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Abstract This paper proposes a crowdsourcing quality control method with worker-
privacy preservation. Crowdsourcing allows us to outsource tasks to a number of
workers. The results of tasks obtained in crowdsourcing are often low-quality due
to the difference in the degree of skill. Therefore, we need quality control methods
to estimate reliable results from low-quality results. In this paper, we point out pri-
vacy problems of workers in crowdsourcing. Personal information of workers can be
inferred from the results provided by each worker. To formulate and to address the
privacy problems, we define a worker-private quality control problem, a variation of
the quality control problem that preserves privacy of workers. We propose a worker-
private latent class protocol where a requester can estimate the true results with worker
privacy preserved. The key ideas are decentralization of computation and introduc-
tion of secure computation. We theoretically guarantee the security of the proposed
protocol and experimentally examine the computational efficiency and accuracy.
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1 Introduction

Crowdsourcing is a technique to outsource tasks to a large number of unspecified
workers. Because it provides us an easy way to access abundant human resources at
very low cost, it is a popular solution for executing large amounts of tasks that require
human intelligence. One example of crowdsourcing is Galaxy Zoo1, where workers
voluntarily classify large numbers of galaxies by their own eyes to contribute to the
development of science. There are also crowdsourcing services designed for general
purpose such as Amazon Mechanical Turk2 and CrowdFlower3, where workers get
monetary rewards. These examples show that there exist a variety of crowdsourcing
services that have different purposes and reward designs.

Although crowdsourcing has achieved great success, it has a problem that the quality
of results varies significantly. The quality is not guaranteed because workers may not
be skilled at the task or the task design is poor. Figure 1 depicts a small example
of such results, where three workers were engaged in the same image labeling task.
Worker 1 gave the correct labels, whereas worker 2 sometimes failed, and worker 3
seemed to return non-informative labels because all the labels given by worker 3 were
the same. To make full use of crowdsourcing, we have to estimate the unobservable
ground truths from the noisy results. The problem is known as the quality control
problem (Lease 2011).

One of the most popular approaches to the quality control problem is a repeated
labeling technique (Sheng et al. 2008), where redundant multiple labels are collected
from different workers as shown in Fig. 1, and the true labels are estimated by aggre-
gating them. Sheng et al. (2008) used majority voting (MV) to estimate the true labels.
Based on this approach, many researchers have proposed more sophisticated aggre-
gation methods. One of the most popular methods is the latent class method (LC
method) (Dawid and Skene 1979), where the true labels are estimated by inferring the
model of labeling processes of workers. Dawid and Skene (1979) assumed that the
quality of labels depended on the ability of workers, i.e., they assumed that a worker
had ability parameters and gave the same label as the true label with probability pro-
portional to the ability parameters. The true labels are estimated in a form of weighted
MV based on each worker’s ability. By using the LC method, not only the true labels
but also the ability of workers can be estimated, which will help requesters eliminate
inferior workers, for example.

As stated above, several approaches have been proposed to address the quality
control problem. However, they yield another problem: the invasion of worker privacy.
The use of quality control methods invades the privacy of workers because requesters
collect the labels from workers and estimate their abilities. Let us discuss the invasion

1 http://www.galaxyzoo.org/.
2 https://www.mturk.com/mturk/welcome.
3 http://crowdflower.com/.
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Fig. 1 Illustrative model of crowdsourcing and our protocol. We assume an image labeling task. Each
column in the table shows labels given by each worker to the images, which do not necessarily agree
with unobservable ground truths. The dotted lines indicate feasible communication in crowdsourcing. We
develop a protocol where a requester can estimate the true labels by communicating with each worker who
secretly holds his own labels

of the privacy of workers by giving three examples. The first example is a location-
based task where workers are asked to submit location information of specific objects.
For example, AED44 asks workers to submit the locations of automated external
defibrillators (AEDs) in order to create a location map of AEDs. For such a task,
quality control methods will be applied to obtain more accurate locations. However,
such location data possibly reveal the movement history of each worker, and thus
the privacy of workers can be invaded. The second example is a questionnaire task
where workers are asked to fill in questionnaires. Crowdsourcing allows us to cut
down the efforts and monetary and time costs to recruit many participants. Some try to
approximate the crowd’s majority opinion from a small subset of the crowd (Ertekin et
al. 2012). The quality control methods can be used as an approximation method of the
majority opinion by interpreting the ability of a worker as the importance of a worker.
However, the raw data contain much personal information, and thus the privacy of
workers will be invaded. Although a single answer of questionnaires contains little
personal information, combining simple information can sometimes identify people
uniquely as pointed out in the field of privacy-preserving data mining (Sweeney 2002).
The last example is a volunteer task (or a non-paid task) such as that in Galaxy Zoo
and AED4, which is a popular form of crowdsourcing. For such a task, the quality
control methods will be used to increase the reliability of the results, but some workers
may feel uncomfortable to be evaluated since they contribute the service without pay.

4 http://www.aed4.eu/.
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These examples clearly show that there exist privacy problems in the quality control
methods and that they are mainly caused by leaking raw labels. Moreover, preserving
worker’s privacy can encourage more workers to participate in crowdsourcing who
could not participate because of these privacy problems. Therefore, it is important to
address the privacy problem. Note that in paid crowdsourcing services, preserving the
privacy of workers (or keeping workers anonymous) may sometimes harm the quality
of results because workers have little motivation to give high-quality results, but in
non-paid crowdsourcing services, it would not harm the quality because only well-
motivated workers will participate in the non-paid one. This problem is also discussed
later.

To address the privacy problem, we first notice that requesters do not necessarily
have to know the raw labels; it is sufficient for them to know the estimates of the true
labels. Based on this idea, we define a worker-private quality control problem where a
requester estimates the true labels preserving the privacy of workers, and we propose a
worker-private latent class protocol (WPLC protocol) based on the LC method (Dawid
and Skene 1979) to address the problem above. The WPLC protocol allows workers
to keep their labels and ability parameters private, which prevents privacy invasion.
The key ideas of the WPLC protocol are twofold: decentralization of computation and
introduction of secure computation. By taking workers into computation and intro-
ducing secure computation, a requester can estimate the true labels while workers can
hide their labels. To validate the WPLC protocol, we provide a theoretical guarantee
of its security and experimentally evaluate its computational efficiency and accuracy.
Only a few have ever identified privacy problems in crowdsourcing in spite of its great
importance (Bernstein et al. 2011; Varshney 2012). To the best of our knowledge, this
paper deals with the privacy problem of workers for the first time.

To summarize, this paper makes four contributions. (i) We propose a worker-private
quality control problem in crowdsourcing. (ii) We propose a protocol to execute the
EM algorithm of the LC method in a privacy-preserving manner. (iii) We provide a
theoretical guarantee on the security of the proposed protocol. (iv) We evaluate the
performance of the proposed protocol in terms of time complexity and accuracy.

2 Quality control problem

We introduce a model of crowdsourcing, define a quality control problem, and review
an existing method called the latent class method.

2.1 Problem formulation

Assume that participants in crowdsourcing consist of a single requester who posts tasks
and J workers who process the tasks. Following the convention used in computer
security, we call a participant a party. We also assume that each worker does not
know the other workers who participate in the same task. Therefore, workers can
communicate only with the requester as shown in Fig. 1. This assumption is reasonable
in various real crowdsourcing platforms including Amazon Mechanical Turk.

123
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As for tasks, we assume a binary labeling task for simplicity, where a task is to
give a binary label to an instance. However, the proposed method can be extended to
deal with multi-class or real-valued labels with slight modifications, which ensures
that the proposed method is widely applicable. Section 3.3.1 and Appendix 1 describe
the detailed extensions.

We then introduce notation we use in this paper. The requester has a set of task
instances I := {1, . . . , I } and wants to know the true label yi ∈ {0, 1} for each
instance i ∈ I. Let Y� = {yi | i ∈ I} be a set of the true labels, which is unknown
to both the requester and workers. Worker j ∈ {1, . . . , J }(=: J ) gives an unreliable
label yi, j ∈ {0, 1} to instance i , which we call a crowd label. Because crowd labels
are unreliable, yi, j = yi does not always hold. Let I j ⊆ I (I j �= ∅) be the index set
of instances to which worker j gave labels, let Ji ⊆ J (Ji �= ∅) be the index set of
workers who gave labels to instance i , let Y:, j = {yi, j | i ∈ I j } be the set of labels
given by worker j , let Yi,: = {yi, j | j ∈ Ji } be the set of labels given to instance i ,
and let Y = {Y:, j | j ∈ J } be the set of all the crowd labels.

The quality control problem is defined as Problem 1, where the requester aims
at estimating the true labels from the crowd labels Y the requester collected from
workers.

Problem 1 (Quality control problem) Assume that the requester has crowd labels Y .
The quality control problem is that the requester estimates the true labels Y� from the
crowd labels Y .

2.2 Latent class method

We review the LC method (Dawid and Skene 1979), which is a standard method
for Problem 1. The true labels can be estimated by inferring an LC model, where
the labeling processes of workers are modeled by introducing ability parameters of
workers.

2.2.1 Latent class model

The LC model assumes that the unreliability of crowd labels depends on the ability
of workers. Each instance i ∈ I is assumed to have the single unobservable true label
yi , and each worker j ∈ J independently gives a label yi, j to instance i according to

α j = Pr[yi, j = 1 | yi = 1, θ j ] and β j = Pr[yi, j = 0 | yi = 0, θ j ],

where let θ j = {α j , β j } be the ability parameters of worker j . It is also assumed that
yi (i ∈ I) is generated from Pr[yi | p] = pyi ·(1− p)1−yi . Let Θ = {p}∪{θ j | j ∈ J }
be the set of all the model parameters. We assume that the crowd labels Y are generated
from this model.
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2.2.2 EM algorithm for inference

The LC method employs the maximum likelihood estimator to estimate the model
parameters Θ . Due to the discrete latent variables Y� in the model, it is intractable to
obtain the maximum likelihood estimator. Therefore, an EM algorithm is used to obtain
an approximation of the maximum likelihood estimator, where an expectation-step (E-
step) and a maximization-step (M-step) are repeated alternately until convergence.
Intuitively, the E-step is the estimation of the true labels using MV weighted by
estimated abilities of workers, and the M-step is the evaluation of abilities of workers
using the estimated true labels. Repeating these two steps increase the likelihood
function (Dempster et al. 1977), which validates the use of the EM algorithm. Each
step is described in the following.

E-step: for each i ∈ I, update μi = Pr[yi = 1|Y,Θ] as

μi ← pai

pai + (1− p)bi
,

where ai =
∏

j∈Ji

α
yi, j
j (1− α j )

1−yi, j and bi =
∏

j∈Ji

β
1−yi, j
j (1− β j )

yi, j .

M-step: update p as p ← 1
|I|

∑
i∈I μi , and for each j ∈ J , update the ability

parameters α j and β j as α j ←
∑

i∈I j
μi yi, j

∑
i∈I j

μi
and β j ←

∑
i∈I j

(1−μi )(1−yi, j )
∑

i∈I j
(1−μi )

so that

these parameters maximize the Q-function shown below:

Q(Θ) =
∑

i∈I

[
μi log pai + (1− μi ) log(1− p)bi

]
.

We consider that the algorithm converges if |Q(Θ(t+1))−Q(Θ(t))|/|Q(Θ(t+1))| <
10−8 holds, where Θ(t) is the set of the parameters obtained in the t-th iteration. The
time complexity of both the E-step and the M-step is O(I J ).

3 Worker-private quality control problem

In this section, we propose a worker-private quality control problem by extend-
ing the quality control problem. Then, we propose a worker-private latent class
method (WPLC method) by extending the latent class method to address the worker-
private quality control problem.

3.1 Problem formulation

First, we define the privacy requirements and formulate the worker-private quality
control problem. The privacy problems do not happen if each worker stores his labels
secretly and if none of the parties can obtain the labels of other parties. Based on
this idea, we define worker privacy and the worker-private quality control problem as
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Definition 1 and Problem 2, respectively. In Definition 1, the value can be a label yi, j

or the ability parameters {α j , β j }.
Definition 1 (Worker-private) Assume that worker j ∈ J secretly stores value v j . If
the requester and the workers except for worker j cannot determine v j uniquely, then
value v j is worker-private.

Problem 2 (Worker-private quality control problem) Assume that each worker j ∈ J
has his labels Y:, j secretly. The worker-private quality control problem is that the
requester estimates the true labels Y� from crowd labels Y keeping all the crowd
labels and the ability parameters worker-private.

Note that the definition of worker-privacy is closely related to the privacy definition
employed in query auditing (Nabar et al. 2008). Informally, query auditing attempts
to prevent disclosures of private data from the public statistics of the data such as the
mean and a maximum. The definition of disclosure called full disclosure describes
the situation where a private value is determined uniquely from the statistics. This
definition is related to our privacy definition because a label is worker-private if and
only if the label is not fully disclosed.

3.2 Proposed protocols

We propose a worker-private latent class protocol (WPLC protocol) to address the
worker-private quality control problem (Problem 2). The protocol is a privacy-
preserving inference algorithm for the LC model. We first introduce the WPLC pro-
tocol, the main protocol in this paper, and then we introduce our secure sum protocol,
which is used as a sub-protocol in the main protocol.

3.2.1 Worker-private latent class protocol

The WPLC protocol is shown in Protocol 1, which executes the inference of the LC
method in a privacy-preserving way. It allows the requester to obtain the estimated true
labels and workers to keep their labels and ability parameters private. Update rules are
basically the same as the original inference algorithm of the LC method, and therefore
the same results can be obtained. In fact, the E-step and the M-step correspond to the
seventh and eighth lines and the fourth and fifth lines in Protocol 1, respectively. The
main ideas for privacy preservation are twofold: decentralization of computation to all
the parties and introduction of a secure sum protocol. The M-step is decentralized to
workers, and the E-step is decentralized to all the parties with introduction of secure
sum. The necessity of these modifications is discussed in Sect. 3.3, and we show that
public outputs obtained during the execution of the WPLC protocol do not reveal any
private information in Sect. 4.

3.2.2 Secure sum protocol

We propose a secure sum protocol (Protocol 2) which allows the requester to obtain
the sum of values workers have secretly in a crowdsourcing setting. We first introduce
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Protocol 1 Worker-private latent class protocol
Parties: the requester and workers J .
Private input of worker j ∈ J : Y:, j and I j .
Private input of the requester: J .

Public output: μ
(t)
i for all i ∈ I, t ∈ N.

Private output of worker j : (α
(t)
j , β

(t)
j ) for all t ∈ N.

Private output of the requester: (a(t)
i , b(t)

i ) for all t ∈ N.

1: The requester updates t ← 0 and broadcasts it.

2: Parties calculate μ
(t)
i = 1

|Ji |
∑

j∈Ji
yi, j for each i ∈ I using Protocol 2, and the requester obtains the

results.
3: The requester broadcasts {μ(t)

i | i ∈ I}.
4: repeat
5: The requester updates p(t) ← 1

|I|
∑

i∈I μ
(t)
i .

6: Each worker j ∈ J updates α
(t)
j ←

∑
i∈I j

μ
(t)
i yi, j

∑
i∈I j

μ
(t)
i

and β
(t)
j ←

∑
i∈I j

(1−μ
(t)
i )(1−yi, j )

∑
i∈I j

(1−μ
(t)
i )

.

7: The requester updates and broadcasts t ← t + 1.
8: Using Protocol 2, parties calculate

log a(t)
i ←

∑

j∈Ji

(yi, j log α
(t−1)
j + (1− yi, j ) log(1− α

(t−1)
j )),

log b(t)
i ←

∑

j∈Ji

((1− yi, j ) log β
(t−1)
j + yi, j log(1− β

(t−1)
j )),

for each i ∈ I, and the requester obtains the results.

9: The requester updates and broadcasts μ
(t)
i ←

p(t−1)a(t)
i

p(t−1)a(t)
i +(1−p(t−1))b(t)

i

for each i ∈ I.

10: The requester calculates the Q-function Q(t) and checks its convergence.
11: until |Q(t) − Q(t−1)|/|Q(t)| < ε

Protocol 2 Secure sum protocol
Parties: the requester and workers J .
Private input of worker j ∈ J : v j ∈ R.
Public input: L ∈ ZN s.t. v j L ∈ ZN for all j ∈ J .
Private output of the requester:

∑
j∈J v j .

Setup: parties use the (J + 1, θ)-threshold additive homomorphic cryptosystem that satisfies θ ≤ J .
Secure sum:
1: Each worker j ∈ J encrypts c j ← Enc(v j L).
2: Each worker j ∈ J sends c j to the requester.
3: The requester calculates χ ←∏

j∈J c j (= Enc(
∑

j∈J v j L)).

Decryption:
1: The requester randomly chooses a subset J̃ ⊆ J that satisfies |J̃ | = θ − 1. Then the requester sends

χ to J̃ and asks J̃ for sending decryption shares.
2: Each worker j̃ ∈ J̃ sends his decryption share Dec j̃ (χ) to the requester, and the requester calculates

his decryption share Dec0(χ).
3: The requester calculates

∑
j∈J v j L using decryption shares {Dec j̃ (χ)} j̃∈{0}∪J̃ .

4: The requester calculates
∑

j∈J v j ← 1
L

∑
j∈J v j L .
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the properties of public key cryptosystems that are used in the proposed protocol, and
then we introduce our secure sum protocol.
Public key cryptosystems We denote a plaintext by m ∈ ZN (= {0, 1, . . . , N −1}, and
the corresponding ciphertext by c = Encpk(m; r) ∈ Z

∗
N 2(= ZN 2\{0}), where pk is a

public key, and r is a uniformly random value, which are used to encrypt the plaintext.
In a public key cryptosystem, if r is selected uniformly at random from Z

∗
N , the

ciphertext c is also uniformly distributed over Z
∗
N 2 . Consequently, anyone cannot infer

the original plaintext without knowing the secret key sk. We use the generalized Paillier
cryptosystem (Damgård and Jurik 2001a) in our secure sum protocol because it has
the properties of both an additive homomorphic cryptosystem and an (n, θ)-threshold
cryptosystem. They allow us to execute summation of distributed data securely. We
briefly explain both properties in the following.

An additive homomorphic cryptosystem allows us to obtain the encrypted sum of
private values without decrypting the encrypted private values. The product of two
ciphertexts is decrypted to the sum of their corresponding plaintexts, i.e., Encpk(m1+
m2; r) = Encpk(m1; r1) · Encpk(m2; r2) holds where r is uniformly random if either
r1 or r2 is uniformly random.

An (n, θ)-threshold cryptosystem allows us to distribute secret keys to n parties and
prevents any single party from decrypting ciphertexts. Efficient decryption requires
cooperation among at least θ parties. In decryption, each party i calculates his decryp-
tion share Decski (c) (partial information of the original plaintexts of all the workers)
using his secret key ski , and the ciphertext is decrypted by combining at least θ

decryption shares.
Our secure sum protocol Protocol 2 describes our secure sum protocol. The approx-
imation parameter L is introduced in order to convert values {v j ∈ R | j ∈ J }
into integers by multiplying L , which is necessary to apply a public key cryptosys-
tem. The proposed one is made suitable for the crowdsourcing setting, which only
allows the communication between the requester and each worker. It is impossible to
directly apply other secure sum protocols used to execute EM algorithms in a privacy-
preserving manner (Lin et al. 2005; Yang et al. 2012) because they require message
passing among workers, which is unrealistic in crowdsourcing.

3.3 Discussions

3.3.1 Extensions to multi-class and real-valued labels

We briefly introduce how to extend the WPLC protocol to deal with multi-class and
real-valued labels. In the quality control problem, these types of labels can be handled
by replacing the model of workers from the Bernoulli distribution to the multinomial
distribution (Dawid and Skene 1979) and the normal distribution (Raykar et al. 2010),
respectively. To preserve worker privacy, we only have to apply the same extensions
to the modified LC methods, i.e., to execute the E-step using Protocol 2 and to decen-
tralize the M-step to workers. Detailed update rules of the modified LC methods and
extensions of them are described in Appendix 1.

123



Preserving worker privacy in crowdsourcing 1323

3.3.2 Necessity of two modifications

We briefly argue that both decentralization and secure sum are necessary to preserve
worker privacy. Decentralization is necessary because the requester cannot access
crowd labels without it. The secure sum protocol is also necessary because the requester
could get crowd labels Y in the second line of Protocol 1 without the secure sum
protocol. Moreover, the requester could also obtain the parameters {θ j | j ∈ J } in
the seventh line by using the crowd labels obtained in the second line.

3.3.3 Drawbacks

The WPLC protocol has two drawbacks compared to the LC method: numerical errors
and computation time. Numerical errors are inevitable because it is difficult to find the
approximation parameter L such thatv j L becomes an integer for all j ∈ J . Practically,
the requester defines and broadcasts the approximation parameter L , and each worker
j rounds v j L to an integer to execute the protocol, which causes numerical errors.
However, they are shown to be tolerable in Sect. 5.2. In addition, because of numerical
errors, the convergence of the WPLC protocol is not guaranteed. Therefore, in practice,
it is necessary to set an upper bound on the number of iterations. The relationship
between the approximation parameter L and the number of iterations is studied in the
experiments.

The WPLC protocol requires more computation time than the LC method because
of communication between parties, key generation, and encryption and decryption of
messages. The time complexity of our secure sum is O(J ), and therefore, the time
complexity of one iteration of the WPLC protocol is O(I J ), which is the same as
that of the LC method. However, the excluded coefficients in the big O notation are
different. The coefficient of the dominating term of the time complexity of the WPLC
protocol is bigger than that of the LC method because of the encryption and decryption
steps of our secure sum protocol. Therefore, we examined the cryptographic overheads
in Sect. 5.3. Communication cost is not examined because it heavily depends on the
communication environment.

3.3.4 Practical implementation

The use of the WPLC protocol in a real world cannot be realized without the help
of crowdsourcing platforms. Most of the present crowdsourcing platforms only sup-
port direct communication between a requester and a worker via mail services in
the platforms, which prevents us from applying the WPLC protocol in a real setting.
Therefore, a crowdsourcing platform will have to provide a software to execute the
protocol.

3.3.5 Exclusion of spam workers

One may have a concern that preserving worker privacy makes it impossible to exclude
spam workers. We believe that the protocol execution software provided by a crowd-
sourcing platform can help us exclude spam workers with minimum worker privacy
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invasion. It is possible that the worker-side software by itself reports to the crowd-
sourcing platform that the worker is a spam worker if the worker’s ability is lower
than a certain threshold. This allows the crowdsourcing platform to ban the worker’s
account, which helps to increase the reliability. This solution invades little worker pri-
vacy; the requester does not obtain any information about the labels and the abilities
of workers, and the crowdsourcing platform only learns that the ability of the worker
is lower than a certain threshold.

4 Security proofs of the protocols

We prove the security of the WPLC protocol in Theorem 1. It states that crowd labels
are kept worker-private after the execution of the WPLC protocol. We first make
assumptions and state the security of the proposed protocols, and then we provide
security proofs.

4.1 Assumptions and statements

We make two assumptions that are common in computer security: the semi-honest
model and the non-collusion assumption. The semi-honest model is defined as parties
who follow a protocol, which does not refer to actions outside the protocol. Therefore,
in the semi-honest model, each of the parties may attempt to learn private information
from the information he knows or parties may communicate with each other outside
the protocol. Assuming this model ensures that the intermediate and the final outputs
of a protocol can be obtained without fail. The non-collusion assumption is that parties
do not collude, i.e., they do not communicate with each other outside the protocol.
These two assumptions ensure that each party only knows his private information and
all the intermediate values he obtained throughout the protocol execution. The validity
of these assumptions is discussed in Sect. 4.3.

For convenience, we introduce a label ⊥. yi, j = ⊥ means that worker j does not
give a label to instance i . Therefore, a label takes a value in {0, 1,⊥} in this section.
Note that label ⊥ is not imaginary; if worker j gave label yi, j = ⊥ to instance i ,
then the worker just encrypts value 0 in Protocol 1, which is also made secure by the
encryption. Then, Theorem 1 is described as follows.

Theorem 1 (Security of the WPLC protocol) Let |J | ≥ 3. For any i ∈ I, let there
exist at least one pair j1, j2 ∈ J such that j1 �= j2 and yi, j1 �= yi, j2 . Assume that
parties execute the WPLC protocol in the semi-honest model and that parties do not
collude.

After the execution of the WPLC protocol, any party cannot determine any private
label yi, j uniquely, and therefore the crowd labels are worker-private.

The second assumption in Theorem 1 is not strong because usually not all the
workers give labels to one instance, which implies that some of the labels must take
⊥. For example, assuming that |J | = 3, Yi,: = {1, 1,⊥} is legal where two of three
workers gave labels to instance i . This assumption is unavoidable because if all the
labels given to one instance are the same, the requester can infer the workers’ labels.
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This theorem is built on the security of our secure sum protocol shown in Lemma 1,
which states that the ciphertexts exchanged in Protocol 2 cannot be decrypted by any
polynomial time attack.

Lemma 1 (Security of our secure sum protocol) Let |J | ≥ 3. Assume that parties
execute our secure sum protocol (Protocol 2) in the semi-honest model and that parties
do not collude. After the execution of our secure sum protocol, the requester learns
nothing but the sum, and the workers learn nothing.

4.2 Proofs

In this section, we give a sketch of the proof of Lemma 1 and a proof of Theorem 1
using the result of Lemma 1.

Proof (Lemma 1) We prove Lemma 1 using the properties of our secure sum protocol
introduced in Sect. 3.2.2.

All of the messages exchanged among parties in the protocol are the ciphertexts
{Enc(v j L) | j ∈ J }, the encrypted sum χ = Enc(

∑
j∈J v j L), and the decryption

shares {Dec j (χ) | j ∈ J̃ }. Because we assume the parties execute the protocol in the
semi-honest model and the parties do not collude, we have only to prove that (i) each
worker cannot infer the other workers’ private values from the encrypted sum χ and
his private information, and (ii) a requester cannot infer each worker’s private value
from all of the messages.

(i) Worker
An (n, θ)-threshold cryptosystem ensures that the encrypted sum cannot be
decrypted without the collusion of at least θ parties. Because of the non-collusion
assumption, a worker cannot decrypt the encrypted sum. Therefore, we conclude
that a worker learns nothing after the execution of our secure sum protocol.

(ii) Requester
First, the ciphertexts {Enc(v j L) | j ∈ J } cannot be decrypted by the requester
because of the property of the (n, θ)-threshold cryptosystem and the non-collusion
assumption. In addition, from the properties of decryption shares, the requester
learns nothing but the sum from the decryption shares {Dec j (χ) | j ∈ J̃ }. There-
fore, we conclude that the requester learns nothing except for the sum

∑
j∈J v j L .

These two discussions complete the proof of Lemma 1. �
Proof (Theorem 1) An attacker tries to determine a private label by reverse-
engineering his private information and the public outputs {μ(t)

i | i ∈ I, t ∈
{0, 1, . . . , T }}, where let T denote the number of iterations to converge, because
Lemma 1 proves parties cannot learn other variables. We prove the theorem by show-
ing that there does not exist a function from the information an attacker has to a
private label, which we call a privacy invading function in this proof. We give a proof
by contradiction; we assume that there were a privacy invading function.

(i) Requester
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We first consider the case when the requester is an attacker. The information the
requester has is the public outputs and his private outputs,

log a(t)
i =

∑

j∈Ji

(yi, j log α
(t−1)
j + (1− yi, j ) log(1− α

(t−1)
j )),

log b(t)
i =

∑

j∈Ji

((1− yi, j ) log β
(t−1)
j + yi, j log(1− β

(t−1)
j )),

for all t ∈ {1, . . . , T } and i ∈ I. Assume that the attacker had a privacy invading
function from these values to the private label to instance i ′ given by worker
j ′ (i ′ ∈ I and j ′ ∈ J are arbitrary). From the assumption of Theorem 1, there
exists j ′′ ∈ J \{ j ′} such that yi ′, j ′ �= yi ′, j ′′ holds. Let us create another set of crowd
labels by permuting j ′ and j ′′ in the original set of crowd labels, and let us denote
a label in the permuted set as ỹi, j , which is related to the label in the original set as

ỹi, j =
⎧
⎨

⎩

yi, j (i �= i ′ or j ∈ J \{ j ′, j ′′})
yi, j ′ (i = i ′ and j = j ′′)
yi, j ′′ (i = i ′ and j = j ′).

The output of the privacy invading function on the permuted set should be ỹi ′, j ′
from the definition of the function. However, the actual output is yi ′, j ′ ( �= ỹi ′, j ′)
because the input values are the same as those of the original set, which contra-
dicts the assumption that the privacy invading function outputs a private label of
instance i ′ given by worker j ′.

(ii) Worker
Then, we consider the case when worker j� ∈ J is an attacker. The information
worker j� ∈ J has is the public outputs and his private information {yi, j� | i ∈ I},
α j� , and β j� . Assume that worker j� had a privacy invading function from the infor-
mation he had to the private label yi ′, j ′ (i ′ ∈ I and j ′ ∈ J \{ j�} are arbitrary).
The list of workers J who participate in the protocol is private information of the
requester, and therefore, worker j� does not know who participates in the protocol.
Let us create another set of crowd labels by conceiving of another worker j ′′ /∈ J
such that yi ′, j ′′ �= yi ′, j ′ holds and permuting j ′ and j ′′ in the original set of crowd
labels, and let us denote a label in the permuted set as ỹi, j , which is related to the
label in the original set as

ỹi, j =
{

yi, j (i �= i ′ or j ∈ J \{ j ′})
yi, j ′′ (i = i ′ and j = j ′).

The output of the privacy invading function on the permuted set should be ỹi ′, j ′ from
the definition of the function. However, the actual output is yi ′, j ′ ( �= ỹi ′, j ′) because the
input values are the same as those of the original set, which contradicts the assumption
that the privacy invading function outputs a private label of instance i ′ given by worker
j ′.

In both cases, it is proven that any private label cannot be determined. �
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4.3 Discussions

We discuss the validity of the assumptions we made. Both assumptions will hold
except for malicious parties who mainly attempt to collect private information. As for
the semi-honest assumption, the requester is expected to follow the protocol because
his main purpose is to estimate the true labels, and violating the protocol will not give
the proper results. Workers will be semi-honest because he will be rewarded without
any cheating. The non-collusion assumption will also hold because workers do not
know each other, and even if some workers should know each other, colluding will not
benefit workers (collusion requires parties to share private information, which invades
the worker’s privacy). If workers do not collude, then the requester cannot collude
because he does not have any other party to collude. Therefore, these assumptions are
expected to hold in a real setting.

5 Experiments

The performance of the WPLC protocol can be different from that of the LC method
in computation time and accuracy as discussed in Sect. 3.3. By comparing the WPLC
protocol with the LC method experimentally, we show that the WPLC protocol is
practical in a real setting.

5.1 Datasets

5.1.1 Synthetic dataset

We used the LC model to generate synthetic datasets. First, for all i ∈ I, we generated
the true labels yi from the Bernoulli distribution with its parameter p = 0.5. Then, for
all i ∈ I and j ∈ J , we generated crowd labels given by worker j from two Bernoulli
distributions with their parameters α j and β j . The parameters of the synthetic dataset
are the number of instances I , the number of workers J , and the ability parameters
{α j | j ∈ J } and {β j | j ∈ J }.

5.1.2 Real dataset

We employed the “Duchenne Smiles Dataset” (Whitehill et al. 2009). The task was
to give each face image a label whether the smile on the image was a duchenne
one (enjoyment smile) or a non-duchenne one. The images (or instances in our paper)
have the ground truth labels that were given by experts. The number of images I is
159, and 58 out of the 159 images contain Duchenne smiles according to the ground
truths. In total, 20 workers gave labels, and 3, 513 crowd labels were collected, where
1, 804 out of the 3, 513 crowd labels were duchenne labels.
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5.2 Experiments on approximation accuracy

We investigated the approximation accuracy using both synthetic and real datasets.
Approximation is caused by rounding that is inevitable to execute the protocol in a
real setting.

5.2.1 Experimental settings

To understand the approximation accuracy, we examined the accuracy of the estimated
true labels and the relative errors of model parameters obtained by using the WPLC
protocol and the LC method.
Accuracy of the estimated true label We examined the accuracy of the estimated
true labels varying the parameters of datasets and the approximation parameter L ,
which controls the approximation accuracy of the WPLC protocol. The effect of the
approximation parameter L was examined on both synthetic and real datasets, and
the effect of the parameters of datasets was examined on synthetic datasets. The per-
formance was measured by the accuracy, i.e., the percentage of the estimated true
labels that agree with the ground truth labels. For the LC method and the WPLC
protocol, we estimated the true label as yi = 1 if μi > 0.5, and yi = 0 other-
wise. For comparison, we also tested the MV method, which is easily made secure
by our secure sum protocol. The detailed parameters of the synthetic datasets were
described in the captions of Fig. 2, where we used the notation αk:l = α� to denote
αk = αk+1 = · · · = αl−1 = α�. For the experiments using synthetic datasets, we
repeated experiments 100 times to obtain the mean and the standard deviation of the
accuracy.
Relative errors of parameters We compared the relative errors of parameters obtained
by using the WPLC protocol and the LC method on the real dataset, varying the approx-
imation parameter L as 100, 101, . . . , 1014. We define the relative error of the parame-
ters as follows. Let us denote the parameters of the LC method by α = [α1, . . . , αJ ],
β = [β1, . . . , βJ ], and μ = [μ1, . . . , μI ] and those of the WPLC protocol by α̃, β̃,
and μ̃. For each pair of parameters x ∈ {α,β, p,μ} and x̃ ∈ {α̃, β̃, p̃, μ̃}, we define
the relative error as ‖ log x − log x̃‖/‖ log x‖.

5.2.2 Results

Accuracy of the estimated true label The results on the synthetic datasets are shown
in Fig. 2a–f, and those on the real dataset in Table 1. We have three studies from the
results. First, Fig. 2a and Table 1 show that the performance of the WPLC protocol was
almost the same as that of the LC method unless the approximation parameter L was
too small. Especially, Table 1 shows that rounding in secure sum had little effect on the
performance in practice. Second, Fig. 2b–f show that the effect of rounding was not
influenced by the parameters of datasets. Finally, Fig. 2d–f and Table 1 highlight the
performance characteristics of the MV method and the LC-type methods, i.e., the LC
method and the WPLC protocol. Figure 2d shows that when the abilities of workers
were heterogeneous (i.e., in the middle of Fig. 2d), the LC-type methods performed
better than the MV method. Figure 2e, f indicate that the LC-type methods became
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Fig. 2 Performance comparison on synthetic datasets. The parameter setting for each figure is given in the
caption of it. The error bars show standard deviations

much superior to the MV method as we increased the number of instances in case of
heterogeneous abilities of workers. They suggest that the heterogeneous abilities are
necessary for the LC-type methods to beat the MV method. This is because the MV
method is a special case of the LC-type methods with the assumption of homogeneous
abilities of workers. It also supports this conclusion of the necessity of heterogeneity
that just increasing the number of instances did not take sides with the LC-type methods
in case of homogeneous abilities (Fig. 2e). In reality, crowd-generated datasets often
contain workers of different abilities, which favors the LC-type methods over the MV
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Table 1 Performance comparison on the real dataset. The performance of the WPLC protocol was not
affected by L

MV method LC method WPLC protocol

0.752 0.761 0.761

method as shown in Table 1. The third study justifies the extension of the LC method,
not the MV method.

From these studies, we conclude that rounding in the protocol has little effect on
the performance if we set the approximation parameter L reasonably large and that
the extension of the LC method is justified.
Relative errors of parameters The results on the real dataset are shown in Fig. 3. The rel-
ative errors decreased as the approximation parameter L increased. Therefore, we can
decrease the errors to as small as necessary by increasing the approximation parameter
L , which indicates we do not have to care about the approximation accuracy if we set the
approximation parameter L as large as possible. One may notice that the relative error
of log μ did not decrease drastically if the approximation parameter L was smaller than
107. This is partly due to the difference in the number of iterations. The number of itera-
tions for the algorithms to converge is shown in Fig. 4. We can observe that the number
of iterations of the WPLC protocol was different from that of the LC method when the
approximation parameter L was smaller than 107, which would have effects on the rel-
ative error. When the approximation parameter L is too small, small changes in ability
parameters are not reflected to the posterior probabilities {μi | i ∈ I} in the E-step due
to rounding, which will cause the small number of iterations of the WPLC protocol.

5.3 Experiments on computational efficiency

We examined the computational efficiency of the WPLC protocol. As stated in
Sect. 3.3, the WPLC protocol requires more computation time than the LC method
because the WPLC protocol requires communication between parties, key generation,
and encryption and decryption of messages. We experimentally evaluated crypto-
graphic computation time.

5.3.1 Experimental settings

Computation time for key generation, encryption, and decryption depends on the
number of parties J + 1 and the key length k. Usually the key length is fixed as
k = 1024. Therefore, we examined the relationship between the computation time
and the number of parties. Because the number of workers J is usually at most 100,
we varied J as 3, 4, . . . , 10, 20, . . . , 100 and measured the computation time of key
generation and a set of encryption and decryption. We repeated the measurement in
each setting of J ten times and calculated the average of the computation time. We
employed the (J + 1, � 2

3 (J + 1)�)-threshold cryptosystem and set the approximation
parameter L = 1010, which does not affect the computation time. The secure sum
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protocol was implemented in Java 1.6.0 using UTD Paillier Threshold Encryption
Library5 and was run on a Linux machine with 3.20 GHz CPU and 4 GB RAM.

5.3.2 Results

The results are shown in Fig. 5, where the computation time of key generation is
denoted by “keygen” and that of encryption and decryption by “one update”. Both
increased almost linearly as J increased. Considering that key generation is required
only once and that the number of iterations was around 15 in the real dataset, we
can conclude that these overheads can be tolerated. When J = 20 and the number of
iterations was 15, which was the same condition with the execution for the real dataset,
the total overhead (key generation and 15 iterations of encryption and decryption) was
789.3 ms. This also supports that the WPLC protocol is practical.

6 Related work

6.1 Crowdsourcing

As modern crowdsourcing systems have emerged, many researchers have been inter-
ested in them. The most well-studied problem is the quality control problem (Lease
2011). A basic strategy for the problem is the repeated labeling (Sheng et al. 2008)
where multiple unreliable labels are given to one instance, and the true labels are esti-
mated from the redundant unreliable labels by using statistical techniques. Although
Sheng et al. (2008) used MV as a statistical technique, many researchers (Welinder
et al. 2010; Whitehill et al. 2009) have sought more sophisticated methods based on
the LC method (Dawid and Skene 1979). Our paper is different from these methods
in that we pay attention to the privacy problem of workers whereas they do not.

There are only a few papers that deal with privacy problems in crowdsourcing.
Bernstein et al. (2011) pointed out a problem of privacy in crowdsourcing for the first
time. Varshney (2012) dealt with a privacy problem of task instances in crowdsourcing.
Our work is different from the previous work in that we focus on privacy of workers.

6.2 Privacy-preserving data mining

The concept of privacy-preserving data mining was proposed by two groups (Agrawal
and Srikant 2000; Lindell and Pinkas 2000) around the same time, and a number
of studies have been conducted. Among them, our paper is related to research that
uses secure protocols to execute EM algorithms (Lin et al. 2005; Yang et al. 2012).
However, all of the existing techniques cannot be applied to the crowdsourcing set-
ting because they require cyclic communication among parties, which is infeasible in
crowdsourcing. Therefore, the WPLC protocol can be discriminated from the existing
protocols.

5 http://utdallas.edu/~mxk093120/paillier/.
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Moreover, all of the existing papers did not give formal theoretical guarantees of
the security of the protocols. Some of them just proved that information obtained in
one iteration of the protocol does not invade privacy, while we proved that information
obtained in all the iterations does not invade privacy. These two points indicate the
novelty of our paper.

Also, our paper is related to secure multiparty aggregation that aims at aggregating
private data to obtain some statistics. Burkhart et al. (2010) proposed SEPIA to realize
aggregation of private data of multiple parties based on Shamir’s secret sharing (Shamir
1979). However, this method is not suitable for crowdsourcing because it requires
communication among workers. If a worker would communicate with another worker
via the requester, the requester could reconstruct all the secret information because of
the properties of secret sharing. Many other secure multiparty aggregation methods
are also not suitable for crowdsourcing for the same reasons.

7 Conclusion

We introduced a privacy problem of workers in crowdsourcing and defined a worker-
private quality control problem. To address the problem, we proposed a worker-private
latent class protocol by extending the LC method. The security of the proposed pro-
tocol was theoretically evaluated, and its performance was evaluated by numerical
experiments. These evaluations showed that the protocol was feasible practically.

Acknowledgments H. Kajino and H. Kashima were supported by the FIRST program.

Appendix 1: Extensions to multi-class and real-valued labels

We introduce the detailed update rules of modified LC methods to deal with multi-class
and real-valued labels, and then we explain how to extend the inference algorithms to
preserve worker privacy.

Appendix 1.1: Multi-class labels

The LC method was originally proposed for multi-class labels by Dawid and Skene
(1979). Let us assume a task to give a K -class label (K ≥ 2). For each i ∈ I and
j ∈ J , a crowd label yi, j ∈ {0, . . . , K − 1}(=: K) is generated by the multinomial
distribution

π jkl = Pr[yi, j = k | yi = l,
 j ],

where
∑

k∈K π jkl = 1 holds for all l ∈ K, and we denote 
 j = {π jkl | k, l ∈ K}.
Also, for each i ∈ I, the true label yi ∈ K is generated by

pl = Pr[yi = l],
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where
∑

l∈K pl = 1 holds. The model parameters 
 = ⋃
j∈J 
 j and {pl | l ∈ K}

and the posterior probabilities of the true labels μil = Pr[yi = l | Y,
] are estimated
using the following EM algorithm.

E-step: for each i ∈ I, update {μil | l ∈ K} as

μil = plρil∑
l ′∈K pl ′ρil ′

,

where log ρil =
∑

j∈Ji

∑

k∈K
I(yi, j = k) log π jkl .

M-step: for each j ∈ J , update 
 j as

π jkl =
∑

i∈I j
μilI(yi, j = k)

∑
i∈I j

μil
,

and for each l ∈ K, update pl as

pl = 1

|I|
∑

i∈I
μil .

This algorithm can be extended to preserve worker privacy. In the E-step, the parties
calculate {log ρil | i ∈ I, l ∈ K} using our secure sum protocol, and the requester
calculates and broadcasts {μil | i ∈ I, l ∈ K}. In the M-step, each worker j calculates
{π jkl | k, l ∈ K}, and the requester calculates {pl | l ∈ K}.

Appendix 1.2: Real-valued labels

The LC method was modified to deal with real-valued labels by Raykar et al. (2010).
Let us assume a task to give a real-valued label. For each i ∈ I and j ∈ J , a crowd
label yi, j ∈ R is generated by the normal distribution

p(yi, j | yi , τ j , γ ) = N (yi, j | yi , 1/τ j + 1/γ ),

where τ j (> 0) is the precision parameter of the normal distribution, which is inter-
preted as the ability of worker j , and γ works as regularization. Let us denote
1/λ j := 1/τ j + 1/γ . Assuming that the crowd labels were generated by this model,
the true labels and the precision parameters are estimated by the following EM-like
algorithm.

E-step: for each i ∈ I, update the true label yi as

yi =
∑

j∈Ji
λ j yi, j∑

j∈Ji
λ j

.

M-step: for each j ∈ J , update λ j by solving
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1

λ j
= 1

|I j |
∑

i∈I j

(yi, j − yi )
2.

This algorithm can also be extended to preserve worker privacy. In the E-step, the

parties calculate
{∑

j∈Ji
λ j yi, j ,

∑
j∈Ji

λ j | i ∈ I
}

using our secure sum protocol,

and the requester calculates and broadcasts {yi | i ∈ I}. In the M-step, each worker j
calculates λ j .
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