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Abstract We tackle the challenging problem of mining the simplest Boolean pat-
terns from categorical datasets. Instead of complete enumeration, which is typically
infeasible for this class of patterns, we develop effective sampling methods to extract
a representative subset of the minimal Boolean patterns in disjunctive normal form
(DNF). We propose a novel theoretical characterization of the minimal DNF expres-
sions, which allows us to prune the pattern search space effectively. Our approach can
provide a near-uniform sample of the minimal DNF patterns.We perform an extensive
set of experiments to demonstrate the effectiveness of our sampling method. We also
show that minimal DNF patterns make effective features for classification.

Keywords Frequent pattern mining · Minimal generators · Minimal boolean
expressions · Pattern sampling · Classification · Disjunctive patterns · Markov chain
monte carlo

1 Introduction

Frequent pattern mining has long been a mainstay of data mining, with the focus of
most existing work on complete enumeration methods. However, in many real-world
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Fig. 1 Countries dataset: four
attributes (G, R, B, Y )
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problems the number of possible frequent patterns can be exponentially many, and
in such cases it is important to develop approaches that can effectively sample the
pattern space for the most interesting patterns. Whereas much research in the past
has focused on itemset mining, i.e., conjunctive patterns, our focus is on the entire
class of Boolean patterns in the disjunctive normal form (DNF), i.e., disjunctions over
conjunctive patterns. SuchBoolean patterns can help discover interesting relationships
among attributes. As a simple example, consider the dataset shown in Fig. 1. It has 10
countries, described by four attributes: G—permanent members of the UN security
council, R—countries with a history of communism, B—countries with land area
over 3 million square miles, and Y—popular tourist destinations in North and South
America. For instance there are five countries that are permanent members of the UN
security council, namely China, France, Russia, UK and USA. Let us assume that we
want to characterize the three countries China, Russia and USA. One of the simplest
Boolean expressions that precisely describes them is (G and B), i.e., countries that
are members of the UN security council with land are over 3 million square miles.
However, there are two otherBoolean expressions that also precisely characterize these
three countries, namely (B and R) or ( G andY) and (G and R) or ( G andY). The
former states that China, Russia and USA make up the exact set of countries that are
either permanent members of UN security council that are popular tourist destinations
in the Americas, or large landmass countries with history of communism. In fact,
no sub-expression of these expression can describe the three countries of interest,
and therefore they represent the set of simplest or minimal Boolean expressions for
the chosen countries. If we allow negated attributes, we can get even richer Boolean
expressions. For example, theminimalBoolean expression (notB)or (G andnotR),
i.e., countries that are not large or are UN security council members without history of
communism, exactly describes Argentina, Brazil, Chile, Cuba, France, UK and USA.

Boolean expressions play a prominent role in mining complex gene regulatory net-
works, which can be represented in a simplified form, as boolean networks (Akutsu
et al. 1998). Consider the network involving 16 genes, taken fromAkutsu et al. (1998),
shown in Fig. 2. Here ⊕ and � denote gene activation and deactivation, respectively.
For example, genes B, E, H, J, and M are expressed if their parents are not expressed.
On the other hand G, L, and D express if all of their parents express. For example, D
depends on C, F, X1 and X2. Note that F expresses if A does, but not L. Finally A,
C, I, K, N, X1 and X2 do not depend on anyone, and can thus be considered as input
variables for the boolean network.
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Fig. 2 Gene network

We can model this network via a truth table corresponding to the seven input genes,
but without explicit instruction about which are inputs and which are outputs. This
yields a dataset with 128 rows and 16 items (genes). Some of the simple boolean
expressions that all the rows satisfy include (not J) or A, (not F) or A, (not D) or
A, H or A. Consider the first expression; which conveys an important fact about the
gene network as follows: if J is present, then H cannot be present, which in turn implies
that F is present. Finally, if F is expressed, then it implies that A must be present. This
is precisely what the first expression states, since (not J) or A is logically equivalent
to the implication J �⇒ A. Another simple Boolean expression that is true for all
the 128 rows is B or (not J) or (not L). Consider the input gene A. If B is present, it
must mean that A is not there, which covers 64 out of the 128 rows. For the remaining
64 rows, we have A and not B. Among these consider gene C. If C is absent, then L
cannot be present either. For the remaining 32 rows, we must have A and (not B) and
C. Finally, consider when K is present, in this case M cannot be present and therefore
neither can L be present. When K is not present, then M is present, and since C is
also present, then L must be present, which in turn implies that F is not present, H is
present, and J is not present. Thus, the 128 rows satisfy the condition that B or (not J)
or (not L).

Boolean expression mining has many other applications, ranging from recom-
mender systems (moving beyond purely conjunctive recommendations), to gene
expression mining (Zhao et al. 2006). In general, given any binary-valued dataset,
it allows one to mine the important logical relationships between the attributes. How-
ever, complete enumeration of all frequent Boolean patterns is prohibitive in most
real-world datasets, and thus the main issue is how to effectively sample a repre-
sentative subset. Such patterns can in turn be used as features to build classification
models. To minimize the information overload problem, we focus on the problem of
sampling only the most simple Boolean patterns that completely characterize a subset
of the data, i.e., the minimal DNF expressions. Our work makes a number of novel
contributions:
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Table 1 Dataset D (a) and its
transpose DT (b)

Tid Set of items

(a)

1 ABE

2 ACDF

3 BEF

4 ADE

5 BF

Item Tidset

(b)

A 124

B 135

C 2

D 24

E 134

F 235

(a) We propose the first approach to generate a near-uniform sample of the minimal
Boolean expressions. Our method, based on Markov chain monte carlo (MCMC)
sampling, yields a succinct subset of the simplest frequent Boolean patterns.

(b) We propose a novel theoretical characterization of the minimal DNF expressions,
which allows us to prune the pattern search space effectively. When combined
with other optimization techniques, our approach is also practically effective. For
instance, we are able to sample interesting “support-less” patterns, i.e., where the
minimum frequency threshold is set to one. The pruning techniques can be applied
by any method (even a complete one) for mining Boolean expressions.

(c) We perform an extensive set of experiments to demonstrate the effectiveness of
our method. In particular, we classify a variety of datasets from the UCI Machine
Learning Repository (Frank and Asuncion 2010), and show that minimal DNF
patterns make very effective features for classification. We also study the sample
quality of our approach, as well as its scalability.

1.1 Preliminaries

Dataset: Let Z = {z1, z2, . . . , zm} be a set of binary-valued attributes or items, and
let T = {t1, t2, . . . , tn} be a set of transactions identifiers or tids. A dataset D is a
binary relation D ⊆ Z × T . The dataset D can also be considered as a set of tuples
of the form (t, t.X) where t ∈ T and t.X ⊆ Z . Note that any categorical dataset can
easily be converted into this format by assigning an item for each attribute-value pair.

Given dataset D, we call DT the vertical or transposed dataset comprising tuples
of the form (z, z.Y ) where z ∈ Z and z.Y ⊆ T . Table 1 shows an example dataset
D and its transpose DT . The dataset has six items Z = {A, B,C, D, E, F} and five
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transactions T = {1, 2, 3, 4, 5}. For example, the tuple (2, ACDF) ∈ D denotes the
fact that tid 2 has four items A,C, D, F , whereas the tuple (E, 134) ∈ DT denotes
the fact that item E is contained in transactions 1, 3, 4. For convenience, we write
subsets without commas. Thus {A,C, D, F} is written as ACDF, and so on.

Boolean expressions: Let and, or, and not denote the logical operators. We denote
a negated item (not z) as z̄. We also call z̄ the complement of z. We use the symbols
∧ and ∨ to denote and and or, respectively. For example, A ∨ B and A ∧ B denote
logical expressions A or B, A and B, respectively. For conciseness we also use | in
place of ∨ and we usually omit the ∧ operator. For example, A|BC |D denotes the
Boolean expression A or (B and C) or D.

A literal is either an item z or its complement z̄. A clause is either the logical and
or the logical or of a set of literals. An AND-clause contains only the and operator
over all its literals, e.g., BCD. Likewise, an OR-clause contains only the or operator
over all its literals, e.g.,C |E |F . We assume that a clause does not contain both a literal
and its complement – e.g., A ∧ Ā leads to contradiction, and Ā ∨ A, to a tautology.

We adopt the DNF to represent Boolean expressions. A Boolean expression Z is
said to be in DNF if it consists of or of AND-clauses, with the not operator (if any)
directly preceding only literals, written as:

Z =
k∨

i=1

Zi =
k∨

i=1

(
zi1 ∧ zi2 ∧ . . . ∧ zimi

)

Here each zik is a literal and each Zi = (zi1 ∧ . . . ∧ zimi ) is an AND-clause. The
size or length of a Boolean expression Z is the number of literals in Z , denoted
|Z | = ∑k

i=1 mi .

Tidset and support: Given a tuple (t, t.X) ∈ D, and a literal l, the truth value of l in
t is 1 if l ∈ t.X , and 0 otherwise. Likewise, the truth value of l̄ is 1 if l /∈ t.X , and 0
otherwise. We say t satisfies a Boolean expression Z , if after replacing every literal in
the Boolean expression with its truth value, the Boolean expression evaluates to true.
The set of all satisfying transactions is called the tidset of Z , and is denoted as

T (Z) = {t ∈ T |t satisfies Z}.

The number of satisfying transactions is called the support of Z in D, denoted
sup(Z) = |T (Z)|. For the example database in Fig. 1, the tidset of the expression
AB|C is t (AB|C) = 12, and its support is therefore sup(AB|C) = 2.

Minimal Boolean Expressions: Given DNF expressions X = ∨m
i=1 Xi and Y =∨n

j=1 Y j , where Xi and Y j are AND-clauses, we say that X is a subset of Y , denoted
X ⊆ Y , iff there exists an injective (or into) mapping φ : X → Y , that maps each
clause Xi to φ(Xi ) = Y ji , such that Xi ⊆ Y ji . If X ⊂ Y and |X | = |Y | − 1, we say
that X is a parent of Y , and Y is a child of X .
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Definition 1 A DNF expression Z is said to be minimal or minDNF (with respect to
support) if there does not exist any expression Y ⊂ Z , such that T (Y ) = T (Z). A
minimal AND-clause is called minAND for short. A minimal Boolean expression is
also called a minimal generator.

A minDNF expression Z is thus the simplest DNF expression with tidset T (Z).
For example, the expression AB|C is minDNF since its tidset is T (AB|C) = 12,
but none of its subsets has the same tidset – we have T (A|C) = 124, T (B|C) =
1235, T (AB) = 1, T (A) = 124, T (B) = 135, and T (C) = 2. On the other hand,
A|C is not minimal since T (A) = 124 which matches T (A|C). Here A is necessary
and sufficient to characterize the tids 1, 2, and 4.

Frequent Boolean Expressions: Given a user-specified minimum support threshold
σmin, we say that a DNF expression Z is frequent if sup(Z) ≥ σmin. However, note
that the support of a minDNF expression is not monotonic, since the addition of an
item to a clause causes the support to drop, whereas, the addition of an item as a new
clause causes the support to increase. For example, sup(A) = 3, since T (A) = 124,
but sup(AB) = 1 (since T (AB) = 1) and sup(A|E) = 4 (since T (A|E) = 1234).
Thus, the support of Z ’s children can be higher or lower.

Let σ c
min = σmin = 1. Table 2 shows the complete set of frequent minimal Boolean

expressions, not allowing negated items, for the example dataset in Table 1. Given five
transactions, there are 31 possible non-empty tidsets. Out of these there is no possible
minDNF expression which precisely characterizes seven of the tidsets, namely 15, 25,
45, 125, 145, 245, and 1245 (again, disallowing negated items). For example, consider
the tidset 15.Wemight consider ABE |BF as a possible boolean expression. However,
T (ABE |BF) = 135. Put another way, since BF ⊂ BEF the tid 5 cannot appear
in isolation, it must always be accompanied by tid 3 in any tidset. For the remaining
24 tidsets, we have many possible minDNF expressions, as listed in Table 2. In total
there are 43 frequent minDNF expressions in our example (discounting the empty
expression). In general, given n transactions and assuming that none is a subset of
another, then each of 2n − 1 possible non-empty tidsets has at least one minDNF that
characterizes it. Even if we restrict our attention to those tidsets with cardinality at
least σmin, we still have an exponential search space, and it is typically not feasible to
mine the complete set of frequent minDNF expressions. Thus, we focus on sampling a
representative subset of frequent minDNF expressions and we also consider additional
constraints to further reduce the search space.

Clause support and overlap constraints: We already noted that minDNF frequency is
non-monotonic. Also note that any infrequent clause can be made frequent by adding
additional clauses. For example, if σmin = 2, then C is infrequent for our example
dataset in Table 1, but C |B is frequent, since T (C) = 2 and T (C |B) = 1235. To
prevent such “trivial” clauses, we also impose a minimum clause support threshold
σ c
min on the clauses. That is, for any DNF expression Z = ∨m

i=1 Zi , we require that
sup(Zi ) ≥ σ c

min for all i = 1, . . . ,m. Clearly, clause support must satisfy σ c
min ≤ σmin,

since if a clause has support at least σ c
min, then by definition the DNF expression

must have support at least σ c
min. For example, if σmin = 3 and σ c

min = 2, then there
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Table 2 Complete set of
frequent minimal Boolean
expressions with σmin = 1

Tidset Frequent minDNFs

1 AB

2 C, DF, AF

3 EF

4 DE

12 C|AB, DF|AB, AF|AB
13 BE, EF|AB
14 AE, DE|AB
23 EF|C, EF|DF, EF|AF
24 D

34 DE|EF
35 BF

123 BE|C, BE|DF, BE|AF, EF|C|AB, EF|DF|AB, EF|AF|AB
124 A

134 E

135 B

234 D|EF
235 F

345 BF|DE
1234 E|A, E|D, E|C
1235 F|B, B|C
1345 B|E
2345 F|D
12,345 F|E, F|A, B|A, B|D, B|E|C

Table 3 Frequent minDNF
expressions with σmin = 3 and
σ c
min = 2

Tidset Frequent minDNFs

124 A

134 E

135 B

235 F

1234 E|A
1235 F|B
1345 B|E
2345 F|D
12,345 F|E, F|A, B|A, B|D

are 12 minDNFs as shown in Table 3. Note that while T (D|EF) = 234 and thus
sup(D|EF) = 3, it fails the minimum clause support test, since sup(EF) = 1. Also,
whereas E |C is also a minDNF with support sup(E |C) = 4 (since T (E |C) = 1234),
it also fails the minimum clause support constraint because sup(C) = 2, and therefore
does not appear in Table 3.
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Table 4 Frequent minDNF
expressions with
σmin = 3, σ c

min = 2, and
σ o
min = 2

Tidset Frequent minDNFs

124 A

134 E

135 B

235 F

1234 E|A
1235 F|B
1345 B|E

Since any clause’s support can be increased by adding another clause, we want to
prevent unrelated additions, i.e., we impose a minimum clause overlap constraint on
the tidsets. That is, for any DNF expression Z = ∨m

i=1 Zi , we require that |T (Zi ) ∩
T (Z j )| ≥ σ o

min for all i �= j , where σ o
min is the number of common tids for the two

clauses. For example, if σmin = 3, σ c
min = 2 and σ o

min = 2, then F |D is not a valid
minDNF expression, since |T (F)∩T (D)| = |235∩24| = 1. In other words F and D
are not sufficiently related. The minimum overlap constraint is a form of (pair-wise)
minimum support check on the conjunctive clause T (Zi ∪ Z j ), and it also serves to
prune out trivial disjunctions.

Table 4 shows the set of minDNF expressions that satisfy the constraints σmin =
3, σ c

min = 2, σ o
min = 2. We can observe that there is no satisfying minDNF for the

tidset 12345, since all the overlap among the tidsets for the corresponding pair-wise
clauses shown in Table 3 fail the minimum overlap test.

Sampling frequent minDNF expressions: Combining all the constraints, we say that
a DNF expression Z = ∨m

i=1 Zi , is frequent iff sup(Z) ≥ σmin, sup(Zi ) ≥ σ c
min, and|T (Zi )∩ T (Z j )| ≥ σ o

min for all i, j = 1, . . . ,m. As noted earlier, we are interested in
sampling the frequent minDNF expressions, as opposed to complete mining, which
is typically infeasible for many real-world datasets. For frequent minDNF sampling,
we start from the empty expression. We then use the MCMC approach to sample
the minimal expressions. The main challenges include efficiency and guaranteeing
sampling quality. We address these questions below after reviewing some MCMC
terminology and related work.

Markov chains: Let S = {s0, s1, . . . , sN } be the finite and discrete state space com-
prised of frequent Boolean expressions. Let t ∈ N denote the (discrete) time for an
event, and let Xt denote a random variable that represents the state at time t . AMarkov
chain over the finite state space S is a sequence of random variables X0, X1, X2, . . .,
such that the current state Xt depends only on the previous state Xt−1, i.e.,

P(Xt+1 = st+1|Xt = st , Xt−1 = st−1, . . . , X0 = s0) = P(Xt+1 = st+1|Xt = st ),

for all t ∈ N and st ∈ S. A homogeneous Markov chain is one where the transition
probability between any two states is independent of time. That is, the transition from
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state si to s j is governed by the transition probability p(i, j) = P(Xt = j |Xt−1 = i).
Thus, the Markov chain is uniquely defined by the pair-wise transition probability
matrix P = {p(i, j)}i, j∈1,...,N .

Let pt (i, j) denote the t-step transition probability, i.e., pt (i, j) = P(Xn+t

= sn+t |Xn = sn). It is easy to show that the t-step transition probability matrix
is simply Pt , i.e., the t-th power of P. Given two states si and s j , we say s j is reach-
able from si , if ∃ t, s.t. pt (i, j) > 0, and we denote it as si → s j . If all state pairs are
mutually reachable, we call the Markov chain irreducible. Let R(i) denote the set of
times when the chain returns to a starting state si , i.e., R(i) = {t > 0| pt (i, i) > 0}.
The period of state si is defined as the greatest common divisor of R(i). The state is
called aperiodic if its period is 1. A Markov chain is called aperiodic if all states are
aperiodic, i.e., have period 1. If a Markov chain is irreducible and aperiodic, then for
all states si , s j ∈ S, there ∃ t ∈ N, s.t. pt (i, j) > 0. Let r t (i, j) denote the probability
that state s j is reachable from si for the first time after t steps, i.e.,

r t (i, j) = min{pt (i, j) > 0| t > 0},

A state si is called recurrent if starting from si , theMarkov chain will eventually return
to si with certainty, i.e., if

∑
t≥1 r

t (i, u) = 1. Let h(i, i) = ∑
t≥1 t · r t (i, u) denote

the expected time of return to state si starting from si . A recurrent state si is called
positive recurrent if h(i, i) < ∞. An aperiodic, positive recurrent state is called an
ergodic state, and a Markov chain is called ergodic if all its states are ergodic. It is
known that any finite, aperiodic and irreducible Markov chain is an ergodic chain.
An ergodic Markov chain has a unique stationary distribution π = (πi |si ∈ S), that
satisfies the property

πP = π, i.e.,
∑

si∈S
πi p(i, j) = π j

Note that the distribution must also satisfy the conditions: (1) πi > 0 for all si ∈ S
and (2)

∑
si∈S πi = 1. If the distribution π satisfies the detailed balance equation

πi p(i, j) = π j p( j, i), (1)

for all si , s j ∈ S, then π is the stationary distribution for the Markov chain; in this
case it is also called a time reversible Markov chain.

2 Related work

Mining frequent itemsets (i.e., pure conjunctions or AND-clauses) has been exten-
sively studied within the context of itemset mining (Agrawal et al. 1996). The closure
operator for itemsets was proposed in Ganter and Wille (1999), and the notion of
minimal generators for itemsets was introduced in Bastide et al. (2000). Many algo-
rithms for mining closed itemsets [see Goethals and Zaki (2004)], and a few to mine
minimal generators (Bastide et al. 2000; Zaki and Ramakrishnan 2005; Dong et al.
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2005) have also been proposed in the past. The work in Dong et al. (2005) focuses on
finding the succinct (or essential) minimal generators for itemsets, using a depth first
approach for the local minimal generators and closed itemsets. CHARM-L (Zaki and
Ramakrishnan 2005) modifies CHARM (Zaki and Hsiao 2005) to find the minimal
generators for itemsets. It first mines the closed sets, builds a lattice, and then uses the
lattice to extract the minimal generators.

The task of mining closed and minimal monotone DNF expressions was proposed
in Shima et al. (2004). It gives a direct definition of the closed and minimal DNF
expressions (i.e., a closed expression is one that doesn’t have a superset with the
same support and a minimal expression is one that doesn’t have a subset with the
same support). The authors further give a level-wise Apriori-style algorithm to extract
closed monotone DNF formulas. Over previous work (Zhao et al. 2006, Zaki et al.
2010) proposed a complete framework, called BLOSOM, to extract the minimal DNF
and pure AND-clauses, as well as the minimal CNF (conjunctive normal form –
AND of OR-clauses) and pure OR-clauses. Blosom uses a two-step process to mine
the minDNFs. It first mines all minimal AND-clauses, treats them as new items, as
then extracts minimal OR-clauses over these composite AND-items. The BLOSOM
framework can alsomine the closedDNF andCNF expressions. Themain contribution
of our previous work was the structural characterization of the different classes of
boolean expressions via the use of closure operators and minimal generators, as well
as the framework formining arbitrary Boolean expressions. However, the focuswas on
complete enumeration, which is typically not feasible for many real-world datasets. In
contrast, the primary contribution of this paper is the novel theoretical characterization
of the minDNF expressions, and using this theory to develop near-uniform sampling
approaches to extract representative sample of the minDNF expressions. We note that
a preliminary version of this paper appeared in Li and Zaki (2012).

Within the association rule context, there has been previous work on mining neg-
ative rules (Savasere et al. 1998; Yuan et al. 2002; Wu et al. 2004; Antonie et al.
2004), as well as disjunctive rules (Nanavati et al. 2001); the latter work first mines all
frequent AND-clauses, and then greedily select good OR combinations. The notion
of disjunctive emerging patterns (EPs) for classification was proposed in Loekito and
Bailey (2006). Disjunctive EPs are Boolean expressions in CNF form, such that their
support is high for the positive class and low for the negative class. However, they
consider restricted CNF expressions that must contain a clause for each attribute. We
mine general DNF expressions, without any constraints. On the other hand, our cur-
rent sampling framework relies on a relatively straightforward approach to handle
negated literals. Using more sophisticated methods, as suggested by some of the exist-
ing works on negative rules, can speed up the computation time. One can also use
approaches that approximate the support of arbitrary boolean expressions (Calders
and Goethals 2005; Jaroszewicz and Simovici 2002; Mannila and Toivonen 1996) to
deliver further performance gains. The work in (Calders and Goethals 2005; Mannila
and Toivonen 1996) proposed an algorithm based on the inclusion-exclusion princi-
ple, whereas Jaroszewicz and Simovici (2002) proposed a method that generalizes
the Bonferroni inequalities to find frequent itemsets for estimating the bounds for
support of database queries. Also related is the mining of optimal rules according
to some constraints (Bayardo and Agrawal 1999), e.g., gini, entropy gain, lift, and
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conviction etc., since the boolean expressions can be considered as constraints on the
patterns.

More general notions of itemsets (including negated items and disjunctions) have
been considered in the context of concise representations (Calders et al. 2003;
Kryszkiewicz 2001; Kryszkiewicz 2005). Hamrouni and Ben (2009) proposed a clo-
sure operator that can be used to map disjunctive itemsets to a small unique disjunc-
tive closed itemset. The work in (Vimieiro and Moscato 2012; Vimieiro and Moscato
2014) proposes methods for mining disjunctive minimal generators, and also disjunc-
tive closed patterns, inspired by Stumme et al. (2002), which described an algorithm
called Titanic for computing (iceberg) concept lattices and finding conjunctive closed
patterns using minimal generators. The work in Vreeken et al. (2011) uses a different
approach to conciseness; it proposed the KRIMPmethod, which is based on the MDL
principle that the optimal set of pattern is the one that gives the highest compression of
the dataset. Another point of comparison is w.r.t. the work in Gunopulos et al. (2003)
where the authors aim to find frequent and (maximally) interesting sentences w.r.t. a
variety of criteria. Many data mining tasks, including inferring boolean functions, are
instantiations of this problem.

Boolean expression mining is related to the task of mining redescriptions (Ramakr-
ishnan et al. 2004) that seeks to find subsets of data affording multiple definitions. The
input to redescription mining is a vocabulary of sets (or boolean propositions) over
a domain and the goal is to construct two distinct expressions from this vocabulary
or distinct attribute sets that induce the same subset over the domain. In essence, if
there is more than one minDNF expression for a tidset, then we can obtain a mini-
mal redescription, or logical equivalence between the two Boolean expressions. The
CARTwheels algorithm (Ramakrishnan et al. 2004)mines redescriptions only between
length-limited boolean expressions in DNF and CHARM-L (Zaki and Ramakrishnan
2005) is restricted to redescriptions between conjunctions.Approximate redescriptions
correspond to the minimal non-redundant exact or inexact rules described in Zaki
(2000). Our BLOSOM framework (Zhao et al. 2006; Zaki et al. 2010) can mine
redescriptions between arbitrary boolean expressions.

The theoretical machine learning community has focused on learning boolean
expressions in the presence of membership queries and equivalence queries (Bshouty
1995). Mitchell (1982) proposed the concept of version spaces (which are basically a
partial order over expressions) to organize the search for expressions consistent with
a given set of data. However, these works conform to the classical supervised learning
scenario where both positive and negative examples of the unknown function are sup-
plied. In contrast, our work aims to find boolean expressions without explicit direction
about the examples they cover.

As we shall see, complete mining is infeasible for all but very high support values.
Thus, recent work has considered sampling based approaches. One of the earliest
use of sampling was for mining maximal itemsets via randomization (Gunopulos
et al. 1997). In the context of frequent graph mining, Chaoji et al. (2008) proposed
a randomized sampling method to generate a small representative set of frequent
maximal graph patterns; the method did not provide any sampling guarantee. The first
method to sample maximal graph patterns with uniform sampling via MCMC was
presented in Hasan et al. (2009). In Hasan and Zaki (2009), the authors introduced a
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generic sampling framework to sample the output space of frequent subgraphs, which
is based on MCMC algorithm as well. In the context of itemset mining, Boley and
Grosskreutz (2009) proposed a randomized approximation method for counting the
number of frequent itemsets. InBoley et al. (2010) aMetropolis-Hastings algorithm for
sampling closed itemsets is given. More recently, Boley et al. (2011) presented a direct
sampling approach for mining AND-clauses. Unfortunately, direct sampling cannot
be used for sampling minDNFs since the pattern space of minDNFs is not connected,
as it is for closed AND-clauses. We thus focus on MCMC sampling, designing an
appropriate transition probability matrix that ensures near-uniform sampling of the
set of minDNF patterns.

3 Sampling minimal AND-clauses

To make the ideas on sampling via MCMC more concrete, we first consider the case
of sampling minimal AND-clauses. Let us first characterize the state space S for the
Markov chain.

Lemma 1 Any subset of a minimal AND-clause must also be minimal.

Proof Let X be a minAND expression, and let Y ⊂ X . Assume that Y is not minimal.
Then there exists a minAND expression Z ⊂ Y , such that T (Z) = T (Y ). However,
in this case, T ((X\Y ) ∪ Z) = T (X), which contradicts the fact that X is minimal.
Thus, Y must be a minAND expression. ��
Corollary 1 Any single item z ∈ Z is a minimal AND-clause provided T (z) �= T .

Proof The empty expression ∅ satisfies all transactions by default, so that T (∅) = T .
Thus, it is the unique minimal expression for the universal set of tids T . By definition,
any other item z ∈ Z is minimal for its corresponding tidset T (z), if T (z) �= T . ��
In our running example in Table 1, items A, B,C, D, E and F are allminANDclauses.

Consider the following Markov chain whose state space comprises the frequent
and minimal AND-clauses. Start from an arbitrary state or minAND expression X0.
Typically X0 = ∅, i.e., we start from the empty expression. Given Xi , the next state
Xi+1 is obtained as follows:

(a) Choose an item z ∈ Z uniformly at random.
(b) If z ∈ Xi , then Xi+1 = Xi\{z}.
(c) If z /∈ Xi , and if adding z to Xi results in a frequent and minimal AND-clause,

then set Xi+1 = Xi ∪ {z}. Otherwise, let Xi+1 = Xi .

Given a specific minAND expression si , let Ni denote its frequent and minimal neigh-
bors, i.e., those frequent minAND expressions that are reachable in one step from
si (excluding itself), i.e., by adding or deleting just one item. Let di = |Ni | denote
the degree of the state si . Note that if si is a frequent minAND expression, then any
expression obtained by deleting one item is also frequent and minimal. On the other
hand, if we add an item to si we do have to check whether the resulting expression
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is minimal and frequent. The above Markov chain is characterized by the following
transition matrix

p(u, v) =

⎧
⎪⎨

⎪⎩

1/|Z| if u �= v and v ∈ Nu

1 − du/|Z| if u = v

0 otherwise.

(2)

Lemma 2 The Markov chain defined by the transition probability matrix in Eq. (2)
has the uniform distribution as its unique stationary distribution.

Proof This Markov chain is clearly irreducible, since any subset of a minimal AND-
clause is also a minimal AND-clause, and we can reach any minimal generator via
the empty expression. Also, since every state has a self-loop, and thus the chain is
aperiodic. The Markov chain is thus ergodic, since the state space is finite, and it thus
has a unique stationary distribution.

Consider the uniform distribution π , which satisfies πu = πv = 1/|S|, where S is
the state space. For u �= v, we have

πu p(u, v) = πu/|Z| = πv/|Z| = πv p(v, u).

Thus, the uniform distribution satisfies the detailed balance condition in Eq. (1), and
it must therefore be the unique stationary distribution for this chain. ��

One issue with theMarkov chain above is that the probability of staying at the same
state is relatively high, since many of the random items chosen to be added will result
in infrequent or non-minimal expressions. We can reduce the probability of self-loops
by first constructing the local neighborhood for each state visited by the chain. Let
Xt = si ; when we reach state si for the first time, we determine its degree di by
computing each of its minimal and frequent neighbor s j obtained by deleting a single
item from si , or by adding an item to it. Next, we allow transitions only between si
and a state s j ∈ Ni . However, a simple random walk on this state space will be biased
towards nodes with high degrees, i.e., the stationary probability of a state si in a simple
random walk is proportional to its degree di . We can fix this bias via the Metropolis
method. Given that Xi = si , the next state Xi+1 is obtained as follows:

(a) Choose a state s j ∈ Ni uniformly at random.
(b) Set Xi+1 = s j with probability min(1, di/d j ), otherwise set Xi+1 = Xi = si .

TheMarkov chain is characterized by the following transitionmatrix, as we shall show
in Lemma 3:

p(u, v) =

⎧
⎪⎨

⎪⎩

1
max(du ,dv)

if u �= v and v ∈ Nu

1 − ∑
x∈Nu

p(u, v) if u = v

0 otherwise.

(3)

Lemma 3 The Markov chain defined by the transition probability matrix in Eq. (3)
has the uniform distribution as its unique stationary distribution.
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Proof The Markov chain is clearly irreducible, aperiodic and finite. It is thus ergodic
and has a unique stationary distribution. We now show that its stationary probability
distribution is the uniform distribution as follows. First, note that if u �= v, then the
transition probability is given as p(u, v) = 1/du min(1, du/dv). If du ≥ dv , then
p(u, v) = 1/du . On the other hand, it dv > du , then p(u, v) = 1/du ×du/dv = 1/dv .
In other words, p(u, v) = 1/max(du, dv). Second, consider the uniform distribution
with πu = πv; we have

πu p(u, v) = πu
1

max(du, dv)
= πv

1

max(du, dv)
= πv p(v, u).

Thus, it follows that the uniform distribution is the unique stationary distribution for
this Markov chain. ��

3.1 Computational complexity

In terms of the computational complexity of simulating a single step of the Markov
chain, first consider Eq. (2). We assume that we have available the tidset T (z) for each
item z ∈ Z , and also the tidset for state Xi , namely T (Xi ). Assume that |Z| = m
and |T | = n, and assume that |Xi | = l. Given state Xi , we randomly select an item
z ∈ Z . If z /∈ Xi , we compute the support of Xi ∪ {z}, which takes O(n) time for
the intersection T (Xi ) ∩ T (z). If z ∈ Xi we have to compute the support of Xi\{z},
which takes time O(l ·n) for the intersection ∩x j∈Xi ,x j �=zT (xi ). For item addition, we
also have to check if the resulting pattern is minimal, which takes time O(l2 ·n), since
we have to delete each item in Xi ∪ {z} and we have to check that the support of the
subset is not equal to the extended AND-clause. Since there are l items, and support
computation takes O(l · n) time, the total time is O(l2 · n) for a single step.

Now consider the matrix in Eq. (3). Given Xi we have to compute its degree.
We already know by Lemma 1 that all its subsets obtained by deleting a single item
must be minimal, so we only have to check item additions, which takes time O(mn)

over all items z ∈ Z . In the worst case there are O(m) frequent item additions and
checking their minimality takes a total of O(m|Xi |2n) time. Computing the degree
and minimality of the selected neighbor also takes O(m · l2 · n) time, so that the
computational complexity of a single step is O(m · l2 · n) in total. In practice, the
minimality and frequency checking can be done much faster by memoizing the results
of previous states, so that the full cost is incurred only when a state is seen for the first
time, at which time we can compute its support and degree. Subsequent visits to or
queries for the same state then incur only a O(1) time for lookup.

3.2 Convergence rate

One important issue in using MCMC sampling is to determine when the initial distri-
bution converges to the stationary distribution and how fast the convergence rate is. To
measure the convergence rate we define the variation distance between two probability
distributions on the same state space S after t steps, as follows:
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vds(t) = vd(pt (s, .), π) = 1

2

∑

q∈S
|pt (s, q) − π(q)|, (4)

where s ∈ S is the initial or starting state, Pt = {pt (i, j)}i, j=1,...,|S| is the transition
matrix at time t , andπ is the desired stationary distribution. Sincewe aim for a uniform
sampling of the minimal expressions, the stationary distribution will be uniform, i.e.,

π = (π1, π2, . . . , π|S|) = (1/|S|, 1/|S|, . . . , 1/|S|).

Let vd(t) = maxs∈S vds(t) denote the maximum t-step variation distance over all
states s. Define τs(ε) as the minimum number of steps when the variation distance
vds(t) is less than ε > 0, i.e.,

τs(ε) = min{t | vds(t) ≤ ε}.

Finally, the mixing time for the Markov chain is defined as the maximum value of
τs(ε) over all states, given as

τ(ε) = max
s∈S

τs(ε).

It is well known that the mixing time is closely related to the spectral gap, γ =
|λ1 − λ2| = |1 − λ2|, which is defined as the absolute difference between the largest
λ1 = 1 and the second largest eigenvalue λ2 of the transition matrix P (Cowles and
Carlin 1996). The larger the spectral gap, the faster the walk converges.

Unfortunately, in practice, we typically cannot compute the entire transition matrix
P. The whole point of sampling is to avoid enumerating all the frequent minimal
Boolean patterns. In these cases, if we know |S|, we can estimate a lower bound
on the variation distance by computing the transition probabilities from the empty
expression, i.e., by computing vd∅(t). In case we do not know the size of the state
space S, which is typical for many of the datasets, especially for lower values of σmin,
we are limited to computing the variation distance only over the subset of the state
space seen so far, say S ′ ⊂ S, which also gives a lower bound on the true variation
distance. We study the convergence rate for the minAND sampling in Sect. 5.

4 Mining minimal boolean expressions

In this section we prove some properties of minDNF expressions, which will allow
us to design effective pruning strategies while sampling. In fact, these properties can
also be exploited for complete pattern enumeration.

Theorem 1 A DNF expression Z = ∨n
i=1 Zi is minDNF iff it satisfies the following

two properties:

(a) For any Zi , (i = 1, . . . , n), we have T (Zi ) �
⋃

j �=i T (Z j ). In other words, for
any tidset of a clause, it cannot be a subset of the unions of tidsets over the other
clauses.
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(b) If we delete any item z ja from a clause Z j to yield a new clause Z ′
j = Z j\z ja, then

for the resulting DNF expression Z ′ = (
∨

i �= j Zi )∨ Z ′
j , we have T (Z ′) �= T (Z).

Proof If (a) is violated, we can simply delete Zi without changing support, which
would contradict the fact that Z is minimal. Likewise, if (b) is violated, it would
contradict Z ’s minimality. For the reverse direction, suppose a DNF expression Z =∨n

i=1 Zi satisfies properties (a) and (b). We have to show that Z is a minDNF. Assume
that Z is not minimal. Then there exists a minDNF Y = ∨m

j=1 Y j , such that Y ⊂ Z
and T (Y ) = T (Z), which implies that there exists an injective mapping φ that maps
each Y j ∈ Y to φ(Y j ) = Zi ∈ Z , such that Y j ⊆ Zi and T (Y j ) ⊇ T (Zi ). There are
two cases to consider:

(1) If φ is a bijection, then m = n, and there exist a clause Y j ∈ Y , such that
Y j ⊆ φ(Y j ) = Zi ∈ Z . However, in this case property (b) of Z is violated, since
we can delete some item from (Zi\Y j ), and the resulting expression will still have
the same support at Z .

(2) If φ is not a bijection, then m < n, and there exists a clause Zk ∈ Z , such that
φ−1(Zk) /∈ Y . However, in this case property (a) of Z violated, since T (Y ) =
T (Z) implies that T (Zk) ⊆ ⋃

i �=k T (Zi ).

Therefore, Z must be a minimal DNF expression. ��
Lemma 4 A minDNF consists of OR of minAND expressions, i.e., if Z = ∨n

i=1 Zi is
minDNF, then each Zi must be a minimal AND-clause.

Proof Assume some Zi is not a minimal AND-clause. Then there exists a literal
l ∈ Zi , such that T (Zi\l) = T (Z). In this case we can delete l from Zi without
affecting T (Z), which violates property (b) in Theorem 1. ��
Lemma 5 If Z = ∨n

i=1 Zi is minDNF, for any Zi , Z j ∈ Z, we have Zi � Z j . In
other words, no clause is a subset of another clause.

Proof Suppose Zi ⊆ Z j . Thus T (Zi ) ⊇ T (Z j ) and property (a) in Theorem 1 is
violated. ��

Please note that Theorem 1 is a sufficient condition for Lemmas 4 and 5 but not a
necessary condition. As such a DNF expression that satisfies Lemmas 4 and 5, need
not be a minimal generator. We use this observation to reduce the state space S.

Corollary 2 Any clause-wise subset (obtained by deleting an entire clause) of a
minDNF expression Z is also minDNF.

Proof The proof is similar to Lemma 1. Suppose a clause-wise subset Zs ⊂ Z is not
minDNF. Then we can replace Zs with its equivalent minDNF, say Z ′

s , in Z , without
affecting the tidset of Z . This would contradict the minimality of Z . ��

For example, for the example in Table 1, B|DF |E is a minimal DNF gen-
erator, with tidset T (B|DF |E) = 12,345. Thus all clause-wise subsets, namely
B, DF, E, B|DF, B|E, DF |E are minDNF expressions.
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(a)

(b)

Fig. 3 Clause- and item-wise state space.

4.1 Sampling minimal DNF expressions

Having characterized the minDNF expressions, we turn our focus on sampling them.
We first consider sampling using a clause-wise state space. From Lemma 4, every
minDNF consists of only minimal AND-clauses. Also by Corollary 2, any clause-
wise subset is also a minDNF. Thus, the partial order over the clause-wise minDNF
expressions or states is connected and all parents (immediate clause-wise subset) of
a node will be minDNFs as shown in Fig. 3a. However, this approach requires that
we first mine the complete set of minimal AND-clauses from the dataset, and then
we sample over DNF expressions by considering their or. However, this approach is
not practically feasible, since for typical support values mining all possible minimal
AND-clauses is very expensive. It also defeats the main purpose of sampling.

Instead of sampling in the clause-wise space, we consider the space obtained by
adding or deleting a single item from a DNF expression. The state space S for the
Markov chain comprises DNF expressions linked by immediate subset-superset or
parent-child relationships. Given a state si ∈ S, its neighbors can be generated via the
following three operations:

(a) Add a new clause comprising a single item into the DNF.
(b) Add an item to an existing clause.
(c) Delete a single item from a clause in the DNF. If this results in an empty clause,

delete the clause.

The added or deleted item can be either an item or its complement. Unfortunately,
this state space has a problem—we cannot restrict the states to only the minDNF
expressions.
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Lemma 6 The state space over only the minimal DNF generators is disconnected.

Proof We prove by counter-example. Consider the example in Table 1. Using
σmin = 1, all the minDNF expressions are listed in Table 2. The Boolean expres-
sion AB|AF |EF is a minDNF with T (AB|AF |EF) = 123. However, all its parents
(obtained by deleting a single item) are not minimal DNFs. Take its parent B|AF |EF
as an example, T (B) = 135, T (AF) = 2, T (EF) = 3, thus property (a) in
Theorem 1 is violated. Similarly, all its children (obtained by adding a single item to a
clause, or as a clause) are not minimal DNF generators. For instance, AB|ACF |EF
is not a minimal DNF generator since property (b) in Theorem 1 is violated. ��

So, if we only keep only minDNF expressions in the state space, AB|AF |EF
would become an isolated point, and would never be reached! As another example,
consider the minDNF expression BF |DE . All of its parents obtained by deleting a
single item from a clause are not minimal, as shown in Fig. 3b. On the other hand D|F
is a minimal DNF generator, but it cannot reach BF |DE via single item additions
or deletions, as illustrated in Fig. 3b. The solid ovals in the figure are minimal DNF
generators, and dashed ovals represent non-minimal DNFs.

4.1.1 Reducing the state space

Given that the item-wise state space is disconnected, in order to guarantee allminDNFs
are reachable, we also need to keep non-minimal DNFs in the graph. However, the
goal is to reduce the number of non-minimal DNF in the graph to as few as possible
while retaining all possible minDNFs. The following lemmas helps in this direction.

Lemma 7 Let Z be a DNF that violates Lemma 4. No extension of Z (by adding an
item) can result in a minDNF.

Proof At least one of the clauses in Z is not a minimal AND-clause. Any future
extension by adding a literal to Z cannot be a minDNF, since all its minimal AND-
clause subsets must also be minimal by Lemma 1. ��

This lemma states that any DNF that violates Lemma 4 should be removed from
the graph, which can greatly reduce the size of the search space. Furthermore, we
also remove any DNF node that violates Lemma 5. Note that this pruning still keeps
the graph connected since it is always possible to find other paths. As an example,
for the data in Table 1, DE |E should be removed since one of its parents DE |EF ,
which is a minimal generator, can be reached by another path, namely from DE |F .
As mentioned earlier, Definition 1 is a sufficient condition for Lemma 4 and 5, but not
a necessary condition. There still exist DNFs that satisfy Lemma 4 and 5 but are not
minimal generators.

Lemma 8 and 9 mentioned below can help to quickly determine the minimality of
a DNF expression without explicitly testing properties (a), (b) in Theorem 1, which
can save a lot of computational overhead.

Lemma 8 Let Z = ∨m
i=1 Zi , with m ≥ 2, be a general DNF expression that violates

property (a) in Theorem 1. Let T (Zk) ⊆ ⋃
j �=k T (Z j ). By adding an item to clause

Zk in Z, the resulting DNF cannot be minDNF.
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Proof The tidset of a clause is anti-monotonic. By adding an item x to clause Zk ,
resulting in clause Z

′
k , i.e., Z

′
k = Zk ∧ x , we still have T (Z

′
k) ⊆ ⋃

j �=k T (Z j ). Hence
property (a) is violated. ��
However, note that adding an item to other clauses rather than Zk in Z can result in a
minDNF node.

Lemma 9 Let Z = ∨m
i=1 Zi be a general DNF expression, with m ≥ 2, and let clause

Zk ∈ Z violate property (b) in Theorem 1. Adding an item to clause Zk cannot result
in a minimal DNF expression.

Proof Since Zk violates property (b) in Theorem 1, there exists item x ∈ Zk , such
that T (Zk) ∪ (

⋃
j �=k T (Z j )) = T (Z

′
k) ∪ (

⋃
j �=k T (Z j )), where Zk = Z ′

k ∧ x . Let

Z
′′
k = Zk ∧ y = Z ′

k ∧ x ∧ y and consider the DNF expression Z ′′ = Z
′′
k ∨ (

∨
j �=k Z j ).

Assume that Z ′′ is minDNF, which implies that (Z
′
k ∧ x∧ y) is minAND by Lemma 1.

This in turn implies that the difference set Dy = T (Z
′
k ∧ y) − T (Z

′
k ∧ x ∧ y) is

non-empty. We consider three cases:

(a) If Dy ⊆ ⋃
j �=k T (Z j ), then T (Z

′
k ∧ x ∧ y) ∪ (

⋃
j �=k T (Z j )) = T (Z

′
k ∧ y) ∪

(
⋃

j �=k T (Z j )), which contradicts the assumption that Z ′′ is a minDNF.

(b) If Dy ∩ ⋃
j �=k T (Z j ) = ∅, then we have Dy ⊆ T (Z

′
k) ⊆ T (Z

′
k) ∪

(
⋃

j �=k T (Z j )) = T (Zk) ∪ (
⋃

j �=k T (Z j )), which implies that Dy ⊆ T (Zk) =
T (Z

′
k ∧ x). However, by definition, Dy ⊆ T (Z

′
k ∧ y). Hence Dy ⊆ T (Z

′
k ∧ x) ∩

T (Z
′
k ∧ y) = T (Z

′
k ∧ x ∧ y). But thus implies that Dy = ∅, which contradicts

the assumption that Z
′
k ∧ x ∧ y is minAND.

(c) If Dy �
⋃

j �=k T (Z j ) and D ∩⋃
j �=k T (Z j ) �= ∅ then we can divide Dy into two

parts Dy = D′
y ∪ D′′

y , such that D
′
y ⊆ ⋃

j �=k T (Z j ), D′′
y ∩⋃

j �=k T (Z j ) = ∅, and
D′

y �= ∅, D′′
y �= ∅. Similar to step (2), D′′

y ⊆ T (Z
′
k ∧ x ∧ y), which implies that

Dy = D′
y ∪ D′′

y = T (Z ′
k ∧ y) − T (Z ′

k ∧ x ∧ y) = D′
y . However, this implies that

D′′
y = ∅, which is a contradiction.

From the three cases above, we conclude that Z ′′ is not minDNF. ��

4.1.2 Transition probability matrix

To sample the frequentminDNFexpressionswe can proceed aswe did for theminAND
case, by simply adding and deleting items, starting from the empty expression. Let Nu

denote the neighbors of u, that is, the set of states or expressions that can be obtained
using item addition and deletions. Further, let the set of u’s neighbors that are minDNF
be denoted as Nm

u , and those that are not minDNF be denoted as Nn
u , given as

Nm
u = {v ∈ Nu |v is a minDNF}

Nn
u = {v ∈ Nu |v is not a minDNF}

Also, let dmu = |Nm
u | and dnu = |Nn

u | be the minDNF degree and non-minDNF degree
of expression u. Clearly the degree of u is given as du = |Nu | = dmu + dnu .
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Just as for minAND sampling, we can obtain a uniform stationary distribution
using the transition probability matrix defined in Eq. (3). However, there is one cru-
cial difference when sampling minDNF expressions. This approach will uniformly
sample the state space S, which now comprises both minimal and non-minimal DNF
expressions. It is true that the minDNF expressions will be sampled uniformly, but
the probability of visiting a minDNF is minuscule, since the cardinality of frequent
minDNF expressions is much smaller (exponentially smaller) compared to the set of
all possible frequent DNF expressions! For example, consider our example dataset
in Table 1, with σmin = 1. It has 26 frequent AND clauses (itemsets), out of which
only 14 are minAND, as shown in Table 2. Nevertheless, taking an or of any com-
bination of these AND clauses will yield a frequent DNF expression, so there are
226 = 67, 108, 864 possible frequent DNF expressions. Granted that many of these
frequent DNF expressions are redundant, and will be pruned by the application of
the theorems/lemmas we outlined above, the size of the DNF space is still huge even
for such a small toy dataset. On the other hand, there are only 43 frequent minDNF
expressions, as shown in Table 2. We conclude that if we follow the same approach as
for minAND, the Markov chain will mainly visit non-minDNF states and will rarely
encounter minDNF expressions. In other words, the strategy used for minAND is basi-
cally infeasible for sampling minDNF expressions (a fact that we also experimentally
verified).What we need is to bias the chain to prefer minDNFs over non-minDNFs, but
at the same time guarantee uniform sampling of the frequent minDNFs, as described
next.

To sample frequent minDNF expressions, we will simulate a Markov chain on the
item-wise state space. We will ensure that the stationary distribution is the one that
assigns uniform probability to all the minDNF expressions. Since we do not care about
the distribution of the remaining non-minimal DNF expressions, the Markov chain is
different from traditional MCMC methods like Metropolis or Metropolis-Hastings
methods (Rubinstein and Kroese 2008). Consider the Markov chain on the state space
with both minimal and non-minimal DNF generators, with the transition probability
matrix P given as:

p(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − β) · w(u,v)∑
x∈Nu w(u,x) if u �= v and v ∈ Nu

β if u = v

0 otherwise,

(5)

where the self-loop probability β ensures aperiodicity of the Markov chain. We set
β = 1

du+1 , so that the self-loop has a uniform probability of being chosen when we
include all the neighbors of u. Further, we define the weight w(u, v) as follows:

w(u, v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1−α)c
max(dmu ,dmv )

if u and v are minDNFs
αc
dnv

if v is minDNF but u is not
αc
dnu

if u is minDNF but v is not

1 if u and v are not minDNFs .

(6)
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Note that if both u and v are minDNFs, then dmu ≥ 1 and dmv ≥ 1, since they both
have each other as a minDNF neighbor. If u is minDNF, but v is not, then dnu ≥ 1,
since u obviously has v as a non-minDNF neighbor. Finally, if u is not minDNF, but
v is, then dnv ≥ 1, since v has u as a non-minDNF neighbor. Thus, w(u, v) is always
well defined.

Also 0 < α < 1 is a weighting term, and c > 0 is a scaling constant. We shall
see that α controls the degree of non-uniformity in the sampling, and along with c
also affects the convergence rate of the sampling method (it has no impact on the
correctness). To better understand the role of c, if we divide each case (on the right
hand side) in Eq. (6), we see that the term c applies only to the last case, which turns
into 1/c, i.e., this ratio is proportional to the probability of a transition from u to v

when both are non-minDNFs. A large value of c disfavors these kinds of transitions.
On the other hand, a large value of α favors transitions to minDNFs, as does a large
value of c.

From the definition, one can verify that the edge weights in the graph are sym-
metric and the transition probability matrix is stochastic. Moreover, the weights favor
transitions to minDNF nodes. We prove that the defined random walk converges to a
stationary distribution.

Theorem 2 The Markov chain defined via Eq. (5) using the weights in Eq. (6) is
reversible and converges to a stationary distribution.

Proof TheMarkovchain is irreducible, aperiodic andfinite. Letw(u)=∑
v∈Nu

w(u, v)

be the sum of the weights over all the neighbors of state u, and let W = ∑
u∈S w(u)

denote the total weight over all the states in the Markov chain, which can be taken to
be a constant. We show that the stationary distribution is given as π(u) = w(u)/W
for all u ∈ S. Note that the weight function w(u, v) is symmetric. If u and v are
both minDNFs then w(u, v) = (1 − α)c/max(dmu , dmv ) = w(v, u). If they are both
non-minimal then w(u, v) = w(v, u) = 1. Finally, if either u or v is minimal and
the other is not, we have w(u, v) = αc/dx = w(v, u), where dnx is the degree of
the non-minimal expression (x ∈ {u, v}). Consider the detailed balance condition in
Eq. (1). Let u �= v; we have

π(u)p(u, v) = w(u)

W
· (1 − β)

w(u, v)∑
x∈Nu

w(u, x)
= (1 − β)

w(u)

W
· w(u, v)

w(u)

= (1 − β)
w(u, v)

W

On the other hand

π(v)p(v, u) = w(v)

W
· (1 − β)

w(v, u)

w(v)
= (1 − β)

w(v, u)

W
= (1 − β)

w(u, v)

W

Thus, P satisfies the detailed balance condition, and therefore the Markov chain is
reversible and converges to the stationary distribution π(u) = w(u)/W . ��
Definition 2 Let π denote the stationary distribution for a Markov chain, where π(u)

denotes the probability of visiting node u. The non-uniformity of a random walk is
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defined as the ratio of the maximum to the minimum probability of visiting a minDNF
node.

Theorem 3 The non-uniformity of minDNF sampling defined by Eq. (6) is bounded
by the ratio 1/α.

Proof From the proof of Theorem 2, the stationary distribution for any node u is
given as π(u) = w(u)

W , where w(u) = ∑
v∈Nu

w(u, v) is the total weight for node
u, and W = ∑

u w(u) is the sum of the weights over all nodes in the Markov chain.
Thus, π(u) ∝ w(u). Let u be a minDNF expression, with minDNF degree dmu and
non-minDNF degree dnu . The total weight for u is given as

w(u) =
∑

v∈Nu

w(u, v) = dnu · αc

dnu
+ (1 − α)c

∑

v∈Nm
u

1

max(dmu , dmv )

Note that
∑

v∈Nm
u

1
max(dmu ,dmv )

≤ dmu · 1
dmu

= 1. Equality is achieved only if dmu ≥ dmv for
all v ∈ Nm

u , in which case s(u) = αc+ (1− α)c = c. On the other hand, in the worst
case we may assume that dmv � dmu so that the second term vanishes in the limit, in
which case we have s(u) = αc. Thus the worst-case non-uniformity in sampling is
c
αc = 1

α
. ��

We can see that the proposed weighting scheme in Eq. (6) allows for a near-uniform
sampling of the frequent minDNF expressions. On the other hand, it does not give
any guarantee on the sampling of the non-minDNF expressions. For example, if u is
non-minimal then its weight is given as

w(u) =
∑

v∈Nu

w(u, v) =
∑

v∈Nn
u

w(u, v) +
∑

v∈Nm
u

w(u, v) = dnu + αc
∑

v∈Nm
u

1/dnv

Thus, the maximum weight value is w(u) = dnu + αc dmu and the minimum value is
w(u) = dnu . The non-uniformity ratio for the non-minDNFs is therefore 1+αc dmu /dnu ,
which can be large.

We alreadymentioned that theweights in Eq. (6) have been chosen to favorminDNF
expressions over non-minDNFones, and to guarantee uniform sampling forminDNFs.
For this we choose a large value for c and also choose α close to one. One might be
tempted to increase the transition probability between two minDNFs, u and v, for
instance by letting w(u, v) = (1 − α)c. However, doing so, the weight of a minDNF
expression u is given as:

w(u) =
∑

v∈Nu

w(u, v) = αc + (1 − α)c dmu

which does not guarantee uniformity.
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minDNF Sampling Algorithm
Input: D, σmin, σ

c
min, k

Output: k minimal DNF generators
1. B= select a frequent item randomly
2. IF is minimal(B)
3. Output B, insert B in B
4. IF |B| == k THEN return //k minDNFs sampled
5. F = Compute-Local-Neighborhood(B)
6. P = Local-Transition-Matrix(B, F) //Eq. (5), (6)
7. Select a DNF Bnext from F proportional to P
8. Set B = Bnext, and go to Line 2

Compute-Local-Neighborhood(B)
9. For each Boolean expression f in neighborhood of B
10. IF sup(f) satisfies σc

min, σmin and σo
min

11. IF Lemma 4 and Lemma 5 are satisfied
12. Insert f in F
13. IF conditions (a), (b) in Theorem 1 satisfied
14. Set f.minimal = True;

Fig. 4 minDNF sampling algorithm

Computational complexity: Let us consider the Computational complexity of simu-
lating a single step of the Markov chain that uses the weighting function in Eq. (6).
Let Xi = ∨q

j=1 Z j be the current state of the Markov chain, i.e., a DNF expression
with q clauses, and let |Xi | = l denote the total size in terms of the number of items
over all clauses. Let |Z| = m and |T | = n. We have to compute the minimal and
non-minimal degrees of Xi and each of its frequent neighbors. For item deletions, the
cost for frequency computation is O(l2 ·n), since we have to delete each of the l items
and compute the support of the resulting DNF expression, which costs O(l · n). For
item additions, the cost is O(q · m · n), since we have to add each of the m items in
Z to each of the q clauses, and support computation takes time O(n). In both cases,
minimality checking cost is O(l2 ·n). Thus, the cost for computing the frequent neigh-
bors and their minimality is O(n · (l2 + qm)). However, we also have to determine
the degree of each neighbor. Thus, the cost for a single step of the Markov chain is
O(d · n · (l2 + qm)), where d is the degree for node Xi . In practice, we use the mem-
oization approach to store the degree, support and minimality information of a state
only the first time it is encountered, with subsequent queries resulting in an O(1) time
lookup. However, the memoization approach incurs higher memory overhead.

4.1.3 minDNF sampling algorithm

The pseudo-code for theminDNF sampling algorithm is outlined in Fig. 4. Themethod
always starts by picking a random frequent item (or its negation; we omit that here).
Given the current node B, we first check if it minimal, and if so add it to the sampled
set of patterns B. If k steps have been performed, we stop (line 4). Otherwise, in line 5,
we determine all the immediate parents and children of the current node B that satisfy
support constraints, as given in the function Compute-Local-Neighborhood in lines
9–14. To get all possible parents and children of the current node B, the item addition
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or deletion operations are used in line 9. In Line 10 we test the support and prune out
those patterns that do not satisfied the conditions. In line 11, we use Lemmas 4 and 5 to
determine whether f is qualified to be remain in the partial order graph.We further test
property (a) and (b) in Theorem 1 for f to determine its minimality. Returning back
to line 6, we compute the transition probability P according to Eqs (5) and (6). Then
we select a DNF expression Bnext proportional to P to continue the walk in lines 7–8.

Sampling frequency: There is one detail missing in Algorithm 4. Assume that the
Markov chain converges after a sufficiently large number of steps, say r . Starting from
state X0, the run of the chain is given as X0, X1, X2, . . . , XN over N steps. After r
steps, the distribution of state Xr will be close to the stationary distribution, so we can
use the first minDNF after r steps as a sample. Now, considering Xr as the start state,
X2r will also be close to the stationary distribution, and it can therefore be used as a
sample. Thus, to sample k minDNF patterns, the sample comprises the first minDNF
expression after r, 2r , …, kr steps, and consequently the Markov chain should be run
for N ≥ kr steps. In practice, we do not know r , which depends on the mixing rate of
theMarkov chain, so we simply use a user-specified parameter r and output a minDNF
expression after every r -th step, after a longer burn-in period.

AND- and OR-clause cache: To further improve execution time, we pre-compute the
frequent AND-clauses and OR-Clauses of length 2, and store them in a hash table,
so that they can be used to quickly test for the valid item addition operations. For
example, when we add an item to a clause Zi in DNF Z , we first get all frequent
candidate items Ii j to be added for each literal zi j ∈ Zi . Then the candidate items to
be added for the clause Zi are {

⋂
j Ii j |zi j ∈ Zi }. We can do so quickly by looking

up the candidate items in the hash table. This step avoids searching the wholeZ space
when we apply item addition operations and thus improves the efficiency.

Random walks with jumps and restarts: Even after pruning, the state space for sam-
pling minimal DNF generators is large. The walk may be thus get trapped in local
regions, which consist of non-minimal DNFs. If this happens, our algorithm will not
output minimal DNFs even after a long run, although the samples are guaranteed to
be uniform. To avoid getting stuck in local parts, we use the following two strategies:

(i) Random walks with random jumps (RWRJ): In case the algorithm outputs no
minimal DNF generators even after r consecutive steps, we abort the current
path, and randomly jump to any earlier minimal DNF generator in the history as
its new start. Any such node is then deleted, so that it will not again be chosen as
a jump point.

(ii) Random walks with restart (RWR): At each step in the random walk, we enable a
certain probability r that the walker jumps back to the root node (empty itemset).
We confirm empirically that RWRJ is the better strategy.

4.1.4 Faster sampling

Whereas Eq. (6) gives a good guarantee on the sampling quality, it can be expensive
to compute, since we have to determine the minDNF and non-minDNF degree for a
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node, as well as for all of its neighbors Nu . Instead, we propose another weighting
scheme that leads to much faster sampling, without sacrificing the sampling quality
too much:

w(u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if u and v are minDNFs
c
dv

if v is minDNF but u is not
c
du

if u is minDNF but v is not

0.5 if u and v are not minDNFs

(7)

We note that if the nodes u and v are both either minDNFs or non-minDNFs then
we do not need to compute their degrees. Only if one of the nodes is a minDNF, we
have to compute its degree (du or dv), but we do not have to determine its minDNF or
non-minDNF degrees. The theorem below, shows that sampling quality is still good:

Lemma 10 The sampling non-uniformity of weighting scheme in Eq. (7) is bounded
by 1 + dm/c, where dm is maximum minDNF degree of a node.

Proof Let u be a minDNF node, with minDNF degree dmu and non-minDNF degree
dnu . The total weight for u is given asw(u) = ∑

v∈Nu
w(u, v) = dnu · c

du
+dmu ≤ c+dmu .

The last step holds since dnu ≤ du . The least weight at any node occurs when dmu = 0,
and the most weight is when dmu = maxu

{
dmu

} = dm . Thus, the non-uniformity is

given as c+dm
c = 1 + dm/c. ��

In practice, this weighting scheme works well. One reason for this is that the
expectedminDNF degree of a node is much better than the worst-case dm given above.
Furthermore, for a large dataset, computing the degree for all neighboring nodes is
an expensive process. From the edge weight definition 7, the degree of a neighbor is
useful iff the current node is not a minDNF, but its neighbor is. Thus, we compute the
neighbor’s degree only when necessary, which speeds up the execution time greatly.

5 Experiments

In this section, we evaluate the sampling quality of our proposed methods. We also
evaluate the benefits of mining minDNF expressions by using them as features for
categorical data classification task. We compare our results with Blosom (Zhao et al.
2006), which is the only current algorithm that can mine minDNF patterns (although it
is a completemethod). For pureAND-clauses, we also comparewithCHARM-L (Zaki
and Ramakrishnan 2005), a state-of-the-art method for mining minimal AND-clauses
(i.e., minimal generators.) All experiments are performed on a quad-core Intel i7
3.5GHz CPU, with 16GBmemory, and 2TB disk, running Linux (Ubuntu 11.10). The
minDNF sampling code was implemented in C++. All datasets and source code are
available at: http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software.

5.1 Sampling evaluation

We begin the MCMC sampling evaluation by considering minAND clauses first, and
then we study general minDNF patterns. We use both small (first three) and large
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Table 5 Datasets
Dataset Trans Items Avg. trans len

IBM100 100 20 9.3

Gene 74 824 86.1

Chess 3196 75 37

Connect 67,557 129 43

Retail 88,162 16,470 10.3

Kosarak 990,002 41,270 8.1
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Fig. 5 minAND sampling: chess dataset

(last three) datasets shown in Table 5 for these experiments. The last four are taken
from the FIMI repository (Goethals and Zaki 2004). The Gene dataset is from Zhao
et al. (2006), and IBM100 is a synthetic dataset generated using the IBM itemset
generator (Agrawal et al. 1996).

5.1.1 minAND sampling quality

Figure 5 shows minimal AND-clause sampling quality on the chess dataset using the
transition probability matrix from Eq. 3. We set the support threshold σ = 2500, for
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Table 6 minAND sampling
statistics: chess dataset

minAND sampling Ideal

Maximum Minimum Median Std Median Std

167 58 100 12.7 100 10

which the chess dataset has f = 6838 frequent minAND patterns. We ran the MCMC
chain for k = 683,800 iterations so that each pattern can be sampled an average of
t = 100 times. Figure 5a shows the number of times each minAND expression is
visited, with the x-axis arranged in lexicographic order and by length of the patterns
(maximum minAND clause size was 10). We can see that there is no bias by length.

Figure 5b shows the histogramof the visit counts.We can observe that the histogram
is very close to a binomial distribution with the peak at the mean value of 100. This
is not surprising, since in the ideal case of sampling a pattern uniformly, the number
of times a pattern is selected is described by the binomial distribution. To see this,
consider a dataset that has f minDNF patterns. If we perform a uniform sampling for
k = f × t steps, the number of timesm a specific pattern will be sampled is described
by the binomial distribution, B(m|k, p), where p = 1

f . The expected number of times
a minDNF pattern is visited is therefore given as

kp = f · t · 1

f
= t,

and the standard deviation is

√
kp(1 − p) =

√
t ( f − 1)

f
. (8)

In our experiment, we ran our minAND sampling algorithm t = 100 times on chess.
Thus, in the ideal case the mean (and median) is 100 and the standard deviation for the

number of visits is given as
√
100 × 6838−1

6838 = 10.0. Table 6 shows the statistics for
the number of visits for the minAND sampling and the ideal case. The least number
of visits to a pattern was 58, and the maximum was 167 with the median We can see
that the sampling quality for minAND-clauses is very good, with the median counts
matching, and with the standard deviations also close to the ideal case.

Figure 5c shows the variation distance between the probability of transitions from
the empty expression pk(∅, .), and the uniform distribution π over the 6838 minAND
patterns, i.e., the figure plots vd∅(k) using Eq. (4). The variation distance is plotted as
a function of the number of iterations. We can see a very rapid decrease in the value
from a variation distance of 0.999 to the final value of 0.0504. In fact, the variation
distance drops to under 0.1 in just 177K iterations, even though the entire chain is run
for 6838K iterations. Figure 5d shows the number of distinct minAND patterns seen
versus the number of iterations. For instance, it took 161794 iterations to visit all 6838
minAND patterns, which gives an indication of the cover time of the Markov chain,
i.e., the maximum expected number of steps to reach all states starting from a given
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Table 7 minAND sampling: average statistics

P σmin #minAND ( f ) k Avg. vd∅(k) Avg. cover iters Spectral gap

Eq. (3) 3000 137 13,700 0.0609±0.0084 1,174±409 0.0673

2500 6838 683,800 0.0509±0.0004 142,847±21,770 0.0407

2300 18,060 1,806,000 0.0498±0.0005 533,961±168,804 0.0372

2000 68,968 6,896,800 0.0490±0.0002 1,648,808±357,911 0.0309

Eq. (2) 3000 137 13,700 0.0854±0.003 2,434±802 0.0583

2500 6838 683,800 0.0811±0.0006 220,532±15,982 0.0327

2300 18,060 1,806,000 0.0799±0.0007 702,210±65,407 0.0278

2000 68,968 6,896,800 0.0870±0.0003 3,917,703±674,312 0.0214

state, with the maximum taken over all states. In fact it takes only 20697 iterations
to visit 90% of the states, with the remaining 10% of the states taking the residual
141K iterations, as seen from the sharp rise in the number of distinct patterns found
followed by the leveling off after the knee of the curve.

Since each run of minAND sampling algorithm gives only one instance of the
chain, we computed statistics from several runs. We run the chain 5 times and report
the average statistics, and we perform total of k = f × 100 iterations for each run.
Table 7 shows the (complete) number of minAND patterns for the different support
values, aswell as themean and standard deviations (avg±std) for the variation distance
and the number of iterations it takes to cover all minAND states. For the support values
shown it was possible to obtain the entire transition probability matrix P, and thus we
also show the spectral gap for the chain, i.e., the absolute difference between the largest
(λ1 = 1) and second largest (λ2) eigenvalue ofP. Finally, we compare the results using
the matrix P from Eq. (3) (the default), and the simpler one from Eq. (2). We can see
that on average the simpler one takes many more iterations to cover all states. For
example, for σmin = 2000, Eq. (3) tool 1.6 millions steps (on average) to cover the
states, whereas the simpler chain [Eq. (2)] took 3.9 million steps (more than twice as
many steps). The simpler chain also had larger variation distance, and smaller spectral
gap. These results confirm our earlier discussion that the transition matrix in Eq. (3)
is more efficient.

5.1.2 minDNF sampling quality

We now study the sampling quality for minDNF expressions and the sensitivity to
various parameters. Before studying the Markov chain defined in Eq. 6, we compare
it with the basic minAND type chain that adds and deletes items. We noted in the
discussion at the beginning of Sect. 4.1.2 that given the large gap in the cardinalities of
the minDNF and non-minDNF expressions, the probability of visiting minDNF nodes
is much smaller than visiting non-minDNF nodes. This was confirmed experimentally.
For example, on the chess dataset with σmin = 3100, the minAND type chain took
12min. and 14.4 s to sample 100 minDNF patterns, whereas our proposed weighting
scheme (with α = 0.9 and c =avg. tlen) in Eq. 6 took only 8.7 s to sample the same
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Fig. 6 Sampling quality
(RWRJ): IBM100
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number of minDNF expressions. Henceforth, we do not consider the minAND type
sampling as a viable option, and discuss our proposed weighting schemes in Eq. 6.

Random walk type: We first show the effect of the type of random walk, i.e., (RWRJ,
j = 50 vs. RWR, r = 0.02), as shown in Figs. 6 and 7. With σmin = 60, on the
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Fig. 7 Sampling quality
(RWR): IBM100
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IBM100 dataset, there are 654 distinct minDNF patterns (found using Blosom). We
ran minDNF sampling for k = 654 × 100 iterations. We use α = 0.25 and c is set to
the avg. transaction length.

123



Sampling frequent and minimal boolean patterns 211

Table 8 Sampling statistics:
IBM100

Maximum Minimum Median Std

RWRJ 157 32 101 19.0

RWR 547 15 89 60.5

Table 9 Effect of parameters:
IBM100

α, c, j npats Mean Std Max Min Med Time

j = 3 636.2 15.7 10.0 60.2 1 14 98.8s

j = 5 635.2 15.7 8.9 48.0 1 15.8 100.2s

j = 10 636 15.7 8.1 45.2 1 16.4 100.2s

j = 50 629 15.9 7.6 38.2 1 16 100.2s

j = 100 637.4 15.7 7.6 39.6 1 16.2 101.6s

α = 0.1 654 15.3 5.4 34 1.6 15 74.8s

α = 0.25 654 15.3 5.3 34.2 2.6 15 80s

α = 0.5 654 15.3 5.6 35.4 2.2 15 89.4s

α = 0.75 651.8 15.3 7.0 39.4 1 16 96.8s

α = 0.9 634.8 15.8 7.6 37.8 1 16.4 101.7s

c = 5 633.2 15.8 7.3 35.8 1 16.4 125.6s

c = avg(9.3) 632.8 15.8 7.5 45.4 1 16 100.0s

c = max(17) 639 15.7 7.9 47.2 1 16.2 88.8s

c = 50 633.2 15.8 8.8 50.6 1 15.8 79.1s

For the IBM100 dataset, we have f = 654 and t = 100, and thus in the ideal case
we expect to see each pattern 100 times, with standard deviation of

√
100 · 653/654 =

9.99 via Eq. 8. Figures 6 and 7 plot the number of times each pattern is visited (a), and
the count histogram (b). The sampling statistics, namely the maximum, minimum,
median, and standard deviation of visits counts for RWRJ and RWR are shown in
Table 8. It is very clear that RWRJ is much superior to the RWR strategy; its median
is closer to the ideal case, and the standard deviation is smaller. Whereas the RWRJ
strategy jumps to a node in its history, RWR always restarts from the empty pattern. As
such RWR is biased towards sampling patterns close to the origin, and this is reflected
in the sampling quality.

Convergence rate: Figures 6c and 7c plot the variation distance for the RWRJ and
RWR sampling methods. We compute the variation distance after every 1000 steps,
using the probability of reaching a minDNF starting from the empty expression via
the use of Eq. 4, i.e., the distance between vd∅(k) and the uniform distribution π . We
can see that the distance converges to slightly around 0.12 for RWRJ and to 0.36 for
RWR, indicating that RWRJ is the better strategy. We also ran experiments on the
Gene and Chess datasets, and obtained similar results (results not shown here).
Effect of α, c, j : Table 9 shows the effect of these three parameters on the sampling
quality on IBM100 with σmin = 60. We set k = 10, 000 iterations. We run each
experiment five times, and report the average number of distinct minDNFs sampled
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Table 10 Running time: minDNF and minDNF*

Dataset Method σmin = 1% σmin = 5% σmin = 10% σmin = 20%

IBM100 minDNF 1m50s 45.5s 40.2s 20.9s

minDNF* 17.5s 1.6s 14.5s 9.9s

Gene minDNF 3h45m12s 46m13s 31m1s 3m45s

minDNF* 19m11s 6m52s 5m23s 3m36s

Chess minDNF 11h26m11s 6h41m34s 5h23m29s 4h28m33s

minDNF* 1h6m8s 59m22s 42m15s 28m33s

Connect minDNF 15h52m47s 8h23m18s 7h59m22s 6h31m39s

minDNF* 4h44m2s 2h19m22s 1h58m53s 1h34m48s

Retail minDNF 50m4s 1m6s 35.0s 3.1s

minDNF* 59m25s 21.5s 12.8s 4.7s

Kosarak minDNF 27h58m43s 2h24m39s 9m55s 3m41s

minDNF* 8h31m4s 20m3s 2m14s 1m40s

(npats), mean, standard deviation (std), maximum,minimum, andmedian (med) of the
visit counts, and the average total time. Ideal sampling should yield a mean visit count
of k/ f = 15.3, and a standard deviation of

√
k/ f (1 − 1/ f ) = 3.9, since IBM100

has f = 654 minDNF patterns for σmin = 60. First, we look at the effect of j , fixing
c = avg and α = 0.9. Larger j results in a smaller standard deviation, and ideally j
should not be constrained. However, for many of the classification datasets the random
walk could get trapped in a local region, and therefore, we set j = 3 in our earlier
experiments. Next, we look at the effect of α, setting j = 50 and c = avg. We find
that larger α takes more time, with a slight increase in std, most likely due to the
constraint on j . Lastly, we fix j = 50, α = 0.9 and vary c. Larger c values take lesser
time, but also result in higher deviation. The average c value (9.3 for IBM100) offers
an acceptable choice.

Scalability: Table 10 shows the time to sample the small (with k = 1000) and large
datasets (with k = 100) for various support thresholds. In the table, results forminDNF
sampling using the weight matrix in Eq. (6) are denoted as minDNF, whereas results
using the faster weight computation in Eq. (7) are denoted as minDNF*. Blosom was
unfortunately not able to mine the complete set of patterns for any of these datasets
for the support levels shown even after 24h for the smaller datasets, and 48h for
the large ones. We note that whereas minDNF provides better theoretical guarantee,
minDNF* is significantly faster (by as much as an order of magnitude). We also
compared minAND sampling time with Blosom-MA and CHARM-L, both of which
canmine minimal AND-clauses. For example, for the Gene dataset with 10% support,
minAND took 0.7s to sample 1000 patterns, whereas CHARM-L took 40m54s and
Blosom-MA took 2h58m56s. For lower support values, neither of thesemethods could
finish within 24h, whereas for 1% support minAND finished in 1.3 s. These results
confirm that complete mining is practically infeasible, whereas sampling provides a
viable alternative.
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5.2 Application of minDNF patterns for classification

Having studied the quality for the minAND and minDNF sampling, we now study an
application of minDNF sampling for classification. The basic idea is to see whether
minDNF pattern can be used as effective features for classification, and to compare
and contrast with minAND features.

We experimented with a wide range of datasets from the UCI repository (Frank and
Asuncion 2010) as shown in Table 11. First, each of the 34 datasets was converted
into a categorical one using entropy-based discretization (Fayyad and Irani 1993), as
implemented in the Orange data mining suite (Curk et al. 2005). The total number of
transactions and items in each dataset, and the number of classes (ranging from 2 to
24) are shown in the table. These are denoted as trans, items, and cls, respectively.
Next we ran a linear SVM, on the original (non-discretized) dataset, as well as on
the discretized dataset, using fivefold cross-validation. For a given run of minDNF
sampling, we converted each of the mined minDNF patterns into a binary attribute,
that takes on the value 1 if a transaction satisfies theminDNF formula, and 0 otherwise.
This binary-valued dataset is then classified using linear SVM with fivefold cross-
validation, again using the Orange library [which in turn uses LIBSVM (Chang and
Lin 2011)]. Since the sampling is randomized, we repeat the sampling 10 times, and
report the averages.

For minDNF and minAND sampling the default parameters are as follows: We use
the random walks with random jump approach, with j = 3. We use α = 0.9 and set c
to the average transaction length. The minimum support for the DNF and clause were
both set to 1, i.e., σmin = σ c

min = 1. Finally, we sampled k = 100 minDNF patterns.
Thus, for minDNF and minAND the number of “items” or features is at most k for all
datasets (it can be less after removing duplicates). Note also that by default we do not
perform any feature selection; we study the effect of feature selection later.

Table 11 shows the fivefold cross-validation classification accuracy and standard-
error for each algorithm, over each of the datasets, averaged over ten runs. The best
results are shown in bold. In the table, results for minDNF sampling using the weight
matrix in Eq. (6) are denoted as minDNF, whereas results using the faster weight
computation in Eq. (7) are denoted as minDNF*. SVM-orig and SVMd denote the
performance of SVMon the original and discretized dataset, respectively. Finally, non-
default parameters are indicated in the table (third row), when we compare minAND
with k = 500, and minDNF/minAND with σmin = 5%.

5.2.1 minDNF versus SVM

minDNF time: The total times for minDNF and minDNF* for the various datasets
are shown in Table 12. The running time is affected by the number of items, since the
more the items, the more the number of neighbors, which affects the weight/transition
probability computation time. However, note that these results are with support one,
and substantial speedup is possible for higher support values. We can observe that
minDNF* is typically over an order of magnitude faster than minDNF, though this
comes at some penalty in classification performance, as we describe next.
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Table 12 Time (in sec) for
minDNF and minDNF*, and
average number of clauses per
DNF expression (with standard
deviation)

Dataset minDNF minDNF* Avg. # clauses (±Std)

Adultsample 772.0 16.8 3.1±1.4

Anneal 742.2 15.4 4.0±1.9

Audiology 704.9 22.0 2.1±0.8

Balancescale 57.9 3.0 6.9±2.2

Breastwisc1 223.7 4.1 3.0±1.1

Breastwisc2 699.0 10.7 3.2±1.2

Breastwisc3 558.6 11.0 3.5±1.3

Breastcancer 146.7 3.2 3.1±1.3

Brownselected 3123.3 60.8 2.2±0.7

Bupa 0.5 0.1 1.1±0.3

Car 276.3 7.5 4.4±1.5

Crx 574.1 12.0 2.9±1.1

Glass 21.8 1.7 2.0±0.9

Hayesroth 8.8 0.5 3.6±1.1

Heartdisease 98.3 3.5 2.1±1.0

Ionosphere 2049.8 35.4 2.6±1.0

Iris 3.5 0.4 2.2±0.9

Lenses 1.4 0.1 2.5±0.8

Lungcancer 457.2 9.0 2.2±0.7

Lymphography 153.5 3.6 2.3±0.9

Monks1 84.3 2.3 3.4±1.1

Monks2 101.0 2.5 3.7±1.0

Monks3 60.3 2.2 3.5±0.9

Postoperative 13.4 0.7 2.1±0.9

Primarytumor 186.2 6.3 2.2±0.8

Promoters 2428.9 57.2 2.4±0.9

Shuttle 22.0 0.8 3.3±1.0

Tictactoe 441.7 6.5 3.6±1.2

Titanic 9.7 2.1 1.7±0.8

Voting 384.2 7.9 2.6±0.9

Wdbc 776.8 13.8 2.3±1.2

Wine 93.0 2.3 2.4±1.0

YeastRPR 2215.1 36.0 2.2±0.8

Zoo 24.8 1.7 2.0±0.7

minDNF versus SVMd: Our minDNF sampling algorithm yields a near-uniform sam-
ple and we can see from the classification accuracies in columns 7 and 8 in Table 11
that the sampledminDNFpatternsmake excellent features. In 24 out of the 34 datasets,
they yield the best accuracy among all methods, including SVM-orig (on the original)
and SVMd (on the discretized datasets). On three datasets, the differences between
minDNF and the best method is not significant. On two datasets SVMs substantially
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outperform minDNF, namely, balancescale and postoperative, where the difference is
more than 10%.

minDNF* sampling: Since minDNF sampling using Eq. (6) does take more time, we
also compared with minDNF* that uses the faster weight computation in Eq. (7). We
can see from the results in column 9 in Table 11 that minDNF* sampling suffers in
performance compared to minDNF. However, minDNF* still outperforms SVMd on
22, SVM-orig on 21, minAND patterns (with k = 100) on 31, and minAND (with
k=500) on 18 out of the 34 datasets.

5.2.2 minDNF versus minAND features

Comparing the Boolean expression features comprising minDNF patterns versus
minAND patterns (both with k = 100), we find that minDNF substantially outper-
forms minAND (see columns 7 and 10). Although initially unexpected, it is perhaps
not that surprising, given the fact that minDNFs can be considered as disjunctive rules,
and are muchmore informative than simple conjunctive rules. Over all the 34 datasets,
minDNF sampling yields on average 2.69 clauses per DNF expression, with a standard
deviation of 1, as shown in column 3 in Table 12. Therefore, for a fair comparison
for minAND, we increased the number of sampled minAND expressions to k = 500
features, so that minDNF (with k = 100) and minAND (with k = 500) have a com-
parable number of total clauses. The classification results are shown in column 11 in
Table 11. We see that the larger number of features improves minAND in most cases.
However, minDNF (with k=100) is still substantially better thanminAND (k = 500).
Only on three datasets (lenses, monks1, and monks2) does minAND outperform
minDNF.
Increasing k for minAND: Table 13 records the classification accuracies obtained by
increasing the number of sampled expressions (k) for minAND patterns. We see that
a large number of clauses is clearly beneficial for minAND, since on 18 out of the 34
datasets, k = 10, 000 achieves the best accuracies. For example, on breastwisc2, the
classification accuracy is 96.3 with k = 10, 000, while it is 72.2 with k = 500. Com-
paring with minDNF with only k = 100, we find that it is better than minAND with
k=10, 000 on 11 out of the 34 datasets. Even though minAND with k=10, 000 has a
slight edge, it is important to note that the differences are not really significant for 12
out of the 18 datasets where minAND performs better. We can observe that minAND
outperforms significantly on the 6 datasets balancescale, car, monks1, monks2, pro-
moters, and tictactoe. On the other hand, minDNF significantly outperforms minAND
(with k = 10, 000) on 8 datasets like adultsample, anneal, audiology, brownselected,
glass, lungcancer, yeastRPR and zoo. Particularly on adultsample, audiology and glass
the accuracy difference is more than 30 percentage points (e.g., 79.8 vs. 46.7% on
adultsample).

These results indicate that overall minDNF patterns are more effective than
minAND patterns, for comparable model complexity in terms of the number of
clauses.
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Table 13 Classification performance with increasing k for minAND: accuracy ± standard error

Dataset minAND sampling
minDNF minAND minAND minAND minAND minAND
k = 100 k = 100 k = 500 k = 1000 k = 5000 k = 10, 000

Adultsample 79.8±0.9 48.6±1.4 45.1±0.5 63.3±0.8 46.6±0.6 46.7±0.6

Anneal 97.6±0.4 80.0±0.6 91.7±0.7 96.9±0.4 99.1±0.2 85.4±0.1

Audiology 79.7±3.0 43.8±2.0 33.4±1.4 30.0±1.3 50.6±2.8 48.6±2.3

Balancescale 71.7±1.4 46.8±3.9 74.0±1.2 79.3±1.2 81.8±0.6 81.7±0.8

Breastwisc1 95.4±0.5 75.6±1.1 93.2±0.8 91.3±0.5 96.6±0.4 96.9±0.4

Breastwisc2 94.4±0.6 61.5±1.0 72.2±1.3 94.0±0.8 95.6±0.6 96.3±0.5

Breastwisc3 93.8±0.6 45.8±1.0 93.6±0.8 93.9±0.9 96.5±0.5 96.5±0.5

Breastcancer 67.8±3.0 54.8±2.3 60.3±2.1 68.9±2.1 69.3±2.4 69.5±2.2

Brownselected 99.5±0.4 50.4±1.8 64.4±2.5 79.5±1.8 86.0±2.0 91.1±2.0

Bupa 63.2±2.7 54.8±3.2 63.2±2.7 63.2±2.7 63.2±2.7 63.2±2.7

Car 81.0±0.4 71.2±0.4 79.1±0.8 88.0±0.7 98.3±0.3 98.7±0.3

Crx 83.6±1.5 62.1±1.5 76.4±1.3 77.8±1.4 81.0±1.3 81.4±1.8

Glass 75.7±1.0 62.5±1.6 50.5±0.7 78.6±1.1 37.4±0.2 42.1±0.3

Hayesroth 73.5±3.5 68.4±3.2 78.7±3.3 78.1±3.2 78.0±3.3 78.0±3.3

Heartdisease 78.5±2.2 67.2±3.5 62.0±1.7 78.2±1.9 79.5±1.9 80.6±1.9

Ionosphere 89.5±1.5 49.3±0.8 80.8±1.2 82.4±1.3 90.4±0.8 91.5±0.9

Iris 94.9±1.3 95.2±1.4 95.4±1.3 95.5±1.3 95.6±1.3 95.6±1.3

Lenses 80.3±6.8 78.2±6.2 87.0±8.3 87.0±8.3 87.0±8.3 87.0±8.3

Lungcancer 52.1±7.5 33.2±6.1 31.7±4.3 42.8±6.7 46.6±6.9 40.0±5.1

Lymphography 80.0±3.6 63.6±3.1 75.9±2.9 80.5±2.5 82.7±1.9 82.5±1.7

Monks1 84.3±1.4 65.4±1.8 92.7±0.9 98.7±0.5 100.0±0.0 100.0±0.0

Monks2 66.3±1.1 53.8±1.6 74.7±1.6 85.8±1.5 95.2±0.9 95.4±0.8

Monks3 93.4±1.1 69.7±1.4 93.6±1.1 97.5±0.7 97.8±0.7 97.8±0.7

Postoperative 57.4±4.3 58.4±4.7 58.2±4.2 59.4±5.2 60.0±6.0 57.8±3.3

Primarytumor 40.2±2.0 30.0±1.7 36.2±2.5 36.1±1.9 37.7±1.6 38.6±1.8

Promoters 74.2±3.0 57.6±3.2 65.5±4.3 65.5±3.5 78.9±3.1 84.5±2.6

Shuttle 97.1±0.9 81.2±2.3 96.4±1.1 98.2±0.8 98.5±0.4 98.6±0.4

Tictactoe 78.7±1.2 47.4±1.0 68.8±1.6 80.6±1.1 97.3±0.6 98.9±0.4

Titanic 79.0±0.9 78.9±1.0 79.1±0.9 79.1±0.9 79.1±0.9 79.1±0.9

Voting 94.6±1.1 71.9±1.1 83.1±1.4 91.6±1.2 94.6±1.2 94.6±1.2

Wdbc 95.3±0.8 69.6±1.0 84.8±0.9 89.2±1.0 89.4±0.6 97.0±0.6

Wine 97.9±0.5 76.3±2.6 95.9±1.3 97.6±0.9 99.0±0.7 99.3±0.6

YeastRPR 99.3±0.7 59.7±2.2 73.7±1.8 84.2±1.7 89.8±1.5 87.9±1.7

Zoo 96.3±1.6 82.5±3.5 95.5±1.9 90.3±2.0 96.1±1.8 89.9±2.3

Bold values indicate the best performance for each dataset

5.2.3 Augmented experiments: effect of parameters and variants

Effect of support: To see the effect of minimum support on classification accuracy,
we ran minDNF and minAND sampling with the minimum support set to 5% of the
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number of transactions (see columns 8 and 12 in Table 11). Overall, we find that
adding the frequency constraint is not that beneficial for minDNF sampling, since
mining frequent minDNFs improves the accuracy only slightly in 9 datasets, when
compared to the minDNFs with support one. On the other hand, frequent minANDs
are better than support-one minANDs on 26 datasets. Mining frequent expressions
obviously lowers running times.
α effect: Our default weighting parameter for the transition probability matrix is α =
0.9. We also experimented α = 0.25 and α = 0.5. See the comparative results in
columns 2–4 in Table 14. Note that column 2 contains the results from our default
parameter settings. In 23 out of the 34 datasets, α = 0.9 gave the best performance.
This is because the random walk favors edges whose two ends are of different types,
i.e., one end is a minDNF pattern and the other end is not a minDNF pattern (see
Eq. 6). Thus, by setting α = 0.9, and independence among the sampled minDNFs is
increased and the redundancy is reduced, compared to both α = 0.25 and α = 0.5,
which consequently yields more effective classifiers.

Alternative construction of minDNF features: Recall that each of the mined minDNF
patterns comprises a binary feature for classification via SVMs. By default, a feature
takes on the value 1 if it is satisfied by an instance in the input dataset. We also
experimented with some alternative approaches for feature construction. In particular,
an input instance takes on the value 1 if (1) the majority of clauses in the minDNF
are satisfied (i.e., at least half of the clauses in the minDNF are true), and (2) the
exclusive OR (XOR) of all the clauses in the minDNF is 1. The classification results
are shown in columns 5 and 6, respectively, in Table 14. We can see that overall, these
alternative approaches do not help. In essence, they negate the effect of satisfying the
entire minDNF expression; the default binary minDNF features are the best among
all the three approaches.

Effect of minimum overlap: In Table 14 columns 7–9 we look at the effect of increas-
ing the minimum overlap parameter σ o

min between any two clauses. We range σ o
min

from 0 to 5% similarity in terms of the total number of instances. When there is no
overlap constraint the minDNF features achieve a better accuracy on 18 of the datasets
compared to σ o

min = 5%. On the other hand, a 5% minimum overlap yields better
accuracies on 15 of the datasets. Nevertheless, the differences are not that significant,
except on a few cases (e.g., balancescale where σ o

min = 0% has an accuracy of 74.1%
whereas σ o

min = 5% has an accuracy of 92.2%). Even though the benefits of the min-
imum overlap constraint may not appear in the classification results, it is a reasonable
constraint that has its use in exploratory analysis applications.

Negated items: We also experimented with minDNF expressions containing negated
items. However, in this case the accuracy was slightly better for the negated items in
only 5 out of the 34 datasets, which unfortunately came at the expense of a significant
increase in the runtime (sometimes by orders of magnitude).We conclude that negated
items do not confer significant advantages in terms of classification (at least for the
UCI datasets tested).
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Table 14 Classification performance (augmented experiments) for minDNF: accuracy ± standard error

Dataset minDNF sampling (absolute support 1) minDNF sampling (σmin = 0.5%)
α = 0.9 α = 0.25 α = 0.5 Majority XOR σo

min = 0.0% σo
min = 1% σo

min = 5%

Adultsample 79.8±0.9 68.9±1.3 75.5±1.1 77.1±1.1 81.6±1.0 81.8±1.3 83.2±0.9 82.3±0.9

Anneal 97.6±0.4 92.5±0.8 93.0±0.8 87.7±0.9 96.1±0.5 97.2±0.4 95.1±0.6 85.9±0.9

Audiology 79.7±3.0 43.3±2.3 55.4±2.3 71.0±2.4 72.6±2.7 75.1±2.3 74.9±3.0 76.4±2.6

Balancescale 71.7±1.4 73.5±1.3 72.4±1.3 31.9±5.6 70.5±1.4 74.1±1.3 81.8±0.9 92.2±0.2

Breastwisc1 95.4±0.5 95.6±0.8 95.6±0.6 91.3±0.7 95.0±0.7 95.5±0.6 95.3±0.8 95.5±0.8

Breastwisc2 94.4±0.6 92.0±0.8 92.1±0.8 74.6±0.9 93.1±0.8 91.9±0.9 93.0±1.0 93.3±0.9

Breastwisc3 93.8±0.6 88.9±1.0 91.6±0.9 70.0±0.7 92.8±0.8 93.8±0.9 94.3±0.8 91.5±0.6

Breastcancer 67.8±3.0 67.6±2.2 69.8±2.2 68.3±2.2 67.3±3.1 68.5±2.3 69.1±2.4 70.7±2.1

Brownselected 99.5±0.4 91.0±2.2 94.5±1.5 98.9±0.5 98.4±0.7 99.0±0.6 99.2±0.5 99.2±0.5

Bupa 63.2±2.7 63.2±2.7 63.2±2.7 63.2±2.7 63.2±2.7 63.2±2.7 63.2±2.7 63.2±2.7

Car 81.0±0.4 77.7±0.7 76.5±0.8 63.9±0.8 76.6±0.7 77.2±0.6 81.4±0.7 82.7±0.8

Crx 83.6±1.5 78.3±1.3 80.2±1.4 81.9±1.6 83.6±1.6 83.7±1.5 82.6± 1.6 82.1±1.5

Glass 75.7±1.0 75.0±1.3 76.0±1.5 76.8±1.1 76.7±1.2 77.2±1.1 77.4±1.0 74.1±1.6

Hayesroth 73.5±3.5 75.4±2.7 75.7±2.4 54.8±4.1 72.2±2.7 76.8±2.8 70.8±2.9 63.0±3.8

Heartdisease 78.5±2.2 76.9±2.0 77.7±2.1 78.3±2.2 77.5±2.2 78.9±2.2 78.8±2.2 79.9±2.6

Ionosphere 89.5±1.5 86.9±1.4 89.5±1.5 89.5±1.6 89.4±1.1 88.8±1.3 91.0±0.9 72.9±0.8

Iris 94.9±1.3 94.8±1.6 95.3±1.5 95.2±1.3 95.5±1.5 95.5±1.4 94.9±1.6 94.5±1.6

Lenses 80.3±6.8 67.4±8.5 66.1±8.7 76.1±7.8 60.4±7.6 72.5±7.9 71.1±7.2 73.3±8.6

Lungcancer 52.1±7.5 40.8±6.1 40.7±7.5 44.9±6.6 43.0±7.1 44.6±7.5 49.6±8.1 48.0±4.9

Lymphography 80.0±3.6 74.5±3.1 77.1±3.2 79.6±3.2 76.9±3.3 79.1±2.4 77.2±3.1 78.2±2.6

Monks1 84.3±1.4 82.1±1.6 77.3±1.8 66.5±1.8 82.5±1.4 83.7±1.4 71.3±1.2 72.8±1.7

Monks2 66.3±1.1 65.0±1.3 65.6±1.8 59.1±1.7 66.1±1.6 71.9±1.7 64.3±1.4 66.7±1.4

Monks3 93.4±1.1 92.9±1.0 94.2±0.9 76.0±1.4 91.0±1.2 96.4±0.9 80.7±1.5 81.9±1.3

Postoperative 57.4±4.3 59.4±4.3 59.2±4.0 56.2±5.0 56.0±5.1 55.1±3.8 53.1±4.7 60.1±3.1

Primarytumor 40.2±2.0 35.5±2.1 36.4±2.2 40.1±2.0 37.3±2.2 38.6±2.1 39.0± 2.5 39.2±1.6

Promoters 74.2±3.0 63.6±4.1 63.1±3.8 61.9±4.5 64.7±4.3 65.2±3.8 64.6±3.9 71.3±4.2

Shuttle 97.1±0.9 92.3±1.6 92.0±1.6 83.2±2.4 90.7±1.9 94.4±1.2 91.5±1.9 92.5±1.6

Tictactoe 78.7±1.2 76.0±1.3 76.2±1.3 62.7±1.6 73.2±1.2 76.9±1.3 75.5±1.5 78.0±1.3

Titanic 79.0±0.9 78.4±0.9 79.0±0.9 78.9±1.0 79.0±0.9 77.9±1.0 78.9±1.0 78.5±1.2

Voting 94.6±1.1 92.4±1.1 93.2±1.0 93.2±0.9 92.0±1.1 93.9±0.8 93.0±1.0 93.7±1.0

Wdbc 95.3±0.8 92.8±0.8 94.3±0.8 95.6±0.9 94.5±0.9 95.5±0.8 95.4±0.9 90.6±1.2

Wine 97.9±0.5 92.8±1.5 96.5±1.3 96.6±1.1 96.5±1.1 97.6±1.1 95.3±1.5 94.1±1.5

YeastRPR 99.3±0.7 88.6±2.1 94.0±1.2 99.0±0.6 98.2±0.7 99.7±0.2 98.7±0.6 99.0±0.6

Zoo 96.3±1.6 90.2±2.8 92.9±2.2 96.2±1.6 96.3±1.6 96.2±1.5 96.6±1.5 95.3±1.9

Bold values indicate the best performance for each dataset

5.2.4 Effect of feature selection

So far we have not used any feature selection for the classification results. We wanted
to see if careful selection of good features can improve accuracy results. For these
experiments, we sampled 500 Boolean expressions (minDNF or minAND) and used
two criteria to select the top-k for k = 100 patterns that are useful for classification.
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Suppose that a dataset contains l classes, then we can divide the dataset into l parts as
follows: Ci = {t ∈ D| thas class i}, with i = 1, . . . , l. Let the dataset D have a total
of n transactions. For the i-th mined expression, we convert it into a new attribute Ai

which is binary, i ∈ {1, 2, . . . , k}. Note that the newattributeAi divides the dataset into
two parts, Di1 = {t ∈ D| t satisfies Ai } and Di0 = {t ∈ D| t does not satisfy Ai }.
We rank the attribute Ai using the purity and entropy criteria, as follows:

(a) Purity: For the i-th attribute Ai , its purity is defined as

puri ty(Ai ) = 1

n

1∑

j=0

max
a

|Di j ∩ Ca |,

where a ∈ [1, l]. Purity lies in the range [0, 1], and the higher the purity value,
the better the discriminating power of Ai . We ranked the mined expression in
descending order of purity, and select the top k as features for classification.

(b) Entropy: For the i-th attribute Ai , we first define the entropy of Di j , as follows:

Hi j = −
l∑

a=1

Pi j (a) log(Pi j (a)),

where j ∈ {0, 1}, and where Pi j (a) is the probability of the transactions in the set

Di j having class label a, i.e., Pi j (a) = |Di j∩Ca |
|Ai j | . Finally, entropy of attribute Ai

is defined as:

H(Ai ) = |Di0|
|Di0| + |Di1|Hi0 + |Di1|

|Di0| + |Di1|Hi1.

Entropy lies in the range [0, 1], and the lower the entropy value, the better the
discriminating power. We ranked the mined minDNF patterns by the ascending
order of entropy and then select the top k features.

In the experiments, we perform independent fold-based training (fivefold cross-
validation classification) to selected the top k = 100 expression. That is, the best
patterns are selected using four of the folds as training and the remaining fold for
testing, using the purity and entropy-based criteria. The results for both minDNF and
minAND patterns is shown in Table 15. We find that adding the feature selection
as a preprocessing step for minDNF classification is clearly beneficial. For example,
using entropy for feature selection, 25 out of 34 datasets achieved better classification
accuracies, compared to no feature selection. Using purity 20 datasets had better
results. Comparing entropy and purity, entropy is slightly better on 21 datasets. For
minAND, feature selection substantially improves the accuracies. For example, using
entropy for minAND, 30 out of the 34 datasets had improvements, most of them very
significantly.
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Table 15 Classification performance (augmented experiments) for minDNF using top-k feature ranking:
accuracy ± standard error

Dataset minDNF sampling(Top-k) minAND sampling(Top-k) LAC

No selection Purity Entropy No selection Purity Entropy

Adultsample 79.8±0.9 76.7±1.1 83.4±1.0 48.6±1.4 38.1±1.4 78.1±1.2 79.0±1.1

Anneal 97.6±0.4 94.7±0.4 99.1±0.1 80.0±0.6 72.4±1.1 90.0±0.7 85.6±0.6

Audiology 79.7±3.0 76.3±2.7 76.6±2.6 43.8±2.0 44.3±3.5 44.7±3.5 31.9±1.2

Balancescale 71.7±1.4 77.5±1.6 76.8±1.6 46.8±3.9 76.2±1.6 76.1±1.6 87.2±1.4

Breastwisc1 95.4±0.5 95.6±0.4 95.7±0.4 75.6±1.1 87.1±0.7 89.4±0.6 97.8±0.1

Breastwisc2 94.4±0.6 94.5±0.5 94.5±0.4 61.5±1.0 81.8±1.1 84.5±0.9 96.7±0.7

Breastwisc3 93.8±0.6 94.9±0.5 94.6±0.4 45.8±1.0 86.1±1.0 82.2±1.0 97.1±0.6

Breastcancer 67.8±3.0 68.8±2.9 67.4±2.9 54.8±2.3 42.9±2.9 66.1±2.9 73.4±2.5

Brownselected 99.5±0.4 99.6±0.1 99.7±0.1 50.4±1.8 66.4±2.9 79.2±2.5 99.9±0.1

Bupa 63.2±2.7 62.6±2.8 63.2±2.8 54.8±3.2 63.2±2.8 62.2±2.8 58.0±2.6

Car 81.0±0.4 70.5±1.1 86.3±0.6 81.0±0.4 52.9±1.1 73.9±1.0 70.0±0.7

Crx 83.6±1.5 84.8±1.1 85.2±1.1 62.1±1.5 74.0±1.6 77.3±1.5 85.2±1.5

Glass 75.7±1.0 77.3±2.6 76.0±2.7 62.5±1.6 76.1±2.7 76.1±2.7 72.9±1.9

Hayesroth 73.5±3.5 76.0±3.5 77.6±3.2 68.4±3.2 78.5±3.2 77.9±3.3 77.3±3.2

Heartdisease 78.5±2.2 80.0±2.0 79.4±2.1 67.2±3.5 74.9±2.3 77.6±2.2 82.5±2.2

Ionosphere 89.5±1.5 91.1±0.9 90.6±1.0 49.3±0.8 67.2±2.2 70.0±2.1 90.6±1.4

Iris 94.9±1.3 94.5±0.9 94.8±0.9 95.2±1.4 94.4±1.0 94.9±0.9 93.3±1.4

Lenses 80.3±6.8 70.7±8.3 71.7±7.2 78.2±6.2 76.0±7.5 77.3±6.9 75.0±7.0

Lungcancer 52.1±7.5 41.4±8.5 45.1±8.7 33.2±6.1 36.2±7.6 44.6±8.6 59.4±7.7

Lymphography 80.0±3.6 80.4±2.8 81.9±2.6 63.6±3.1 68.6±3.8 74.6±3.4 79.7±2.4

Monks1 84.3±1.4 94.5±0.5 93.3±0.6 65.4±1.8 88.0±1.0 83.7±1.3 84.4±1.8

Monks2 66.3±1.1 60.2±2.2 71.1±1.8 53.8±1.6 46.3±2.2 63.3±2.1 65.7±1.9

Monks3 93.4±1.1 97.2±0.3 97.4±0.2 69.7±1.4 88.3±0.9 91.4±0.7 97.3±1.5

Postoperative 57.4±4.3 60.4±5.4 57.1±5.5 58.4±4.7 53.9±5.6 59.1±5.5 71.1±4.0

Primarytumor 40.2±2.0 41.3±2.9 40.4±2.9 30.0±1.7 27.3±2.4 35.5±2.7 36.3±1.1

Promoters 74.2±3.0 74.6±4.1 74.9±3.9 57.6±3.2 60.8±5.0 59.8±4.9 86.8±4.1

Shuttle 97.1±0.9 96.1±0.6 96.4±0.5 81.2±2.3 89.8±1.2 93.6±0.8 96.0±2.2

Tictactoe 78.7±1.2 75.9±1.3 81.1±1.1 47.4±1.0 55.9±1.6 63.8±1.6 67.6±1.4

titanic 79.0±0.9 78.9±0.8 79.0±0.8 78.9±1.0 78.8±0.8 78.8±0.8 78.9±0.9

voting 94.6±1.1 94.5±0.6 95.0±0.5 71.9±1.1 71.1±1.8 82.5±1.5 91.7±1.3

Wdbc 95.3±0.8 95.5±0.4 95.4±0.4 69.6±1.0 68.0±1.7 83.4±1.2 97.0±0.8

wine 97.9±0.5 98.5±0.2 98.8±0.2 76.3±2.6 91.6±1.2 91.5±1.3 98.9±0.4

YeastRPR 99.3±0.7 99.6±0.1 99.6±0.1 59.7±2.2 71.2±2.8 76.9±2.7 99.9±0.1

zoo 96.3±1.6 96.3±0.8 96.5±0.7 82.5±3.5 92.4±1.5 93.6±1.3 89.1±1.9

Bold values indicate the best performance for each dataset

minDNF versus rule-based classifiers: We wanted to evaluate the effectiveness of
our minDNF features compared to rule-based classifiers. For this we select the lazy
associative classifier (LAC; Veloso et al. 2006), which is a state-of-the-art exemplar
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of the rule-based approach. LAC is a lazy algorithm and it focuses on generating rules
on testing instances that are useful for classification. It systematically enumerates
itemsets (AND-clauses) that are the most discriminative, and classifies a test instance
by combining/voting among all the rules that fire. Note that LAC is also able to deal
with the small disjuncts problem (Holte et al. 1989). The last column in Table 15 shows
the accuracy results for LAC. Comparing with column 4, i.e., minDNF with entropy-
based feature selection, we find that minDNF features result in better accuracies in 18
out of the 34 datasets, whereas LAC is better on 14 datasets. Note that as expected,
LAC is much better than minAND features, even with entropy-based selection. LAC
is better than minAND with entropy on 25 datasets, whereas the opposite is true on
9 datasets. This is expected, since LAC mines AND-clauses and combines the most
discriminative among them using various measures. On the other hand, minAND
mines only minimal AND-clauses and uses entropy (or purity) for feature selection.
It is interesting that even though LAC is specifically designed for classification, our
minDNF features combined with feature selection, outperform LAC on 18 of the
datasets. Notable examples are anneal (99.1 for minDNF vs. 85.6 for LAC), audiology
(76.6 vs. 31.9), tictactoe (81.1 vs.67.6), and so on.

6 Conclusions

In this paper we presented the first approach to sample the simplest Boolean pat-
terns, namely the minimal DNF expressions. We propose a novel weighting scheme to
compute the transition probability matrix for the MCMC sampling algorithm, which
bounds the amount of non-uniformity in the sampling. Since themethod can be slow in
practice, we also suggest a faster alternative, that yields effective sampling quality as
well.We perform an extensive set of experiments to test various design parameters, and
justify our choices. Finally, somewhat surprisingly, we found that the minimal DNF
patterns make very effective features for classification. Via an extensive set of exper-
iments on UCI datasets, we show that our method outperforms simple AND-clause
based features, as well as the SVMmethod, typically by a wide margin, though it does
suffer in the runtime comparison. However, the faster weight computation approach
yields significantly faster running times, with some loss in the classification accuracy.
The minDNF features still remain the effective across the different classifiers. Per-
haps the most interesting aspect of the classification study is that using support-less
patterns (with minimum support one) is already very effective for classification, and
adding feature selection yields even more benefits. Our future work will target more
effective feature selection by considering other interestingness criteria for the patterns
while sampling, such as their discrimination power. Efficiency still remains an issue,
which may be tackled by implementing the approach on multi-core processors, as
well as utilizing graphics computing units, since the MCMC methods are inherently
parallel.
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