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Abstract Huge volumes of biomedical text data discussing about different biomedical
entities are being generated every day. Hidden in those unstructured data are the strong
relevance relationships between those entities, which are critical for many interest-
ing applications including building knowledge bases for the biomedical domain and
semantic search among biomedical entities. In this paper, we study the problem of
discovering strong relevance between heterogeneous typed biomedical entities from
massive biomedical text data. We first build an entity correlation graph from data, in
which the collection of paths linking two heterogeneous entities offer rich semantic
contexts for their relationships, especially those paths following the patterns of top-
k selected meta paths inferred from data. Guided by such meta paths, we design a
novel relevance measure to compute the strong relevance between two heterogeneous
entities, named EntityRel. Our intuition is, two entities of heterogeneous types are
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strongly relevant if they have strong direct links or they are linked closely to other
strongly relevant heterogeneous entities along paths following the selected patterns.
We provide experimental results on mining strong relevance between drugs and dis-
eases. More than 20 millions of MEDLINE abstracts and 5 types of biological entities
(Drug, Disease, Compound, Target, MeSH) are used to construct the entity correla-
tion graph. A prototype of drug search engine for disease queries is implemented.
Extensive comparisons are made against multiple state-of-the-arts in the examples of
Drug–Disease relevance discovery.

Keywords Biomedical text data · Heterogeneous · Meta path · Relevance ·
Context-aware

1 Introduction

Recently, data sets containing heterogeneous entities interacting with each other have
been found to be increasingly prevalent in real life applications. Examples include
drugs, diseases, compounds, targets and so on in the biomedical area, users, items
and tags in recommendation systems, authors, papers, venues and keywords in the
bibliographic data, etc. Two entities are called heterogeneous typed entities if they are
of different types (e.g., drug and disease, user and tag), and therefore have different
semanticmeanings and properties.Discovering strong relevance relationships between
heterogeneous typed entities is a fundamental problem. By strong relevance we mean
the relevance supported by rich relevance contexts in the data. Given an entity (e.g., a
disease) as a query, a usermay be interested in browsing other entities of heterogeneous
types (e.g., drugs) that have strong relevance relationships with the queried entity.
Similarly, in an online recommendation system, given an item (e.g., a document), it
will be very helpful if we can find a set of tags that are strongly relevant to the item and
present them to the user. With the discovery of strong semantic relationships between
entities, huge knowledge networks can be built, and the user can navigate from one
entity to other related entities and quickly find the information he/she is searching for.

Data may come from many different sources. In this paper we focus on unstruc-
tured biomedical data for a couple of reasons: (1) For structured data, it may not be
so challenging because basic relationships, such as customers “purchase” items, are
explicit already, which could be used to derive strong relevance (Jeh andWidom 2002,
2003; Sun et al. 2011; Shi et al. 2012; Lao and Cohen 2010). (2) It is much more chal-
lenging to find such relationships in text data, which is unstructured, noisy, and entity
relationships are deeply hidden. Moreover, text data are ubiquitous, in huge amount,
and being updated constantly. Mining entity relationships from text data is thus imper-
ative. (3) The rich biomedical domain knowledge offers the feasibility of extracting
entities from unstructured biomedical data. However, entity recognition from many
other domains is still an open problem. (4) Structured data in the biomedical domain
is not as widely available as other areas such as social networks, recommendation
systems and so on. Instead, research papers, patents and news articles in the form of
unstructured text data are more prevalent in the biomedical area. And those unstruc-
tured text data are easily accessible. Therefore, mining unstructured data is a critical
problem in biomedical knowledge discovery.
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In the biomedical domain, drug discovery studies (Searls 2005; Gunther et al. 2003;
Coulet et al. 2011; Ramakrishnan et al. 2008) can only detect drugs that are known to
treat certain diseases, and cannot discover strong relevance between drugs and diseases
that are not explicitly written in the text. In this paper, we try to infer the relevance
relationships between biomedical entities based on the semantic information encoded
in the text. For example, drug “tretinoin” and disease “acne” are strongly relevant
since tretinoin can be used to treat acne, and this strong relevance can potentially
be discovered from an unstructured text data corpus in which none of the articles
explicitly says that tretinoin treats acne. Recommendation systems suggest the items
that the users are likely to be interested in Sen et al. (2009), Yin et al. (2010), Guan
et al. (2010). However, the data there are usually structured and the systems require the
availability of training data (e.g., some users are interested in certain items). Recent
studies on similarity search in heterogeneous graphs, such as PathSimSun et al. (2011),
explore a meta path based similarity measure. Nevertheless, their similarity measure
is defined for comparing nodes of the same types (e.g., similarity between authors
in a bibliographic network). In other words, (Sun et al. 2011) cannot be applied to
discovering relevance between different types of entities unless we ignore all the type
information and treat different types of entities as the same type, which, however,
violates the philosophy of Sun et al. (2011) which emphasizes the type information
on the nodes in heterogeneous graphs. Shi et al. (2012) first proposed to study the
relevance between heterogeneous entities. However, their similarity measure is based
on pairwise random walk which may not be able to capture the subtlety of the path-
constrained strong relevance relationships as indicated in our experiments.

Based on these considerations, we propose our approach, which contributes to the
state-of-the-art in the following aspects: (1) the method constructs a biomedical entity
correlation graph from unstructured data, extending the scope of the study to unstruc-
tured text data; (2) the method extends the meta path based relationship analysis (Sun
et al. 2011)from mining relevance between homogeneous typed entities to hetero-
geneous typed ones and infers top-k most effective meta paths from data; (3) our
new approach, EntityRel, proposes a new measure for computing the context-aware
relevance between two heterogeneous entities; and (4) our experiments and perfor-
mance comparison with several existing methods demonstrate the effectiveness of our
method, with interesting results in the biomedical domain for the strong relevance
discovery between drugs and diseases.

The biomedical entity correlation graph maintains basic entity relationships that
can be straightforwardly found in unstructured text data, i.e., weighted co-occurrence.
Based on it, the collection of paths linking two heterogeneous entities ei and e j offer
rich semantic contexts for their relationships. However, not all paths carry the same
semantics. For example, “tretinoin–skin–acne” indicates a therapeutic relationship
between drug “tretinoin” and disease “acne”, while “vitamin A–toxicity–acne” indi-
cates a side-effect relationship. Therefore, the relevance type depends on the contexts
in paths. Our proposed approach, EntityRel, is such a context-aware relevance mea-
sure. Without loss of generality, we predefine 5 types of biological entities for con-
structing the entity correlation graph, which are: Drug, Compound, Disease, Target
and MeSH. Based on them, we can define path types like “Drug–Target–Disease” or
“Drug–MeSH–Disease”, named as meta paths in the paper. For example, “tretinoin–
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skin–acne” is one path instance ofmeta path “Drug–Target–Disease”. In our approach,
EntityRel, we assume that the relevance is only meaningful under path contexts con-
strained by certain meta path. For example, if we use all paths following the pattern
“Drug–Target–Disease” as contexts, the discovered relationships between drugs and
diseases are very likely therapeutic relationships. More specifically, we name the set
of entities (excluding ei and e j ) in these paths as “reasoning entities”, which are used
to reason the discovered relevance relationships.

Consequently, one natural question is: what kinds of paths should we use formining
the strong relevance between heterogeneous entities? The definition of “strong” rele-
vance is a data dependent concept: some types of relevance might be strong and some
types might be weak, depending on how rich the corresponding relevance contexts
provided by the data can be. In this paper, given two types of entities, we automati-
cally pick up top-k meta paths from the data, such that the relevance contexts defined
by these meta paths in data are relatively richer than other types of contexts. Based on
these rich contexts, we are supposed to discover so-called “strong” relevance between
the given two types of entities.

The remaining of the paper is organized as follows. Section 2 summarizes the related
work. We formally define the problem and propose the framework of our solution
in Sect. 3. As the first step, in Sect. 4, we build the biomedical entity correlation
graph from unstructured data, upon which representative meta paths are generated in
Sect. 5. The new measure, EntityRel, is developed upon the entity correlation graph
and selected meta paths for the final goal in Sect. 6. Section 7 reports our experimental
results and a prototype drug search engine built based on the proposed framework.
Finally, Sect. 8 concludes the paper.

2 Related work

As pointed out in Sheth et al. (2005), Anyanwu et al. (2005), the relationships between
entities are the heart of the Semantic Web. Substantial efforts are made to develop
techniques for searching complex relationships between entities (Anyanwu et al. 2005;
Aleman-Meza et al. 2003; Anyanwu and Sheth 2003). The relationships are often
referred to as SemanticAssociations.However, those SemanticAssociations studied in
Semantic Web are mainly based on the RDF model, therefore are restricted to simple,
existing relationships, such as the “purchase” relationship between customers and
items, and the “work for” relationship between professors and universities. Different
from such existing work, we focus on discovering meaningful relationships that do
not exist in any structured data, but could be inferred from the massive text data.

In the biomedical domain, it is recognized that the text data describing different
types of biological entities could be employed to facilitate drug discovery (Searls
2005). Gunther et al. (2003) performs classification over the drug-induced genomic
expression profiles to predict the clinical drug efficacy. Different from them, we hope
to discover strong relevance in an unsupervised way using the general text corpus.
Natural language processing techniques have also been adopted to mine relationships
between biological entities from the text data (Coulet et al. 2011; Ramakrishnan et al.
2008). However, similar to the Semantic Web technologies, the approaches based on

123



980 M. Ji et al.

natural language processing can only detect relationships that are already expressed
by words or phrases in text. On the contrary, we focus on discovering strong relevance
between drugs and diseases that may not necessarily have been written in the text,
which is much more useful for new drug discovery.

Another family of related work is the recommendation systems, which suggest the
items that users are likely to be interested in Sen et al. (2009), Yin et al. (2010), Guan
et al. (2010). Although recommendation also discovers unknown relationships, our
problem is fundamentally different from the classical recommendation problem. First,
we aim to develop a fully automatic approach that does not use any label information,
while recommendation systems usually know some users are interested in certain
items. Second, the data source we hope to discover strong relevance from is the text
corpus, without the attributes and profiles of the entities, or some basic relationships
(such as user-tag and item-tag) among entities in typical recommendation scenarios.

Given a graph, many methods have been developed for estimating relevance
between two nodes. Personalized PageRank (Jeh and Widom 2003) and SimRank
(Jeh and Widom 2002) are two representatives for computing the similarity between
two nodes of the same type in a homogeneous graph. However, in our problem, dif-
ferent types of nodes carry different semantic meanings and should not be mixed (Sun
et al. 2011). For heterogeneous graphs, PathSim (Sun et al. 2011) gives an interesting
meta path based similarity measure between two nodes of the same type. HeteSim
(Shi et al. 2012) and Path Constrained RandomWalk (Lao and Cohen 2010) estimate
the relevance between different types of nodes following the randomwalk framework.
However, the original HeteSim algorithm only uses the binary graph, ignoring the
weight on the edges, which is shown to be critically important in our experiments.
Path Constrained RandomWalk incorrectly favors the popular entities and ignores the
differences of various contexts inherited from various meta paths. More discussion
about these methods can be found in Sect. 6.1.

3 Problem and framework

Given an unstructured biomedical text data corpusD and K types of predefined biolog-
ical entities E1, . . . , EK , our problem is to automatically discover the strong relevance
relationships between any pair of entities ei and e j strongly supported byD, where ei
and e j can belong to either the same entity type or different entity types. As a more
general case, in this paper we focus on the relevance relationships across heteroge-
neous entity types. We annotate E(ei ) as the entity type name of ei and |E(ei )| as the
number of entities of type E(ei ).

Formally, we quantify the relevance relationship between two heterogeneous enti-
ties ei and e j as a relevance score R(ei , e j ).

The computation of R(ei , e j ) depends on the observed correlations of ei and e j
in data D. Possibly the simplest correlation between ei and e j is the number of co-
occurrence inD. However, the simple co-occurrencemodel can not effectively capture
the correlation contexts of ei and e j . For example, given a frequent sentence “Which
one is able to treat acne, doxycycline or tetracycline?” in MEDLINE, it is hard to tell
the drug entity “tetracycline” is relevant to the disease entity “acne” or not.
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Fig. 1 System framework of EntityRel

We observe that, the correlation contexts between two entities can be manifested
by other entities that frequently co-occur with both. For example, given the frequent
sentence “Acne is a disease that affects the skin’s oil glands.” in MEDLINE, we know
that to treat the disease “acne”, the organism entity “skin” is one kind of targets. Then,
given another frequent sentence “Tetracyclines are oral antibiotics often used to treat
skin diseases.” in MEDLINE, we know that the function scope of drug “tetracycline”
covers the target entity “skin”. Thus, the target entity “skin” effectively links the
drug entity “tetracycline” and the disease entity “acne” together and implies their
relevance.

The rich context information in unstructured data corpus D can be represented
by an undirected Entity Correlation Graph G. In graph G, the nodes are heteroge-
neous entities and the edge between two entity nodes represents the fact that these
two entities once co-occur in data D. Given one node ei , its neighborhood set N (ei )
includes all other entities that co-occur with it in data. Given two example entities
“tetracycline” and “acne”, we can extract a number of paths linking them, e.g.,
“tetracycline–skin–acne” and, “tetracycline—protein synthesis inhibitor—bacterial
infection—acne”, from graph G. All these paths collectively serve as the correlation
contexts for “tetracycline” and “acne”.

Compared to the unstructured data corpus D, the Entity Correlation Graph G is
structured and easy to analyze and store. Representing the unstructured text as such a
graph enables the task of entity relationship discovery to be formulated as searching
relevant heterogeneous entities by traveling the graph. For example, for discovering the
relationships between drugs and diseases, the user inputs a disease entity “acne” and
then searches all drug entities reachable in the graph. Without the loss of generality,
we formulate R(ei , e j ) as a search problem: computing R(eq , e) by treating eq = ei
as the query entity, e = e j as the searching target entity, and E(e) = E(e j ) which is
the target entity type. The whole framework is given by Fig. 1.

4 Construction of correlation graph

Many existing work in graph-based entity search assume the existence of the entity
graph (Jeh and Widom 2002, 2003; Sun et al. 2011; Shi et al. 2012; Lao and Cohen
2010). However, in this paper, how to automatically generate an Entity Correlation
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Graph G from the unstructured data corpusD remains challenging, which is discussed
in this section.

4.1 The unstructured data corpus D

WeuseMEDLINE,1 a bibliographic database of life sciences and biomedical informa-
tion, as the knowledge base to discover entity relationships in the paper. The abstracts
of all 20,642,063 biomedical documents to date consist of the unstructured data corpus
D.

We select 5 representative types of biological entities, Drug, Disease, Compounds,
Target and MeSH terms, to study in the paper. In total, we predefined 5,867 FDA-
approved drugs;2 a dictionary of 4,244 diseases extracted from human disease ontol-
ogy;3 a set of 2,254 small-molecule chemical compoundswith explicit drug indications
from the Chemical Entities of Biological Interest (ChEBI) database;4 a dictionary of
11,280 targets made up of 4 sub types: tissue, cell-line, protein, and organism; and a
set of all 17,347 leaf MeSH terms in the MeSH tree,5 which are used as the meta-data
to index medical articles in MEDLINE by NIH. All the above entities consist of the
node set in the Entity Correlation Graph G.

4.2 Entity annotation in text

Given the MEDLINE corpus and 5 types of biological entities, the first step is to
annotate those entities in the MEDLINE articles.

For Disease and Target annotators, we adopt a dictionary-based method to look up
entities in the text based on the exact string match.

For Drug annotator, considering a drug usually contains a number of synonyms like
brand name etc., our method is dictionary-based and enhanced by synonyms extracted
from CHEMBL.6

For Compound annotator, we designed a context-aware Conditional Random Field
model (Yan et al. 2011), where both compound structural features and text content
features are used to infer the labeling of text. To reduce the ambiguity of compound
names, we convert all compound substances to their International Chemical textual
identifiers (InChI) first, and then used InChIKey, a fixed length (25 character) con-
densed digital representation of InChI, to represent each compound.

For MeSH annotator, as all articles in MEDLINE already have 10–15 MeSH terms
labeled by human, we simply used these labeledMeSH terms as the annotation results.

1 http://www.nlm.nih.gov/bsd/pmresources.html.
2 http://www.accessdata.fda.gov/scripts/cder/drugsatfda/.
3 http://www.obofoundry.org/cgi-bin/detail.cgi?id=disease_ontology.
4 http://www.ebi.ac.uk/chebi/. Note that drugs belong to compounds. In this paper, we treat themdifferently
as they originate from different sources orthogonally.
5 http://www.nlm.nih.gov/mesh/.
6 https://www.ebi.ac.uk/chembl/.
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4.3 Correlation weight in correlation graph

After entities are annotated in text, we can easily add an edge between two entities
ei and e j in the Entity Correlation Graph if they are annotated in the same set of
articles. The remaining question is to find a reasonable weighting function wi j for
the edge. Straightforwardly, we can simply use the raw number of co-occurrence to
weigh the edge wi j = co(ei , e j ), where co(ei , e j ) is the number of articles where
both ei and e j are annotated in the text. However, this simple method largely favors
those popular entities appearing in many articles. Instead, we propose to compute wi j

with full consideration of both the relevant frequency that two entities co-occur and
the popularity of each entity. Following the classical TF-IDF model in information
retrieval, we assume a large wi j implies:

(1) ei and e j co-occur frequently;
(2) ei (or e j ) occurs rarely with other entities of the type E(e j ) (or E(ei )).

To satisfy the first condition, we design a normalized symmetric frequency function
as

f req(ei , e j ) = co(ei , e j )(∑
ey∈E(e j ) co(ei , ey) + ∑

ex∈E(ei ) co(ex , e j )
)

/2
.

To satisfy the second condition, we define ie f (ei , e j )which represents the “inverse
entity frequency” to measure whether entities ei and e j are common or rare within all
the co-occurrence between entities of types E(ei ) and E(e j ):

ie f (ei , e j ) = log
(|E(ei )| + |E(e j )|)/2

1 + (|N (ei ) ∧ E(e j )| + |N (e j ) ∧ E(ei )|
)
/2

, (1)

where N (ei ) ∧ E(e j ) represents the joint set of entities who are neighborhoods of ei
and have the same entity type as e j .

Finally, we have the symmetric correlation weighting function

wi j = f req(ei , e j ) × ie f (ei , e j ). (2)

Note that this correlation weighting function is different from this paper’s target func-
tion R(ei , e j ). The former is designed to weigh the correlation between two entities
without considering the global correlation graph structure and other type of entities. It
can be treated as one kind of local affinity measure between two entities. This function
can be used as one naive solution of R(ei , e j ). But, this naive solution undoubtedly has
many limitations. First, the correlation contexts which have been previously shown
to be effective in linking entities are lost. Second, it cannot find those entities which
never directly co-occur with the query entity.

In this paper, we use wi j as the elementary edge weighting function for the Entity
Correlation Graph G; and then explore other more sophisticated graph travel methods
for the entity relationship discovery based on the graph.
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Fig. 2 Entity correlation graph G. Each edge represents 1,000 links in data, where the intensity of the color
represents the weights of the links. The size of each circle is proportional to the number of entities of each
type
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Fig. 3 Degree distribution of the nodes in G

4.4 Properties of entity correlation graph

The constructed Entity Correlation Graph visualized by Fig. 2 has many interesting
properties. It tells some meta paths (e.g. Drug–Compound) are much denser than
others (e.g. MeSH–Disease). To uncover strong relevance from the data, we may only
focus on those dense meta paths which are strongly supported by data.

The degree distributions of G of individual entity types are depicted in Fig. 3. One
interesting finding is: various entity types have various degree distributions, resulting
in various graph structures. For example, both Disease and Compound have very flat
power law slope, indicating that their node degrees are more uniformly distributed.
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Relatively, the other entity types contain fewer highly connected nodes. This finding
discloses that, if we treat the entire graph as a homogeneous graphwithout differentiat-
ing entity types and then randomly surf in graph, some entity types will be favored and
some entity types are not reachable. Therefore, traditional methods to compute entity
relevance in a homogeneous graph like SimRank (Jeh and Widom 2002) and PathSim
(Sun et al. 2011) are not suitable for relevance between heterogeneous entities.

Graph G is a typical “small world”. 91.75% of its nodes belong to a giant connected
component. The average distance between twonodes in this giant component is 2.0663,
indicating that starting from one node, we can quickly arrive at other nodes. The “small
world” phenomenon in G offers rich contexts (numerous different paths) between two
nodes.

5 Meta path for correlation contexts

With entity correlation graph, the next step is to learn strong correlation contexts from
it for discovering strong entity relevance relationships in this section.

5.1 Strong meta paths as contexts

As we mention before, given the correlation graph G, we can formulate the task of
entity relevance relationship discovery as searching relevant heterogeneous entities in
the graph. For example, given the disease “acne”, what are the similar drugs in the
graph? The objective of the problem is to infer the relevance score R(eq , e), given the
query entity eq and one entity e of the target entity type.

In Sect. 4.4, graphG has been shown to be extremely complicated and overwhelmed
across different entity types. Given two heterogeneous entities eq and e, there exist
numerous paths linking them if we do not constrain the length of path and types of
entities in the path. More specifically, due to the “small world phenomena” in G, most
pairs of entities can be linked together within 2 steps. Apparently, we do not want to
recommend all entities to the query. From the complex graph G, we observe that,
(1) If a path is too long, it may cause concept drift and link two irrelevant entities

together. For example, a path “acne (Disease)–skin (Target)–muscle (Target)–
Ryanodine Receptor Calcium Release Channel (MeSH)–rycals (Drug)” links the
drug “rycals” that treats skeletal muscle to an irrelevant disease “acne”.

(2) To study the strong relevance relationships between two types of entities, some
types of paths are preferred to others for a given data. For example, in Fig. 2, the
meta path “Drug–Compound–Disease” has many more path instances than the
meta path “Drug–MeSH–Disease”. The former thus implies stronger relevance
than the latter in data. Or, the relevance implied by the latter is less confident, due
to the sparsity of the data.

Our observations indicate that, to compute R(eq , e), a subset of relatively short
paths between eq and e should be extracted from the graph G to serve as the correlation
contexts. Finding a maximum induced connected subgraph (all paths are connected to
eq and e) with certain property (i.e., following the above two observations) from G is
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a classic NP-complete problem. For that reason, we design an approximate solution
for context selection follows.

We first convert the context selection problem into a meta path selection problem.
As long as a meta path is selected, all its path instances will be selected as contexts.
The meta path is formally defined as follows.

Definition 1 Meta Path. A meta path M of length l is a sequence of nodes in the

form of Ex1

Ax1,x2−→ Ex2

Ax2,x3−→ · · · Axl ,xl+1−→ Exl+1 where xy ∈ [1, K ], y ∈ [1, l]. Axy ,xy+1

defines a composite correlation weight between two entity types Exy and Exy+1 ; and
Ax1,x2 · · · Axl ,xl+1 defines a composite correlation weight WM for the path M :

WM = Ax1,x2 · · · Axl ,xl+1 =
l∏

y=1

Axy ,xy+1

=
l∏

y=1

∑
ei∈Exy ,e j∈Exy+1

wi j

|Exy | × |Exy+1 |
, (3)

where wi j denotes the correlation for regular paths (rf. Eq. 2).

Meta path defines the sequence pattern of regular paths. A meta path with large
path weight implies that the regular path instances following its pattern have a large
correlation weight on average. Our meta path weight definition favors the short paths.
To compute R(eq , e) by ranking all meta paths starting from E(eq) and ending at
E(e) w.r.t their weights, if we only choose top-k meta paths, the discovered relevance
relationships are relatively strong in data.

One may wonder that why our context selection strategy is at the meta path level,
not at the path instance level. We have two reasons. First, context selection at the path
instance level has to be computed on-line for each query. Due to the large size of entity
correlation graph, it is thus not efficient to deploy in the real time. Instead, context
selection at the meta path level can be computed off-line. Second, no single data can
cover all possible entity relationships in the real world. Thus, the path instance level
context selection may overfit the data. Alternatively, context selection at the meta path
level strikes a good balance between data sparsity and the average performance.

5.2 Meta graph for meta path selection

Given K types of entities, there are K (K − 1)/2 different pairs of types. For each
pair, we need pre-compute all possible meta paths and rank them w.r.t. their weights.
One simple yet efficient way to enumerate the meta paths is to maintain a meta graph
in memory, which is defined as follows.

Definition 2 MetaGraph.Given the entity correlation graphG and K types of entities
E1, . . . , EK , a graph Gm is called a meta graph over G when its nodes are one of K
entity types and the weight between two entity types Ei and E j is defined as Ai, j that
follows the composite correlation weight definition in Eq. 3.

123



Mining strong relevance 987

ALGORITHM 1: Top-k meta paths selection

Input: Meta graph Gm and two question entity types Ei and E j for entity relationship discovery; k
Output: Top-k meta paths in terms of path weights.
Initialize two empty sets A andO;
repeat

Find the meta path M not in O with the highest path weight from Gm . Path M must have the

form of Ei
Ai,x2−→ Ex2

Ax2,x3−→ · · ·
Axl , j−→ E j ;

Insert all pairs of composite correlations Axy ,xy+1 in path M into the set A;
if |A| increases then

Insert path M intoO;
end

until |O| = k;
return O

The meta graph Gm actually defines a K × K pair-wise weight matrix for K entity
types. It is a dense graph because Ai, j > 0 as long as there exists one entity of type
Ei that co-occurs with another entity of type E j in data. It is a symmetric graph as
Ai, j = A j,i . The diagonal elements in the matrix (when i = j) indicate the self-
correlations of one entity type, which cannot be ignored because it is common that
entities of the same type co-occur with each other. The meta graph can be seen as
a summary of the original large entity correlation graph at the entity type level. For
example, based on our entity correlation graph G built upon MEDLINE and five types
of entities (Disease, Drug, Compound, Target, MeSH), we build a meta graph Gm .

Based on the meta graph and the starting/ending entity types, we can efficiently
enumerate all possible meta paths. Recall that we have two principles to select
meta paths: (1) the length is not too long; and (2) the path has high weight. As
our meta path weighting function (Eq. 3) implicitly favors short paths, a simple
greedy algorithm that travels all meta paths from the highest path weight to the
lowest path weight is sufficient to our goal, as shown in Algorithm 1. Each time
a new meta path M is selected, it must contain at least one new type of compos-
ite correlation, or a new pair of entity types in another word. This heuristic pre-
vents the information self loop in meta path and thus largely limits the scope of path
candidates.

5.2.1 Time complexity of top-k meta paths selection

The time complexity of Algorithm 1 is O (K ! log (K !)). As searching the highest
weighted path is the most time consuming part, one trick to further improve the effi-
ciency is to take the logarithm of the meta path weighting function as follows:

argmax
M

logWM = argmax
M

l∑
y=1

log Axy ,xy+1

= argmin
M

l∑
y=1

− log Axy ,xy+1 .
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Table 1 Top 5 meta paths
selected by Algorithm 1 and
their weights

Meta path Weight

Drug–disease 8.4 × 10−5

Drug–drug–disease 1.0 × 10−7

Drug–compound–disease 2.9 × 10−8

Drug–disease–disease 1.3 × 10−8

Drug–MeSH–disease 1.5 × 10−9

In our experimental data set, Ai, j < 1, therefore − log Ai, j > 0, ∀i, j ∈ {1, . . . , K }.
With this conversion, our method is converted to finding the k-shortest paths in Epp-
stein (1998) with time complexity O(|(K 2 + K )/2| + |K | log |K | + k) (which is
actually O(K 2 + k)). Given that the number of entity types K is usually not large in
real data, this complexity is acceptable.

5.2.2 Example results of top-k meta paths selection

By setting k = 5 and selecting two entity types Drug and Disease as an example, the
top meta paths generated by Algorithm 1 from our data are listed in Table 1. These
five meta paths collectively generate the correlation contexts for any 〈drug, disease〉
pair while measuring their strong relevance.

6 Meta path based heterogeneous entity relevance model

For the problem of searching relevant heterogeneous entity e of type Et in graph G
for a query entity eq , the previous section selects top-k meta paths as the relevance
contexts. The top-k meta paths collectively define a subgraph G′ ∈ G. Based on it, our
core task is to compute R(eq , e).

6.1 Review related work in computing R(eq , e)

The related work in computing R(eq , e) can be categorized along two dimensions:
context-aware and context-agnostic; homogeneous and heterogeneous.

Personalized PageRank (Jeh and Widom 2003) computes the probability that a
randomwalker starting from eq can arrive at e in the graph as R(eq , e), where the tele-
port only switches to the query entity eq . As a general-purpose graph similarity mea-
sure, Personalized PageRank is a context-agnostic model designed for a homogeneous
graph. Its variation, called Path Constrained Random Walk (Lao and Cohen 2010), is
extended for heterogeneous graphs. It computes the probability of a random walker
starting from eq can arrive at e through constrained paths in the graph as R(eq , e). How-
ever, these randomwalkmodels favor the popular entities undesirably (Sun et al. 2011).

SimRank (Jeh and Widom 2002) is another context-agnostic model designed for
the homogeneous graph. It iteratively computes R(eq , e) as the sum of similarities
between their neighbors in the graph. The entity types of their neighbors are ignored.
HeteSim (Shi et al. 2012) extended SimRank to the heterogeneous graph. Given a
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meta path, it computes the average fraction of information that can diffuse from the
middle node of the path to two ends as R(eq , e). However, HeteSim only depends on
the raw counts of paths without fully utilizing the rich contexts of these paths.

6.2 Context-aware relevance model

Our goal here is to design a novel relevance measure between two heterogeneous
entities that fully considers the subtlety of different types among entities and the top

selected meta paths as the correlation contexts. For a meta path M = Ex1

Ax1,x2−→
Ex2

Ax2,x3−→ · · · Axl ,xl+1−→ Exl+1 , where xy ∈ [1, K ], y ∈ [1, l], following notations in Sun
et al. (2011), we say a path instance pe1�el+1 = (e1e2 . . . el+1) between e1 and el+1
follows meta path M , if ∀i , ei ∈ Exi and each edge 〈ei ei+1〉 belongs to each relation
Axi ,xi+1 in M .

Given a meta path M which encodes the correlation contexts, we design the fol-
lowing measure to compute R(eq , e, M), which denotes the relevance score between
eq and e based on M :

R(eq , e, M) =
∑

∀e′,peq�e′ ∈M ′
R(eq , e

′, M ′) × we′,e (4)

where eq ∈ Ex1 , e
′ ∈ Exl , e ∈ Exl+1 , M

′ = Ex1

Ax1,x2−→ Ex2

Ax2,x3−→ · · · Axl−1,xl−→ Exl and
edge 〈e′e〉 ∈ Axl ,xl+1 . If meta path M is an empty path, i.e., l = 0, then we define
R(eq , e, M) = 1 if eq = e, and R(eq , e, M) = 0 otherwise.

When we want to use multiple meta paths M1, . . . , Mk as correlation contexts, we
can compute R(eq , e) as a linear combination of the relevance score over each meta
path Mi :

R(eq , e) =
k∑

i=1

θi R(eq , e, Mi ) (5)

where meta paths with higher weight θi are considered to encode more important
correlation context. The meta path weight θi can be learned in a supervised manner
(Lao and Cohen 2004), such as giving higher weights to certain meta paths so that
entities that are labeled to be strongly relevant could have higher relevance scores.
This problem is however out of the scope of this work. In this work, we manually tune
the weights of meta paths and put our focus on the computation of R(eq , e, M).

It is not hard to derive that the relevance measure defined in Eq. 4 is equivalent to
the following, which is efficient to compute:

R(eq , e, M) =
∑

peq�e∈M

⎛
⎝ ∏

〈ei e j 〉∈peq�e

wi j

⎞
⎠ (6)
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where 〈ei e j 〉 denotes any edge belonging to path instance peq�e, andwi j is the weight
of the edge.

According to the above analysis, a pair of heterogeneous entities will have a high
relevance score if: (1) they are strongly connected to other strongly relevant enti-
ties following selected meta paths; or (2) they are connected by paths with high
weights following selected meta paths. This intuition clearly expresses the corre-
lation context encoded in meta paths. For example, clindamycin hydrochloride is
considered to be strongly relevant to acne because they are connected by many
highly weighted paths following meta path “Drug–Compound–Disease” (such as
“clindamycin hydrochloride–azelaic acid–acne”), and also because both clindamycin
hydrochloride and acne are strongly relevant to many compounds in the middle (such
as azelaic acid), which are will encoded in the edges and paths.

Our proposed measure has the good symmetric property, i.e., R(eq , e, M) =
R(e, eq , M−1), where M−1 denotes the reverse meta path of M (Sun et al. 2011).
Moreover, it fully takes into account the carefully-designed weight of the edges (and
in turn the paths) instead of just doing path counting (Sun et al. 2011; Shi et al. 2012),
therefore well utilizing the rich contexts encoded in the paths. This design is also
consistent with the weight of meta paths defined in Eq. 3.

7 Experiments

In this section,we empirically evaluate the effectiveness of our proposed framework for
estimating the relevance between heterogeneous entities. We also present a prototype
drug search engine built based on the framework proposed in this paper. We begin
with the experimental setup.

7.1 Experimental setup

In order to evaluate the relevance estimation results generated by different algorithms,
we sampled 199 unique drug–disease pairs from FDA’s orange book7 as the ground
truth for the therapeutic relationships between drugs and diseases. We chose the ther-
apeutic relationship as testing cases because it is one kind of strong relevance largely
supported by the MEDLINE data. While sampling, we emphatically avoid those well-
known drugs, as their relevance can be easily captured by their large number of co-
occurrences with diseases. The co-occurrence distribution of our ground truth drug–
disease pairs is illustrated byFig. 4. It can be observed thatmost of the drugs that known
to treat certain diseases co-occur rarely with the disease in the text (typically no more
than 10 times out of the 20 million abstracts). Therefore, the relevance relationship
that we want to discover is really hidden in the text and can hardly be discovered by
simply counting the raw number of co-occurrences or by natural language processing
techniques.

7 http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm. Among all the relevance relationships
between different types of biological entities, we show the discovery results of the therapeutic relation-
ships as an example since the results are easy to be evaluated by referring to FDA’s orange book.
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Fig. 4 Histogram of # of times that the ground truth drug–disease pairs co-occur in text corpus D

Given a disease, all drugs in the database can be ranked according to the relevance
scores, denoting how likely each drug is relevant to the disease. It is tricky to judge the
“correct” returned drugs as we only have ground truths for the therapeutic relationship,
not for strong relevance in general. To evaluate the correctness of a returned drug, not
only will the drug be compared with ground truths (for Recall), but also the reasoning
entities will be manually checked by human experts to see if the inferred relationship
falls in the treatment category (for Precision). We use the standard precision, recall
and Mean Average Precision (MAP) (Manning et al. 2008) to evaluate the results for
our problem. Precision is defined as the # of drugs that can treat the queried disease
based on human evaluation by the # of returned drugs. Recall is defined as the # of
drugs in ground truth divided by the # of returned drugs. Given a disease, let ri be the
judgement score of the drug ranked at position i , where ri = 1 if the drug is known to
treat the disease and ri = 0 otherwise. Then we can compute the Average Precision
(AP):

AP =
∑

i ri × Precision@i

# of drugs known to treat the disease

And MAP is the average of AP over all the diseases in our labeled set. We do not use
Normalized Discount Cumulative Gain (NDCG) to measure the performance, since
we can only manually judge whether a drug can or cannot treat the given disease, but
do not have knowledge about the levels, that is, about how much one drug can treat
one disease.
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Fig. 5 Compare correlation to co-occurrence

7.2 Correlation weight evaluation

We first evaluate the effectiveness of our proposed correlation weight function com-
paring to the raw co-occurrence count for entity correlation graph construction. As
mentioned before, the correlation weight function could be used as one naive solution
of R(eq , e), where eq is the query disease and e is one drug. We show the average
precision curves and recall curves of the co-occurrence based method (denoted by co-
occurrence) and correlation weight function based method (denoted by correlation)
with regarding to the top number of returned drugs per disease in Fig. 5. We show
the precision and recall measures for the top 10 returned drugs per disease since the
top 10 returned results are the most important to the user and largely affect the user
experience. The MAP scores for correlation and co-occurrence are 0.216 and 0.118,
respectively, measuring the performance over the entire ranking list. The correlation
weight based method performs much better than the raw co-occurrence based method
on all the above evaluation metrics, meaning that our design of the correlation weight
function in Eq. 2 is reasonable to capture the direct correlation between two entities.
So, we use Eq. 2 instead of the raw co-occurrence to construct the entity correlation
graph.

7.3 Comparing different meta paths

We selected top 5 meta paths using Algorithm 1 (listed in Sect. 5.2). Based on a single
meta path, we can find relevant drugs. We can also perform a weighted combination of
the results generated by multiple meta paths. How to combine the results of different
meta paths or how to set the weight for each path during combination is a difficult
problem, which is left for future study. In this paper, we manually tuned the weights
and picked up the weights with the best performance.

Based on EntityRel, we compare the retrieval performance of individual meta
paths and their combination. We show the average precision curves and recall curves
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Fig. 6 Compare different meta paths and their combination in Precision/Recall based on EntityRel

Table 2 Compare different
meta paths and their
combination

Meta path MAP

Drug–disease 0.216

Drug–drug–disease 0.218

Drug–compound–disease 0.276

Drug–disease–disease 0.216

Drug–MeSH–disease 0.203

Combination 0.290

of various meta paths and their combination in Fig. 6, where the manually selected
weights (similar to weights tuned by cross-validation) for the top 5 meta paths (shown
in Sect. 5.2) are 0.01, 0.1, 0.78, 0.1, 0.01, respectively. Generally, we can see that
combining the results generated by different meta paths performs equal or better
than any single meta path, especially in the top few returned drugs. The MAP score
comparison of different meta paths and their combination is shown in Table 2, where
we can see the combination method achieves the highest MAP score, indicating the
best overall performance. Among the results generated by one single meta path, path
“Drug–Compound–Disease” performs the best.

Remember the MAP score of the correlation method in the previous subsection
is 0.216, which is much lower than both the combination method and the best result
generated by one single meta path. This indicates that employing the top meta paths
can generate better results than simply using the direct correlations between drugs and
diseases as the relevance estimation, since the former encodes the interrelationships
between multi-typed entities in a structured way.

7.4 Comparing different methods on the same heterogeneous entity correlation
graph

As mentioned before, the following state-of-the-arts can be used to estimate relevance
between two homogeneous or heterogeneous entities. We adapted them on the same
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Fig. 7 Compare EntityRel to related work

heterogeneous entity correlation graph G′ generated by top 5 meta paths for a fair
comparison.

– Personalized PageRank (Jeh and Widom 2003). The damping factor is set as 0.9.
By ignoring the type difference among entities and edges, it can be run on two
different graphs in our scenario: (1) the original correlation graph G, named P-
PageRank; and (2) the graph G′ which only contains top 5 meta paths, denoted by
P-PageRank (MP).

– SimRank (Jeh and Widom 2002). Damping factor is set to 0.8. Has two versions
similarly: SimRank on G and SimRank (MP) on G′.

– HeteSim (Shi et al. 2012) run on its best meta path.
– Path Constrained Random Walk (PCRW ) (Lao and Cohen 2010) run on its best
meta path.

HeteSim, PCRW and our method EntityRel are all based on the best meta path
selected from the top 5meta paths.Although it is verified in the previous subsection that
combining the results generated by multiple meta paths performs better than a single
meta path, how to combinemultiplemeta paths without any label information is still an
unsolved problem left for future study. Therefore, we simply run HeteSim, PCRW and
our method on each of the top 5 meta paths and choose the best results for comparison.

It is worth noting that both original SimRank and original HeteSim work on binary
graphs only, considering whether two nodes are connected or not and ignoring the
weight on the edges. We tried the original versions on the binary correlation graphs
without using the weighted edges, and found that they performed rather poorly. There-
fore, we show these two methods’ results on the weighted correlation graph only.

From the average precision curves and recall curves shown in Fig. 7, we can see
that our EntityRel model leads the pack, especially when the number of returned
drugs is small. PCRW performs the second best. Another observation is that SimRank
performs similarly on the complete correlation graph G and the graph only containing
selected meta paths G′, and so does P-PageRank. This indicates that while reducing
the time and space complexity largely, our top 5 selected paths capture most of the
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Table 3 Compare EntityRel to
related work in MAP

Algorithm MAP

SimRank 0.251

SimRank (MP) 0.254

P-PageRank 0.245

P-PageRank (MP) 0.244

PCRW 0.253

HeteSim 0.204

EntityRel 0.276

useful information in the original graph. The MAP scores of different algorithms are
shown in Table 3. We can see our EntityRel is still the best, achieving 8.66 % relative
MAP score improvement over the second best algorithm. This indicates the reliable
performance of EntityRel over the entire ranking list of returned drugs.

7.5 Discussion on the computation time

All the experiments in this section were conducted on a PC with 2.67 GHz CPU and
48 GBmemory. And all the algorithms are implemented inMATLAB. The correlation
graph construction step is computed offline, and is the same for all the relevance
estimation algorithms. After graph construction, given one disease as the query, the
path-based algorithms (EntityRel, HeteSim and PCRW) can compute the relevance
scores for all the drugs in the database within 0.03 second, while P-PageRank and
SimRank take minutes to hours to process one query. In this way, we can see our
method EntityRel is an efficient approach for real applications such as online search
engines for biomedical entities.

7.6 Prototype drug search engine

In addition to the theoretical contribution and empirical analysis presented above, we
also implement a prototype drug search engine inside IBM. Note that rather than any
structured data, the only data set used by this search engine is the biomedical paper
corpus. Figure 8 shows a real example in our demo system, where a user submits a
disease “acne”8 and searches for strongly relevant drugs. All the top 10 returned results
are FDA-approved drugs for treating acne. Specifically, the 10th drug “clindamycin
hydrochloride” only co-occurs with “acne” and its synonyms 5 times in more than
20 million MEDLINE articles, which cannot be discovered by simple co-occurrence
methods easily. Note that the correctness of strong relevance depends on the reasoning
entities in the paths used to discover the relationship. All the five reasoning compounds
(nadifloxacin, azelaic acid, doxycycline hyclate, minocycline, dapsone) in the paths
that contribute most to this discovery result clearly indicate that the strong relevance
found by us between “clindamycin hydrochloride” and “acne” is a valid therapeutic

8 The hit disease “acne vulgaris” is its synonym.
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Fig. 8 Drug search engine demo

relationship. On the contrary, if we use similar contexts to reason the relationship
of “vitamin A” (co-occur with acne 22 times) or “Insulin” (co-occur with acne 21
times) with “acne”, the relationship will be wrong despite that these two drugs are
relevant to disease “acne” in other ways. For example, to treat acne, large doses of
vitamin Amust be given, which then results in vitamin A toxicity; acne has an effect of
insulin resistant. These relationships have to be detected by other correlation contexts,
such as “symptom”-typed entities. In this way, when we judge the correctness of the
discovered strong relevance, we utilize the set of reasoning entities involved in the
relevance discovery. This drug search engine has been presented to medical experts,
who have evaluated the search results and agreed that the drugs returned by the search
engine are indeed strongly relevant to the query disease.

8 Conclusions

In this paper, we propose a framework to solve the critical problem of discovering
strong relevance between heterogeneous typed entities from massive biomedical text
data, which is challenging due to the unstructured and noisy nature of text. To achieve
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the goal, we build an entity correlation graph from the text data, which offers rich
semantic contexts for entity relationships. In our approach EntityRel, two entities of
heterogeneous types are strongly relevant if they are linked closely to each other or to
other strongly relevant entities along paths following the selected patterns. EntityRel
is effectively evaluated on the examples of Drug–Disease relevance discovery over
20M+ MEDLINE abstracts. Although we focus on biomedical data in this paper, our
approach EntityRel is generic enough to be applied in other domains. For example,
given a social network containing friendship relationships between users, and check-in
relationships between users and restaurants, we can applyEntityRel to discover strong
relevance between users and restaurants, which could be used to predict restaurants
that each user likes. For future work, one interesting problem is to learn the weights of
different meta paths. Another interesting direction is to study the theoretical relations
between EntityRel and other random walk models.
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