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Abstract We study the problem of finding the longest common sub-pattern (LCSP)
shared by two sequences of temporal intervals. In particular we are interested in find-
ing the LCSP of the corresponding arrangements. Arrangements of temporal intervals
are a powerful way to encode multiple concurrent labeled events that have a time
duration. Discovering commonalities among such arrangements is useful for a wide
range of scientific fields and applications, as it can be seen by the number and diver-
sity of the datasets we use in our experiments. In this paper, we define the problem
of LCSP and prove that it is NP-complete by demonstrating a connection between
graphs and arrangements of temporal intervals. This connection leads to a series of
interesting open problems. In addition, we provide an exact algorithm to solve the
LCSP problem, and also propose and experiment with three polynomial time and
space under-approximation techniques. Finally, we introduce two upper bounds for
LCSP and study their suitability for speeding up 1-NN search. Experiments are per-
formed on seven datasets taken from a wide range of real application domains, plus
two synthetic datasets. Lastly, we describe several application cases that demonstrate
the need and suitability of LCSP.
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1 Introduction

Sequences of temporal intervals, also known as event-interval sequences, have recently
attracted the attention of both the databases and data mining communities. Such
sequences are ubiquitous and their main characteristic is that they consist of events
that are not necessarily instantaneous but may have a time duration. Sequences of this
type appear in several application domains, such as sign language (Papapetrou et al.
2009), medicine (Kosara and Miksch 2001), geo-informatics (Pissinou et al. 2001),
cognitive science (Berendt 1996), linguistics (Bergen and Chang 2005), and music
informatics (Pachet et al. 1996).

The main advantage of event-interval sequences is that they are a generalization
of traditional event sequences, since they do not restrict events to be instantaneous
but they allow them to have a time duration. Hence, they are constructed by events
thatmay exhibit different temporal relations. Formally, event-interval sequences can be
considered as an ordered multiset of events characterized by a label, a start, and an end
time value. Event labels are allowed to occur multiple times within the same sequence,
since such property is required in several application domains, such as sign language
(Papapetrou et al. 2009). An example of an event-interval sequence containing five
labeled events, i.e., A (occurring twice), B,C , and D, is shown in Fig. 1. Furthermore,
multiple events of the same label can be active simultaneously. An example of such
case would be the representation of recursion, when monitoring the execution of a
computer program. Another example would be the presence of groups or classes of
equivalent sensors, in sensor networks, where it is unnecessary or undesired to identify
the specific sensor id.

In sign language, for instance, a sentence is constructed by events that may cor-
respond to grammatical and syntactic expressions, or various hand and facial ges-
tures. Such events have a time duration and may also occur concurrently, hence build-
ing sequences of labeled temporal intervals. Examples of sign language event labels
include “Wh-Word”, “Lowered eyebrows”, or “Rapid head shake”. In Fig. 2 we can
see an example of aWh-question (question starting with a word prefixed by ‘Wh’). It
can be observed that event intervals may occur concurrently exhibiting several tempo-
ral relations between them, while the same event label, i.e., “Wh-Word”, may occur
multiple times within the same sequence. As another example, consider a medical
database populated by records of patients who follow a series of medication and tests
for some time period. In such setting, an event corresponds to a prescribed drug or a

Fig. 1 Example of a sequence of five events, each occurring over a time interval. The same event label
may occur multiple times in the sequence, while several temporal relations may occur between the event
intervals
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> Who drove the car, who? 

(Lowered eyebrows) 

( Wh - Question) 

( Wh - Word) 

time 

(Rapid head shake) (Rapid head shake) 

( Wh - Word) 

(Lowered eyebrows) 

Fig. 2 Example of a sign language event-interval sequence (Papapetrou et al. 2009). The sequence rep-
resents the phrase “Who drove the car, who?” expressed using sign language notation. It can be seen that
event labels may repeat throughout the sequence while event intervals may occur concurrently and exhibit
different types of temporal relations

medical test. Similar to the previous example, it is again apparent that events can also
occur concurrently and over a time interval.

Recent work has focused on event-interval sequences, but has mainly concentrated
on mining frequent patterns and association rules (Kam and Fu 2000; Ale and Rossi
2000; Papapetrou et al. 2009; Mörchen 2007), mining semi-interval partial orders
(Mörchen and Fradkin 2010), or discovering relationships for classification (Patel et al.
2008). Despite that, it is surprising that other important problems such as similarity
search and matching have received very limited attention.

Recently, a family of methods has been proposed for similarity search in event-
interval sequence repositories (Kostakis et al. 2011; Kotsifakos et al. 2013). Their key
approach is to use a simplified representation for each event-interval sequence with-
out losing crucial temporal information about the events. Nonetheless, all existing
methods have been designed for full sequence matching. In other words, they attempt
to quantify the dissimilarity of two given event-interval sequences. The difference
between full-sequence matching and longest common sub-pattern (LCSP) is the same
as that between computing the string Edit Distance and the longest common subse-
quence (LCS) of two strings. That is, full-sequence matching “forces” all elements
in one sequence to match with at least one element in the other sequence. In other
words, it penalizes any element mismatch between the two sequences. On the other
hand, LCSS allows for gaps in the alignment. Hence, it is more elastic to noise since
outliers cannot distort the similarity as they are not matched.

There are many application domains where it is desirable to search for “common-
alities” between two sequences, where the main task is to extract segments of the two
sequences that are similar to each other. Such task is highly applicable in biology,
known as local alignment (Smith and Waterman 1981), as well as in time series, e.g.,
LCSS (Paterson and Dancik 1994). In graphs, the problem is known as the maximum
common subgraph (MCS) isomorphism. In practice, LCSP can be used for several
tasks: (i) given two e-sequences S, T , determine the largest pattern of intervals that
appears in both, (ii) given a query e-sequence pattern q, and a larger e-sequence S,
determine the extent to which q exists in S. An alternative view on the latter is that of
approximate sub-sequence querying for sequences of event-intervals.

In the case of event-interval sequences, identifying such commonalities may be
highly beneficial in various use-case scenarios. Consider the case of sign language
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Fig. 3 Example of the LCSP
between two event-interval
sequences S and T . LCSP
identifies the longest common
sub-pattern (LCSP) between the
two sequences by effectively
allowing skipping events in the
matching

A

C
B

A

C
B

A

S

T

classification. Using a set of known profiles that characterize the nature or structure
of various sequence samples in a database, and given a query sequence, one could
compare the unknown sequence to those profiles to determine its class. For example,
suppose we have a set of common profile patterns for various sign language expres-
sions, such as “Wh-questions” and “Negations”. A very common profile, for instance,
for a “Wh-question” is a “Wh-word” overlapping with “Lowered eyebrows” and a
“Rapid head shake’. This pattern can also be seen in Fig. 2. Given a new, unclassified
sequence sample, existing profiles could be used to determine the class of the new
sample by identifying commonalities between the profiles and the new sequence.

In this paper, we study the problem of identifying the LCSP between two event-
interval sequences. In other words, our goal is to identify the longest commonality
between the two sequences, expressed as patterns of event intervals sharing the same
temporal relations. An example, of LCSP is shown in Fig. 3. The two event-interval
sequences S and T share the same “sub-pattern” consisting of events A, B, and C .
It becomes apparent that such pattern cannot be identified by existing full sequence
matching algorithms, as they require each event interval from one sequence to be
mapped to at least one event interval in the other sequence.

In our model, we are not concerned with the actual duration of the intervals nor with
the time separating any intervals. Instead we focus on the actual combination of the
intervals and their relations. This makes our measure robust to any time warping. So,
the two sequences {(A, 1, 2), (B, 3, 4)} and {(A, 10, 20), (B, 50, 100)} are considered
the same (each triple denotes respectively the label, start and end time of an interval).
The motivation and rational for this is that we should expect from people who practice
SignLanguage,when repeating a phrase, to consumedifferent amounts of time for each
word and thewhole utterance between different attempts; similar towhen pronouncing
a long sentence in spoken language. In the same manner, we assume that in robot
sensor data a high-level description of a situation is derived from the combination
of underlying events. For example, the gripping mechanism was enabled throughout
the whole time that the robot’s wheels were active, so the object was transferred
successfully to the target location, in contrast to releasing at any time point half-way
through which would indicate a drop.

The reader may wonder whether this problem could be simply solved by convert-
ing event-interval sequences to discrete event sequences, hence mapping the LCSP
problem to the longest common subsequence (LCS) problem (Cormen et al. 2001).
It has been demonstrated and argued in several existing works (Kostakis et al. 2011;
Papapetrou et al. 2009) that event-interval sequences cannot be directly mapped to dis-
crete event sequences without loss of temporal information; especially when temporal
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Fig. 4 An example where mapping event-interval sequences to discrete event sequences may cause ambi-
guities. By adding more intervals while maintaining the same structure in both sequences, we demonstrate
that reducing LCSP to string matching produces arbitrarily bad results

relations such as overlaps or contains are allowed between event intervals sharing
the same label. This shortfall results in side-effects for other data mining tasks; as
we demonstrate experimentally on seven real datasets in Sect. 7.3, LCSP can achieve
much better performance both in terms of classification accuracy and clustering purity.

Next, we demonstrate that the aforementioned mapping to discrete sequences can
produce arbitrarily bad scores irrespective of the similaritymeasure used. Consider the
two examples shown in Fig. 4, where each event-interval sequence consists of three
intervals with the same label. In the first case (Fig. 4a), each event interval is fully
contained within the other (in terms of duration), while in the second case (Fig. 4b)
each event interval overlaps with all the previous. Obviously, the mapping for both
sequences is the same, i.e., {As, As, As, Ae, Ae, Ae}. This suggests that traditional
methods for discrete event sequences may fail to capture the inherent temporal struc-
ture of such sequences, and more important, they may produce arbitrarily bad results
especially as the number of event labels increases. In the same example, consider the
case where we have infinitely many event intervals: for Fig. 4a each new event interval
is contained within the others, while for Fig. 4b each new event interval overlaps with
all the previous. Both event-interval sequences would be mapped to the same two
discrete event sequences and hence any string matching algorithm would match them
fully and their LCS would be of length 2 × |S| = 2 × |T |, whilst in reality S and T
share no common temporal relation between their event intervals, hence their LCS is
just of length 1, i.e., event interval A.

The main contributions of this paper are summarized as follows:

– We formally define the problem of finding the LCSP between a pair of arrange-
ments of temporal intervals.

– We prove that the LCSP problem belongs to the complexity class of N P-hard
problems, by showing that Clique can be reduced to it under a log-space reduction.
We achieve this by establishing that arrangements can be used to encode graphs.

– We prove LCSP ∈ N P by showing a reduction to Max Clique.
– We demonstrate an exact algorithm and prove of its correctness.
– We describe a framework for the problem variation of inexact LCSP.
– We propose three policies for under-approximating (approximating from below)
hard instances of LCSP.We benchmark them in terms of running time and accuracy
(tightness).
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– We propose two upper-bounds for LCSP and study their tightness and 1-NN prun-
ing power.

– We experiment on seven real datasets taken from various domains, including sign
language, medicine, human motion, and sensor networks, and two additional syn-
thetic datasets.

The remainder of this paper is organised as follows: in Sect. 2 we summarize the
related work, in Sect. 3 we provide the necessary definitions and the problem formula-
tion, then in Sect. 4 we present the LCSP problem, show that it is NP-hard, and present
an exact algorithm for solving it. Then, in Sect. 5 we present three approximations for
solving the problem and in Sect. 6 we propose two upper bounds for computing LCSP.
Next, in Sect. 7 we present our experimental evaluation and in Sect. 8 we provide sev-
eral motivating use cases for the applicability and suitability of LCSP. Finally, Sect. 9
concludes the paper and presents directions for future research.

2 Related work

The vast majority of related research on temporal interval sequences has so far been
focusing merely on frequent pattern and association rule mining, as opposed to sim-
ilarity matching, which is the main focus of this paper. The simplest formulation is
inspired by the idea of itemset mining and mainly considers events to be time inter-
vals. Hence, the task at hand is to discover frequently occurring patterns of intervals in
databases, irrespective of labels (Lin 2003; Villafane et al. 2000). Similar approaches
(Giannotti et al. 2006) focus on extracting temporally annotated sequential patterns,
where transitions from one event to another have a time duration. In such scenario,
intervals correspond to the time differences between the offset (end time) and onset
(start time) of an event.

A graph-based approach (Hwang et al. 2004) represents each temporal pattern by
considering only two types of relations between event-intervals (follow and overlap),
and illustrate examples from various application domains where discovery of temporal
patterns can be applied to support crucial business decision-making. Ale and Rossi
(2000) approach the concept of a temporal interval by modeling the lifetime of an item
as the time between its first and last occurrence.

Another family of methods on temporal intervals are those that consider sequences
of labeled temporal intervals, and extract temporal patterns in such sequences. A large
variety of Apriori-based techniques (Kam and Fu 2000; Abraham and Roddick 1999;
Chen and Petrounias 1999; Höppner 2001; Höppner and Klawonn 2001; Mooney and
Roddick 2004; Laxman et al. 2007) for finding temporal patterns, episodes, and associ-
ation rules on interval-based event sequences have been proposed. More sophisticated
methods on pattern mining in sequences of temporal intervals employ enumeration
trees for candidate generation and pruning (similar to those for traditional itemset
and sequential pattern mining). Significant speedups are achieved by BFS-based and
DFS-based enumeration on these trees (Winarko and Roddick 2007; Papapetrou et al.
2009), by reducing the inherent exponential complexity of the mining problem. A
non-ambiguous temporal interval representation is presented in (Wu and Chen 2007)
that considers start and end points of event intervals, and converts them to a sequential
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representation. Nonetheless, the alphabet size (number of event labels) as well as the
overall complexity of the mining process is increased. In addition, temporal relations
such as overlaps or during between the same event label still cannot be distinguished.
Furthermore, efficient methods have been proposed on mining partial orders of semi-
intervals (Mörchen and Fradkin 2010) as well as closed patterns of interval-based
events has been proposed (Chen et al. 2011).

Recent work on margin-closed patterns (Fradkin and Moerchen 2010) focuses on
significantly reducing the number of reported patterns by favoring longer patterns
and suppressing shorter patterns with similar frequencies. A unifying view of tem-
poral concepts and data models has been formulated in (Mörchen 2007) to enable
categorization of existing approaches to unsupervised pattern mining from symbolic
temporal data; time point-based methods and interval-based methods as well as uni-
variate and multivariate methods are considered. In addition, an encoding scheme for
compressing sequence data with sequential patterns has been proposed (Lam et al.
2014) for solving the problem of compressing sequential patterns from a sequence
database.

All the aforementioned approaches and formulations are beyond the scope of this
paper, since their objectives and formulations are orthogonal to ours. To the best
of our knowledge, the only existing principled methods for assessing the similarity
of sequences of temporal intervals are Artemis (Kostakis et al. 2011) and IBSM
(Kotsifakos et al. 2013). The first one is based on the fraction of common temporal
relations between the sequences, without taking into account the actual time durations,
while the second performs a vector-based representation of each point in time andmaps
the problem to a Euclidean distance computation between ordered sets of vectors.
Additionally, a baseline approach, called DTW-based, is presented in Kostakis et al.
(2011). However, this method employs a vector-based representation of event-interval
sequences and, due to its construction, fails to consider any pair-wise temporal relation.
It should be noted that bothmethods assess the similarity of two sequences of temporal
intervals by performing full sequence matching; that is each element in one sequence
should be matched to an element in the other sequence. This objective is however
orthogonal to our objective in this paper, since we are solving a different problem:
how to find the longest common subpattern shared by two sequences of temporal
intervals. Hence, we are the first to formulate the problem of LCSP and apply it for
assessing the similarity of event-interval sequences.

3 Background

Let Σ = {E1, . . . , Em} be an alphabet of m event labels. An event that occurs over a
time interval defines an event interval and an orderedmultiset of event intervals defines
an event-interval sequence. Next, we provide a more formal definition for these two
concepts.

Definition 1 (Event interval) An event interval is defined as a triple S = (E, tstart ,
tend), where S.E ∈ Σ and S.tstart , S.tend correspond to the start and end time of S,
respectively. S.tstart ≤ S.tend , where the equality holds when the event is instanta-
neous. For ease, we also denote S.E as ES .
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Fig. 5 The seven temporal relations between two event-intervals that are considered in this paper

Definition 2 (e-sequence) A sequence of temporal intervals, or event-interval
sequence, or e-sequence, S={S1, . . . , Sn} is an ordered list of n triples (i.e., event
intervals) that may contain duplicates. The temporal order of the event intervals in S
is ascending based on their start time and in the case of ties it is descending based on
their end time. If ties still exist, the event intervals are sorted lexicographically.

An example of an e-sequence is shown in Fig. 1. Using the above definitions, this
e-sequence is represented as follows:

S = {(A, 1, 10), (B, 5, 13), (C, 17, 30), (A, 20, 26), (D, 24, 30)}.

It becomes apparent that in an e-sequence there exist temporal relations between
the event intervals. Based on Allen’s model for temporal interval relations (Allen
1983; Allen and Ferguson 1994), given two event intervals A and B, we consider
the following seven relations (shown in Fig. 5): before(A,B),meets(A,B), equal(A,B),
overlapsWith(A,B), during(A,B), startsWith(A,B), finishesWith(A,B).

More details about these relations can be found in Papapetrou et al. (2009). Let
I = {r1, . . . , r|I|} denote the set of all legal temporal relations that can exist between
any pair of event-intervals. For our setting, we have |I| = 7 with

I = {meets, is equal to, overlaps with, during, finishes with, starts with, before}.

In several applications, one may be interested not so much in the absolute time
values of the start and end points of event-intervals but rather in the types of temporal
relations between them. Hence, a simplified representation may be used, which is
called arrangement (Papapetrou et al. 2009).
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Fig. 6 Example of an arrangement of length three and size three. The arrangement (on the right) is extracted
from the e-sequence (on the left) by removing the time stamps and by taking into account only the temporal
relations between the event intervals

Definition 3 (Arrangement) An arrangement A = {E,R} of length n consists
of a sequence of event labels E , with |E | = n, and a set of relations R =
{R(E1, E2), R(E1, E3), . . . , R(En−1, En)}, where each R(Ei , E j ) ∈ I denotes the
temporal relation between Ei and E j , for i = 1, . . . , n − 1 and j = i + 1, . . . , n.

Intuitively, an arrangement can be seen as a summary of an e-sequence with respect
to the event labels and pair-wise event relations that are present in the e-sequence. An
arrangement can be generated from an e-sequence by maintaining the interval relation
structure and disregarding the exact values of the start and end points. Finally, the
length of an arrangementA is defined as the number of its event intervals (denoted as
|A|), while its size is the number of temporal relations in A.

An example of an arrangement is given in Fig. 6, where on the left hand side we can
see the original e-sequence and on the right hand side the corresponding arrangement
representation. Observe that the time stamps are dropped and only the relation types
are maintained. The length of this arrangement is 3 (three event labels: A, B, and C),
while its size is also 3 (three temporal relations: A overlaps with B, A before C , and
B before C).

For the remainder of this paper we essentially focus on the “arrangement” repre-
sentation of e-sequences since we are not particularly interested in absolute values of
event durations but only on the relations between the events; for reasons argued in the
Introduction.

4 Longest common sub-pattern

In this section we formulate and study the problem of finding the LCSP between a
pair of arrangements of temporal intervals. We formally define LCSP and prove that
finding it is N P-complete. We also describe a framework for finding the approxi-
mate LCSP of two arrangements; a relaxation of LCSP where a certain threshold
of relations disagreement is allowed. Furthermore, we present an exact algorithm to
retrieve the LCSP of pairs of arrangements, which is based on dynamic programming
(DP).

Definition 4 (Longest common sub-pattern) Given two arrangements,A and B, their
LCSP is the maximum sequence of intervals

SLCSP = {SLCSP1, SLCSP 2, . . . , SLCSPk},
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Fig. 7 The LCSP of the two arrangements is the sub-arrangement formed by the intervals with labels A,
C and D

such that there exist two sets of event-intervals

{Sa1, Sa2, . . . , Sak} in A, and {Sb1, Sb2, . . . , Sbk} in B

and ∀i, j s.t. 1 ≤ i ≤ j ≤ k the following two equations hold:

ESLCSP i = ESai = ESbi . (1)

R(ESLCSP i , ESLCSP j ) = R(ESai , ESa j ) = R(ESbi , ESb j ). (2)

In other words, given a pair of arrangements A and B, the LCSP of that pair is an
arrangement whose event intervals are a subset of those present in both A and B. For
any pair of event intervals in the LCSP, the corresponding pairs of event intervals inA
and in B have the same type of relation. For example, in Fig. 7, the LCSP of the two
arrangements (on the left and in the middle) is the pattern formed by event intervals
A,C, D (on the right). Interval B cannot be in a common sub-pattern together with
interval A or D, since their relation is different in the two arrangements.

4.1 Complexity of LCSP

We prove that the LCSP problem is NP-complete by demonstrating its relation to the
Clique problem. In the decision version of Clique, given as input a graph G and an
integer k the goal is to determine whether G contains a k-clique. In the optimization
version of Clique, Max Clique, the goal is to find the maximum clique in the input
graphG. Similarly, the decision version of LCSP, namely CSP, is to determinewhether
there exists a sub-pattern of size k in both of the input arrangements. In this section, we
show a reduction from Clique to CSP. It is a well known fact that given an algorithm
for the decision version of a problem, the result of the optimization version can be
retrieved using a logarithmic number of look-ups.

Lemma 1 Any undirected graph G = (VG , EG) can be encoded as an arrangement
of temporal intervals.

Proof In the transformation of graphs into arrangements, each vertex ui ∈ VG cor-
responds to a time point ti ; the correspondence between vertices and time points
is not important as long as it is consistent throughout the procedure. For every edge
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1 2 3 4

A

A
A

Fig. 8 An example of how a graph can be represented by an e-sequence. The list of edges is:
{(1,4),(2,4),(2,3)} while the e-sequence is encoded as: {(A,1,4),(A,2,4),(A,2,3)}

Fig. 9 An example of how to convert a 4-clique to an arrangement. All nodes are given the same label,
and each edge corresponds to an event-interval

e = (ui , u j ) ∈ EG we create interval S = (‘a’, ti , t j ) (if ti < t j , else S = (‘a’, t j , ti )).
There is no reason to specifically select ‘a’ as a label, but it is important that all labels
are the same. Unconnected vertices correspond to time points in which no intervals
start or end. Edges of the form (ui , ui ) ∈ EG can be conserved by creating instanta-
neous events of the form (‘a’, ti , ti ). ��

An example of how a graph can be encoded as a e-sequence is shown in Fig. 8.
Note that the reverse procedure, from e-sequences to graphs (with time points still
corresponding to vertices), would create multigraphs with labeled edges.

Theorem 1 Clique can be reduced to CSP.

Proof The graph G is transformed into an arrangementAG as described above. Given
parameter k, we create a second arrangement Ak that corresponds to a clique of size
k. An example of a 4-clique converted to an arrangement is depicted in Fig. 9. This is
easily achieved by creating all possible k(k−1)/2 intervals of the form S = (a, ti , t j ),
with 1 ≤ i ≤ k−1, i < j ≤ k. The result of CSP determines the result for Clique. The
whole arrangementAk is found inAG , or equivalently there exists a CSP betweenAG

andAk of size equal to k(k − 1)/2, if and only if the graph contains a clique of size k.
Proving the last statement:

– (⇐) If graphG has a clique of size k, then there is a CSP of size k(k−1)/2: If graph
G has a clique of size k, then there exist k vertices that are fully connected. Suppose
the vertices of the clique are Vclique = {uc1, . . . uck}. The reduction would create
AG containing, among others, all k(k − 1)/2 intervals of the form (a, tuc i , tuc j ),
with 1 ≤ i ≤ k−1, i < j ≤ k. The reductionwould also createAk , which contains
exactly k(k − 1)/2 intervals in a pattern identical to that formed by the intervals
corresponding to the clique. Thus, there would be a CPS of size k(k − 1)/2.
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Fig. 10 An example of the
Cartesian graph for the two
arrangements given in Fig. 7.
Observe that their LCSP is a
3-clique. Note that in both
e-sequences the indices of
interval labels A, B, C, D are 1,
2, 3, 4, respectively

– (⇒) If there exists a CSP of size k(k − 1)/2, then the graph G has a clique of size
k: If there exists a CSP of size k(k − 1)/2 then there exists a set of intervals inAG

which create a pattern identical to that of Ak . That means there exist k(k − 1)/2
intervals inAG of the form S = (a, ti , t j ) for all 1 ≤ i ≤ k − 1, i < j ≤ k. Thus,
k vertices exist in G connected by edges (ui , u j ) for all 1 ≤ i ≤ k−1, i < j ≤ k.
Equivalently, k nodes in G are fully connected. ��

Theorem 2 LCSP reduces to Max Clique.

Proof This is done by transforming an LCSP instance of two e-sequences A, B into
a Max Clique instance of a single graph GAB of order |VGAB | = nm, where n = |A|,
m = |B|. Given two e-sequences A, B, for each pair of intervals i ∈ A, j ∈ B, we
create a node with label (i, j). In other words, the set of vertex labels of GAB is the
Cartesian product of the sets of interval indices of the two e-sequences. We add edges
between the nodes with labels (i, j) and (k, l) only if EAi = EBj , EAk = EBl and
R(EAi , EAk ) = R(EBj , EBl ). Vertices in GAB that correspond to pairs intervals with
different labels would be disconnected. We call this graph the Cartesian graph of
two e-sequences. An example of this graph and how to map two e-sequences to their
Cartesian graph and detect their LCSP is given in Fig. 10.

It follows naturally from the definition of LCSP, that finding the LCSP of two
e-sequences A, B is equivalent to finding the maximum clique in GAB . Similarly,
findingmaximal cliques inGAB corresponds to findingmaximal common sub-patterns
between A and B. ��

From the above reductions, it may appear as if LCSP is identical to finding the
MCS of two graphs. However this is not the case. We may transform e-sequences
into graphs in two ways. First, as described in Lemma 1, time-points correspond to
vertices, and the intervals would correspond to edges. The issue in this case would
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be that any two intervals, each one corresponding to an edge, may have a different
interval relation (“meets”, etc). Hence, any two edges in a graph do not necessarily
correspond to (for example) overlapping intervals. In other words, there exists crucial
temporal information in e-sequences that should be preserved when representing them
by some other structure. Furthermore, they would be multigraphs with labeled edges.
The second transformationwould consider each interval represented by a unique vertex
and the relations would be denoted by the edge labels. In this case and based on the
definition of LCSP, the problem would reduce to finding the Maximum Common
Complete Subgraph. In other words, the common subgraph should be a clique.

4.2 LCSP with errors

Suppose we can relax the strict definition of the problem and allow a certain number
of interval relations to not be identical. In other words, we are interested in finding
a largest common sub-pattern where a certain threshold of error is allowed. This
corresponds to finding sets of vertices in the Cartesian graph (see proof of Theorem 2
for definition) that would form a dense subgraph that is a few edges far from being a
clique. More formally, the problem translates to finding quasi-cliques in the Cartesian
graph; a quasi-clique is an induced sub-graph of k vertices with α

(k
2

)
edges, α ∈ (0, 1],

k ≤ |VG |. The value of α denotes the density of the quasi-clique. In the LCSP context,
1 − α would denote the allowed error rate.

In this work, we do not study any further the problem of explicitly extracting an
LCSP with errors, since the problem of extracting quasi-cliques was studied recently
by (Tsourakakis et al. 2013; Jiang and Pei 2009; Liu and Wong 2008).

4.3 An exact algorithm for LCSP

We present an exact algorithm, based on DP, to retrieve the LCSP between pairs of
arrangements. The algorithm constructs arrangements using pairs of intervals such
that each interval in a pair corresponds to one interval from each sequence. Those
constructed arrangements are a subset of all the maximal sub-arrangements. The final
goal is to find the maximal sub-arrangement that has the largest size.

4.3.1 Computing LCSP

The main steps of the exact DP algorithm are depicted in Algorithm 1. The final state
of the DP array for the two arrangements in Fig. 7 is depicted in Table 1.

The input of the algorithm comprises of two arrangementsA = {SA1,. . .,SAm} and
B = {SB1,. . .,SBn}. We denote by LCS(i, j), 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|, the set
of maximal CSPs between {SA1,. . .,SAi } and {SB1,. . .,SB j }, where each CSP must
include an interval corresponding to SAi and SB j ; in other words Ai is matched to
Bj . If ES Ai 	= ESB j then LCS(i, j) = {∅}, otherwise we identify the maximal
sub-arrangement that spans the prefixes of the two arrangements and matches Ai is
matched to Bj . The key intuition here is that we can infer LCS(i, j) if we know all
previous LCS(p, q), with 1 ≤ p < i and 1 ≤ q < j .
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Table 1 Final view of the DP array of the exact LCSP algorithm on the instance of Fig. 7

A B C D

D ∅ ∅ ∅ [(1, 1), (3, 3), (4, 4)]
C ∅ ∅ [(1, 1), (3, 3)], [(2, 2)(3, 3)] ∅
B ∅ [(2, 2)] ∅ ∅
A [(1, 1)] ∅ ∅ ∅

Unlike the case of the LCS for strings, in arrangements it is not sufficient to know
only LCS(i − 1, j − 1), LCS(i − 1, j) and LCS(i, j − 1). Furthermore, given
any element from LCS(p, q), it is not sufficient to simply append the new interval.
Actually, it is not even correct. The reason is that all other previous intervals may have
different relations with SAi and SB j and not necessarily a before relation. For example,
in Fig. 7 the interval labeled as “D” has a different relation with the interval labeled as
“B” in the two arrangements respectively, although “C” is the previous of “D”. Thus,
it is not sufficient to check just the relation with the last interval. Instead, SAi and
SB j must be checked against all intervals of the sub-solution and keep only those that
have the same relation (thus, it is possible to have |LCS(p, q)| ≥ |LCS(i, j)|); this
is performed using the ⊗ operation that we explain below. We will abuse the notation
LCS(i, j) to denote alternately both any or all of the maximal sub-arrangements
produced at point (i, j).

Critical to our algorithm is the ⊗ operation that is applied between a sub-
arrangement and a pair of intervals. In particular, LCS(p, q) ⊗ (i, j) denotes the
arrangement that occurs from the interval corresponding to SAi and SB j , and the event-
intervals in LCS(p, q) whose correspondents have the same relations with intervals
SAi and SB j in A and B respectively. For example, in Fig. 7, suppose that {B,C}
has been discovered as a common sub-arrangement and the algorithm is now exam-
ining the pair of intervals with label “D”, then by applying the ⊗ operation on those
two parts, the resulting common pattern would be {C, D}, because intervals labeled
“B” and “D” do not share the same relation in the two e-sequences. So, in our nota-
tion this translates to: {(2, 2), (3, 3)} ⊗ (4, 4) = {(3, 3), (4, 4)}. This latter solution
would not be stored in the DP array since it is contained within the maximal solution
{(1, 1), (3, 3), (4, 4)}.

4.3.2 Properties of LCSP

Below we provide several key observations, insights and properties (their proofs are
provided in Appendix) to demonstrate the correctness of Algorithm 1.

Clearly, solving the LCSP implies finding the CSP of maximum size. Furthermore,
since LCSP is N P-complete, so unless P = N P , we should expect some part of the
exact algorithm to perform exhaustive search. As explained above, for each LCS(i, j)
all LCS(p, q) must be examined to discover the one that yields the actual longest
common sub-pattern. In addition, for a single LCS(i, j), multiple solutions may exist,
e.g. for LCS(3, 3), in the instance of Fig. 7, the two solutions are {A,C} and {B,C}.
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Algorithm 1 LCSP of Arrangements
Input: ArrangementsA,B
Output: LCSP(A,B)
for i = 1 to |A| do
for j = 1 to |B| do
if label(SAi ) 	= label(SB j ) then

LCS(i, j) = {∅}
else
subarrangements = ∅
for all sub-problems (p, q) of (i, j) do
for all solutions Sk (p, q) of LCS(p, q) do
subarrangements = subarrangements

⋃
( Sk (p, q) ⊗ (i, j))

end for
end for
M = keepMaximal(subarrangemets)
LCS(i, j) = M

end if
end for

end for
return arg max

i, j
LCS

None of the solutions can be discarded since it is not clear which one would be the
appropriate choice for the next sub-problems. Trying to match intervals with different
labels does not result to valid solutions (for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, if ES Ai 	=
ESB j then LCS(i, j) = ∅.), so we examine in detail the opposite case.

If ES Ai = ESB j , we prove the correctness of the procedure based on the following
properties.

Property 1 If all previous sub-problems LCS(p, q) yield ∅ as their solution, then
LCS(i, j) is composed only of one interval, that corresponds to SAi and SB j .

Property 2 The LCS(p, q) ⊗ (i, j) operation yields a common sub-pattern of
{ES A1, . . . , ES Ai } and {ESB1, . . . , ESB j }.
Property 3 The LCS(p, q) ⊗ (i, j) operation yields a maximal CSP, that matches
Ai to Bj , with the involved intervals up to that point.

The above properties guarantee that at a given step, maximal common sub-patterns
are retrieved. However, we need to prove that the best solution is also retrieved.

Property 4 Given the set Mi−1, j−1 of all maximal CSPs among {SA1, . . ., SAi−1}
and {SB1,. . .,SB j−1}, we can construct the set of maximal CSPs among {SA1, . . ., SAi }
and {SB1, . . ., SB j } that match SAi to SB j , by keeping from each μ ∈ Mi−1, j−1 only
the intervals whose corresponding intervals inA,B share the same relations with SAi
and SB j respectively.

Conversely, in order to acquire LCS(i, j), in the worst-case one needs to examine
all previous maximal CSPs. However, if intervals SAi and SB j have a ‘follow’ relation
with all previous intervals, then for LCS(i, j), one only needs to consider themaximal
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CSPs of maximum size over all pairs of sub-arrangements and append to them the new
corresponding interval. So,we identify that the need to search exhaustively is restricted
to the subproblems corresponding to pairs of intervals that have some overlap with SAi
and SB j . Finally, since the method at point (i, j) returns the maximal CSP(s) whose
last interval corresponds to SAi and SB j , the LCSP of the two whole arrangements is
found by selecting the cell (i, j) which contains the largest sub-arrangement.

4.3.3 Extensions of Algorithm 1

We must note several key extensions of Algorithm 1. First, the algorithm can support
constraints so that the retrieved LCSP does not pair together specific pairs of intervals.
For example, while our problem formulation considers only relations among intervals,
certain pairs of intervals may perhaps differ significantly in duration so that the user
would not want to allow the algorithm to match them. This is achieved simply by
extending accordingly the if-condition of Algorithm 1, and hence marking in the DP
array the cells corresponding to the disallowed pairs with an empty set, as if the labels
were different. For any disallowed pair, this will result in not producing any CSP that
implies that they are matching counterparts.

The second extension is similar to the first but with the opposite intention. By
replacing the function in the if-condition, that checks label equality, with a differ-
ent function, we may allow common sub-arrangements assuming equivalence among
intervals with different labels. This is more general than simply mapping them to new
distinct labels.

The third extension applies to the score returned by the algorithm. Since our DP
algorithm computesmanymaximal common sub-patterns, andmost importantlymain-
tains the actual pairings, one may apply a custom cost or utility function on each found
pattern and return the optimal under that function. For example, the cost function
might be related to the difference in time duration of the paired intervals. This is a
post-computation filtering step and for each DP array cell the algorithm will still com-
pute maximal CSPs based on the interval relations. Hence, there are no guarantees that
the retrieved LCSP is the optimal under all possible cost functions, nor do we study
this particular problem any further in this work.

4.3.4 Complexity of Algorithm 1

For the DP algorithm, LCS(i, j)must be computed for all possible pairs of i and j . To
compute each LCS(i, j), it is necessary to check all the solutions of all O(|A| · |B|)
sub-problems; checking a solution requires linear time with respect to the size of the
LCS, which is at most min{|A|, |B|}. Hence, the total complexity of the algorithm
is O(n3 · m2 · s), if n ≤ m, where s is the maximum number of solutions over all
LCS(i, j). This does not prove that we have found a polynomial time algorithm for
N P-complete problems, since s, the number of solutions, can be exponential in the
size of the input.

Computationally hard instances of Clique reduce to hard instances of LCSP. In
such cases, the exact algorithm has to search among a number of solutions which is
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Fig. 11 A category of
arrangement pairs where any
event-interval label appears
exactly once, yet the number of
candidate solutions stored at
each point of the DP algorithm
is exponential in the size of the
arrangements
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exponential in the size of the arrangements. Despite that, this is not a characteristic
only of arrangements containing intervals which all have the same label.

In Fig. 11 we display a category of instances where any event-interval label appears
exactly once, yet the number of candidate solutions stored at each point of the dynamic
programming algorithm is exponential in the size of the arrangements. In particular,
the number of partial solutions is O(2

n
2 ). There exist multiple LCSPs with size equal

to half the size of the original arrangements. They contain only one event-interval for
every pair of overlapping event-intervals in the first arrangement.

If one of the two arrangements, in an instance ofLCSP, is a proper subset of the other,
then using our exact algorithm one could extract all the appearances of the smaller
arrangement in the larger. From an alternative scope, this implies that the performance
of our exact algorithm can be improved by implementing run-time optimizations such
as breaking once the smaller arrangement is found in the larger.

5 Polynomial time and space approximations

In Sect. 4.1 we proved that the LCSP problem belongs to the class of NP-hard prob-
lems. This makes the use of any exact algorithm impractical for handling all problem
instances. Furthermore, we demonstrated that Clique is as hard as the decision ver-
sion of LCSP.While it still remains open whether inapproximability results for Clique
(Håstad 1996; Feige et al. 1991) are carried over to LCSP, the above reduction provides
strong reasons to believe that they do. So, in our efforts to devise usable techniques that
would yield approximate solutions, instead of focusing on designing fully polynomial-
time approximation schemes (FPTAS), we restrict our aforementioned exact algorithm
so that it terminates in polynomial time.

We transform the exact algorithm into a greedy algorithm. For each cell of the DP
array, the algorithmmaintains only the solutions ofmaximum size. For example, while
computing LCS(i, j), assume that the algorithm had discovered several solutions of
size 4, and then discovers one of size 5. The latter is retained and all the other are
purged. Similarly, while computing the values for the same cell, if a larger solution
is found, those of size 5 are discarded. This prevents the algorithm from performing
exhaustive search. However, Fig. 11 depicts an instance for which even this greedy
approach will produce an exponential number of solutions w.r.t. the size of the input.
Hence, we further force the algorithm to restrict the number of solutions it maintains
at each cell of the DP array. In other words, we establish that the time complexity

123



Finding the longest common sub-pattern in sequences 1195

O(m2 ·n3 · s) remains polynomial by ensuring that the value of s remains polynomial.
At any step (i, j) of the algorithm, it is impossible to know in advance which solutions
are the ones that would allow the greedy algorithm to reach the optimal solution.

We experiment with three natural strategies for limiting the number of solutions,
namely First_seen, Last_seen, and Random. This restriction can be seen as having a
buffer of limited size that is responsible for maintain the solutions.

More precisely, we have:

– First_seen At each step LCS(i, j) and for a buffer of size b, the first b solutions
of (only) maximum size are retained while the rest are ignored.

– Last_seen At each step LCS(i, j) only the last b solutions of maximum size are
retained.

– Random We randomly retain b solutions of maximum size. We achieve that by
applying Reservoir sampling (Vitter 1985).

6 Upper bounds

Regardless of the efficiency of the approximations strategies presented earlier, their
Ω(m2 · n2) complexity is prohibitive for brute-force 1-NN searches in large-scale
systems. In order to inexpensively prune many of the required comparisons, one of
the common practices is to use upper-bounds (or lower-bounds for distance functions)
(Vlachos et al. 2006); another common practice is of course indexing. In this section
we define two upper bounds for LCSP.

The first upper bound requires linear time and relies on the count of common
interval labels. Given an arrangement A over the label alphabet Σ , we construct uA,
a |Σ |−dimensional vector that stores for each event label in Σ the count of event-
intervals in A that share that label.

Definition 5 (Upper boundUBCI ) Given arrangementsA,B, the upper boundUBCI

is defined as

UBCI (A,B) =
|Σ |∑

i=1

min{uAi , uBi }

Proof Since the LCSP of A,B can be only a subset of the common intervals, the
following holds:

UBCI (A,B) ≥ LCSP(A,B),∀A,B.

��
UBCI ’s linear time complexity is the lowest possible. However, it focuses only on

the labels and ignores any temporal order information. We can expectUBCI to fail in
cases where the dataset’s arrangements contain a fixed or similar amount of intervals
of every label. If a higher complexity is allowed, one can take advantage of the order of
the intervals in each arrangement. This can be achieved by applying the LCS algorithm
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for symbolic sequences. In this case each symbols would be the label of an intervals.
However, for O(nm) time complexity, a slightly tighter bound can be achieved, again
using LCS but this time using the starting and ending point of the intervals instead of
their labels. This approach imposes a constant factor of 4 to the complexity, since the
symbols are twice as many as the intervals.

Given an e-sequence or arrangementA, we can map it to its semi-interval sequence
representationCA (Mörchen andFradkin 2010) (a semi-interval is a tuple (E, t), where
E is the label interval and t is a time point). Every interval is replaced by two symbols
corresponding to its start and end point. Such symbols can be the interval label followed
by distinctive letters, for example ‘_s’ and ‘_e’, to distinguish between the start and end
points. In our case, the order of the symbols is the order in which they happen. In case
of concurrency, the symbols follow the partial order of the corresponding intervals.
The absolute time values are discarded. An example of the semi-interval sequence is
depicted in Fig. 4. We need to point out that this upper bound, namely UBCPS , is
equivalent to applying LCSS to our problem.

We formally define UBCPS and prove that it is an actual upper bound by first
proving the following lemma.

Lemma 2 The semi-interval sequence representation of the LCSP of two arrange-
ments A,B is a subsequence of the semi-interval sequences of both arrangements.

Proof The intervals that belong to the LCSP appear in the same order in A,B, and
as a result so do their start and end points. Consequently, the start- and end-symbols
appear in the same order in the semi-interval sequence and they form a subsequence
of length 2 ∗ |LCSP(A,B)|. ��
Definition 6 (Upper bound UBCPS) Given arrangements A,B, the upper bound
UBCPS of LCSP is defined as

UBCPS(A,B) = LCS(CA, CB)

2
.

Proof Suppose that UBLCSP is not an upper bound to LCSP . Then the following
does not hold:

UBCPS(A,B) ≥ LCSP(A,B),∀A,B.

Then, there would exist a pair of arrangements such that the LCS of their semi-interval
sequences is less or equal to twice the size of their LCSP. In such case, and by using
Lemma 2, the semi-interval sequence corresponding to LCSP would be greater or
equal to the LCS of the semi-interval sequences. This cannot hold. Hence, UBCPS is
a valid upper bound to LCSP. The above requires that concurrent semi-intervals are
sorted in a consistent manner. ��

7 Experiments

We explored the effectiveness of the proposed polynomial approximation techniques,
and demonstrated the efficiency of the proposed bounds by studying their pruning
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Table 2 Statistical details of the used datasets

Dataset No. of
e-seq.

e-sequence size No. of
labels

No. of
classes

Max e-seq.
length

Interval size

Min. Max. Average Mean STD Min Max

ASL-BU 873 3 40 17 216 9 5901 594 590 3 4468

Auslan2 200 9 20 12 12 10 30 20 12 1 30

Blocks 210 3 12 6 8 8 123 17 12 1 57

Context 240 47 149 81 54 5 284 69 81 1 284

Hepatitis 498 15 592 108 63 2 7555 634 1093 1 7555

Pioneer 160 36 89 56 92 3 80 36 21 1 80

Skating 530 27 143 44 41 6 6829 576 672 1 6829

BigSynth 5000 20 20 20 5 0 149 6 6 1 44

Cliques 13 3 105 43 1 0 14 4 3 1 14

power and tightness. In addition, we conducted experiments to evaluate the perfor-
mance of LCSP in terms of 1-NN and 3-NN classification and clustering against the
standard state-of-the-art LCSS technique.

The datasets and source code used in our experiments are available online.1

7.1 Experimental setup

For our experiments we used real and synthetic datasets.

7.1.1 Real datasets

For our experiments we used seven real datasets. A summary of the statistical details
for each dataset is shown in Table 2. Below, we describe each dataset in more detail:

– ASL-BU (Papapetrou et al. 2009). Event labels correspond to grammatical or
syntactic forms (e.g., wh-word, wh- question, verb, noun, etc.) as well as facial or
gestural expressions (e.g., head tilt right, rapid head shake, eyebrow raise, etc.).
An e-sequence is an expression of a sentence using sign language.

– Auslan2 (Mörchen and Fradkin 2010). The e-sequences were derived from the
Australian Sign Language dataset available in the UCI repository.2 Each event
interval represents a word like girl or right.

– Blocks (Mörchen and Fradkin 2010). Event labels correspond to visual primitives
obtained from videos of a human hand stacking colored blocks and describe which
blocks are touched as well as the actions of the hand (e.g., contacts blue or red,
attached hand red, etc.). Each e-sequence represents one of eight different scenarios
including atomic actions, such as pickup, or complete scenarios, such as assemble.

1 http://users.ics.aalto.fi/kostakis/software/lcsp/.
2 http://www.ics.uci.edu/mlearn/MLRepository.html.
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– Context (Mörchen and Fradkin 2010). Event labels were derived from categoric
and numeric data describing the context of a mobile device carried by humans
in different situations. Each e-sequence represents one of five different scenarios
such as street or meeting.

– Hepatitis (Patel et al. 2008). The dataset contains information about patients who
have either Hepatitis B or Hepatitis C. The event intervals represent the results of
63 regular tests. Each e-sequence describes a series of tests taken by a patient.

– Pioneer (Mörchen and Fradkin 2010). This dataset was constructed from the
Pioneer-1 dataset available in the UCI repository. Event intervals correspond to
the input provided by the robot sensors. Each e-sequence in the dataset describes
one of three scenarios: gripping, move, turn.

– Skating (Mörchen and Fradkin 2010). Event intervals describe muscle activity and
leg position of 6 professional In-Line Speed Skaters during controlled tests at 7
different speeds on a treadmill. Each e-sequence represents a complete movement
cycle.

7.1.2 Synthetic datasets

We implemented a random e-sequence generator that takes as input certain parameters
and produces a synthetic dataset of event-interval sequences. The generator, that takes
as input several parameters, works as follows: an initial interval is produced. For each
additional interval, one of the 7 relations is chosen uniformly and that is enforced
between the new and the last interval. If the chosen relation does not completely
define the boundaries of the interval (e.g. it is not a matches relation) then one or both
are chosen randomly based on the input parameters. This allows to create cases of
overlapping starting and endpoints and at the same time enables to define the expected
lengths of the intervals. The label of each interval is also chosen uniformly from the
given set. The source code is publicly available.3 By using our generator, we create a
big synthetic dataset (BigSynth) intended mostly for scalability experiments.

We also manually create a smaller dataset, ‘Cliques’, and as the name suggests it
corresponds to the e-sequence representation of cliques. In particular it contains all
cliques of size 3 to 15. This is intended to test the tightness of our approximation
algorithms. The statistics of both datasets are depicted in Table 2.

7.1.3 Evaluation metrics

We benchmark the three approximation policies for three different buffer sizes in
terms of approximation tightness. We define approximation tightness as the value of
the following ratio:

Tapprox = ApproxLCSP (A,B)

LCSP(A,B)
. (3)

3 http://users.ics.aalto.fi/kostakis/software/intgen_lcsp.zip.
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Table 3 Running time of exact
LCSP algorithm

∗ The datasets that contain hard
instances and the values
correspond to the Random
approximation policy with n/2
buffer size

Dataset Time

Asl 14′′
Auslan2 1.5′′
Blocks <1′′
Pioneer 15′′
Context* −(5h 42′)
Hepatitis* −(8h 25′)
Skating* −(15′)
BigSynth 140h

Cliques 4h 58′

Since these policies are under-approximating LCSP, T ∈ [0, 1]. Clearly, we desire
values closer to 1. To avoid favoring instances of smaller arrangements by having
fixed sized limit on stored solutions, for each instance the buffer size was set to be
equal to a fraction of the size of the shortest arrangement. The values we selected were
n/2, n/5 and n/10.

We benchmark the two upper bounds in terms of tightness and pruning power
under 1-NN search. The pruning power is the ratio of pruned comparisons under the
LCSP algorithm for linear-scan 1-NN searches, when we first use the upper bound.
Similarly to before, we define the tightness of an upper bound as the average value of
the following fraction:

TUB = UB(A,B)

LCSP(A,B)
, (4)

over all pairs of arrangements in the dataset. For the upper bounds, the tightness value’s
codomain is [1,∞). To distinguish among the two tightness values, if it is not clear
from the context, we will refer to the first as approximation tightness.

7.2 Experimental results

When computing the similaritymatrices of all datasets using theLCSPexact algorithm,
we were able to complete the process for only 4 out of 7 datasets: Auslan2, Blocks,
Pioneer and ASL. The rest of the datasets (Hepatitis, Context and Skating) contain
“very hard instances”. With very hard instances we refer to those instances for which
the algorithm requires more than 8GB of main memory (Java implementation). So,
in our experiments we use those values given by the most expensive variations of all
three polynomial approximation policies; when the number of stored solutions at each
step are n/2.

The time required to compute the LCSP of all N 2 pairs of e-sequences, for each
dataset, is depicted in Table 3. For the case of the datasets containing hard instances,
the values in brackets denote the run-time of the Random approximation policy with
n/2 buffer size.
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Table 4 For each of the seven datasets we show the average approximation tightness for each of the three
approximations

Dataset First seen Last seen Random

n/2 n/5 n/10 n/2 n/5 n/10 n/2 n/5 n/10

ASL-BU 0.9999 0.9996 0.9967 0.9997 0.9994 0.9957 0.9999 0.9996 0.9967

Auslan2 1 0.9999 0.9997 1 0.9998 0.9997 1 0.9999 0.9997

Blocks 1 0.9995 0.9995 0.9999 0.9992 0.992 1 0.9995 0.9994

Context∗ – 0.9997 0.9992 – 0.9996 0.9989 – 0.9998 0.9993

Hepatitis∗ – 0.9985 0.9961 – 0.9979 0.9947 – 0.9991 0.9966

Pioneer 1 0.9999 0.9999 0.9999 0.9999 0.9998 1 1 0.9999

Skating∗ – 0.9991 0.9963 – 0.9983 0.9926 – 0.9993 0.9961

∗ The datasets that contain hard instances and the values correspond to the Random approximation policy
with n/2 buffer size

Table 5 For each of the seven datasets we show the minimum approximation tightness for each of the
three approximations

Dataset First seen Last seen Random

n/2 n/5 n/10 n/2 n/5 n/10 n/2 n/5 n/10

ASL-BU 0.75 0.667 0.5 0.75 0.667 0.5 0.75 0.667 0.5

Auslan2 1 0.91 0.8889 1 0.91 0.875 1 0.91 0.8889

Blocks 1 0.667 0.667 0.8 0.667 0.667 1 0.667 0.667

Context∗ – 0.9063 0.9032 – 0.9117 0.909 – 0.9393 0.903

Hepatitis∗ – 0.6667 0.6667 – 0.6667 0.6 – 0.6667 0.6667

Pioneer 1 0.9523 0.9167 0.9583 0.9166 0.9167 1 1 0.9167

Skating∗ – 0.7272 0.6667 – 0.75 0.6 – 0.7777 0.69

∗ The datasets that contain hard instances and the values correspond to the Random approximation policy
with n/2 buffer size

7.2.1 Polynomial approximation policies

The average approximation tightness for all datasets and all policies was between
99 and 100%. In Tables 4 and 5 we show the average and minimum approximation
tightness, respectively, for each of the seven datasets and three strategies studied in
this paper.

As expected, a smaller buffer size resulted to worse values on average. For the
harder instances we noticed that the Random policy provided slightly better results
than First_seen and Last_seen. A reason for that is that the latter policies can be seen as
hill-climbing heuristics that always make the same choice at every step of the solution
space traversal. As a result, they restrict themselves to a specific region of the whole
solution space and are bound to be trapped in local maxima. On the other hand, the
Random policy does not restrict itself to a specific region of the solution space since
it randomly selects solutions if needed. However, it faces the hazard of missing the
global maximum if it randomly discards all the paths leading to it.
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Table 6 Tightness and pruning
power for UBCPS

∗ The datasets that contain hard
instances and the values
correspond to the Random
approximation policy with n/2
buffer size

Dataset 1-NN pruning power Tightness

ASL 99.2 1.26

Auslan2 89.8 1.15

Blocks 94.3 1.25

Pioneer 59.5 1.52

Context* 40.4 1.40

Hepatitis* 30.1 2.59

Skating* 55 1.64

BigSynth 52.4 1.54

Cliques 46.7 1.00

Surprisingly, we also notice that in the datasets with very hard instances, there are
few instances where a smaller buffer provided a better solution even for First_seen
and Last_seen; for Random this is something to be expected due to the randomness
in selecting solutions from the sub-problems. This is counter-intuitive but can be
explained. By allowing more solutions to be stored at each (i, j)th step of the dynamic
program, we allow those solutions to be the reason more solutions are created in
succeeding steps. However, the latter solutions do not necessarily lead to the optimal
solution. Instead, they act as noise and they compete for the buffer with those solutions
that would allow to achieve the global optimum.

In terms of execution time, the speedup provided by the approximation policies
for computing the distance matrix of the big synthetic dataset was 35.35, 50.35 and
67.3 times for buffers of size n/2, n/5 and n/10 respectively; First_seen was slightly
faster than Last_seen and Random. Still, since our approximation algorithms require
polynomial time and the exact algorithm is exponential in the worst case, as the size of
the instances increases, the possible difference in running time is in the general case
unbounded.

From the Cliques dataset, we witness that the approximation algorithms are able to
achieve an accuracy of 100%, for arrangements corresponding to cliques of up to size
15. However, when attempting to investigate their performance on larger cliques, we
notice a computational blow up for cliques of size around 18. This is due to the fact
that for such hard instances, the O(n6) complexity becomes a significant drawback.

7.2.2 Upper bounds

The results of the tightness and pruning power experiments can be seen in Tables 6
and 7, as well as in Fig. 12. As mentioned previously, we were not able to compute
the similarity matrices for the three datasets marked with an asterisk, so for those the
values correspond to those obtained by the approximation policies. For UBCPS we
witnessed average tightness values between 1.15 and 2.59, while the average pruning
power was from 30.1 to 99.2%. ForUBCI , the values were worse, as expected. For the
tightness, the average values observed were between 1.19 and 5.03. For the 3 datasets
that we do not have the exact scores, the values might be much higher than the ground

123



1202 O. Kostakis, P. Papapetrou

Table 7 Tightness and pruning
power for UBCI

∗ The datasets that contain hard
instances and the values
correspond to the Random
approximation policy with n/2
buffer size

Dataset 1-NN pruning power Tightness

Asl 73.2 1.98

Auslan2 86.0 1.19

Blocks 87.5 1.75

Pioneer 20.2 1.96

Context* 20.21 1.6

Hepatitis* 4.7 5.03

Skating* 10.9 2.25

BigSynth 1.9 2.54

Cliques 46.7 1.00
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Fig. 12 Tightness (left) and pruning power (right) of the two upper bounds on all datasets

truth, since it is not clear by how much the policies are under-approximating LCSP.
The average pruning power observed was between 1.9 and 87.5%.

7.2.3 Scalability

We investigate the scalability of our methods on the big synthetic dataset. We monitor
the time required for 1-NN queries, when using linear (brute-force) scan and the exact
algorithm for LCSP, and we compare that to a linear scan with the use of UBCPS

for pruning. We don’t consider theUBCI since its pruning power is insignificant (see
Table 7). The dataset does not contain any instances that our method cannot compute,
so we do not employ any of the approximation strategies.

We witness that the time needed for computing each instance of UBCPS is con-
stant, given that all e-sequences contain the same number of intervals and as a result
the same number of symbols when mapped to strings. On the other hand, there is a
variable number of sub-solutions that need to be investigated when computing the
LCSP instances.

The total time required to perform all 1-NN queries for the synthetic dataset via a
linear scan requires 95.5% more time than if UBCPS is used first.
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Table 8 Classification accuracy of LCSS and LCSP under 1-NN and 3-NN classification schemes

LCSS 1NN (%) LCSP 1NN (%) LCSS 3NN (%) LCSP 3NN (%)

ASL 73.23 63.57 68.5 58.17

Auslan2 26 27 24 29.0

Blocks 81.9 80.95 91.42 87.61

Context* 77.91 86.6–87.08 73.75 85.83–86.25

Hepatitis* 66.26 66.66–68.07 68.47 70.88–71.28

Pioneer 95 97.5 93.75 96.25

Skating* 76.22 93.02 71.69 92.08–93.02

Bold values indicate the best performance for each experiment
∗ The datasets that contain hard instances and the values correspond to the Random approximation policy
with n/2 buffer size

7.3 Comparison to LCSS: k-NN classification and clustering

LCSS solves a problem similar to LCSP, that is easier to compute. Hence, we need
to justify the need for LCSP. The fundamental difference between the two techniques
is that they are defined for different types of sequences, and hence different types of
longest common subpatterns. For the case of LCSP the subpattern is an arrangement,
while for LCSS the subpattern is a symbolic sequence. In the previous sections we
examined the performance of LCSS (which is equivalent to UBCPS , as pointed out
in Sect. 6), and showed that it can be used as a pruning technique for computing the
correct LCSP. Hence it becomes apparent that LCSS does not and cannot compute
LCSP.

For providing a more extensive comparison between LCSS and LCSP, we further
proceed to benchmark the two techniques for the tasks of k-NN classification and
clustering. The results clearly demonstrate that for most cases LCSS is inferior to
LCSP, and hence LCSP should be preferred.

First, LCSS was used for 1-NN and 3-NN classification. For each dataset, we
consider each e-sequence as a query and the remaining e-sequences as the database.
The class of query is assigned to be the class of its nearest neighbor, i.e., the database
e-sequence with the highest similarity score. Hence, the classification accuracy is
then the fraction of e-sequences in the dataset that are correctly classified using the
remaining ones. The results are depicted in Table 8. We see that LCSS outperforms
LCSP only for the cases of “ASL” and “Blocks” dataset and this happens for both 1-
NN and 3-NN. For all remaining cases, LCSP provides better classification accuracy
for both 1-NN and 3-NN respectively.

Next, we evaluated the performance of LCSS and LCSP for the task of clustering.
Since we do not have a feature space, we employed k-medoids. The number of clusters
(the value of k) was set equal to the predefined number of classes for each dataset (see
Table 2). For eachdataset,weperformed10clustering sessions, and for each session the
basic algorithm was executed 1000 times, while the best solution was retained. Since
both LCSP and LCSS provide similarity scores, those were transformed to distances
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Table 9 Average clustering purity of LCSS and LCSP under k-medoids

LCSS LCSP

Auslan2 0.17 0.25

Blocks 0.61 0.61

Context* 0.46 0.54

Hepatitis* 0.61 0.59

Pioneer 0.64 0.73

Skating* 0.58 0.69

Bold values indicate the best performance for each experiment
∗ The datasets that contain hard instances and the values correspond to the Random approximation policy
with n/2 buffer size

by computing 1 − s(S1, S2)

min(|S1|, |S2|) , where s(S1, S2) is the value of LCSS or LCSS

between sequences S1 and S2. For the clustering evaluation metric, we compute the
clustering purity. The average clustering purity for each dataset over the 10 sessions
is depicted in Table 9; for ASL we omit the results since each sample may belong
to multiple classes. We observe that LCSS yields better values only for the Hepatitis
dataset, while for the Blocks dataset the values are similar. For the rest of the datasets,
LCSP clearly outperforms LCSS.

8 Use-cases of LCSP

In this section we describe several use-cases to demonstrate the need and suitability of
LCSP. Furthermore,wedemonstrate howLCSP is amore appropriate distancemeasure
than full-sequence matching. We perform some pilot studies related to classification
via profiling, system verification and anomaly detection for the fields of sign language
(ASL) and sensor data (Pioneer robot).

8.1 Sign language profile-based classification

Wedemonstrate the suitability and applicability ofLCSP for performingprofile search-
ing and classification in the sign language domain based on given sign language pro-
files.

In a sign language setting the objective is to classify a set of unknown e-sequences
based on the existence of a “profile” arrangement that determines the class label of
each e-sequence. Examples of profile arrangements are given in Fig. 13, left part,
where the profiles are characteristic arrangements that describe American Sign Lan-
guage e-sequences of the class “Wh-question” (Papapetrou et al. 2009). Note that
such profiles are, in general, expected to be much shorter than the target unclassified
e-sequences. For example, in our ASL dataset, the average e-sequence size is 17 while
the maximum is 40, whereas the size of a typical ASL profile is usually not longer
than 4 (Papapetrou et al. 2009). Given a set of profiles, for each e-sequence in the
dataset we examine whether it contains one or more of these profiles. If so, then the
e-sequence is assigned with the corresponding class(es). Determining the existence of
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Wh-question

Wh-question
Lowered eye-brows

Wh-word Head pos:
forward

Wh-word Wh-question
Lowered eye-brows

Head pos:
forward

Wh-word

Wh-question Combined

Fig. 13 Example of two profile arrangements for a “Wh-Question” (left) in American Sign Language, and
their combination

a profile in an e-sequence is accomplished by LCSP; simply by checking if their LCSP
is as long as the profile. Clearly, this check is impossible to perform via full-sequence
matching algorithms, such as Artemis (Kostakis et al. 2011), since their objective is
orthogonal to that of LCSP. Furthermore, wewitnessed in all cases that, underArtemis,
the NN ranks of the profiles are arbitrary, since all points in the query are “forced” to
match a database counterpart, while differences in size between query and database
sequences also highly distort the matching. An additional advantage of using LCSP
for this task is that several profiles can be combined into a single profile, and then a
threshold check is sufficient. For example, the profiles in Fig. 13 can be combined into
one, making it sufficient to check whether the LCSP of the combined profile and an
unknown e-sequence contains 3 or more intervals. LSCP achieved 100% precision,
which was expected. The reason for that is simply that if the profile arrangements
exist in a classified arrangement, then LCSP is able to fully detect them and make
the correct assignment(s). By adding more profile arrangements to cover all cases, the
recall of the classification increases and all the relevant e-sequences may be retrieved.

This methodology may be applied to a wide range of applications by selecting the
appropriate profile sequences.

8.2 System verification

Next, we demonstrate the applicability of LCSP for system verification. Run-time
system verification can be seen as a special case of classification. E-sequences would
denote observed telemetry or executions of a system or program. In the task of system
verification, each observed e-sequence would fall into either the category of “accept-
able” or “unacceptable” executions. Supposewe have defined a set of “undesired prop-
erties” in the form of arrangements. We need to determine whether they are present in
the e-sequence that is being examined. If one or more such properties are contained
in whole, or above certain threshold, then the e-sequence is regarded as a violating
execution and the system does not comply to the required specifications. Examples of
such applications include robot sensors, and sensor networks in general, as well as the
execution of computer programs.

For the case of the Pioneer dataset, suppose that an undesirable property is that the
robot’s gripping mechanism moves upwards. The naive approach to detect this would

123



1206 O. Kostakis, P. Papapetrou

Gripper very low
Gripper low

Gripper high
Gripper very high

Fig. 14 Arrangement correpsonding to the “undesired property” of the Pioneer’s gripping mechanism
moving upwards. Each interval corresponds to a different state of the gripper

be to create a list of ‘if’ clauses for all
(k
2

)
possible pairs of states and then to check the

values of all
(t
2

)
possible pairs of time points (k is the number of different states, t the

duration of the e-sequence in time units). Instead, we can use LCSP and the property
arrangement of the gripping mechanism moving upwards, as depicted in Fig. 14. Sim-
ply, if the LCSP between the robot’s executionmonitoring e-sequence and the property
has length greater than 1, regardless of the specific intervals, then one can be sure that
the mechanism has moved upwards. Consequently, the execution should be classified
as non-conforming to the requirements. In the Pioneer dataset, we are able to retrieve
6 e-sequences that contain an upward movement. We can apply the same approach for
the gripper’s downward movement. This yields 10 e-sequences in which the gripper
moves downwards. The two retrieved sets of e-sequences, that happen to be disjoint,
constitute the whole set of e-sequences that belong to the ‘gripper’ class of the dataset.
This approach would not have been possible when using full-sequence matching.

Similarly, if we were to verify the correctness of a controlled execution environ-
ment (sandbox) for computer programs, where intervals correspond to the time that
a particular function is active (in the stack frame), the Fig. 4b would correspond to
an undesirable property. This is due to the fact that a called function cannot return
before the return of any function that has been called from within itself. Hence, if the
LCSP of the execution e-sequence with that property has length greater or equal to 2,
it would prove that our system malfunctions.

8.3 Anomaly detection

LCSP can also be applied for the purpose of anomaly detection. Suppose that we
have a set of “necessary behaviours” in the form of arrangements. Using LCSP, we
are able to potentially detect the absence, in whole or fraction, of a series of such
arrangements. In the case of robot sensor data (Pioneer dataset), we could use these
predefined arrangements to detect anomalies in robot movement data that correspond
to, e.g., the robot moving straight and not turning. A requirement for the robot to
move straight is having both its wheels rotate with the same velocity simultaneously.
Hence, in such dataset an event label would represent both the wheel location and its
velocity range, e.g., RW-Vel-low would correspond to the Right Wheel moving with
low velocity, while LW-Vel-high would correspond to the Left Wheel moving with
high velocity. It also becomes apparent that these events will have a time duration and
hence each wheel velocity will correspond to an event interval, e.g., the left wheel is
moving with low velocity for 10 seconds. Based on the above, our requirement that the
robot is moving straight is fulfilled when the event intervals corresponding to different
wheel velocities “match”.
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RW-Vel-low

LW-Vel-low

RW-Vel-medium

LW-Vel-medium

RW-Vel-high

LW-Vel-high

Fig. 15 Behaviour arrangement for confirming that the Pioneer robot moves straight. Each interval of the
top row “matches” its counterpart in the bottom row. The intervals denote the angular velocity of the right
and left wheels

Modal Verb Verb Modal Verb

Fig. 16 Combined behaviour arrangement for confirming that modal verbs are used correctly in ASL

Using the “necessary behaviour” depicted in Fig. 15 as an arrangement of six
events, we expect that the LCSP of this behaviour arrangement, call it Q, and any e-
sequence S corresponding to moving straight should have an even amount of intervals
(|LCSP(S,Q)| = 2k, k ∈ Z

+); one or more pairs of intervals and for each pair, each
interval corresponding to one of the wheels. From our Pioneer dataset, we discover 14
out of 102 e-sequences of the specific class are being detected as anomalous. Manual
verification of the result revealed that the intervals in question exhibited an ‘overlap’
relation instead of ‘match’, offset by a few time points (this is possibly due to noise in
the recording phase, or when transforming the original data to e-sequences). Clearly,
such approach cannot be applied when using a full-sequence matching algorithm.

Similarly, we can implement an ASL “grammar checker”. By maintaining a list
of grammatical rules in the form of arrangements, we then use LCSP to determine
the conformance of the user input to those rules. Suppose we would like to verify the
grammar rule for modal verbs. In ASL grammar, modal verbs come before or after the
main verb of the clause. To verify the correctness of the signed utterance, we can create
two rules, one for each case. Then by using LCSP we should verify that either one
appears as whole in the utterance, otherwise the grammar is incorrect. Alternatively,
we can combine the two cases into a single rule, as depicted in Fig. 16. In this case,
the check must be that the size of the LCSP between the rule and the signed utterance
must be of size at least 2. Applying the described approach on our ASL dataset, we
discovered two utterances did not follow this rule; it happens that in both of these
cases the word “rain” is denoted as a noun instead of a verb.

9 Conclusions

We formally defined the problem of finding the LCSP problem for sequences of event-
intervals. In addition, we proved that the LCSP problem belongs to the complexity
class of N P-hard problems by showing that Clique can be reduced to it under a log-
space reduction. This was achieved by establishing that arrangements of temporal
intervals can be used to encode graphs. We also proved that LCSP∈ N P by proving
that it reduces to Max Clique. Moreover, we introduced an exact algorithm for solving
the LCSP problem. Furthermore, we proposed three policies for under-approximating
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hard instances of LCSP and constructed the two upper-bounds for speeding up 1-NN
searches under LCSP. Finally, we experimented on seven real datasets taken from vari-
ous domains, including sign language, medicine, humanmotion, and sensor networks,
and two synthetic datasets.

There are several directions for future work. On the practical side, we would be
interested in experimenting with the use of LCSP in more real-world applications
and examine the benefits it provides in comparison to the use of symbolic sequences
or time-series. On the theoretical part, we demonstrated that Clique reduces to the
decision version of LCSP. So, for the near future we plan to examine whether the
inapproximability results demonstrated in the past for Clique hold for LCSP, too.
However, a stronger result that we demonstrated is the fact that arrangements of tem-
poral intervals can in certain cases be viewed as a generalization of graphs. Given the
strong interest recently in graph mining and event-interval sequence mining, the most
significant question that arises is how many of the ideas, algorithms and theoretical
results can be exchanged between those two fields.

Finally, modifying the problem we just studied, we would be interested in devising
fast algorithms for exact sub-sequence matching. We are curious whether we will
discover the same complexity bounds as the MCS problem.

Appendix: Proof of the properties described in Sect. 4.3.2

1. Supposing that LCS(i, j) was composed of more than one interval, then there
must exist a pair of intervals with the same label in {SA1, . . . , SAi−1} and
{SB1, . . . , SBi−1}. That is a contradiction since it would imply that not all previous
sub-problems yield ∅ as their solution.

2. By applying the operation LCS(p, q) ⊗ (i, j) or, equivalently selecting from
LCS(p, q) only the intervals that induce similar relations to the corresponding
interval of i and j , we make sure that the interval corresponding to i and j has the
same relations to the previous intervals in the produced arrangement. Conversely,
the existing intervals have the same relations to the correspondent of i and j .
Additionally, pairs of existing intervals of LCS(p, q) have identical relations with
their correspondents inA and B; this was examined when each interval was added
to the solution of the previous sub-problems.

3. In other words, the ⊗ operator does not discard extra intervals. Suppose that the
maximal CSPs are correctly retrieved for all previous sub-problems LCS(p, q),
but not for LCS(i, j). This would imply that an interval belonging to a maxi-
mal CSP of {ES A1, . . . , ES Ai } and {ESB1, . . . , ESB j } (where Ai is matched to
Bj ) exists but was not selected for LCS(i, j). But since the not-selected interval
belongs to a maximal CSP then it has the same relation to SAi and SB j . So, since
the relations are the same, the interval would have been selected for LCS(i, j),
which contradicts to the previous. Thus, the algorithm at point (i, j) returns max-
imal CSPs of {ES A1, . . . , ES Ai } and {ESB1, . . . , ESB j } that matches ES Ai to
ESB j .

4. Suppose there exists a maximal CSP that matches Ai to Bj but was not discovered.
This would imply that by removing the interval corresponding to Ai and Bj , one is
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left with common a sub-pattern s. Then, either s ⊆ r, r ∈ Mi−1, j−1 or not. In the
first case, s must have been retrieved when performing r ⊗ (i, j), so this cannot
be. So, it can only be that s is maximal but then it must hold that s ∈ Mi−1, j−1.
Contradiction.

An alternative approach is that in the Cartesian graph GAB (see proof of Theorem 2
for exact definition), this corresponds to finding all maximal cliques containing the
vertex u labeled (i, j) by checking all previously found maximal cliques and for each
one returning its intersection with the neighbors of u.
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