not assume every class can be represented by a single template. In other words,
the classes can be polymorphic, as shown in Fig. 1.

Shapelets do have an advantage over our technique in allowing a visual intuition as
to what makes the classes distinct from each other.

Finally while data-editing schemes have been applied to time series before (Ueno
et al. 2010; Xi et al. 2006), the authors always explicitly made assumption ‘1’ and
‘2°, and implicitly seem to have made assumption ‘3’, thus these works are solving an
intrinsically simpler and narrower problem.

6 Conclusion and future work

We introduced a novel framework that requires only very weakly-labeled data and
removes the unjustified assumptions made in virtually all time series classification
research. We demonstrated over several large, real-world datasets that our method
is significantly more accurate than several common strawman algorithms. Moreover,
with less than one tenth of the original data kept in D, we are at least ten times faster at
classification time. Moreover, even if this ten-fold speed-up is not enough to keep up
with the worse-case arrival rate, our casting of our technique as an anytime algorithm
means that we can handles busts of query requests that are orders of magnitude faster
than the typical arrival rate with little degradation in accuracy.

@ Springer

Classification of streaming time series under more... 435

Our algorithm has one major parameter, the length of queries. In our activity
datasets, we simply used the original authors values (Bao and Intille 2004; www.
pamap.org/demo.html), and for ECGs we used a cardiologist’s suggestion. By chang-
ing these suggested values, we empirically found that we are not sensitive to this
parameter. Nevertheless in future work, we plan to learn it directly from the data.
When using the uniform scaling distance (instead of Euclidean distance) we must
provide additional parameters of the maximum and minimum scaling we will allow.
However, once again we found that the settings here are not too critical.

Acknowledgments We thank all the donors of datasets. We would like to acknowledge the financial
support for our research provided by NSF Grants IIS — 1161997 and an award from Vodafone.

References

Andino SLG et al (2000) Measuring the complexity of time series: an application to neurophysiological
signals. Hum Brain Map 11(1):46-57

Aspelin K (2005) Establishing pedestrian walking speeds. Portland State University. www.usroads.com/
journals/p/rej/9710/re971001.htm. Accessed 24 Aug 2009

Aziz W, Arif M (2006) Complexity analysis of stride interval time series by threshold dependent symbolic
entropy. EJAP 98(1):30—-40

Batista G, Keogh E, Mafra-Neto A, Rowton E (2011) Sensors and software to allow computational ento-
mology, an emerging application of data mining. SIGKDD demo paper

Batista G, Wang X, Keogh E (2011) A complexity-invariant distance measure for time series. In: SDM

Bao L, Intille SS (2004) Acitivity recognition from user-annotated acceleration data. In: Proceedings of the
2nd international conference on pervasive computing, pp 1-17

Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mech-
anisms for minimizing energy expenditure. J Physiol 233(5):R243-R261

Chen L, Ozsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In:
Proceedings of the ACM SIGMOD

CMU Graphics Lab Motion Capture Database. www.mocap.cs.cmu.edu/. Accessed 24 April 2012

de Chazal P, O’Dwyer M, Reilly RB (2004) Automatic classification of ECG heartbeats using ECG mor-
phology and heartbeat interval features. IEEE Trans Biomed Eng 51:1196-06

Electrocardiography, http://en.wikipedia.org/wiki/Electrocardiography

Faezipour M, Saeed A, Bulusu S, Nourani M, Minn H, Tamil L (2010) A patient-adaptive profiling scheme
for ECG beat classification. IEEE Trans Inform Technol Biomed 14(5):1153-1165

Gafurov D, Helkala K, Sgndrol T (2006) Biometric gait authentication using accelerometer sensor. J Comput
1(7):51-59

Gafurov D, Snekkenes E (2008) Towards understanding the uniqueness of gait biometric. In: 8th IEEE
International Conference on Automatic Face & Gesture Recognition

Grass J, Zilberstein S (1995) Anytime algorithm development tools. Technical Report. UMI Order Number:
UM-CS-1995-094, University of Massachusetts

Hanson MA, Powell Jr HC, Barth AT, Lach J, Brown MBC (2009) Neural network gait classification for
on-body inerital sensors. In: Proceedings of the 2009 sixth international workshop on wearable and
implantable body sensor networks

Hao Y, Chen Y, Zakaria J, Hu B, Rakthanmanon T, Keogh E (2013) Towards never-ending learning from
time series streams. In: SIGKDD

Hu B, Chen Y, Keogh E (2013) Time series classification under more realistic assumptions. In: SDM

Hu B, Chen Y, Zakaria J, Ulanova L, Keogh E (2013) Classification of multi-dimensional streaming time
series by weighting each classifier’s track record. In: ICDM

Hu B, Rakthanmanon TR, Hao Y, Evans S, Lonardi S, Keogh E (2011) Discovering the intrinsic cardinality
and dimensionality of time series using MDL. In: ICDM

Keogh E, Zhu Q, Hu B, Hao Y, Xi X, Wei L, Ratanamahatana CA (2006) The UCR time series classifica-
tion/clustering homepage. www.cs.ucr.edu/~eamonn/time_series_data/

@ Springer

www.pamap.org/demo.html
www.pamap.org/demo.html
www.usroads.com/journals/p/rej/9710/re971001.htm
www.usroads.com/journals/p/rej/9710/re971001.htm
www.mocap.cs.cmu.edu/
http://en.wikipedia.org/wiki/Electrocardiography
www.cs.ucr.edu/~eamonn/time_series_data/

436 B. Huetal.

Keogh E, Lonardi S, Ratanamahatana C (2004) Towards parameter-free data mining. In: Proceedings of the
tenth ACM SIGKDD

Keogh E, Palpanas T, Zordan VB, Gunopulos D, Cardle M (2004) Indexing large human-motion databases.
In: VLDB

Koch P, Konen W, Hein K (2010) Gesture recognition on few training data using slow feature analysis and
parametric bootstrap. In: IJCNN

Kranen P, Seidl T (2009) Harnessing the strengths of anytime algorithms for constant data stremas. J Data
Min Knowl Discov 19(2):245-260

Lester J, Choudhury T, Kern N, Borriello G, Hannaford B (2005) A hybrid discriminative/generative
approach for modeling human activities. In: IJCAI

Li L, Prakash BA (2011) Time series clustering: complex is simpler. In: ICML

Li M, Vitanyi P (1997) An introduction to Kolmogorov complexity and its applications, 2nd edn. Springer
Verlag, New York

LiuJ, Yu K, Zhang Y, Huang Y (2010) Training conditional random fields using transfer learning for gesture
recognition. In: ICDM

McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed. J
Biomech 23:65-78

Morse M, Patel IM (2007) An efficient and accurate method for evaluating time series similarity. In:
Proceedings of SIGMOD

Niennattrakul V, Keogh E, Ratanamahatana CA (2010) Data editing techniques to allow the application of
distance-based outlier detection to streams. In: ICDM

PAMAP, Physical activity monitoring for aging people. www.pamap.org/demo.html. Accessed 12 May
2012

Pérkkid J, Ermes M, Korpipdid P, Méntyjérvi J, Peltola J, Korhonen I (2006) Activity classification using
realistic data from wearable sensors. IEEE Trans Inf Technol Biomed 10:119-128

Pekalska E, Duin RPW, Paclik P (2006) Prototype selection for dissimilarity-based classifiers. Pattern
Recognit 39:189-208

Pham C, Pl6tz T, Olivier P (2010) A dynamic time warping approach to real-time activity recognition for
food preparation. In: Proceedings of the first international joint conference on Ambient intelligence

Project URL: https:/sites.google.com/site/dmkdrealistic/

Raptis M, Kirovski D, Hoppes H (2011) Real-time classification of dance gestures from skeleton animation.
In: Proceedings of the ACM SIGGRAPH symposium on computer animation

Raptis M, Wnuk K, Soatto S (2008) Flexible dictionaries for action recognition. In: Proceedings of the 1st
international workshop on machine learning for vision-based motion analysis

Rakthanmanon T, Keogh E, Lonardi S, Evans S (2011) Time series epenthesis: clustering time series streams
requires ignoring some data. In: ICDM

Ratanamahatana CA (2012) Personal communcation. May 2012

Ratanamahatana CA, Keogh E (2004) Making time-series classification more accurate using learned con-
straints. In: SDM

Reiss A, Stricker D (2011) Introducing a modular activity monitoring system. In: 33th international EMBC

Shieh J, Keogh E (2010) Polishing the right apple: anytime classification also benefits data streams with
constant arrival times. In: ICDM

Song J, Kim D (2006) Simultaneous gesture segmentation and recognition based on forward spotting
accumulative HMM. In: Proceedings of the 18th ICPR

The BIDMC congestive heart failure database, www.physionet.org/physiobank/database/chfdb/

Ueno K, Xi X, Keogh E, Lee D (2010) Anytime classification using the nearest neighbor algorithm with
applications to stream mining. In: ICDM

Usabiaga J, Bebis G, Erol A, Nicolescu M (2007) Recognizing simple human actions using 3D head
movement. Comput Intell 23(4):484-496

Vatavu RD (2011) The effect of sampling rate on the performance of template-based gesture recognizers.
In: Proceedings of ICMI

Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana C (2006) Fast time series classification using numerosity
reduction. In: ICML, pp 1033-1040

Ye L, Wang X, Keogh E, Mafra-Neto A (2009) Autocannibalistic and anyspace indexing algorithms with
applications to sensor data mining. In: SDM

Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: KDD, pp 947-956

@ Springer

www.pamap.org/demo.html
https://sites.google.com/site/dmkdrealistic/
www.physionet.org/physiobank/database/chfdb/

Classification of streaming time series under more... 437

Yang AY, Giani A, Giannatonio R, Gilani K et al (2009) Distributed human action recognition via wearable
motion sensor networks. www.eecs.berkeley.edu/~yang/software/ WAR/index.html

Yang K, Jiang H, Dong J, Zhang C, Wang Z (2012) An adaptive real-time method for fetal heart rate
extraction based on phonocardiography. In: 2012 IEEE biomedical circuits and systems conference.
BioCAS, pp 356-359

Zilberstein S, Russell S (1995) Approximate reasoning using anytime algorithms. In: Imprecise and approx-
imate computation. Kluwer Academic Publishers, Dordrecht

Zhang M, Sawchuk AA (2012) USC-HAD: a daily activity recognition using wearable sensors. ACM
international conference on ubiquitous computing (UbiComp) workshop on situation, activity and
goal awareness(SAGAware)

@ Springer

www.eecs.berkeley.edu/~yang/software/WAR/index.html

	Classification of streaming time series under more realistic assumptions
	Abstract
	1 Introduction
	2 Definitions and notation
	2.1 A discussion of data dictionaries
	2.2 An additional insight on data redundancy
	2.3 On the need for a rejection threshold

	3 Algorithms
	3.1 Classification using a data dictionary
	3.2 Building the data dictionary
	3.2.1 The intuition behind data dictionary building
	3.2.2 Building the data dictionary

	3.3 Learning the threshold distance
	3.4 Anytime classification
	3.4.1 Anytime classification
	3.4.2 Using complexity to order the anytime search

	3.5 The utility of the uniform scaling technique

	4 Experimental evaluation
	4.1 An example application in physiology
	4.2 An example application in cardiology
	4.3 An example application in daily acitivies
	4.4 Improving the anytime properties using complexity as search order
	4.5 Time and space complexity analysis

	5 Related work
	6 Conclusion and future work
	Acknowledgments
	References

