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Abstract A variety of applications, such as information extraction, intrusion detec-
tion and protein fold recognition, can be expressed as sequences of discrete events
or elements (rather than unordered sets of features), that is, there is an order depen-
dence among the elements composing each data instance. These applications may
be modeled as classification problems, and in this case the classifier should exploit
sequential interactions among the elements, so that the ordering relationship among
them is properly captured. Dominant approaches to this problem include: (i) learning
HiddenMarkovModels, (ii) exploiting frequent sequences extracted from the data and
(iii) computing string kernels. Such approaches, however, are computationally hard
and vulnerable to noise, especially if the data shows long range dependencies (i.e.,
long subsequences are necessary in order to model the data). In this paper we provide
simple algorithms that build highly effective sequential classifiers. Our algorithms are
based on enumerating approximately contiguous subsequences from the training set
on a demand-driven basis, exploiting a lightweight and flexible subsequence matching
function and an innovative subsequence enumeration strategy called pattern silhou-
ettes, making our learning algorithms fast and the corresponding classifiers robust to
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noisy data. Our empirical results on a variety of datasets indicate that the best trade-off
between accuracy and learning time is usually obtained by limiting the length of the
subsequences by a factor of log n, which leads to a O(n log n) learning cost (where n is
the length of the sequence being classified). Finally, we show that, in most of the cases,
our classifiers are faster than existing solutions (sometimes, by orders of magnitude),
also providing significant accuracy improvements in most of the evaluated cases.

Keywords Sequential classifiers · Efficient learning · Long range sequences ·
Partial matching · Approximately contiguous sequences

1 Introduction

Classification algorithms have been traditionally designed for dealing with vectorial
data, thus interpreting each training example as an unordered set of features. In many
application scenarios, however, a training example is represented as a sequence of
discrete events or elements, and, therefore, there is an explicit ordering relationship
among these elements. This is commonly observed in application scenarios such as
information extraction, intrusion detection, and protein fold recognition (Han et al.
2004, 2005; Lodhi et al. 2009; Silva et al. 2011). In such cases, it may be advantageous
to interpret examples as sequences of elements, since the order relation may contain
relevant (or even necessary) information about the meaning of the data.

Algorithms that produce classifiers from discrete event sequence data (i.e., sequen-
tial classifiers) may rely on (i) building generative classifiers by learning Hidden
MarkovModels (HMMs) (Baum and Petrie 1966; Baum et al. 1970), (ii) transforming
the original input space into another one inwhich each transformed feature corresponds
to a frequent subsequence of elements in the original space (Tseng and Lee 2005),
(iii) combining frequent pattern mining and Hidden Markov Model approaches (Zaki
et al. 2010) and (iv) computing string kernels (Lodhi et al. 2002; Leslie and Kuang
2004, 2003; Leslie et al. 2002b). These algorithms, however, may suffer from non-
negligible scalability shortcomings, possibly preventing them to provide fast learning
times in scenarios where long subsequences are necessary in order to properly model
the data. Also, discrete event sequence data are commonly plagued by noise. For
instance, in the case of protein-related data the collected sequences may have large
variability with only a small subset of variations relevant to the protein function.
Noise is also present in micro-blog messages, which are typically written in infor-
mal, sometimes cryptic style, due to space limitations. Under such conditions, most
sequential classification algorithms offer limited accuracy. Furthermore, such algo-
rithms are often devised for a specific learning task (Agrawal and Srikant 1995; Eddy
1998).

In this paper we propose general purpose sequential classification algorithms by
taking into consideration the trade-off that exists between their run-time numbers and
the accuracy of the resulting classifier. Specifically, our objective is to learn sequen-
tial classifiers that are general enough to handle diverse sources of discrete sequence
data without the need of any adaptation, while offering state-of-the-art performance
in terms of learning time and accuracy. We start by introducing algorithms that rely
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only on exact matches, that is, classifiers are built upon subsequences composed of
contiguous elements (i.e., no gaps and mismatches are allowed). By dynamically
bounding the length of these subsequences, the corresponding classifier becomes able
to capture not only short, but also long range dependencies in the data. From con-
siderations of efficiency, we focus on classifiers with O(n log n) complexity in the
sequence length, since this choice leads to the best balance between efficiency and
accuracy on the datasets used in our experiments. A drawback, however, is that con-
tiguous sequential classifiers may become excessively restrictive, since no violation
in the ordering relationship among elements is allowed while enumerating subse-
quences. As a result, the classifier is usually composed of very few subsequences,
being not sufficiently expressive or very sensitive to noise, compromising classification
accuracy.

To overcome this limitation we relax the subsequence enumeration process in
order to allow gaps and mismatches while comparing subsequences. More specifi-
cally, we formulate a lightweight matching function which compares a test sequence
with the relevant sequences in the training data, and measures the similarity between
them (Rieck and Laskov 2008). The similarity is based on how many contiguous
matching elements they have in common (i.e., the more subsequences two sequences
have in common, the more similar they are and the higher is the likelihood of both
belonging to the same class). Violations in the contiguity of the subsequences (i.e.,
mismatches) are allowed, but properly penalized. The proposed similarity function
differs from most string kernels because it takes into account not only the number of
mismatches, but also how close are they. That is, consecutive mismatches are highly
penalized, but isolated mismatches that are likely to occur due to noise are toler-
ated. Relevant training sequences are rapidly extracted from the training data in a
demand-driven basis (Veloso and Meira 2011), by indexing what we call pattern sil-
houettes, ensuring that only training sequences that are to some extent similar to the
test sequence are considered, drastically reducing the number of necessary subse-
quence comparisons. As a result, sequential classifiers become more expressive and
robust to noise, but are still efficiently learned in O(n log n). These features make
our classifiers an interesting alternative to typical solutions, such as string kernels and
HMMs. The run-time complexity for computing kernels, for instance, is determined
by the number of model parameters, so that only very simple models yield run-time
linear in the sequence lengths. Moreover, obtaining a suitable parameter estimate for
a probabilistic model can be difficult or even infeasible in practical application sce-
narios.

To validate our claims and to evaluate the effectiveness of the proposed algorithms,
we performed a systematic set of experiments using real sequence data obtained from
a variety of application scenarios such as information extraction, protein fold recogni-
tion, intrusion detection, among others. The results show that our algorithms provide,
in most of the cases, significant improvements in terms of execution time, without
putting classification accuracy at risk when compared against state-of-the-art solu-
tions. In fact, in most of the cases, our proposed algorithms are able to improve
classification accuracy as well.

123



1688 G. Dafé et al.

2 Related work

Theproblemweare interested to study in this paper is to distinguish between sequences
belonging to different labeled groups or classes (Zaki et al. 2010; Syed et al. 2009). In
particular, we are interested in sequences of discrete events, rather than time series or
temporal intervals. Next we provide a brief review of the most relevant work related
to this problem.

2.1 Sequential patterns

The problem of enumerating sequences that occur frequently in the data was first
studied by Agrawal and Srikant (1995). Improved algorithms for finding frequent
sequential patterns were proposed in (Srikant and Agrawal 1996; Zaki 2000). These
algorithms employ constraints such as minimum and maximum gaps between consec-
utive elements, allowing for a more flexible enumeration of sequences (i.e., sequences
that occur after some given time interval). The use of sequential patterns as fea-
tures for the sake of learning sequential classifiers was initially proposed in (Lesh
et al. 1999), and more recently in (Lin et al. 2009). As a major deficiency of these
algorithms, it is worth mentioning that they are unable to extract high-order, long
sequential patterns efficiently, therefore capturing only short-range dependencies in
the data.

Algorithms based on the recursive data mining approach, proposed in (Szymanski
2004), are able to bridge large gaps between consecutive elements in the sequence,
but these algorithms were devised for solving specific tasks, such as intrusion detec-
tion and author identification. In (Syed et al. 2009) the authors proposed an algorithm
which efficiently finds patterns in labeled sequences, that are then used for classi-
fication of sequential data. In (Bannister 2007) an algorithm is proposed to learn
classifiers from sequential data by exploiting the algorithmic relationship between
association rule mining and sequential pattern mining. Frequent sequential patterns
are mined and then the constrained adaptive methodology is applied to select patterns
to be used for classifying the outcome. This algorithm, which we call associative
sequential classifier (ASC), is a representative of state-of-the-art solutions for sev-
eral applications based on sequential data. We implemented a similar version of this
algorithm and used it as one of the baselines for comparison. Efficiently capturing
long-range dependencies among elements and dealing with sequence violations pose
challenging problems. Next we discuss solutions based on learning Hidden Markov
Models and string kernels, which employ different strategies to handle this prob-
lem.

2.2 Hidden Markov Models

Hidden Markov models (HMMs) are probabilistic models of sequential data (Rabiner
1989). HMMs can be viewed as stochastic generalizations of finite-state automata,
when both the transitions between states and the generation of output symbols are
governed by probabilistic mechanisms. Specific HMM based approaches have been
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proposed for different applications, such as DNA and protein modeling (Durbin et
al. 1998; Hughey and Krogh 1996), speech recognition (Rabiner 1989; Sha and Saul
2006), handwritten character recognition (Hu et al. 1996), gesture recognition (Müller
et al. 2000), among others.

In order to capture long range sequential dependencies, which is not feasible with
simple (first-order) HMMs, many approaches based on fixed high-order HMMs have
been proposed. In (Kriouile et al. 1990), a first-order HMM, based on Viterbi and
Baum-Welch algorithms (Durbin et al. 1998), is used for state prediction and to
directly train a second-order HMM. The method proposed by (Du Preez 1998) con-
verts a fixed high-order HMM to an equivalent first-order model which is used to
incrementally train a high-order HMM. Another fixed-order approach is found in
(Law and Chan 1996), an n-gram-based HMM for language modeling. Although
providing an elegant and sound sequential data modeling methodology, a major
drawback in fixed high-order HMMs is that such models suffer from high state-
space complexity, since a k-th order HMM, with alphabet �, can potentially have
|�|k states. Therefore, estimating the joint probabilities of each k-th order state is
extremely difficult. Furthermore, none of those techniques are able to capture even-
tual mismatches in sequences, maybe being excessively rigid to deal with noisy
data.

Other approaches try to efficiently build variable-order HMMs. Mixed order
Markov models were proposed by (Schwardt and Preez 2000), but, since they
rely on expectation-maximization methods, they are susceptible to local optima.
In (Srivatsan et al. 2005), specific episode generating HMMs (EGMs) are built for
each frequent episode (sequence) mined from the data. Besides the huge number
of generated models, only non-overlapping sequences are found and violations in
sequences are not explicitly handled. In (Bicego et al. 2003), a pruning strategy
was proposed to avoid excessively large number of states in HMMs. In (Wang
et al. 2006), a variable-length HMM (VLHMM) is built upon Markov chains of
variable memory length (Bühlmann and Wyner 1999), by storing context in a pre-
diction prefix tree. This method also employs an expectation-maximization strat-
egy for training, so is prone to local optima. Furthermore it requires the num-
ber of states to be given as user parameter. The similarity-based recognition par-
adigm was also used in the context of HMMs, resulting in significant improve-
ments with respect to standard HMM-based approaches when applied to clustering,
pattern recognition and sequential classification related tasks (Bicego et al. 2006,
2004).

In (Zaki et al. 2010), the authors proposed the VOGUE algorithm, which addresses
the main limitations of HMMs. This algorithm proposes a mixture between the two
approaches: mining sequential patters and learning HMMs. It relies on a variable
gap sequence mining approach, extracting frequent sequential patterns with different
lengths and gaps between elements. The extracted patterns are then used to build a
variable order HMM. The VOGUE algorithm is a representative of state-of-the-art
solutions for several applications based on sequential data, and is used as one of the
baselines for comparison.
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2.3 String kernels

String kernels extend methods such as SVMs (Vapnik 1979), so that they become able
to handle sequence data. String kernels were first used for text classification (Watkins
1999), and then for diverse applications (Lodhi et al. 2002; Haussler 1999). The cost
of computing kernels scales quadratically as a function of the length of the input
sequences, being unfeasibly slow for applications involving long sequences. Further-
more, they do not handle mismatches between sequences, being excessively sensitive
to noise.

Latter approaches overcome the aforementioned limitations due to strict match-
ing by employing mismatch-tolerant comparison techniques, therefore building more
flexible kernels. However, as these methods aim at computing similarity for all
pairs of sequences in a particular feature space, they face a serious computational
challenge. To narrow down the cost of this task, these techniques typically restrict
the length and expressive power of the subsequences used as features, by index-
ing subsequences that they call k-mers, where k is the subsequence length, which
is usually small. An example of these approaches can be found in Spectrum-k
Kernel (Leslie et al. 2002a), which implicitly compares k-mers. Following the
same rationale, the Mismatch Kernel (Leslie et al. 2004) generalizes the Spectrum-
k Kernel by allowing mismatches to accommodate mutations. These new kernels,
namely restricted gappy kernels, substitution kernels, and wildcard kernels, are based
on feature spaces indexed by k-mers. The maximum number of consecutive mis-
matches is limited with explicit parameters. The sparse spatial sample kernel (SSSK)
(Kuksa et al. 2008) generalizes the Mismatch Kernel by sampling the subsequences
at different resolutions and comparing the resulting spectra. Mismatches are han-
dled by probes, whose number, lengths and distances are given as model parame-
ters.

Apractical disadvantageof computing stringkernels is their computational expense.
In general, these kernels rely on dynamic programming algorithms for which the com-
putation of each kernel value K (x, y) is quadratic in the length of the input sequences
x and y, that is, O(|x ||y|) with constant factor that depends on the parameters of the
kernel. As an exception, Leslie et al. (2002a) introduced a linear time O(k|x | + |y|)
implementation of the Spectrum-k Kernel, which relies only on exactmatches of k-mer
patterns.

Although kernel-based sequence learning has gained significant attention of the
community, there are many other possibilities and strategies for learning sequential
classifiers. In particular, we discuss classifiers built upon similarity measures for dis-
crete event sequential data. Such measures are fastly computed using algorithms that
employ a demand-driven training projection strategy, which allows a drastic reduc-
tion in the number of sequence comparisons by using indexes which we call pattern
silhouettes. This strategy allows our algorithms to deal with long and possibly noisy
sequences, improving accuracy and reducing computational costs in different applica-
tion scenarios. A conceptwhich is somehow similar to our proposed pattern silhouettes
are kwnon as time-series shapelets (Ye and Keogh 2009, 2011). However, shapelets
are used for building classifiers from time-series data, while pattern silhouettes are
devoted to discrete event sequences.
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3 Learning sequential classifiers on a demand-driven basis

In this paper we consider our input data as a sequence of discrete events. The problem
of learning sequential classifiers from this data can be formally stated as follows:

Given a training setD composedofd groupsof sequencesD = {D1, D2, . . . , Dd}
such that all sequences that belong to the same group Di have the same class
label yi , learn a classifier C which maps an arbitrary sequence to the most likely
class label.

This formulation is sufficiently general to be applied to a wide variety of classi-
fication scenarios where sequential data exists (Syed et al. 2009), and most of the
existing classification algorithms follow this formulation. In this work, we propose an
alternate formulation in order to make explicit the notion of learning classifiers on a
demand-driven basis. In this case, a specific classifier is built for each sequence in the
test set T . Making this notion clear is important because it allows our proposed algo-
rithms to avoid unnecessary sequence comparisons, as discussed later. Our alternate
formulation is stated as follows:

Given a training setD composedofd groupsof sequencesD = {D1, D2, . . . , Dd}
and a test instance t ∈ T , learn a classifier Ct j , which is a function mapping
sequence t j to themost likely class label. Theprocess is repeated for all sequences
in T = {t1, t2, . . . , tm}, resulting in multiple classifiers {Ct1,Ct2 , . . . ,Ctm }.
Next we discuss classification algorithms that learn sequential classifiers under this

formulation.We start with a very simple algorithm, called SC-SC (Strictly-Contiguous
Sequential Classifier), which learns sequential classifiers based on contiguous subse-
quences, that is, subsequences are composed only of adjacent elements. Then,we intro-
duce amore sophisticated algorithm, called approximately-contiguous sequential clas-
sifier (AC-SC), which learns classifiers by allowing mismatches between sequences in
D (i.e., examples) and a sequence t ∈ T (i.e., a test instance), but thesemismatches are
penalized using a variable decay factor which increases with consecutive mismatches.
A similarity function is used to assess the amount of contiguity that exists between
the test sequence and the corresponding relevant sequences in D, making AC-SC spe-
cially suited for dealing with noisy data, even in cases for which long subsequences
are necessary for modeling the data.

3.1 Learning contiguous sequential classifiers

In this section we describe the SC-SC algorithm which exploits the ordering rela-
tionship among elements by enumerating contiguous matches between sequences, as
defined next.

Definition 1 (Contiguous Matching) A subsequence X is said to contiguously match
instance t ∈ T (which is given as a sequence of n elements {a1 → a2 → · · · → an}),
if X = {ai → ai+1 → · · · → ai+k}, provided that k ≥ 0.

The strategy for enumerating strictly contiguous sequences may be seen as an itera-
tive sliding-window process in which the window size is increased after each iteration.
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Fig. 1 Contiguous sequences

More specifically, given a test sequence t ∈ T such that t = {a1 → a2 → · · · → an},
the sequence enumeration process starts by enumerating singleton elements that are
in t . In the second iteration, the window size increases and sequences composed of
pairs of consecutive elements are enumerated. The process iterates enumerating ever
increasing contiguous subsequences in t . Figure 1 shows the enumeration process
given an arbitrary test sequence.

As easily noticed, the number of sequences that contiguously match an arbitrary
sequence t ∈ T is given by an arithmetic progressionwhich clearly grows quadratically
with the number of elements within t (i.e., n). The classifier Ct built using the SC-SC
algorithm is composed of contiguous subsequences, as the ones depicted in Fig. 1.
Therefore, the cardinality of Ct is given by Eq. 1:

|Ct | =
n∑

k=1

n − k + 1 = n2 + n

2
= O(n2) (1)

In practice however, given a test sequence t ∈ T , there is no need for an exhaustive
enumeration of all contiguous subsequences in t : classification accuracy and sequence
length are not linearly related (Malik andKender 2008). In fact, classification accuracy
typically increases slowly (and eventually stabilizes) as the sequences composing the
classifier become longer (Tseng and Lee 2005). Therefore, we may bound the length
of the subsequences to be enumerated, so that no subsequence with more than m
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elements is enumerated from D. We employ a variable limitation strategy, skipping
subsequences with more than log n elements. This ensures O(n log n) learning cost
with respect to the number of elements in t , as can be seen in Eq. 2.

m = �log n� �⇒ |Ct | = (n)+ (n−1)+ (n−2)+· · ·+ (n−�log n�) = O(n log n)

(2)
Other limits on sequence length could also be used (i.e., m is an empirical threshold).
For instance, we may use limitation strategies such as linear and square root functions,
but the justification for limiting the sequence length to a maximum of log n elements is
that more balanced results are reached when taking into account the trade-off between
accuracy and learning time. We will present more detailed analysis regarding this
trade-off in Sect. 4.

3.2 Calculating class membership

For each subsequence X ∈ Ct , we calculate θ(X → yi ), which is an estimate of the
conditional probability of X being associated with class label yi (i.e., an estimate,
obtained from the training set, of the probability of X belonging to Di ). Such sub-
sequences are used to build a weighted vote for each class label, where the weight
depends on the θ value associated with the corresponding subsequence. Weighted
votes for label yi are averaged, giving a score for label yi with regard to sequence t ,
as shown in Eq. 3:

w(t, yi ) =
∑

θ(X → yi )

|Cyi
t | (3)

where Cyi
t is the subset of Ct composed of subsequences that are associated with class

label yi , and the summation is over all rules {X → yi } ∈ Cyi
t . Finally, the scores are

normalized, as expressed by function p̂(yi |t), shown in Eq. 4. This function estimates
the relevance of a sequence t ∈ T with regard to label yi .

p̂(yi |t) = w(t, yi )
∑d

j=0
w(t, y j )

, where d is the number of possible labels. (4)

Despite being computationally efficient, the SC-SC algorithmmay produce sequen-
tial classifiers that are excessively restrictive, since noviolation in the ordering relation-
ship among elements is allowed while enumerating subsequences. A single mismatch
between test and training sequences causes the rejection of several (potentially rele-
vant) subsequences. As a result, the classifier will be probably very sensitive to noise
and be composed of very few subsequences, compromising classification accuracy.
Fortunately, these disadvantages can be avoided by relaxing the subsequence enumer-
ation process without sacrificing learning time, as discussed in the next section.

123



1694 G. Dafé et al.

3.3 Learning noise-tolerant sequential classifiers

In contrast to strictly-contiguous sequential classifiers, approximately-contiguous
sequential classifiers are lenient with mismatches when enumerating subsequences.
We propose a classification algorithm for learning approximately-contiguous sequen-
tial classifiers, which relies on assessing the similarity between test and training
sequences. This similarity is calculated for each pair (x, t) such that x ∈ D and
t ∈ T . The proposed AC-SC algorithm performs three main steps as described next.

3.4 Pre-indexing pattern silhouettes

Scanning the entire training set D searching for approximate matchings every time
a sequence t ∈ T is given to classification is obviously unfeasible. Since we are
interested in dealingwith approximately-contiguousmatching,whichwedefinenext, it
is necessary to optimize sequence enumeration by pre-indexing sequence occurrences
in D. The challenge here is to narrow down the search space for relevant subsequences,
by investigating only training sequences x ∈ D that have the same shape of the test
sequence being classified. Thewaywe propose to solve this problem is by pre-indexing
what we call Pattern Silhouettes, which can be seen as a hash function which returns
sequences in D thatmay be similar to a given test sequence. That is, patterns silhouettes
are used to retrieve all subsequences in D that are relevant to a specific test sequence.

Definition 2 (Pattern Silhouettes) Let t = {a1 → a2 → · · · → an} denote an
arbitrary sequence in T . A pattern silhouette is any triple of form s = (al , ar , k), with
r ≥ l, and r − l = k, where al and ar are elements in t and k + 1 is the length of the
subsequence ranging from al to ar . A subsequence X is said to approximately match
sequence t ∈ T , if X and t share at least one pattern silhouette.

The AC-SC algorithm first enumerates all eligible pattern silhouettes for each train-
ing sequence x ∈ D. Then, it constructs an inverted index, which links each pattern
silhouette to all sequences in D containing it. This inverted index is used in fur-
ther steps. The process of enumerating silhouettes follows the same sliding-window
approach described for enumerating strictly-contiguous subsequences.

3.5 Training projection using pattern silhouettes

When a test sequence t ∈ T is given for classification, the AC-SC algorithm filters
relevant training sequences x ∈ D containing subsequences approximately matching
sequence t , in order to learn a classifier Ct . In this case, a relevant sequence in D
must share at least one pattern silhouette with t . In order to find approximate matching
subsequences in D, when a test sequence t is given, the AC-SC algorithm enumerates
all eligible pattern silhouettes present in t . This process is illustrated in Fig. 2. The
same subsequence length limitation (m = log n) is imposed in this process, which
ensures O(n log n) learning cost for a given test sequence t containing n elements.

For each possible silhouette in t , the algorithm projects/filters the training set D in
order to consider only subsequences having that shape. This filtering process is nothing
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Fig. 2 Pattern silhouettes

more than a simple lookup at the inverted index previously constructed. At this point,
the AC-SC algorithm works using the following information: a test sequence t , its
corresponding pattern silhouettes (and the position where they occur in t), and all
subsequences in D that approximately match t . The algorithm now advances to the
following step, as discussed next.

3.6 Calculating class membership

Calculating class membership involves assessing how similar are a test sequence t
and its approximately-matching subsequences in D (relatively to a given silhouette).
This process iterates calculating the similarity between each sequence t ∈ T and the
corresponding approximately-matching subsequences in D, as detailed next.

3.7 Silhouette alignment

Given an arbitrary sequence t ∈ T , the objective of silhouette alignment is to find,
for each approximately-matching training sequence x ∈ D, the position in which the
target silhouette s occurs. This is done by traversing the elements in x , looking for the
first element matching the leftmost element in silhouette s. If element a j ∈ x matches
the leftmost element in s, then we simply check if element a j+k ∈ x also matches the
rightmost element in s, where k is the length of s. If both matches succeed, we have an
alignment between sequences t and x , and, sincewe already knowwhere the silhouette
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occurs in t , we can now measure how similar are these sequences. Specifically, we
measure the similarity between a pair of sequences (t, x) by exploiting the intuition
that there exists valuable information in the proximity and contiguity among elements
in t and x .

3.8 Assessing similarity between sequences

Wepropose a novel similaritymeasure,which is given by a functionwe callContiguity-
Based Similarity Function. This function expresses the similarity between a test
sequence t and approximately-matching subsequences in D, given a specific pat-
tern silhouette. Such measure consists of pairwise comparing the elements within
sequences t ∈ T and x ∈ D, emphasizing consecutive matches. It is formulated as a
function with the following properties: (i) it is monotonically increasing, (ii) it memo-
rizes previousmatches, (iii) consecutivematchesmake it increase fast, (iv) consecutive
mismatches make it constant, and (v) isolated mismatches only delay its increase. This
similarity function is better defined next.

Definition 3 (Contiguity-Based Similarity Function) Consider two sequences t ∈ T
and x ∈ D, both containing a pattern silhouette s = (l, r, k). Let i denote the starting
position where s occurs in t , and j the starting position where s occurs in x . The
similarity between t and x , regarding to s, is given by Eq. 5:

Γ (t, x |s) =
k−1∑

c=0

γ (ti+c, x j+c) (5)

where γ function is defined as:

γ (tp, xq) =
⎧
⎨

⎩

λ if tp = xq and p = i
λ × γ (tp−1, xq−1) if tp = xq and p 	= i
1
λ2

× γ (tp−1, xq−1) otherwise
(6)

The γ function is a pairwise comparison function, which is applied for each aligned
pair of elements in test and training sequences.When amatching is found, the function
returns a value which is λ times greater than the value returned for the previous
matching. In other words, the longer the chain of previous successful matches, the
larger the value of the current γ execution. On the other hand, when a mismatch
happens, the function returns a fraction 1

λ2
of the previous value (i.e., it is penalized).

In summary, consecutivemismatchesmake the γ function tend fast to zero, but isolated
mismatches do not cause such hard impact, making the proposed similarity function
well suited for possibly noisy sequences where isolated errors may happen. The sum
of each pairwise comparison is accumulated by the Γ function, which will result
in a measure of similarity between the two sequences being compared. It is worth
noting that multiple silhouettes are considered while assessing the similarity between
sequences, increasing the effectiveness of the classification process.
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Fig. 3 γ and Γ functions, for λ = 2

As the γ function is the core of the AC-SC algorithm, being executed repeated
times for each test sequence, it must be as simple and fast as possible. We decided
to build it using power-of-two operations (i.e., λ = 2), for computational efficiency.
Figure 3 illustrates the behavior of γ and Γ functions when applied to a hypothetical
pair of sequences and a given silhouette of length 18. Zeroes represent mismatches.
We can see the difference in impact between an isolated mismatch (at 6th position)
and consecutive mismatches (from 10th to 14th positions).

3.9 Prediction

Multiple pattern silhouettes are investigated while processing an arbitrary sequence
t ∈ T . The similarity values between t and each silhouette are grouped together
according to the class label associated with the corresponding training sequence. We
calculate a score for each class label yi as follows:

w(t, yi ) =
∑

s∈St

∑

x∈Dyi
s

Γ (x, t |s) (7)

where St is the set of all pattern silhouettes matching test sequence t , and Dyi
s is the set

of all training sequences labeled as yi containing a given silhouette s. Finally, these
scores are normalized, as expressed by the prediction function p̂(yi |t), previously
shown in Eq. 4.
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4 Experimental evaluation

In this section we empirically analyze the effectiveness of our proposed algorithms for
the sake of learning sequential classifiers. Similarly to other works (Zaki et al. 2010),
we employ the standard accuracy as our basic evaluation measure. Learning times for
all algorithms include the time spent during any pre-processing, training and testing
operations, and are given in milliseconds, and all experiments were performed on a
Linux-based PC with a Intel core i5 2.4 GHz processor and 4.0 GBytes RAM.

4.1 Application scenarios

We employ diverse application scenarios in order to evaluate our algorithms under
different aspects of sequence data, such as short- and long-range dependence, and
different levels of noise. Application scenarios used in our experiments, include:

1. Sentiment analysis: this task aims at determining the attitude that is implicit in
a textual sentence, with respect to some topic or content. The attitude is usually
represented by judgment or evaluation concerning the topic. The dataset we used
in the experiments comprises messages posted on Twitter concerning the Brazil-
ian presidential election, occurred in 2010. We collected over 62,000 messages
regarding candidate Dilma Rousseff during the campaign. These messages were
manually annotated by three to five human annotators. Thus, we believe the dataset
corresponds to a good sample of the population sentiment of approval during the
election period. The dataset contains 62,089 distinct terms. This dataset is very
noisy, mainly because the shortened format of communication imposed by Twitter,
which forces users to post messages in informal and sometimes criptic style.

2. Namedisambiguation: given a citation recordwith ambiguous author names, deter-
mine the correct entity corresponding to that name. The dataset we used in the
experiments is composed of authorship records extracted from the DBLP digital
library. Each record in the dataset comprises co-author names, title and citations,
and is associatedwith at least one ambiguous author name. There are 2,193 distinct
terms in the dataset.

3. Protein fold recognition: this task aims at predicting the structure (or fold) of a
protein from its aminoacid sequence. The dataset we used in the experiments is
composed of aminoacid sequences collected from the Protein Data Bank archive
(www.pdb.org), which contains experimentally determined structures of proteins.
The dataset contains 694 sequences, each one having up to 967 elements.

4. Protein family recognition: given a collection of aminoacid sequences belonging
to different protein families, determine whether a query protein belongs to a given
family or not. The dataset we used in the experiments is composed of long string of
characters, where each character represents an aminoacid from a set of 20 possible
ones. The dataset includes a curated classification of known protein structures with
the secondary structure knowledge embedded in the dataset (Murzin et al. 1995).
This task has being largely employed in many applications of biological sequence
analysis for finding homologous proteins (Durbin et al. 1998).
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Table 1 Improvement in terms
of accuracy. Baseline is λ = 2

Dataset λ = 3 (%) λ = 4 (%) λ → ∞ (%)

Sentiment analysis 0.1 −0.1 −0.1

Author name disamb. −0.2 −0.2 −0.3

Protein fold recog. – −1.2 −1.9

Protein family recog. −0.2 −0.1 0.2

Intrusion detection 0.1 −0.1 −0.5

Spelling correction 0.2 – −0.2

Web log analysis – −0.1 −0.1

5. Intrusion detection: given a sequence of UNIX commands performed by an arbi-
trary user, determine if the user is amasquerader or an authentic one. The datasetwe
used in the experiments was collected from Purdue University (Lane and Brodley
1999), over varying periods of time, using the (t)csh mechanism. Each command
in the history data together with its arguments is treated as a single token.Modeling
this dataset requires classifiers composed of long subsequences.

6. Spelling correction: given a sentence containing commonly confusedwords (Gold-
ing and Roth 1996), determine if the target word is correctly or wrongly spelled.
The total number of sentences in our dataset is 2,917 and there are 12,280 distinct
terms.

7. Web log analysis: given a sequence of clicks performed by an arbitrary user,
categorize the user based on his/her navigation behavior. The dataset we used in
the experiments is composed of log files collected at the Department of Computer
Science at the Rensselaer Polytechnic Institute during a period of 3 weeks. Those
files were transformed into sequences of clicks (web navigation history) made
by different users. Each sequence represents a web session of a specific user and
is labeled according to the origin domain of that user. Users coming from “edu”
or “ac” domains are taken as academic and users coming from other domains are
taken as visitors. In all, the dataset contains 16,206 uniqueWeb pages, whichmake
up the alphabet.

More detailed descriptions of these tasks and datasets are available in (Zaki et al.
2010; Davis et al. 2012; Silva et al. 2011).

4.2 Sensitivity to λ

Table 1 shows the sensitivity of AC-SC algorithm to variations of λ. Specifically, the
table shows the improvement in terms of accuracy in comparison to results obtained
by setting λ = 2. The best value for λ varies according to the dataset. For most of
the datasets, lower values for λ imply in higher improvements. But in all cases, these
improvements are very small, showing that AC-SC is extreemely robust to variations
of λ.
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4.3 Accuracy versus learning time

Figure 4 shows the trade-off between accuracy and learning time, considering our
proposed AC-SC algorithm.1 Both dimensions are impacted by the length of the sub-
sequences that compose the classifier. We evaluated six different length limitations:
log10 n,

n
10 , log n,

√
n, n2 , and n. Clearly, the larger the length of the subsequences, the

more time is spent for learning the corresponding classifier. Accuracy, on the other
hand, does not necessarily increases with the length of subsequences. The best trade-
off between accuracy and learning time seems to be achieved when limiting the length
of the subsequences by a factor of log n.

4.4 Comparative results

We employ diverse baselines in our comparison analysis:

– A k-order HMM (Galassi et al. 2007; Pitkow and Pirolli 1999; Saul and Jordan
1999; Deshpande and Karypis 2004) as the representative of traditional solutions
to model sequence data,

– The ASC algorithm (Bannister 2007), as the representative of the state-of-the-
art algorithms devised to tasks related to information extraction and protein fold
recognition,

– The VOGUE algorithm (Zaki et al. 2010), as the representative of the state-of-the-
art algorithms devised to tasks such as intrusion detection, spelling correction, and
Web log analysis,

– The HMMER algorithm (Eddy 1998), as a representative of the state-of-the-art
algorithms devised to protein family recognition tasks,

– TheStringKernel for LIBSVM(Chang andLin 2011), as a representative of simple
edit-distance string kernel solutions,

– The Gappy Substring Kernel (Rousu and Shawe-Taylor 2005; Lodhi et al. 2002),
as a representative of popular mismatch-tolerant string kernel solutions available,
and,

– The Spectrum Kernel (Leslie et al. 2002a), as a representative of fast exact-match
string kernel solutions available,

– The LAC algorithm (Veloso and Meira 2011), as a representative state-of-the-art
demand-driven associative classifiers.2

The learning task in all application scenarios consists of correctly predicting the
class label associated with test sequences. We conducted ten-fold cross validation,
and the results reported for each evaluated algorithm correspond to the average of the
ten trials. Wilcoxon significance tests were performed, and the best results, including
statistical ties, are shown in bold. String kernel SVMswere built with hyperparameters
found through a grid search approach. The computation time of the grid search task
was not considered in the results.

1 A similar trend is observed for SC-SC algorithm.
2 The reason we include the LAC algorithm (which does not exploit adjacency information) as a baseline,
is to evaluate the possible benefits of exploiting adjacency information while producing the classifier.
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Fig. 4 Trade-off between accuracy (right y-axis), time (left y-axis) and sequence length limitation (x-axis).
Datasets employed (in order): Sentiment analysis, author name disambiguation, protein fold recognition,
protein family recognition, intrusion detection, spelling correction and Web log analysis
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Table 2 Sentiment analysis
Algorithm Max length Time Accuracy

LAC 1 18,487 0.781

2 343,155 0.912

3 2,531,995 0.930

4 9,989,354 0.935

Edit-Distance Kernel – 10,598,900 0.854

Gappy Kernel – 15,811,121 0.892

Spectrum Kernel – 618,274 0.862

SC-SC log n 144,838 0.906

AC-SC log n 185,785 0.921

Table 2 shows accuracy numbers and the corresponding execution times for datasets
concerning sentiment analysis. Table 3 shows accuracy and time results obtained in
author name disambiguation task. Also, Table 3 shows accuracy and time for the
protein fold recognition task. For these datasets, we used LAC, String Kernel SVMs
and ASC algorithms as baselines. We performed an extensive evaluation by analyz-
ing different parameter configurations, namely maximum sequence length, minimum
support, and maximum gap size. In most cases, lower minimum support values yields
best accuracy figures, but this usually increases learning time, as expected. In many
cases, accuracy numbers tend to increase when larger gaps are allowed, but again, this
also increases learning time. The length of the enumerated subsequences is important
for the sake of improving classification accuracy, but the cost of exploring longer sub-
sequences may become impractical, specially when combinedwith the gap strategy. In
summary, higher accuracy figures are usually achieved by exploiting parameter con-
figurations that lead to higher learning times. This is clearly observed, even in domains
where short patterns (comprising 2 to 3 elements) are expected to provide good results,
as in sentiment analysis and author name disambiguation, which are related to lan-
guage and text information retrieval. Our proposed algorithms, in most cases, offer
either the fastest learning times or the highest accuracy numbers. More specifically,
the SC-SC algorithmwas the second fastest one in all evaluated cases, being surpassed
only by LAC when limited to single-element patterns, which is always less accurate.
Generally speaking, we may state that the AC-SC algorithm offers the same (or very
similar) accuracy numbers when compared with LAC algorithm. However, the results
obtained by LAC, in most cases, with higher pattern sizes, make its execution much
slower than all other approaches. A similar analysis can be done when comparing
AC-SC with ASC algorithm: the similar accuracy results come with longer patterns
and gaps, which produce slower executions. We conclude that the AC-SC algorithm
compensates its smaller number of investigated patterns by exploring longer sub-
sequences and, specially, by allowing approximate matches and mismatches. This
conclusion becomes clearer when comparing the results obtained by AC-SC against
the ones obtained by SC-SC, which, in most of the cases, could not achieve the same
accuracy level. The ASC algorithm, unfortunately, could not be applied in the senti-
ment analysis dataset. Its high-dimensionality, combined with the large alphabet size,
makeASC to consume unpractical amounts ofmemory.When comparingAC-SCwith
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Table 3 Author name disambiguation and protein fold recognition

Algorithm Len. Supp. Gap Name disambiguation Prot. fold recognition

Time Accuracy Time Accuracy

ASC 1 0.001 1 565 0.815 28,745 0.046

1 0.005 1 558 0.798 21,294 0.043

1 0.010 1 484 0.823 19,489 0.046

2 0.001 1 992 0.931 54,896 0.301

2 0.001 2 1,207 0.978 64,629 0.308

2 0.001 3 1,583 0.969 74,983 0.311

2 0.005 1 1,053 0.939 33,515 0.299

2 0.005 2 1,367 0.972 38,892 0.298

2 0.005 3 1,490 0.968 47,003 0.319

2 0.010 1 564 0.972 22,894 0.049

2 0.010 2 742 0.966 23,345 0.051

2 0.010 3 755 0.977 23,501 0.072

3 0.001 1 1,329 0.971 72,328 0.301

3 0.001 2 2,652 0.967 143,993 0.309

3 0.001 3 4,623 0.959 269,732 0.292

3 0.005 1 1,330 0.970 33,104 0.297

3 0.005 2 2,723 0.967 38,731 0.325

3 0.005 3 4,676 0.963 44,226 0.329

3 0.010 1 742 0.986 22,947 0.050

3 0.010 2 1,020 0.975 23,444 0.055

3 0.010 3 1,441 0.962 24,668 0.074

4 0.001 1 1,823 0.973 100,952 0.318

4 0.001 2 1,823 0.973 388,748 0.294

4 0.001 3 6,295 0.967 1,146,505 0.261

4 0.005 1 1,903 0.977 33,263 0.313

4 0.005 2 6,268 0.969 40,466 0.334

4 0.005 3 15,278 0.937 44,458 0.325

4 0.010 1 768 0.982 23,362 0.049

4 0.010 2 1,627 0.976 23,254 0.050

4 0.010 3 2,914 0.962 23,624 0.071

LAC 1 − − 47 0.777 8,816 0.046

2 − − 62 0.923 37, 220 0.300

3 − − 187 0.955 3,511,546 0.343

Edit-Distance Kernel – − − 5,605 0.903 15,100 0.373

Gappy Kernel – − − 7,110 0.922 18,167 0.371

Spectrum Kernel – − − 856 0.910 14,274 0.371

SC-SC log n − − 92 0.953 8,758 0.311

AC-SC log n − − 248 0.983 18,409 0.347
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Table 4 Protein family
recognition

Algorithm Length Time Accuracy

HMM – 610 0.725

HMMER – 190 0.750

VOGUE – 3,650 0.775

Edit-Dist. Krn. – 224 0.844

Gappy Krn. – 301 0.842

Spectrum Krn. – 202 0.818

SC-SC log n 153 0.814

AC-SC log n 281 0.840

Table 5 Intrusion detection
Algorithm Length Time Accuracy

HMM – 64,930 0.715

HMMER – 41,328 0.725

VOGUE – 14,420 0.732

Edit-Dist. Krn. – 161,660 0.487

Gappy Krn. – 193,745 0.721

Spectrum Krn. – 17,182 0.781

SC-SC log n 3,870 0.767

AC-SC log n 73,040 0.791

string kernel approaches, our algorithm achieves better or similar accuracy results in
sentiment analysis and author name disambiguation tasks, being much faster. Protein
fold recognition poses a very hard task for all algorithms considered. No algorithm
could reach even 40% in accuracy. As expected, string kernel algorithms, that corre-
spond to the state-of-the-art in protein fold recognition, achieved the highest accuracy
among the evaluated algorithms, and also the best execution times.

Table 4 shows accuracy numbers and the corresponding execution times for the
protein family recognition task. Table 5 presents accuracy numbers and time results
for the intrusion detection task. Table 7, shows results related to the spelling correction
task and, finally, Table 6 shows accuracy numbers and time results forWeb log analysis
task. For these tasks, we used HMM, HMMER, String Kernels, and the VOGUE
algorithms as baselines. Finding the best parameters for these algorithms involved the
evaluation of an enormous number of possible configurations, as discussed in (Zaki
et al. 2010).

Again, in almost all cases, our proposed algorithms, SC-SC andAC-SC, offer either
the fastest learning times or the highest accuracy numbers. More specifically, the SC-
SC algorithm was the fastest one in all evaluated cases. Further, for the Web Log
analysis task, SC-SC was also the best performer in terms of classification accuracy,
and for the remaining tasks, it also provides highly competitive accuracy figures, being,
in most of the cases, higher than the accuracy numbers achieved by HMMER, HMM,
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Table 6 Spelling correction
Algorithm Length Time Accuracy

HMM – 26,450 0.624

VOGUE – 44,630 0.685

Edit-Dist. Krn. – 1,602 0.581

Gappy Krn. – 2,201 0.620

Spectrum Krn. – 551 0.649

SC-SC log n 421 0.654

AC-SC log n 2,079 0.715

Table 7 Web log analysis
Algorithm Length Time Accuracy

HMM – 1,200,720 0.798

VOGUE – 77,590 0.810

Edit-Dist. Krn. – 269,860 0.835

Gappy Krn. – 310,195 0.841

Spectrum Krn. – 41,281 0.836

SC-SC log n 2,250 0.842

AC-SC log n 3,510 0.841

String Kernels and VOGUE. AC-SC achieves the highest accuracy numbers in all
cases. AC-SC also provides fast execution times in all cases, when compared with
HMMs and VOGUE approaches. String kernel SVMs were fast in some tasks, but
extremely slow in others. In the Web log analysis and intrusion detection tasks, where
the datasets are large, String kernel SVMs executed orders of magnitude slower than
SC-SC and AC-SC algorithms. In the other two smaller datasets the time is in the
same order of magnitude, being faster in only one case (i.e., the spelling correction
task). Yet, in the intrusion detection task, AC-SC is slower than HMMs, but it showed
accuracy gains that are greater than 10%.

4.5 Discussion

Our results indicate that for most of the evaluated cases, our algorithms provide com-
petitive (or better) accuracy numbers, but aremuch faster than the competitors. Several
reasons contribute to the compuational efficiency of our algorithms, including: (i) the
limitation on the length of subsequences, (ii) the demand-driven subsequence enumer-
ation process, and (iii) the fast computation of pattern silhouettes. We also observed
some reasons that may contribute to the effectiveness of our algorithms: (i) higher
accuracy improvements were observed in application scenarios where data is highly
noisy (sentiment analysis, name disambiguation, and spelling correction), and (ii) high
accuracy numbers were observed in application scenarios where longer subsequences
must be enumerated (intrusion detection, web log analysis, and protein fold recog-
nition). This suggests that the proposed algorithms produce noise-tolerant classifiers
that are able to enumerate long subsequences efficiently.
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5 Conclusions

This paper focuses on the important problem of learning classifiers from sequence
data. Such classifiers are used to distinguish between sequences belonging to different
labeled groups. We have introduced new algorithms for learning these classifiers. Our
proposed algorithms produce classifiers that are able to capture long-range dependen-
cies in the data, while being tolerant to noisy data. The first, simpler algorithm, exploits
proximity information to drastically narrowdown the search space for sequences.More
specifically, elements within a sequence must be contiguous in the sense that no vio-
lation in the ordering among elements is allowed. Sequence enumeration follows a
simple slidingwindow approach, whichwarrants asymptotic complexity of O(n log n)

with the length of the test instances.
The second, more sophisticate algorithm, also exploits feature proximity in order to

narrow down the search space for rules, but in this case violations or disruptions in the
ordering between features within a rule are allowed to happen. We introduce a novel
structure, called pattern silhouettes, in order to warrant effective rule enumeration with
partial contiguous matchings.

To evaluate the effectiveness of our algorithms,we use real data obtained fromappli-
cations scenarios such as sentiment analysis, author name disambiguation, intrusion
detection, spelling correction, protein fold and family recognition and Web log analy-
sis. Our results reveal that the proposed algorithms are highly effective and efficient,
being able to produce accurate results with low computational cost, when compared
against state-of-the-art associative classifiers, general purpose sequential classifiers
and even domain-specific sequential classifiers. In some cases our algorithms are
orders of magnitude faster to achieve the same or even better accuracy.
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