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Abstract Distance metric learning is a fundamental problem in data mining and
knowledge discovery. Many representative data mining algorithms, such as k-nearest
neighbor classifier, hierarchical clustering and spectral clustering, heavily rely on the
underlying distance metric for correctly measuring relations among input data. In
recent years, many studies have demonstrated, either theoretically or empirically, that
learning a good distance metric can greatly improve the performance of classification,
clustering and retrieval tasks. In this survey, we overview existing distance metric
learning approaches according to a common framework. Specifically, depending on
the available supervision information during the distance metric learning process, we
categorize each distance metric learning algorithm as supervised, unsupervised or
semi-supervised. We compare those different types of metric learning methods, point
out their strength and limitations. Finally, we summarize open challenges in distance
metric learning and propose future directions for distance metric learning.
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1 Introduction

Distance metric learning is a fundamental problem in many applications. In informa-
tion retrieval applications, the underlying distances between the query and documents
determine the retrieval ranks. In clinical decision support applications, physicians are
interested in finding out similar patients given a query patient (Sun et al. 2010; Wang et
al. 2011a, b). Learning a proper distance metric is also at the core of many popular data
mining and knowledge discover algorithms, such as k-Nearest Neighbor (kNN) clas-
sifier (Duda et al. 2001), hierarchical agglomerative clustering (HAC) (Jain and Dubes
1988), and spectral clustering (SC) (Luxburg 2007). In recent years, many studies have
demonstrated Kulis (2010), Werman et al. (2010), and Yang and Jin (2006), either the-
oretically or empirically, that learning a good distance metric can greatly improve the
performance of classification (Weinberger and Saul 2009), clustering (Domeniconi et
al. 2007) and retrieval (He et al. 2006) tasks.

In this survey, we will give an overview of the existing distance metric learning
approaches and point out their strength and limitations, as well as present challenges
and future research directions. We categorize distance learning algorithms as super-
vised, unsupervised or semi-supervised according to the availability of supervision
information during the distance metric learning process. If complete supervision infor-
mation (e.g., labels) for a data set is required, this distance metric learning approach
is called supervised metric learning; If no supervision information is used to construct
a distance metric, the approach is called unsupervised metric learning. Finally, if both
labeled and unlabeled data are used to learn a distance metric, this approach is called
a semi-supervised metric learning method.

In the rest of this survey, we will first introduce the definition of distance metric in
Sect. 2. Then we will overview supervised, unsupervised and semi-supervised distance
metric learning algorithms in detail in Sect. 3. After that, we present advanced topics
in distance metric learning in Sect. 4. Finally, we conclude the survey with challenges
and open problems in distance metric learning in Sect. 5. Table 1 summarizes the
notations and symbols that will be used throughout the paper.

Difference with Existing Surveys There has been quite a few existing surveys
and tutorials on distance metric learning. For example, Yang and Jin (2006) wrote
one of the early metric learning survey summarizing the metric learning approaches
until 2006. Werman et al. (2010) gave a tutorial on distance functions and metric
learning in computer vision applications. Kulis (2010) gave a comprehensive tutorial
on distance metric learning and later published a monograph Kulis (2012) on this
topic. Different from those existing tutorials and surveys, this paper summarizes the
metric learning approaches from a different perspective—dimensionality reduction.
We point out that most of the existing metric learning approaches can be viewed
as a standard Euclidean distance in some embedding space. Thus distance metric
learning and dimensionality reduction can be analyzed from a unified point of view. We
surveyed a set of representative distance metric learning and dimensionality reduction
methods. According to the availability of supervision information, we categorize each
approach as unsupervised, supervised or semi-supervised. In the last part of this survey,
we also introduce some advanced topics including online learning, active learning and
transfer learning.
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Table 1 The meanings of
various symbols that will be
used throughout the paper

Symbols Meaning

n Number of data

d Data dimensionality

xi The i-th data vector

X Data matrix

M Precision matrix of the generalized Mahalanobis distance

wi The i-th projection vector

W Projection matrix

Ni The neighborhood of xi

φ(·) Nonlinear mapping used in kernel methods

K Kernel matrix

L Laplacian matrix

2 The definition of distance metric learning

Before describing different types of distance metric learning algorithms, we first define
necessary notations and concepts on distance metric learning.

Throughout the paper, we use X to represent a set of data points. If x, y, z ∈ X
are data vectors with the same dimensionality, we call D : X × X → R a Distance
Metric if it satisfies the following four properties1:

– Nonnegativity: D(x, y) � 0
– Coincidence: D(x, y) = 0 if and only if x = y
– Symmetry: D(x, y) = D(y, x)

– Subadditivity: D(x, y)+D(y, z) � D(x, z)

If we relax the coincidence condition to if x = y⇒ D(x, y) = 0, then D is called
a Pseudo Metric. There are many well-known distance metrics. Here we list several
examples:

– Euclidean distance, which measures the distance between x and y by

D(x, y) =
√

(x − y)�(x − y) (1)

– Cosine distance, which measures the distance between x and y by

D(x, y) =
√

1− x�y
‖x‖‖y‖ (2)

where ‖ · ‖ is the vector norm operator. The Cosine distance is often used to
measure the distance between pairwise documents. Note that Cosine distance will

1 http://en.wikipedia.org/wiki/Metric_(mathematics).
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be equivalent to Euclidean distance if we normalize every data vector to have a
unit norm. Note that Cosine distance is not well defined for zero vectors, thus it is
not a strict distance metric.

– χ2 distance, which measures the distance between x and y by

D(x, y) =
√√√√1

2

d∑

i=1

(xi − yi )2

xi + yi
(3)

where d is the dimensionality of x and y. The χ2 distance is usually used to
measure the distance between two discrete distributions (histograms) Pele and
Werman (2010). Note that χ2 distance is not well defined for two zero vectors,
thus it is not a strict distance metric.

– Mahalanobis distance2, which measures the distance between x and y by

D(x, y) =
√

(x − y)�S(x − y) (4)

where S is the inverse of the data covariance matrix (also referred to as the precision
matrix)3.

– Generalized Mahalanobis distance, which measures the distance between x and
y by

D(x, y) =
√

(x − y)�M(x − y) (5)

where M is some arbitrary Symmetric Positive Semi-Definite (SPSD) matrix. We
can decompose M as M = UΛU� with eigenvalue decomposition, where U is
a matrix collecting all eigenvectors of M, and Λ is a diagonal matrix with all
eigenvalues of M on its diagonal line. Let W = UΛ1/2, then we have

D(x, y) =
√

(x − y)�WW�(x − y) =
√

(W�(x − y))�(W�(x − y))

=
√

(̃x − ỹ)�(̃x − ỹ) (6)

where x̃ = W�x. From the expressions of the above distances we can see that the
Euclidean, Cosine, χ2 and Mahalanobis distances can directly be computed given the
data, i.e., no learning procedure is needed. We call these distances fixed distances. The
goal of this survey is to summarize distance metric learning techniques, where we will
mainly focus on learning generalized Mahalanobis distance, which wants to learn the
best precision matrix from the data such that some optimality criterion is met.

In order to formally define distance metric learning, we present another projection
viewpoint of learning distance metrics. By examining the expression of Eq. (6), we can
observe that the generalized Mahalanobis distance is equivalent to a Euclidean distance
of the data in the projected space transformed by matrix W. Therefore, learning an

2 http://en.wikipedia.org/wiki/Mahalanobis_distance
3 http://en.wikipedia.org/wiki/Covariance_matrix
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538 F. Wang, J. Sun

optimal precision matrix M is equivalent to learn a projection matrix W. In this survey,
we define distance metric learning as follows:

Distance Metric Learning The problem of learning a distance function D for a pair
of data points x and y is to learn a mapping function f , such that f (x) and f (y) will
be in the Euclidean space and D(x, y) = ‖ f (x)− f (y)‖, where ‖ · ‖ is the �2 norm.

With this definition, we can also categorize a distance metric learning algorithm is
linear or nonlinear based on whether the projection is linear or nonlinear.

3 Distance learning algorithms

This section surveys the state-of-the-art distance metric learning algorithms. We cat-
egorize these algorithms as unsupervised, supervised or semi-supervised, according
to the supervision information they use during the learning process. Throughout the
paper, we will use X = [x1, x2, · · · , xn] ∈ R

d×n to represent the data matrix. xi ∈ R
d

is the i-th data vector. Note that in the following presentations we still use D to denote
the distance metric we want to learn.

Although there are a large number of distance metric learning algorithms, almost
all of them are optimizing an objective of the following form under some constraints:

J (D) = λ1L(D)+ λ2U(D) (7)

where L(D) is a supervised term involving supervision information, U(D) is an unsu-
pervised term only deals with data characteristics. λ1 � 0, λ2 � 0 are tradeoff para-
meters. With this general framework in mind, next we introduce the details of those
algorithms and explain how they fit into this general formulation.

3.1 Unsupervised methods

Unsupervised distance metric learning methods do not require any supervision, i.e.,
they learn an optimal distance metric purely from the data matrix X, such that some
geometric or discriminative optimality is achieved. Connecting to Eq. (7), unsuper-
vised methods optimize some J (D) with λ1 = 0. According to the properties of the
existing unsupervised approaches, we categorize them as in Table 2, where the defin-
ition of linear vs. nonlinear has been clarified in Sect. 2. Local versus global means
that whether an algorithm is derived by optimizing some criteria constructed on the
entire data or a local region of the data.

3.1.1 Principal component analysis (PCA)

PCA Jolliffe (2002) is a method aiming at extracting the projection directions from
the data on which the maximum variance can be achieved. Let X̄ be the centralized
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Table 2 Unsupervised distance metric learning algorithms (all the abbreviations can be found in the main
text)

Local Global

Linear LPP He and Niyogi (2004) PCA Jolliffe (2002), UMMP Wang et
al. (2011c)

Nonlinear LE Belkin and Niyogi (2001), LLE
Roweis and Saul (2000), Isomap
Tenenbaum et al. (2000), SNE
Hinton and Roweis (2002), KLPP
He and Niyogi (2004)

KPCA Schölkopf and Smola (2002),
KUMMP Wang et al. (2011c)

data matrix (i.e., subtracting the mean from X), then the first principle component w1
can be obtained by

w1 = argmax‖w‖=1V ar(w�X̄)

= argmax‖w‖=1
1

n − 1
w�X̄X̄�w (8)

Given the first k−1 principal components, the k-th principal component can be found
by subtracting the effect of the first k − 1 principal components from X̄:

X̂k−1 = X̄−
k−1∑

i=1

wi w�i X̂i (9)

By using X̂k−1 as the new data set, we can find the k-th principal component as

wk = argmax‖w‖=1w�X̂k−1X̂�k−1w (10)

Overall, we want to find matrix W with the follow property:

maxW tr
(

W�X̄X̄�W
)

(11)

s.t. W�W = I

We can see that the projection directions of PCA are obtained by successively seek-
ing for the direction that maximizes the entire data variance. Because tr

(
W�X̄X̄�W

)
measures the sum of variances on all the projection direction. The solution to W can be
obtained through eigen-decomposition of X̄X̄�4. PCA is a global and linear technique.
The learned distance between xi and x j is the Euclidean distance between W�x̄i and
W�x̄ j . Also PCA can be easily extended to out-of-sample data as the linear projection
W is learned explicitly.

4 http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix.
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3.1.2 Nonlinear PCA

One limitation of PCA is that it is a linear method. To enhance its capability of handling
nonlinearly distributed data, we can use a Kernel Trick Schölkopf and Smola (2002),
which is a common technique used in machine learning and data mining that aims at
transforming the nonlinear problem in the original data space into a linear problem
in some mapped feature space. Suppose φ : Rd → F is such mapping. Generally F
is a Reproducing Kernel Hilbert Space (RKHS) , thus we can rewrite the mapping as
φ : x→ k(·, x), where k(·, x) is a function in RKHS satisfying

– 〈k(·, x), f 〉 = f (x)

– 〈k(·, x), k(·, y)〉 = k(x, y)

where f is also a function in the same RKHS. With the Representer Theorem Schölkopf
and Smola (2002), we can write any function f ∈ F as

f (x) =
n∑

i=1

αi k(xi , x) (12)

Applying the kernel trick on those traditional methods means that we perform those
analysis in the kernel space instead of the original space. For example, Kernel Principle
Component Analysis (KPCA) performs PCA in the RKHS that those data points are
mapped into. Specifically, in RKHS, the data covariance matrix becomes

C = 1

n − 1

n∑

i=1

(
φ(xi )− φ̄(x)

) (
φ(xi )− φ̄(x)

)� = 1

n − 1
Φ̄Φ̄
�

(13)

where �̄(x) =∑n
i=1 φ(xi )/n is the mean in the feature space, and

Φ̄ = [
φ(x1)− φ̄(x), φ(x2)− φ̄(x), · · · , φ(xn)− φ̄(x)

]
(14)

The goal of KPCA is to perform eigenvalue decomposition on C and get the eigen-
vectors as

Cv = 1

n − 1
Φ̄Φ̄
�

v = λv (15)

With the representer theorem, we have v = Φ̄α. Multiplying Φ̄ on both sides of Eq.
(15) and applying the representer theorem, we can get

1

n − 1
Φ̄
�
Φ̄Φ̄
�
Φ̄α = λΦ̄

�
Φ̄α ⇒ 1

n − 1
K̄2α = λK̄α ⇒ 1

n − 1
K̄α = λα (16)

where K̄ is the centralized kernel matrix with its (i, j)-th entry

K̄i j = 〈φ(xi )− φ̄(x), φ(x j )− φ̄(x)〉 = 〈φ̄(xi ), φ̄(x j )〉 (17)

We can get the projection of φ̄(xi ) on v by
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φ̄(xi )
�v =

n∑

u=1

αu〈φ̄(xi ), φ̄(xu)〉 = K̄i ·α (18)

After we get the projections, the pairwise distance metric can be evaluated by the
Euclidean distance on those projected coordinates.

Therefore, KPCA can be viewed as performing PCA in the feature space F , so it is
a nonlinear, global method. The learned distance between xi and x j is the Euclidean
distance between φ̄(xi )

�v and φ̄(x j )
�v. The computational technique involved in

KPCA is also eigenvalue decomposition, and KPCA can be easily extended to out-of-
sample data with Eq. (18).

3.1.3 Unsupervised maximum margin projections (UMMP)

Both PCA and KPCA aim to find a projection space under which the total data variance
is maximized. Another criterion that is popular in unsupervised learning is that the
scatterness of the data clusters should be maximized. Along this direction, Unsuper-
vised Maximum Margin Projections (UMMP) Wang et al. (2011c) is one representative
method that aims to maximize the aggregated pairwise cluster margins. UMMP can be
viewed as an unsupervised extension of the Support Vector Machine (SVM) algorithm
Vapnik (1995). Suppose data points X = [x1, x2, · · · , xn] come from two classes, the
label of xi is li ∈ {−1,+1}. Then the goal of SVM is to find the maximum-margin
hyperplane that divides the points with li = 1 from those with li = −1 (thus it is a
supervised method). Any hyperplane can be written as a point x satisfying

w�x − b = 0 (19)

where b/‖w‖ corresponds to the distance of the hyperplane from the origin. SVM aims
to choose the w and b to maximize the distance between the parallel hyperplanes that
are as far apart as possible while still separating the data, which is usually referred to
as the margin of the two classes. These hyperplanes can be described by the equations

w�x − b = 1 or w�x − b = −1 (20)

The distance between the two parallel hyperplane is 2/‖w‖. Then if the data from
two classes are clearly separated, then the goal of SVM is to solve the following
optimization problem to find the hyperplane that maximizes the margin between two
classes

minw,b
1

2
‖w‖2 (21)

s.t. li (w�xi − b) � 1 (∀i = 1, 2, · · · , n)

However in reality the two classes may not be perfectly separable i.e., there might
be some overlapping between them. Then we need soft margin SVM, which aims at
solving
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minw,b,ξ

1

2
‖w‖2 + C

n∑

i=1

ξi (22)

s.t. li (w�xi − b) � 1− ξi (∀i = 1, 2, · · · , n)

where ξ = {ξi } � 0 are slack variables used to penalize the margin on the overlapping
region. Unsupervised Maximum Margin Projections (UMMP) extends SVM by seek-
ing for k projection hyperplanes W = [w1, w2, · · · , wk] via solving an optimization
problem. At the same time, since the label is not given, UMMP also tries to learn an
optimal set of label such that data points are optimally separated based on the learned
class labels. The optimization problem is formulated as

min
l∈{−1,+1}n min

W,b,ξ r≥0

1

2

d∑

r=1

‖wr‖2 + C

n

d∑

r=1

n∑

i=1

ξri (23)

s.t. ∀i = 1, . . . , n, r = 1, . . . , d

li
((

wr )T xi + b
)
≥ 1− ξri ,

WT W = I

where ξ r = {ξri }ni=1 (r = 1, 2, · · · , k) with ξri > 0 are the slack variables for
penalizing soft margins and C > 0 is a tradeoff parameter.

∑n
i=1 ξri is divided by n

to better capture how C scales with the dataset size. Empirically, C can be tuned in a
fix range without worrying about the dataset size n. Intuitively what UMMP does is
to find k orthogonal projection hyperplanes such that on each projection direction the
two data clusters are separated as well as possible (in terms of maximizing the soft
margin). After some relaxations, Wang et al. (2011c) proposed a cutting-plane based
approach for solving the problem.

As UMMP aims to separate the whole clusters, it is a global and linear approach.
One can use the kernel trick to extend UMMP for handling data that are not linearly
separable. The learned distance between xi and x j is the Euclidean distance between
W�xi and W�x j . Similar to PCA, UMMP also learns the explicit mapping function
W , thus it can be easily extended to out-of-sample data. The computational technique
involved in UMMP is quadratic programming. One can refer to Wang et al. (2011c)
for more details on Kernel UMMP.

3.1.4 Locality preserving projections (LPP)

PCA and UMMP find the projection directions on which the data are optimally spread.
More specifically, PCA seeks for projection directions on which the variance of the
entire data is maximized, while UMMP looks for the directions on which the data
clusters are best separated. Another popular criterion for learning the projection direc-
tions is preserving the geometry of the data in the original space after projection. One
representative example is locality preserving projection (LPP) He and Niyogi (2004).

LPP aims at finding a projection matrix W, which preserves the localities of the data
in the original space. Here the localities of a data set is captured by the pairwise data
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similarity {ωi j }ni, j=1 within a neighborhood. This neighborhood is usually calculated
using a Gaussian function as

ωi j = exp

(
−‖xi − x j‖2

2σ 2

)
(if xi ∈ N j or x j ∈ Ni ) (24)

Here Ni or N j represents the neighborhood around xi or x j . The implication is that
we only need to preserve distances within local neighborhoods.

The goal of LPP is to solve the following optimization problem

minW

∑

i j :xi∈N j or x j∈Ni

‖W�xi −W�x j‖2ωi j = tr
(

W�XLX�W
)

(25)

s.t. W�XDX�W = I

where D ∈ R
n×n is the diagonal matrix with Di i = ∑

j ωi j . L = D − � is the
Laplacian matrix with �i j = ωi j if xi ∈ N j or x j ∈ Ni , and �i j = 0 otherwise.
The optimal solution to problem (25) can be obtained by doing generalized eigenvalue
decomposition on (XLX, XDX) as

XLX�w = λXDX�w (26)

and the optimal projection directions can be obtained by concatenating the k eigen-
vectors whose corresponding eigenvalues are the smallest ones. Therefore LPP is a
linear and local method, because it only wants to preserve the local data geometries.
The learned distance between xi and x j is the Euclidean distance between W�xi and
W�x j . The computational technique involved in LPP is eigenvalue decomposition,
and it can easily be extended to out-of-sample data with W.

We can also make use of the kernel trick to make LPP nonlinear, in which case we
need to solve the generalized eigenvalue decomposition problem

ΦLΦ�v = λΦDΦ�v⇒ ΦLΦ�Φα = λΦDΦ�Φα (27)

where Φ is the data matrix in feature space after kernel mapping, and with the repre-
senter theorem, we have v = Φα. Therefore

KLKα = λKDKα ⇒ Ly = λDy (28)

where y = Kα represents the data set embeddings after KLPP. Thus KLPP is a
nonlinear and local method.

3.1.5 Laplacian embedding (LE)

Actually, before LPP appears, there is another technique called LE Belkin and Niyogi
(2001) also focusing on seeking for embeddings that preserve the data localities. Here
locality is defined in the same way as in Eq. (24). Suppose we want to embed the data
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into a one-dimensional space with embedding coordinates y = [y1, y2, · · · , yn]�,
then the goal of LE is to get the y by solving the following optimization problem.

miny

n∑

i=1

(yi − y j )
2ωi j = y�Ly (29)

s.t. y�Dy = 1

where L is the Laplacian matrix similar to LPP. Since LE directly learns the data
embedding coordinates without any explicit mappings, LE is a nonlinear and local
method. The learned distance between xi and x j is the Euclidean distance between
yi and y j . The computational technique involved in LE is eigenvalue decomposition.
It is not that straightforward for LE to extend to out-of-sample data, as it learns the
embedded data coordinates directly without obtaining any explicit mappings.

3.1.6 Locally linear embedding (LLE) [Roweis and Saul (2000)]

LLE (Roweis and Saul 2000) is another method aiming at obtaining locality preserv-
ing embeddings. The difference between LLE and LE is the way they capture the data
localities. LLE is based on the Linear Neighborhood assumption, which assumes that
each data point xi (i = 1, 2, · · · , n) can be linearly reconstructed from its neighbor-
hood Ni (i = 1, 2, · · · , n), i.e.,

minωi j

∑

i

∥∥∥∥∥∥
xi −

∑

x j∈Ni

ωi j x j

∥∥∥∥∥∥

2

(30)

s.t.
∑

j

ωi j = 1 (∀i = 1, 2, · · · , n)

In the second step, LLE aims to recover the low dimensional embeddings that
preserve these local relationships by solving the following optimization problem.

min{yi }ni=1

∑

i

∥∥∥∥∥∥
yi −

∑

x j∈Ni

ωi j y j

∥∥∥∥∥∥

2

(31)

s.t.
n∑

i=1

yi = 0,

n∑

i=1

yi yi = nI (32)

LLE is also a local and nonlinear approach. Like LE, the learned distance between
xi and x j is the Euclidean distance between yi and y j . The computational techniques
involved in LLE include both quadratic programming and eigenvalue decomposition.
It is not that straightforward for LLE to extend to out-of-sample data, as it learns the
embedded data coordinates directly without obtaining any explicit mappings.
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3.1.7 Isometric feature mapping (Isomap)

Isomap (Tenenbaum et al. 2000) is another representative low-dimensional embedding
method, where geodesic distances on a weighted graph are incorporated with the
classical scaling [metric Multidimensional Scaling (MDS) Cox and Cox (2000)]. The
major difference between Isomap and LE, LLE is the way they capture pairwise data
similarity. In Isomap, rather than similarity, the pairwise data distances (which can be
viewed as dissimilarity) are first calculated, then classic MDS is used to obtain the
embedding coordinates of the data points such that the pairwise data distances are
preserved as well as possible.

Here the geodesic distance between pairwise data points is measured in the fol-
lowing way: first a connected neighborhood graph is constructed on the data set, the
graph can either be weighted or unweighted; then the pairwise geodesic distance is the
shortest path on such graph. Such calculation can be viewed as the discrete approx-
imation of the real pairwise geodesic distance on data manifold. Therefore Isomap
is a global and nonlinear approach. The learned distance is measured by the Euclid-
ean distance on the projected low-dimensional space. The computational techniques
involved in Isomap is eigenvalue decomposition. Similar to LE and LLE, it is not that
straightforward for Isomap to extend to out-of-sample data, as it learns the embedded
data coordinates directly without obtaining any explicit mappings.

3.1.8 Stochastic neighbor embedding (SNE)

Till now all the unsupervised approaches aim to optimize some geometry based criteria,
which can be either separation based or locality preserving based. There are also
methods obtaining those data embeddings by optimizing an information theoretic
criterion. SNE (Hinton and Roweis 2002) is such an algorithm.

Let the pairwise data dissimilarities be

di j = ‖xi − x j‖2
2σ 2 (33)

where σ is a empirically determined scaling factor. The probability that xi picks x j as
its neighbor is

pi j =
exp

(
−d2

i j

)

∑
k �=i exp

(−d2
ik

) (34)

Similarly, in the embedded space, the probability that xi picks x j as its neighbor is

qi j =
exp

(
− ∥∥yi − y j

∥∥2
)

∑
k �=i exp

(−‖yi − yk‖2
) (35)
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SNE aims at minimizing

J =
∑

i j

pi j log
pi j

qi j
=

∑

i

K L(Pi‖Qi ) (36)

Therefore, SNE is an embedding method aiming at preserving the neighborhood dis-
tribution around each data point, and it will also get the embedding coordinates as
well. From the expression of pi j in Eq. (34), we can observe that when (xi , xk) are
very far apart, exp(−‖xi − xk‖2) → 0, i.e., pi j will emphasize more on the impact
of the data pairs whose Euclidean distance is small. For minimizing Eq. (36) Hinton
and Roweis (2002) adopted a gradient descent based approach. To achieve a better
local optimal, the authors in Hinton and Roweis (2002) also inject random jitter that
decreases with time into the gradient descent procedure. SNE is a local and nonlinear
method. The learned distance is measured by the Euclidean distance on the projected
low-dimensional space. As SNE directly learns the data embedding coordinates, it is
not easy for SNE to extend to out-of-sample data.
Summary Till now we have introduced different unsupervised distance metric learn-
ing approaches. All of them formulate the learning procedure as some optimization
problem, where the objective can either be geometry based or information theoretic.
For all these methods except simple PCA, there are some free parameters need to be
pre-specified, such as the kernel parameters for kernel methods, neighborhood size or
scaling parameter. All these methods involve expensive optimization procedures, such
as eigenvalue decomposition or semi-definite programming [although SNE employs
gradient descent, adding the jittered noise will still make it slow Hinton and Roweis
(2002)]. Therefore, scalability is still an open issue for applying those algorithms on
large datasets.

In terms of extensibility to out-of-sample data (i.e., those data not in the train-
ing set), linear and kernel methods have some advandages as they can naturally get
learn the projection mappings straightforwardly. For the methods getting embedding
coordinates directly (e.g., Isomap, LLE, LE), we need additional efforts to make them
extensible Bengio et al. (2004). For real world use, as all these approaches are unsuper-
vised, they only explore the characteristics from data. Thus most of these approaches
can be used to explore the data manifold. Only one exception is UMMP, which is
clustering driven, i.e., it seeks for the projection space where the data clusters are
maximally separated.

3.2 Supervised algorithms

In this section we survey supervised distance metric learning algorithms, which learn
distance metrics on both data points and their labels. Connecting to Eq. (7), supervised
approaches optimize J (D) with λ2 = 0. Similar as in unsupervised approaches, we
also categorize those supervised methodologies into different types according to their
characteristics. The details can be found in Table 3.

In this survey, we will review the algorithms with two types of supervision: (1)
Labels, which indicate the class information each training data point belongs to. The
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Table 3 Supervised distance metric learning algorithms (all the abbreviations can be found in the main
text)

Local Global

Linear NCA Goldberger et al. (2004),
ANMM Wang and Zhang (2007),
LMNN Weinberger et al. (2005)

LDA Fukunaga (1990), LSI Xing et
al. (2002), ITML Davis et al.
(2007), MMDA Kocsor et al.
(2004), RCA Shental et al. (2002)

Nonlinear KANMM Wang and Zhang (2007),
KLMNN Weinberger et al. (2005)

KLDA Mika et al. (1999), KMMDA
Kocsor et al. (2004), KRCA Tsang
et al. (2005)

assumption is that distance between data points with the same label should be closer to
distance between data points from different labels. (2) Pairwise constraints, indicate
whether a pair of data points should belong to the same class (must-links) or not
(cannot-links).

3.2.1 Linear discriminant analysis (LDA)

LDA (Fukunaga 1990) is one of the most popular supervised linear embedding meth-
ods. It seeks for the projection directions under which the data from different classes
are well separated. More concretely, supposing that the data set belongs to C different
classes, LDA defines the compactness matrix and scatterness matrix as

ΣC = 1

C

∑
c

1

nc

∑
xi∈c

(xi − x̄c)(xi − x̄c)
� (37)

ΣS = 1

C

∑
c

(x̄c − x̄)(x̄c − x̄)� (38)

The goal of LDA is to find a W which can be obtained by solving the following
optimization problem

min
W�W=I

tr(W�ΣCW)

tr(W�ΣSW)
(39)

By expanding the numerator and denominator of the above expression, we can observe
that the numerator corresponds to the sum of distances between each data point
to its class center after projection, and the denominator represents the sum of dis-
tances between every class center to the entire data center after projection. Therefore,
minimizing the objective will maximize the between-class scatterness while mini-
mize the within-class scatterness after projection. Solving problem (39) is hard, some
researchers (Guo et al. 2003; Jia et al. 2009) have done research on this topic. LDA is
a linear and global method. The learned distance between xi and x j is the Euclidean
distance between W�xi and W�x j . It is easy to extend LDA to out-of-sample data
as the explicit mapping W is learned, and the computational technique involved is
eigenvalue decomposition.
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Kernelization of LDA Similar to the case of PCA, we can extend LDA to the nonlinear
case via the kernel trick, which is called Kernel Discriminant Analysis (KDA) (Mika
et al. 1999). After mapping the data into the feature space using φ, we can compute
the compactness and scatterness matrices as

Σ
φ

C =
1

C

∑
c

1

nc

∑
xi∈c

(φ(xi )− φ̄c)(φ(xi )− φ̄c)
� (40)

ΣS = 1

C

∑
c

(φ̄c − φ̄)(φ̄c − φ̄)� (41)

Suppose the projection matrix we want to get is Wφ in the feature space, then with
the representer theorem

Wφ = Φα (42)

where Φ = [φ(x1), φ(x2), · · · , φ(xn)] and α is the coefficient vector over all φ(xi )

for 1 ≤ i ≤ n. We define K = Φ�Φ as the kernel matrix.
Then

(Wφ)�Σ
φ

CWφ = α�
[

1

C

C∑

c=1

1

nc

∑
xi∈c

Φ�(φ(xi )− φ̄c)(φ(xi )− φ̄c)
�Φ

]
α

= α�
[

1

C

C∑

c=1

1

nc

∑
xi∈c

(K·i − K̄·c)(K·i − K̄·c)�
]

α

= α�MCα (43)

where K·i = and K̄·c = 1
nc

∑
xi∈c K·i , and MC = 1

C

∑C
c=1

1
nc

∑
xi∈c(K·i−K̄·c)(K·i−

K̄·c)�.

(Wφ)�Σ
φ

SWφ = α�
[

1

C

∑
c

(K̄·c − K̄·∗)(K̄·c − K̄·∗)�
]

α

= α�MSα (44)

where K·∗ = 1
n

∑n
i=1 K·i , and MS = 1

C

∑
c(K̄·c − K̄·∗)(K̄·c − K̄·∗)�. Therefore we

can get α by solving

min
α�α=I

tr
(
α�MCα

)

tr
(
α�MSα

) (45)

3.2.2 Margin maximizing discriminant analysis (MMDA)

MMDA (Kocsor et al. 2004) can be viewed as a supervised version of UMMP approach
in Sect. 3.1.3. This is the supervised version of UMMP, where we need to solve the
following optimization problem
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min
W,b,ξ r≥0

1

2

d∑

r=1

‖wr‖2 + C

n

d∑

r=1

n∑

i=1

ξri (46)

s.t. ∀i = 1, . . . , n, r = 1, . . . , d

li
((

wr )T xi + b
)
≥ 1− ξri ,

WT W = I

Comparing problem (46) with problem (23), we can see that the only difference
between MMDA and UMMP is MMDA does not need to solve the data cluster labels
because they are available in supervised setting. Therefore MMDA is a global and
linear approach. One can also apply kernel trick to make it nonlinear, the details can
be found in Kocsor et al. (2004). The learned distance between xi and x j is just the
Euclidean distance between W�xi and W�x j . It is easy to extend MMDA to out-of-
sample data as the explicit mapping W is learned, and the computational technique
involved is quadratic programming.

3.2.3 Learning with side information (LSI)

Both LDA and MMDA use data labels as the supervision information. As we intro-
duced at the beginning of Sect. 3.2, another type of supervision information we con-
sidered is pairwise constraints. The data label information is more strict in the sense
that we can convert data labels into pairwise constraints, but not vise versa.

One of the earliest research that making use of pairwise constraints for learning a
distance metric is the LSI approach Xing et al. (2002). We denote the set of must-link
constraints as M and the set of cannot-link constraints as C, then the goal of LSI is to
solve the following optimization problem

maxM

∑

(xi ,x j )∈C
(xi − x j )

�M(xi − x j ) (47)

s.t.
∑

(xu ,xv)∈M
(xu − xv)

�M(xu − xv) � 1

M � 0

This is a quadratic optimization problem and Xing et al. (2002) proposed an iterative
projected gradient ascent method to solve it. As M is positive semi-definite, we can
always factorize it as M = WW�. Thus LSI is a global and linear approach. The
learned distance formulation is exactly the general Mahalanobis distance with preci-
sion matrix M. It is easy to extend LSI to out-of-sample data as the explicit mapping
W is learned, and the computational technique involved is eigenvalue decomposition.

3.2.4 Relevant component analysis (RCA)

RCA (Shental et al. 2002; Bar-Hillel et al. 2005) is another representative distance
metric learning algorithm utilizing pairwise data constraints. The goal of RCA is to

123



550 F. Wang, J. Sun

find a transformation that amplifies relevant variability and suppresses irrelevant vari-
ability. Here variability is just sample variance. We consider that data variability is
correlated with a specific task if the removal of this variability from the data deterio-
rates (on average) the results of clustering or retrieval. Variability is irrelevant if it is
maintained in the data but not correlated with the specific task Shental et al. (2002). We
also define small clusters called chunklets, which are connected components derived
by all the must-links. The specific steps involved in RCA include:

– Construct chunklets according to equivalence (must-link) constraints, such that the
data in each chunklet are connected by must-link constraints pairwisely.

– Assume a total of p points in k chunklets, where chunklet j consists of points
{x j i }n j

i=1 and its mean is m̄ j . RCA computes the following weighted within-
chunklet covariance matrix:

C = 1

p

k∑

j=1

n j∑

i=1

(x j i − m̄ j )(x j i − m̄ j )
� (48)

– Compute the whitening transformation W = C1/2, and apply it to the original
data points: x̃ = Wx. Alternatively, use the inverse of C as the precision matrix
of a generalized Mahalanobis distance.

Therefore, RCA is a global, linear approach. It is easy to extend RCA to out-of-sample
data as the explicit mapping W is learned, and the computational technique involved
is eigenvalue decomposition.

3.2.5 Information theoretic metric learning (ITML)

Information theoretic objective is one mechanism to develop a supervised distance
metric. ITML (Davis et al. 2007) is one such representative algorithm. Suppose we
have an initial generalized Mahalanobis distance parameterized by precision matrix
M0, a set M of must-link constraints and a set C of cannot-link constraints. ITML
solves the following optimization problem

minM�0 dlogdet (M, M0) (49)

s.t. (xi − x j )
�M(xi − x j ) � l, (xi , x j ) ∈ C

(xu − xv)
�M(xu − xv) � u, (xu, xv) ∈M

where
dlogdet (M, M0) = tr(MM−1

0 )− log det (MM−1
0 )− n (50)

where dlogdet is the LogDet divergence, which is also known as Stein’s loss. It can
be shown that Stein’s loss is the unique scale invariant loss-function for which the
uniform minimum variance unbiased estimator is also a minimum risk equivariant
estimator (Davis et al. 2007). The authors in Davis et al. (2007) also proposed an
efficient Bregman projection approach to solve problem (49). ITML is a global and
linear approach. The learned distance metric is the Mahalanobis distance with precision
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matrix M. It is easy to extend ITML to out-of-sample data as the precision matrix M
is learned, which can be used to evaluate the Mahalanobis distance between any data
pairs, and the computational technique involved is Bregman projection.

3.2.6 Neighborhood component analysis (NCA)

All the supervised approaches we introduced above are global methods. Next we
will also introduce several representative local supervised metric learning algorithms.
First we will overview NCA (Goldberger et al. 2004). Similar as in SNE described in
unsupervised metric learning, each point xi selects another point x j as its neighbor
with some probability pi j , and inherits its class label from the point it selects. NCA
defines the probability that point i selects point j as a neighbor:

pi j = exp
(−‖W�xi −W�x j‖2

)
∑

k �=i exp
(−‖W�xi −W�xk‖2

) (51)

Under this stochastic selection rule, NCA computes the probability that point i will
be correctly classified

pi =
∑

j∈Li

pi j (52)

where Li = { j |li = l j }) that is the set of points in the same class as point i .
The objective NCA maximizes is the expected number of points correctly classified

under this scheme:
J (W) =

∑

i

pi =
∑

i

∑

j∈Li

pi j (53)

Goldberger et al. (2004) proposed a truncated gradient descent approach to minimize
J (W). NCA is a local and linear approach. The learned distance between xi and x j

is the Euclidean distance between W�xi and W�x j . It is easy to extend NCA to out-
of-sample data as the explicit mapping W is learned, and the computational technique
involved is eigenvalue decomposition.

3.2.7 Average neighborhood margin maximization (ANMM)

ANMM (Wang and Zhang 2007) is another local supervised metric learning approach,
which aims to find projection directions where the local class discriminability is max-
imized. To define local discriminability, Wang and Zhang (2007) first defines the
following two types of neighborhoods:

Definition 1 (Homogeneous Neighborhoods) For a data point xi , its ξ nearest homo-
geneous neighborhood N o

i is the set of ξ most similar5 data which are in the same
class with xi .

5 In this paper two data vectors are considered to be similar if the Euclidean distance between them is small,
two data tensors are considered to be similar if the Frobenius norm of their difference tensor is small.
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Definition 2 (Heterogeneous Neighborhoods) For a data point xi , its ζ nearest het-
erogeneous neighborhood N e

i is the set of ζ most similar data which are not in the
same class with xi .

Then the average neighborhood margin γi for xi is defined as

γi =
∑

k:xk∈N e
i

‖yi − yk‖2∣∣N e
i

∣∣ −
∑

j :x j∈N o
i

∥∥yi − y j
∥∥2

∣∣N o
i

∣∣ ,

where | · | represents the cardinality of a set. This margin measures the difference
between the average distance from xi to the data points in its heterogeneous neigh-
borhood and the average distance from it to the data points in its homogeneous neigh-
borhood. The maximization of such a margin can push the data points whose labels
are different from xi away from xi while pull the data points having the same class
label with xi towards xi . It is easy to extend ANMM to out-of-sample data as the
explicit mapping W is learned, and the computational technique involved is eigen-
value decomposition.

Therefore, the total average neighborhood margin can be defined as

γ =
∑

i
γi =

∑

i

⎛
⎝ ∑

k:xk∈N e
i

‖yi − yk‖2∣∣N e
i

∣∣ −
∑

j :x j∈N o
i

∥∥yi − y j
∥∥2

∣∣N o
i

∣∣

⎞
⎠ (54)

and the ANMM criterion is to maximize γ . By replacing yi = W�xi , Wang and
Zhang (2007) obtains the optimal W by performing eigenvalue decomposition of
some discriminability matrix. Thus ANMM is a local and linear approach. The learned
distance between xi and x j is the Euclidean distance between W�xi and W�x j . The
authors in Wang and Zhang (2007) also proposed a kernelized version of ANMM to
handle nonlinear data called KANMM, thus KANMM is local and nonlinear approach.

3.2.8 Large margin nearest neighbor classifier (LMNN)

The last local supervised metric learning approach we want to introduce is the LMNN
(Weinberger et al. 2005). The goal of LMNN is similar as ANMM, i.e., to pull the
data with same labels closer while push data with different labels far apart. LMNN
deploys a different margin formulation. Specifically, LMNN defines the pull energy
term as

εpull =
∑

x j∈N o
i

∥∥∥W�(xi − x j )

∥∥∥
2

(55)

which is the sum of pairwise distances between a data point xi and the data point in
xi ’s homogeneous neighborhood after projection. LMNN defines the push energy as
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εpush =
∑

i

∑

x j∈N o
i

∑

l

(1− δil)

[
1+

∥∥∥W�(xi − x j )

∥∥∥
2 −

∥∥∥W�(xi − xl)

∥∥∥
2
]

+
(56)

where δil = 1 is the labels of xi and xl are the same, and δil = 0 otherwise. The
intuition is to require the data points from different classes should be at least separated
from it by the distance 1. This formulation is very similar to the margin formulation in
multiclass SVM (Crammer and Singer 2001) The above push energy term, for every
data point, LMNN also pushes the data with different labels to at least distance one
from its homogeneous neighborhood. The goal of LMNN is to minimize

ε = μεpull + (1− μ)εpush (57)

The authors in Weinberger et al. (2005) proposed a semi-definite programming tech-
nique to solve for M =WW�. Thus LMNN is a local and linear approach. The learned
distance between xi and x j is the Euclidean distance between W�xi and W�x j . It
is easy to extend LMNN to out-of-sample data as the explicit mapping W is learned,
and the computational technique involved is quadratic programming.
Summary Similar to unsupervised approaches, there is no free lunch for supervised
approaches. All of the supervised metric learning approaches we listed above require
some pre-specified free parameters, and all of them involve some expensive compu-
tational procedures such as eigenvalue decomposition or semi-definite programming.
One exception is the ITML approach, as it deploys a Bregman projection strategy
which may make the solution relatively efficient. However, ITML is sensitive to the
initial choice of M0, which makes it difficult to apply in the case when we do not have
enough prior knowledge. In practice, according to the type of supervision information
provided, we can select a proper supervised metric learning approach that can handle
those supervision information. However, in many real world applications, it may be
expensive and time consuming to get those supervision information. There are also
works aiming at exploring other forms of supervision that are easier to get Schultz and
Joachims (2004). Next we survey semi-supervised approaches that can leverage both
labeled and unlabeled information.

3.3 Semi-supervised distance metric learning

Semi-supervised approaches aim to learn a distance metric from the data where the
supervision information is only available on a small portion of them. Those algorithms
utilize both data with and without supervision information in the learning process.
Therefore one straightforward way one can think of to construct a semi-supervised
algorithm is to deploy an objective as in Eq. (7) with λ1 �= 0, λ2 �= 0, and U(D)

is constructed on the entire data with some methodologies from Sect. 3.1, L(D) is
constructed on the data with supervision information only with some approaches
from Sect. 3.2. Finally we put some constraints on the learned distance metric to
balance both parts. Table 4 summarizes the semi-supervised distance metric learning
algorithms we will introduce.
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Table 4 Semi-supervised distance metric learning algorithms (all the abbreviations can be found in the
main text)

Local Global

Linear LRML Hoi et al. (2008) LRML Hoi et al. (2008), CMM Wang
et al. (2008)

Nonlinear KLRML Hoi et al. (2008), SSDM
Yang et al. (2006), MPCK-means
Bilenko et al. (2004)

KLRML Hoi et al. (2008), KCMM
Wang et al. (2008), SSDM Yang et al.
(2006)

3.3.1 Laplacian regularized metric learning (LRML)

LMRL (Hoi et al. 2008) is one semi-supervised distance metric learning approach.
LRML adopts LPP formulation (described in Sect. 3.1.4) as the unsupervised term
U(D); in terms of the supervised term, LRML chooses ANMM type of objective as
L(D). The optimization problem that LRML aims to solve is

minM t︸︷︷︸
U(D)

+ γ1t2 − γ2t3︸ ︷︷ ︸
L(D)

(58)

s.t. t1 � t

M � 0

where the smoothness term is

t1 =
∑

i, j

‖W�xi −W�x j‖2ωi j = tr(W�XLX�W) = tr(XLX�M) (59)

where M =WW�. The supervised terms consisting of compactness and scatterness
are

t2 =
∑

(xi ,x j )∈M
‖W�xi −W�x j‖2 = tr

⎡
⎣M

∑

(xi ,x j )∈M
(xi − x j )(xi − x j )

�
⎤
⎦(60)

t3 =
∑

(xi ,x j )∈C
‖W�xi −W�x j‖2 = tr

⎡
⎣M

∑

(xi ,x j )∈C
(xi − x j )(xi − x j )

�
⎤
⎦ (61)

where M and C are the sets of must-links and cannot-links, respectively.
Hoi et al. (2008) proposed a semi-definite programming approach for solving prob-

lem (58). LRML is a mixture of local (its unsupervised part) and global (its supervised
part) approach, and it is linear. The learned distance is the Mahalanobis distance with
precision matrix M. It is easy to extend LRML to out-of-sample data as the precision
matrix M is learned, and the computational technique involved is quadratic program-
ming.
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3.3.2 Constraint margin maximization (CMM)

Similarly, CMM (Wang et al. 2008) selects the same supervised term as LRML, but a
different PCA type unsupervised term in its objective. Specifically, the optimization
problem CMM aims to solve is

maxW t4︸︷︷︸
U(D)

− γ1t2 − γ2t3︸ ︷︷ ︸
L(D)

(62)

s.t. W�W = I

where the unsupervised term is t4 = tr(W�XΣX�W) is the PCA objective. Note
that before we apply CMM, all data points need to be centered, i.e., their mean should
be subtracted from the data matrix. The intuition of CMM is to maximally unfold the
data points in the projection space while at the same time satisfying those pairwise
constraints. The authors in Wang et al. (2008) showed that the optimal W can be
obtained by standard eigenvalue decomposition procedure. Therefore CMM is a global
and linear approach. Wang et al. (2008) also showed how to derive its kernelized
version for handling nonlinear data. The learned distance between xi and x j is the
Euclidean distance between W�xi and W�x j . It is easy to extend CMM to out-of-
sample data as the explicit mapping W is learned, and the computational technique
involved is eigenvalue decomposition.

3.3.3 MPCK-means

MPCK-Means is a method proposed in Bilenko et al. (2004) which combines K-
Means clustering and distance metric learning together with some available pairwise
constraints. The goal of MPCK-Means is to partition the data set into a set of homo-
geneous clusters with K-means type algorithm, associated with each cluster there is
a learned generalized Mahalanobis distance metric with different precision matrix.
Specifically, MPCK-means aims to minimize the following objective

J =
∑

i

(
‖xi − μli ‖2Mli

− log(det (Mli ))
)

(63)

+
∑

(xi ,x j )∈M
wi j fM(xi , x j )(1− δ(li , l j ))+

∑

(xi ,x j )∈C
w̄i j fC(xi , x j )δ(li , l j )

where li indicates the cluster assignment for xi , Mli is the precision matrix for the
generalized Mahalanobis distance for cluster li , ‖xi −x j‖2M = (xi −x j )

�M(xi −x j ),
det (·) represents the matrix determinant, δ(li , l j ) = 1 if li = l j , and δ(li , l j ) = 0 if
li �= l j . fM(xi , x j ) and fC(xi , x j ) are defined as

fM(xi , x j ) = 1

2
‖xi − x j‖2Mli

+ 1

2
‖xi − x j‖2Ml j

(64)

fC(xi , x j ) = max
(x′i ,x′j )

‖x′i − x′j‖2Mli
− ‖xi − x j‖2Mli

(65)
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Bilenko et al. (2004) proposed a expectation-maximization (EM) style iterative
approach for minimizing the objective. When extending MPCK-Means to out-of-
sample data, we need two steps. The first step is to assign the data point to its corre-
sponding cluster, the second step is to measure the distance using the corresponding
precision matrix of that cluster.

3.3.4 Semi-supervised dimensionality reduction (SSDR)

The last semi-supervised approach we want to introduce here is SSDR (Yang et al.
2006). SSDR deploys a similar objective as LE, however, it does not have any super-
vised terms, as it enforces the supervised information as hard constraints. Specifically,
it aims at minimizing the following objective

min
Y�Y=I

tr(Y�AY) (66)

where A can be the Laplacian matrix as in LE. SSDR assumes that in the embedded
space, the coordinates of some data points are known as YL . Now we partition Y as
Y� = [Y�L , Y�U ], where YU corresponds to the unknown data coornidates which need
to be solved, and A as

A =
[

AL L ALU

A�LU AUU

]
(67)

Then

Y�AY =
[
Y�L , Y�U

] [ AL L ALU

A�LU AUU

] [
YL

YU

]

=
[
Y�L AL L + Y�U A�LU , Y�L ALU + Y�U AUU

] [ YL

YU

]

= Y�L AL LYL + Y�U A�LU YL + Y�L ALU YU + Y�U AUU YU (68)

Thus we only need to minimize the following objective to get the optimal YU

J (YU ) = 2Y�L ALU YU + Y�U AUU YU (69)

Depending on the construction of A, SSDR can either be global (e.g., A is the
data covariance matrix as PCA) or local (e.g., A is the Laplacian matrix as in LE).
SSDR is a nonlinear method as no explicit mapping function is learned. The learned
distance are the Euclidean distance between the corresponding coordinates from Y.
The learned distance between xi and x j is the Euclidean distance between yi and
y j . It is not easy to extend SSDR to out-of-sample data as it directly learns the low-
dimensional embeddings, and the computational technique involved is linear equation
group solution.
Summary Semi-supervised approaches can be viewed as the marriage between super-
vised and unsupervised approaches. They could be helpful when the supervision infor-
mation on the data is very sparse and limited. However, not necessarily all supervision
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information is helpful to the learned distance metric. Some researchers have done
researches on how to measure the utility of the supervision information (Davidson et
al. 2006). There are also research on when the unlabeled data could be helpful (Singh
et al. 2008). In practice, it depends on the underlying data distribution to balance the
effect of the supervision information or unlabeled data. To our best knowledge, there
is no universal rules to set the optimal tradeoff parameter.

4 Advanced topics on distance metric learning

So far we have surveyed many distance metric learning algorithms, where we intro-
duced in detail how these metric learning approaches are motivated, formulated and
solved. In this section we will review some advanced distance metric learning topics
emerged in recent years including online learning, distributed learning, active learning
and transfer learning.

4.1 Online learning of distance metrics

Most of the distance metric learning approaches involves expensive optimization pro-
cedures such as eigen-decomposition and semi-definite programming. One way to
make those algorithms more efficient is the online learning Shalev-Shwartz (2007)
strategy, which incorporates the data points into the learning process in a sequential
manner. More concretely, online learning updates the learned distance metric iter-
atively. At each iteration, only one or a small batch of data are involved. Another
scenario that the online learning strategy can be naturally applied is to learn distance
metrics for streaming data, where the data are coming in a streaming fashion so that
the distance metric needs to be updated iteratively. Next we present two examples of
online distance metric learning approaches.

4.1.1 Pseudo-metric online learning algorithm (POLA)

Pseudo-metric online learning (POLA) (Shalev-Shwartz et al. 2004) falls into the
category of supervised metric learning with pairwise constraints. More specifically,
there is a must-link constraint set M and a cannot-link constraint set C. POLA assigns
a label li j for each pair (xi , x j ) in M or C, such that if (xi , x j ) ∈ M, li j = 1; if
(xi , x j ) ∈ C, li j = −1. Then it introduces a threshold b and construct the following
constraints

∀(xi , x j ) ∈M, li j = 1⇒ (xi − x j )
�M(xi − x j ) � b − 1 (70)

∀(xi , x j ) ∈ C, li j = −1⇒ (xi − x j )
�M(xi − x j ) � b + 1 (71)

which can be unified as

li j

[
b − (xi − x j )

�M(xi − x j )
]

� 1 (72)
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Note that this formulation is similar to the constraint in standard SVM. Then the
objective of POLA is the following hinge loss6

Ji j (M, b) = max
C1

i j &C2
(0, li j ((xi − x j )

�M(xi − x j )− b)+ 1) (73)

The two constraint sets are defined as

C1
i j =

{
(M, b) ∈ R

n2×1 : Ji j (M, b) = 0
}

(74)

C2 =
{
(M, b) ∈ R

n2×1 :M � 0, b � 1
}

(75)

POLA operates in an iterative way: Firstly, POLA initializes M as a zero matrix, then
at each step, it randomly picks one data pair from the constraint set (either M or C),
and then do projections on C1

i j and C2 alternatively. If we treat (M, b) as an n2 + 1

dimensional vector, then the projection of a vector v onto a constraint set C1
i j or C2.

By projecting M and b onto C1
i j , POLA gets the updating rules for M and b as

M̂ = M− li jαi j ui j u�i j (76)

b̂ = b + αi j li j (77)

where

ui j = xi − x j (78)

αi j = Ji j (M, b)

‖ui j‖42 + 1
(79)

By projecting (M, b) onto C2, POLA updates M as

M̂ =M− λμμ� (80)

where λ = min{λ̃, 0} and (λ̃, μ) are the smallest eigenvalue-eigenvector pair of M̂.
Therefore, POLA incorporates the data in constraint sets in a sequential manner.

4.1.2 Online information theoretic metric learning (OITML)

Another technique we want to review here is the OITML approach (Davis et al. 2007).
This method also falls into the category of supervised metric learning. It is the online
version of the ITML approach we introduced in Sect. 3.2.5. Suppose at time t + 1,
we need to randomly pick a pair of data from the constraint set, and minimize the
following objective

6 http://en.wikipedia.org/wiki/Hinge_loss
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Mt+1 = arg min
M

R(M, Mt )+ ηt�(Dt , D̂t ) (81)

where D̂t = (xi − x j )
�M(xi − x j ) and R(M, Mt ) = dlogdet (M, Mt ) is the logdet

divergence. Davis et al. (2007) showed that Mt+1 can be updated with the following
rule

Mt+1 ←Mt − 2ηt (Dt − D̂t )Mt (xi − x j )(xi − x j )
�Mt

1+ 2ηt (Dt − D̂t )(xi − x j )�Mt (xi − x j )
(82)

where

ηt =
⎧
⎨
⎩

η0, Dt − D̂t � 0

min

{
η0,

1
2(Dt−D̂t )

(
1

(xi−x j )
�(I+(M−1

t −I)−1)(xi−x j )

)}
, otherwise

(83)

POLA and OITML are only two examples of online distance metric learning two
specific base metric learning algorithm. The key is to develop an online optimization
strategy for solving the instantiation of Eq. (7).

4.2 Bayesian active distance metric learning (BADML)

Active learning (Dasgupta and Langford 2009) is a form of supervised machine learn-
ing in which the algorithm can interactively sample new data points. The goal of active
distance metric learning is to select those unlabeled example pairs with the greatest
uncertainty in relative distance (Yang et al. 2007). Intuitively, active distance metric
learning wants to select the most confusing data pairs such that the distance metric can
be more effectively and efficiently learned. The authors in Yang et al. (2007) proposed
a Bayesian approach called BADML to achieve such a goal. Specifically, BADML
first assumes the data outer product matrix XX� can be factorized as

XX� =
∑

q

λqμqμ�q (84)

where (λq ,μq) corresponds to the q-th eigenvalue-eigenvector pair of XX�. More-
over, BADML also supposes the precision matrix M takes the following parametric
form

M =
∑

q

γqμqμ�q (85)

Then BADML defines the probability of the label of (xi , x j ) is li j as

P(li j |xi , x j ) = 1

1+ exp
(
li j (‖xi − x j‖2M − b)

) (86)

where li j is +1 if there is a must-link between xi and x j , and li j is −1 if there is a
cannot-link between xi and x j . ‖xi − x j‖M is the generalized Mahalanobis distance
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between xi and x j parameterized by precision matrix M, and P(li j |xi , x j ) can be
further rewritten as

P(li j |xi , x j ) = σ(−li jγ
�ωi j ) (87)

where γ = [b, γ1, γ2, · · · , γK ]�, ω =
[
−1, ω1

i j , ω
1
i j , · · · , ωK

i j

]�
, σ(z) = 1/(1 +

exp(−z)) and
ω

q
i j = (xi − x j )

�μq (88)

Thus
P(M, C|M, b) =

∏

(xi ,x j )∈M or(xi ,x j )∈C
P(li j |xi , x j ) (89)

and

P(M, C) =
∫

P(M)dMP(b)db
∏

(xi ,x j )∈M or (xi ,x j )∈C
P(li j |xi , x j ) (90)

where P(M) is a Wishart distribution and P(b) is a Gamma distribution. The authors
in Jordan et al. (1999) developed a variational method to approximate P(M, C) and
get the estimates of M and b. Finally for a given data pair, its label uncertainty can be
measured by

Hi j = −P(−|xi , x j ) log P(−|xi , x j )− P(+|xi , x j ) log P(+|xi , x j ) (91)

BADML just selects the data pairs (xi , x j ) with large Hi j as the candidate pairs for
labeling.

The key to active learning methods is how to evaluate the uncertainty of a data
point (when the supervision information is data label) or a pair of data points (when
the supervision information is pairwise constraints). The most uncertain points and
pairs of points are selected to be labeled and used to update the model. The learned
distance is the resulting generalized Mahalanobis distance.

4.3 Transfer distance metric learning

Transfer learning focuses on transferring knowledge gained from tasks in source
domains into solving another task in a target domain (Pan and Yang 2010). The goal
of transfer metric learning (TML) (Zhang and Yeung 2010) is to learn a good distance
metric in the target domain with the help of the knowledge from source domains.
Specifically, TML supposes there are m different related tasks; the goal of TML is to
solve the following optimization problem:
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min{Mi }i=1,Ω

m∑

k=1

∑

i, j

h
(

lk
i j (1− ‖xk

i − xk
j‖2Mk

)
)

+λ1

2

m∑

k=1

‖Mk‖2F +
λ2

2
tr

(
M̂Ω−1M̂�

)

s.t. ∀k, Mk � 0

M̂ = [vec(M1), vec(M2), · · · , vec(Mm)]
Ω � 0

tr(Ω) = 1

where h
(

lk
i j (1− ‖xk

i − xk
j‖2Mk

)
)

is the hinge loss, and Ω is used to capture the rela-

tionships between different tasks. Note that in the objective, the first term is the pre-
diction loss on the pairwise supervisions, the second term is to make sure the predicted
model does not over fit the training data, and the last term encodes the relationship
between pairwise tasks. The solution procedure for the above problem is computa-
tionally expensive. The authors in Zhang and Yeung (2010) also presented an online
algorithm to expedite the solution process.

5 Conclusions and future research directions

In this survey, we have reviewed various distance learning algorithms. According to the
availability of the supervision information, we categorized the existing distance metric
learning algorithms as unsupervised, supervised or semi-supervised. We presented
a unified optimization view of distance metric learning and pointed out how those
distance metric learning algorithms can be fit into the general framework. We also
discussed the advantages and limitations of existing distance learning approaches,
and finally introduced some novel researches in this field in recent years. For the
future of distance metric learning research, we believe the following directions are
promising.

– Distance metric learning for big data Most of the existing distance metric learn-
ing approaches involve computationally expensive procedure. How to make dis-
tance metric learning efficient and practical on large-scale data. Promising solution
include online learning or distributed learning. We have introduced the most recent
works on online distance metric learning in Sect. 4.1. For parallel/distributed dis-
tance metric algorithms, as the major computational techniques involved are eigen-
value decomposition and quadratic programming, we can adopt parallel matrix
computation/optimization algorithms (Modi et al. 1989; Censor 1997) to make
distance metric learning more scalable and efficient.

– Empirical proof points Although a lot of distance metric learning algorithms have
been proposed, there is still lack of systematic comparison and proof points on
the utility of many distance metric learning algorithms in real world applications.
Such empirical discussion will be helpful to showcase the practical value of dis-
tance metric learning algorithms. Some recent works have started developing and
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applying distance metric learning on healthcare for measuring similarity among
patients (Wang et al. 2011a, b; Sun et al. 2010).

– More general distance metric learning formulation As can be seen from this survey,
most of existing distance metric learning algorithms suppose the learned distance
metric is Euclidean in the projected space. Such assumption may not be sufficient
for real world applications as there is no guarantee that Euclidean distance is most
appropriate to describe the pairwise data relationships. There are already some
initial effort towards this direction (Elkan 2011; Li et al. 2012), and this direction
is definitely worth exploring.
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