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Abstract Multivariate time series (MTS) classification has gained importance with
the increase in the number of temporal datasets in different domains (such as medicine,
finance, multimedia, etc.). Similarity-based approaches, such as nearest-neighbor clas-
sifiers, are often used for univariate time series, but MTS are characterized not only by
individual attributes, but also by their relationships. Here we provide a classifier based
on a new symbolic representation for MTS (denoted as SMTS) with several important
elements. SMTS considers all attributes of MTS simultaneously, rather than sepa-
rately, to extract information contained in the relationships. Symbols are learned from
a supervised algorithm that does not require pre-defined intervals, nor features. An
elementary representation is used that consists of the time index, and the values (and
first differences for numerical attributes) of the individual time series as columns. That
is, there is essentially no feature extraction (aside from first differences) and the local
series values are fused to time position through the time index. The initial represen-
tation of raw data is quite simple conceptually and operationally. Still, a tree-based
ensemble can detect interactions in the space of the time index and time values and
this is exploited to generate a high-dimensional codebook from the terminal nodes
of the trees. Because the time index is included as an attribute, each MTS is learned
to be segmented by time, or by the value of one of its attributes. The codebook is
processed with a second ensemble where now implicit feature selection is exploited
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to handle the high-dimensional input. The constituent properties produce a distinctly
different algorithm. Moreover, MTS with nominal and missing values are handled effi-
ciently with tree learners. Experiments demonstrate the effectiveness of the proposed
approach in terms of accuracy and computation times in a large collection multivariate
(and univariate) datasets.

Keywords Supervised learning · Codebook · Decision trees

1 Introduction

Multivariate time series (MTS) classification is a supervised learning problem in which
each example consists of one or more time series (attributes). MTS data is common in
fields such as medicine, finance and multimedia. For example, in motion capture stud-
ies humans perform a series of tasks and the positions of joints are tracked by markers
(McGovern et al. 2011). Learning scientists are interested in electroencephalogra-
phy (EEG), (recordings of electrical activity at different locations along the scalp)
to understand the perceived difficulty of a puzzle-solving task in a learning environ-
ment. Moreover, in the domain of relational marketing, the behavior of a customer is
observed through time, and the interactions and responses are represented as MTS.
Also, Orsenigo and Vercellis (2010) described a telecommunication application where
customer loyalty was analyzed from the transactions of each customer in time periods
and described by duration, economic value and number of calls of different type (i.e.,
cell to cell, cell to landline etc.).

The problem has been studied in fields such as statistics, signal processing and
control theory (Kadous and Sammut 2005). The most common approach is to obtain
a rectangular representation of MTS by transforming the set of input series to a fixed
number of columns using different rectangularization approaches (Orsenigo and Ver-
cellis 2010). For example, singular value decomposition (SVD) was used by Li et al.
(2006), Li et al. (2007), Weng and Shen (2008). Any supervised learner can be trained
on the transformed data for classification. These approaches assume that the attributes
are numerical. However, some attributes might be nominal or contain missing values.

Another strategy is to modify the similarity-based approaches used for univariate
time series (UTS). For example, Akl and Valaee (2010), Liu et al. (2009) focused on
gesture recognition based on dynamic time warping (DTW) distance. DTW (Sakoe
1978) provides a similarity measure independent of certain non-linear variations in
the time dimension, and is considered a strong solution for time series problems
(Ratanamahatana and Keogh 2005). Another similarity approach uses a kernel func-
tion determined by pairwise similarities between the attributes of a MTS. Thus, Chao-
valitwongse and Pardalos (2008) used kernels based on DTW for brain activity clas-
sification and Orsenigo and Vercellis (2010) proposed a temporal discrete SVM for
MTS classification. Similarity is based on a term that depends on the warping distances
(Orsenigo and Vercellis 2010). However, an important limitation of these approaches
is that MTS are not only characterized by individual attributes, but also by the rela-
tionships between the attributes (Bankó and Abonyi 2012) and such information is not
captured by the similarity between the individual attributes (Weng and Shen 2008).
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Another important challenge for MTS classification is the high dimensionality
introduced by multiple attributes and longer series. For longer time series, higher-level
representations are proposed Lin et al. (2007), such as Fourier transforms, wavelets,
piecewise polynomial models, etc. (Lin et al. 2003). Also, symbolic aggregate approx-
imation (SAX) (Lin et al. 2007, 2012; Shieh and Keogh 2008), is a simple symbolic
representation for univariate series that segments the series into fixed-length intervals
(and a symbol represents the mean of the values). This representation is similar to
Piecewise Aggregate Approximation (PAA) (Chakrabarti et al. 2002). In the multi-
variate scenario, two alternative representations (illustrated in Fig. 1) are considered
(Kuksa 2012). MTS with M attributes and T observations can be discretized to obtain
a one-dimensional (1D) representation using vector quantization approaches similar
to those used for univariate series (Kuksa 2012). Alternatively, each attribute of MTS
can be discretized and combined to obtain a two-dimensional (2D) representation of
MTS.

Here we provide a classifier based on new symbolic representation for MTS
(denoted as SMTS) with several important elements. SMTS considers all attributes of
MTS simultaneously, rather than separately, to extract information contained in rela-
tionships. The symbols are learned from a supervised algorithm that does not require
pre-defined intervals, nor features. An elementary representation is used that consists
of the time index, and the values (and first differences) of the individual time series as
columns. That is, there is essentially no feature extraction (aside from first differences)
and the local series values are fused to time position through the time index.

Each MTS is concatenated vertically and each instance is labeled with the class of
the corresponding time series. A tree learner [e.g., CART (Breiman et al. 1984) or C4.5
(Quinlan 1993)] is applied to the simple representation and each instance is assigned
to a terminal node of the tree. That is, a symbol is associated with each time index
(instance), instead of intervals of the time series. With R terminal nodes, the dictionary
contains R symbols. Because the time index is included as an attribute, each MTS may
be segmented by time, or by the value of one of its attributes. Consequently, the time
order of the data can be incorporated in the model. At the next level of the learning

Fig. 1 Alternative representations for MTS (Kuksa 2012). MTS with M attributes and T observations are
mapped to a 1D representation by the function g1D (left) or a 2D representation in which each attribute of
MTS is mapped to 1D representation by g2D (right). Although the length of the symbolic representation
is shown to be the same as T , it can be smaller based on the mapping strategy. Also, the 2D representation
may have fewer columns than M depending on the mapping
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algorithm, the set of instances from each MTS is summarized by the frequency over
the R symbols. Because of the greedy nature of a single tree, the procedure to grow a
tree is repeated to generate a tree ensemble (Breiman 2001). Consequently, each MTS
is represented by a collection of distributions and the concatenated vector becomes the
codebook for the second layer in the algorithm. A codebook is learned automatically
from a simple representation of the raw data.

Interactions between the attributes of MTS are considered through the multivariate,
tree-based symbol generation used in SMTS. Although our symbolic representation
is of the same length as the time series, it does not generate a representation for each
attribute of MTS. Therefore, SMTS scales well with a the number of attributes which
makes it computationally efficient when compared to other approaches. Furthermore,
an ensemble learner that scales well with a large number of attributes and long time
series is used. SMTS can handle MTS examples of different lengths. Moreover, as
discussed in a telecommunication application (Orsenigo and Vercellis 2010), data
can be nominal (e.g., call type) for which similarity computations and other repre-
sentations are not well-defined. MTS with nominal and missing values are handled
efficiently with tree learners. Our experiments demonstrate the effectiveness of the
proposed approach in terms of accuracy and computation times in both UTS and MTS
datasets.

The remainder of this paper is organized as follows. Section 2 summarizes related
work. Section 3 provides a brief background. Section 4 presents the problem and
describes the framework. Section 5 demonstrates the effectiveness and efficiency of our
proposed approach by testing on a full set of benchmark datasets from CMU (2012),
Bache and Lichman (2013), Keogh et al. (2011) and Olszewski (2012). Section 6
provides conclusions.

2 Related work

The necessity of alternative representations for MTS classification was discussed
by Kadous and Sammut (2005). A concept called a metafeature is introduced and
used to represent a MTS. However, metafeatures must be defined by users in this
approach. One of the metafeatures partitions the feature space using Voronoi tiling
and selects these regions. The partitioning is not supervised in this approach and, as
mentioned by Kadous and Sammut (2005), designing a good metafeature is not an easy
task.

A 2D representation for MTS was considered by McGovern et al. (2011). Each
attribute of MTS is discretized using SAX and salient attributes are identified from
statistical performance measures. Patterns are identified on each individual attribute,
without taking other attributes into account. Consequently, this approach is greedy
because the relationships between the attributes may carry the important description
of a complex system (Bankó and Abonyi 2012). Although the patterns are combined
later, one may potentially miss a certain pattern that appears unimportant when time
series are considered separately in the first step. Also, McGovern et al. (2011) required
an approach for a multiclass extension since the rules were generated for binary clas-
sification.
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Two MTS representations based on SAX to classify physiological data were pre-
sented by Ordonez et al. (2011). Multivariate words are generated by combining the
symbols of each attribute at a particular time and a bag-of-patterns (BoP) approach
is used to classify MTS. This considers the relationships between the time series
by combining individual representations. However, the length of the words obtained
by concatenating the symbols may increase substantially as the number of attributes
increase. This potentially affects the effectiveness because longer words carry less
information (i.e. curse of dimensionality). Also, this representation is not sensitive to
warpings of the patterns because words are synchronized over time. Furthermore, the
symbols are computed from a discretization of each time series separately, rather than
from the multivariate distribution. Moreover, the fixed-length intervals have the poten-
tial to omit patterns that appear with different lengths (dilations) and be split across
the time points (Fu 2011). A stacked Bags-of-Patterns was also proposed by Ordonez
et al. (2011). This concatenates the representation of multiple univariate series into
a single one. However, this representation does not take the relationships between
attributes into account.

Time series similarity based on a BoW representation was also considered by Lin
et al. (2012) for univariate time series classification. Time series were discretized
by SAX (Lin et al. 2007) and time series were represented as words using the sym-
bols generated by SAX. Similarity of the time series were then computed using the
representations from document classification approaches. Unlike Lin et al. (2012),
our approach generates symbols in a supervised manner and handles the multivariate
case.

Also, Kudo et al. (1999) proposed an approach for multidimensional curve clas-
sification. Each attribute is discretized separately (as in the existing symbolic MTS
methods). Also, each attribute of MTS is partitioned into rectangular regions of equal
dimensions. Then classification rules are discovered based on the common regions
through which only curves of one class pass. Their approach has similarities to McGov-
ern et al. (2011) in terms of the discretization and rule generation. However, because
the discretization does not consider the attributes simultaneously and the rules are
discovered based on each individual attribute, there is a potential to miss important
relationships between the attributes.

For image classification problems, Moosmann et al. (2008) trained trees on features
extracted from image patches in a supervised manner and the terminal nodes were
used as individual clusters. An image is represented as the frequency distribution of
the cluster IDs from an image (visual codebook) and any supervised learner can be
trained on the visual codebook. Unlike Moosmann et al. (2008), we do not sample
patches and we do not generate features. Our simple representation is used to learn
symbols directly. Furthermore, Moosmann et al. (2008) did not consider the location
information (time index) as a feature during the tree learning as we do. Instead, they
proposed to guide sampling to important locations of the images. They also use very
few trees in the ensemble, whereas we consider a codebook of much higher dimension.

For univariate time series classification, a bag-of-features approach, TSBF, was
proposed by Baydogan et al. (2013). TSBF summarizes time series with class proba-
bility estimates from tree ensembles. However, TSBF requires simple features (means,
variances) to be extracted from subsequences of time series. Instead, SMTS does not
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generate features. Each observation is taken as an instance and the symbols are learned.
An extension of TSBF to the classification of MTS requires an appropriate integration
of features and individual series as additional steps.

3 Background

Decision tree learners are comprehensible models with satisfactory accuracy that are
successfully used in many applications. Univariate trees such as CART (Breiman et
al. 1984) and C4.5 (Quinlan 1993) split data based on only one attribute at each node,
and, thus, are limited to splits that are orthogonal to the attribute’s axis (Brodley and
Utgoff 1995).

Tree ensembles are proposed to mitigate the greedy nature of univariate trees. A
random forest (RF) classifier (Breiman 2001) is used here to partition the feature
space. A RF is an ensemble of J decision trees, {g j , j = 1, 2, . . . , J }. Each tree is
constructed from a different bootstrap sample of the original data. The instances left
out of a bootstrap sample and not used in the construction of a single tree are called
out-of-bag (OOB) instances. At each node of each tree, a RF considers the best split
based on only a random sample of features. Often, the sample size is

√
ν, where ν is

the number of features. The random selection reduces the variance of the classifier,
and also reduces the computational complexity of a single tree from O(νη log η) to
O(

√
νη log η) (assuming the depth of tree is O(log η) where η is the number of training

(in-bag) instances). Therefore, for a large number of features and instances, a RF can
be as computationally efficient as a single decision tree.

The prediction for instance x from tree g j is ŷ j (x) = argmaxc pc
j (x), where pc

j (x)

is the proportion of class c in the corresponding leaf of the j-th tree, for c = 0, 1, . . . ,

C − 1. Let G(x) denote the set of all trees in the RF where instance x is OOB. The
OOB class probability estimate of x is

pc(x) = 1

|G(x)|
∑

g j ∈G(x)

I
(
ŷ j (x) = c

)

where I (·) is an indicator function that equals one if its argument is true and zero
otherwise. The predicted class is ŷ(x) = argmaxc pc(x). The estimates computed
from OOB predictions are easily obtained and have been shown to be good estimates
of generalization error (Breiman 2001).

RF provides a number of desirable properties for the time series problem. High-
dimensional feature spaces, nominal features, multiple classes, and missing values are
handled. Nonlinear models and interactions between features are allowed. It is scale
(unit) invariant and robust to outliers, and computations are reasonable even for large
datasets.

4 Time series discretization using tree-based classifiers

A MTS, Xn , is an M-attribute time series each of which has T observations where
xn

m is the mth attribute of series n and xn
m(t) denotes the observation at time t . For
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illustration purposes, time series are assumed to be of the same length, T , although our
approach can handle time series of different length. MTS example Xn is represented
by a T × M matrix as

Xn = [
xn

1, xn
2, . . . , xn

m, . . . , xn
M

]
(1)

where

xn
m = [

xn
m(1), xn

m(2), . . . , xn
m(T )

]′

is the time series in column m. There are N training MTS, each of which is associated
with a class label yn ∈ {0, 1, 2, . . . , C − 1} for n = 1, 2, . . . , N . Given a set of
unlabeled MTS, the task is to map each MTS to one of the predefined classes.

4.1 Representation of multivariate time series

Instead of extracting features from each time series, each row of Xn is considered
to be an instance in our approach. This is achieved by creating a matrix of instances
DN T ×M where

DN T ×M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
1 x1

2 . . . x1
M

x2
1 x2

2 . . . x2
M

.

.

xn
1 xn

2 . . . xn
M

.

.

xN
1 xN

2 . . . xN
M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Equation 2 is basically the concatenation of training examples Xn in equation 1. We
assign the label of each instance to be the same as the time series.

We map DN T ×M to the feature space �N T ×(2M+1) that adds the following columns:
time index, first differences for each numerical attribute. The row of � for series n at
time index t is

[
t, xn

1 (t), xn
1 (t) − xn

1 (t − 1), . . . , xn
M (t), xn

M (t) − xn
M (t − 1)

]
(3)

The differences provide trend information. A tree learner can capture this information
if it relates to the class. This difference is not available for the first observation of
MTS, which is assumed to be missing. If an attribute is nominal, first differences are
not included. For both numerical and nominal values, missing values are handled by
the tree learners. Also, the number of instances may differ across different MTS, but
are assumed to be the same for attributes within an MTS. See Table 1 for an example
representation.
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Table 1 Sample data table for
one univariate time series from
each of three classes

To represent MTS, columns are
generated for time index, each
attribute, first differences for
each numerical attribute, and
class

Series Time index Attribute Difference Class

1 1 0.5 – 1

1 2 0.5 0 1

1 . . . . . . . . . 1

1 19 0.7 0.2 1

2 1 −0.4 – 3

2 . . . . . . . . . 3

2 19 0.1 −0.3 3

3 1 0 – 2

3 . . . . . . . . . 2

3 19 −0.2 0.1 2

A RF tree learner is trained on � assuming that each instance has the same class
label as its time series. This is denoted as RFins (for RF applied to the instances)
with Jins trees in the forest. Each instance of � is mapped to a terminal node of each
tree g j , j = 1, 2, . . . , Jins . Although the trees of RFins without any modification
are unpruned, we restrict the number of terminal nodes of each tree to R and that
determines the alphabet size in our approach. The trees are trained in a breadth-first
order. One level of the tree is built at a time and training stops when there are R
terminal nodes. A second parameter is the number of trees Jins . Each tree of RFins
provides a symbolic representation for the time series.

Figure 2 illustrates the representation from one tree for three univariate time series.
The plot of raw data versus time index is illustrated in Fig. 2a (with the time index
plotted on the horizontal axis and the value from a time series plotted on the vertical
axis) and we refer to this as signal space. The terminal nodes for the example tree
are shown in Fig. 2b to illustrate the partition used for the symbolic representation.
These terminal nodes correspond to the partition of signal space shown in Fig. 2a.
We omit the first differences in the example so that the partition and symbols can be
illustrated on a 2D plot. The symbols are locally sensitive because the time index is a
candidate feature to split a node (as illustrated in Fig. 2b). The bar chart of the symbol
distribution is shown in Fig. 2c.

A simple way to view a time series is as a set of points in the two-dimensional
signal space in Fig. 2a, denoted as S. If there are differences between the classes,
there are regions in S where one class of points dominate. When the RF classifier is
applied to �, boundaries in S are learned to partition points from different classes.
Because time is used as a predictor variable, and because RFs can effectively han-
dle interactions, complex regions in S where one class dominates can be detected.
In this sense, the time ordering of the data is used. Rather than one tree, the RF
ensemble is used to handle structures that are not parallel to the coordinate axes.
Each tree of RFins is trained on a random subsample of features and instances.
Therefore, the final representation includes different views of the same time series.
The representation maps a time series to the high-dimensional space of terminal
nodes (that correspond to regions in S where one class dominates). Because trends
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(a) (b)

(c)

Fig. 2 a Time series from three classes are plotted in signal space. b A decision tree learned from the time
series in signal space partitions the space and the terminal nodes provide symbols. c The symbol distribution
for each series is shown in a bar chart

are often important properties in time series, the added first differences improve the
models.

4.2 Classification

After the symbolic representation is generated from the trees in RFins, a bag-of-
words (BoW) approach is used to classify the time series. Each symbol is simply
considered to be a word and the relative frequency vector of the symbols from each
tree are concatenated and used to classify the time series. This frequency vector from
each tree is normalized by the number of instances in the time series to obtain the
relative frequency vector. More details follow.
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Table 2 A visual example of the representation based on symbol frequencies

Tree 1 Tree 2 . . . Tree Jins

A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 . . . . . . . .

1 0.26 0.37 0.26 0.00 0.11 0.11 0.53 0.21 0.00 0.16 . . . 0.63 0.00 0.11 0.26 0.00

2 0.26 0.11 0.21 0.32 0.11 0.26 0.26 0.00 0.21 0.26 . . . 0.11 0.53 0.21 0.00 0.16

3 0.00 0.37 0.21 0.05 0.37 0.16 0.16 0.21 0.47 0.00 . . . 0.42 0.42 0.00 0.16 0.00

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

N 0.42 0.11 0.16 0.21 0.11 0.16 0.37 0.21 0.00 0.26 . . . 0.21 0.00 0.21 0.37 0.21

Each column denotes a symbol from a tree of RFins (with R = 5 terminal nodes each), and each row
denotes a MTS. Each table entry is the proportion of time series indices (for the MTS corresponding to the
row) in the terminal node

Let Hj (Xn) be the R × 1 relative frequency vector of the terminal nodes from tree
g j for MTS Xn . Let the function q j (·) assign a row of � to a terminal node of tree
g j . Each entry of Hj (Xn) is the proportion of time indices from MTS n assigned to a
terminal node (say r ) by tree g j . That is, the r th element of Hj (Xn) is

∑T
t=1 I

[
q j (�

n
t ) = r

]

T

for r = 1, 2, . . . , R, where I (·) is the indicator function and �n
t denotes the row t of

MTS n in �.
We concatenate the Hj (Xn) (relative frequency vectors) from each of the Jins trees

g j of RFins to obtain the final representation of each time series, denoted H(Xn),
of length R × Jins . Table 2 illustrates the representation for symbol frequencies with
the number of terminal nodes R = 5. A classifier is then trained on the H(Xn). The
cardinality of H(Xn) might be large based on the setting of R and Jins . Therefore, a
scalable classifier that can handle interactions and correlations such as a RF is preferred
for this task. This RF is referred as RFts for which we train Jts trees. To classify a
test MTS, X0, the frequency representation H(X0) is obtained and RFts assigns the
class.

5 Experiments and results

Although our focus is on MTS, SMTS is tested on several UTS and MTS datasets.
These datasets are from domains such as speech recognition, activity recognition,
medicine, etc. The UTS are from Keogh et al. (2011) and provide diverse characteristics
such as the lengths of the series, the number of classes, etc. (as shown in the first
columns in Tables 4 and 5). A total of 22 MTS from CMU (2012), Bache and Lichman
(2013), Keogh et al. (2011) and Olszewski (2012) are used to illustrate the performance
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Fig. 3 Average OOB and test error rates with selected R and Jins for StarLightCurves dataset (five repli-
cations). As representation size (R × Jins ) increases, marginal improvement in OOB error rates decreases

of our approach on MTS data. The dataset characteristics are given in Table 6. We
randomly selected train and test examples if no default train/test split is provided for
the dataset.

5.1 Parameter settings

Our algorithm does not require the setting of many parameters and it is robust to the
settings. Three parameters of our approach are R, Jins and Jts . RF is insensitive to both
the number of trees and, also the number of candidate attributes scored to potentially
split a node (Breiman 2001). The number of features evaluated at each node of a tree
is set to the default that equals the approximate square root of the number of features.
For RFins, there are 2 × M + 1 features (assuming that all attributes are numerical).
For RFts, the number of features is R × Jins . Consequently, the only parameter of
importance is the number of terminal nodes (alphabet size) R. Still, we allow for
different settings for Jins and Jts .

The parameters R and Jins are set in two steps. We first set R based on a mini
experiment, because it determines the level of detail captured. In this experiment,
we evaluate all R levels by running RFins with 25 trees. Then RFts with 50 trees
is trained on each representation. The R value providing the best OOB error rate
based on the training data is chosen. After setting R, we generate a representation
for each level of Jins in the second mini experiment. RFts with 50 trees is trained
on each representation to select the Jins value to minimize the OOB error rate on the
training data. Finally, Jts is set based on the progress of OOB error rates at discrete
number of tree levels (step size of 50 trees). If the OOB error rate does not improve
more than a tolerance level (set to 0.05 times the OOB error rate from the previous
step), we stop adding new trees to RF. We illustrate the behavior of SMTS on the
StarLightCurves dataset with selected values for the representation size (R and Jins

levels) in Fig. 3. Error rates improve as the representation size is increased and stabilize
after a certain level. Also, this confirms our strategy to select R first because the error
rates are primarily affected by the R setting. If there is no concern about the training
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time, Jins can be set large. Based on our preliminary experiments, three values are
evaluated for R ∈ {20, 50, 100} and Jins ∈ {20, 50, 100}. After the parameters are
set from only the training data, the model is used for the classification of the test time
series.

5.2 Classification accuracy

5.2.1 Univariate datasets

SMTS is compared to nearest neighbors (NN) classifiers with DTW. Two versions of
DTW are considered: NNDTWBest (Ratanamahatana and Keogh 2004) searches for
the best warping window, based on the training data, then uses the learned window
on the test data, while NNDTWNoWin has no warping window. Note that DTW is a
strong solution for time series problems in a variety of domains (Ratanamahatana and
Keogh 2005). The results for NNDTW classifiers were obtained from Keogh et al.
(2011). We also standardize each time series to zero mean and unit standard deviation.
This adjusts for potentially different baselines or scales that are not considered to be
relevant (or persistent) for a learner.

An unsupervised BoW approach with a codebook derived from K-means cluster-
ing is also considered for comparison. In the unsupervised approach, the Euclid-
ean distance between each row of � is computed. K-means clustering with k
selected from the set k ∈ {20, 50, 100, 250, 500} is used to label the observa-
tions. Then, we use the frequency of the cluster assignments to generate the code-
book. Similar to our approach, we train a RF on the codebook. The results are
reported for the k level providing the minimum OOB error rate on the training
data.

We also compare to a RF classifier applied directly to the times series values. That
is, the number of features is T for each time series. This approach requires time series
of the same length. For all RFs trained with alternative approaches, OOB error rates
at a discrete number of tree levels are considered to set the number of trees. As before,
the number of features evaluated at each node of a tree is set to the default which
equals the approximate square root of the number of features.

The results for a nearest-neighbor classifier with Euclidean distance on a BoP
representation (NNBoP) are from Lin et al. (2012). The results are reported for 20 of
the UCR datasets with the best parameter setting combination selected by Lin et al.
(2012). Consequently, we compare to NNBoP over these 20 datasets and compare to
the other methods over 45 datasets.

We provide the significance levels for Wilcoxon matched-pairs signed-ranks tests
for SMTS and the number of wins/ties/losses against the algorithm in Table 3. Tables 4
and 5 provide detailed results from 10 replications of our algorithm on the test
data.

The performance of SMTS is better than the BoW approach with K-means clus-
tering on univariate datasets. This shows an advantage of our supervised signal space
partition compared to an unsupervised one. Also, SMTS provides better results than
RF on the values. This is expected, due to the problems of supervised learners trained
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Table 3 Performance of SMTS (average over 10 replications) against competitor approaches, BoW
approach with K-means clustering, TSBF (Baydogan et al. 2013), nearest-neighbor classifiers with dynamic
time warping distance (NNDTWBest and NNDTWNoWin), RF applied directly to time series values and
nearest-neighbor classifier with Euclidean distance on BoP representation (Lin et al. 2012)

BoW TSBF NNDTW RF NN

K-means Best NoWin BoP

20 datasets win/tie/lose 13/0/7 6/1/13 12/0/8 14/1/5 16/0/4 12/1/7

Wilcoxon 0.124 0.934 0.131 0.011 0.001 0.102

45 datasets win/tie/lose 34/2/9 18/1/26 28/0/17 32/1/12 38/0/7 a

Wilcoxon 0.000 0.728 0.038 0.001 0.000
a Reported the error rates over 20 datasets

Table 4 Error rates over 20 datasets, SMTS (average over 10 replications), BoW approach with K-means
clustering, TSBF (Baydogan et al. 2013), nearest-neighbor classifiers with dynamic time warping distance
(NNDTWBest and NNDTWNoWin), RF applied directly to time series values and nearest-neighbor clas-
sifier with Euclidean distance on BoP representation (Lin et al. 2012)

# Of classes Dataset size Length BoW TSBF NNDTW RF NN

Train Test SMTS K-means Best NoWin BoP

50Words 50 450 455 270 0.289 0.308 0.209 0.242 0.310 0.348 0.466

Adiac 37 390 391 176 0.248 0.304 0.245 0.391 0.396 0.361 0.432

Beef 5 30 30 470 0.260 0.333 0.287 0.467 0.500 0.300 0.433

CBF 3 30 900 128 0.020 0.022 0.009 0.004 0.003 0.112 0.013

Coffee 2 28 28 286 0.029 0.107 0.004 0.179 0.179 0.007 0.036

ECG 2 100 100 96 0.159 0.200 0.145 0.120 0.230 0.184 0.150

Face (all) 14 560 1,690 131 0.191 0.150 0.234 0.192 0.192 0.190 0.219

Face (four) 4 24 88 350 0.165 0.284 0.051 0.114 0.170 0.211 0.023

Fish 7 175 175 463 0.147 0.051 0.080 0.160 0.167 0.221 0.074

Gun-Point 2 50 150 150 0.011 0.007 0.011 0.087 0.093 0.073 0.027

Lighting-2 2 60 61 637 0.269 0.213 0.257 0.131 0.131 0.244 0.164

Lighting-7 7 70 73 319 0.255 0.315 0.262 0.288 0.274 0.263 0.466

OliveOil 4 30 30 570 0.177 0.100 0.090 0.167 0.133 0.107 0.133

OSU L. 6 200 242 427 0.377 0.331 0.329 0.384 0.409 0.518 0.256

Swedish L. 15 500 625 128 0.080 0.106 0.075 0.157 0.210 0.126 0.198

Synt. Cont. 6 300 300 60 0.025 0.020 0.008 0.017 0.007 0.046 0.037

Trace 4 100 100 275 0.000 0.030 0.020 0.010 0.000 0.165 0.000

Two Pat. 4 1,000 4,000 128 0.003 0.011 0.001 0.002 0.000 0.158 0.129

Wafer 2 1,000 6,174 152 0.000 0.008 0.004 0.005 0.020 0.012 0.003

Yoga 2 300 3,000 426 0.094 0.173 0.149 0.155 0.164 0.191 0.170

Bold values indicate the best performance (i.e. minimum error rate)

on the features from fixed locations and dimensions as discussed by many authors
(Baydogan et al. 2013; Geurts 2001). Obviously, our symbol generation process com-
bined with our BoW representation helps to avoid this problem. SMTS performs
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Table 5 Error rates over 25 datasets, SMTS (average over 10 replications), BoW approach with
K-means clustering, TSBF (Baydogan et al. 2013), nearest-neighbor classifiers with dynamic time warping
distance (NNDTWBest and NNDTWNoWin), RF applied directly to time series values

# Of classes Dataset size Length BoW TSBF NNDTW RF

Train Test SMTS K-means Best NoWin

ChlorineConc. 3 467 3,840 166 0.328 0.328 0.336 0.350 0.352 0.291

CinC_ECG_torso 4 40 1,380 1,639 0.100 0.236 0.262 0.070 0.349 0.250

Cricket_X 12 390 390 300 0.302 0.359 0.278 0.236 0.223 0.427

Cricket_Y 12 390 390 300 0.298 0.297 0.259 0.197 0.208 0.396

Cricket_Z 12 390 390 300 0.259 0.321 0.263 0.180 0.208 0.406

DiatomSize 4 16 306 345 0.094 0.144 0.126 0.065 0.033 0.093

ECG 5 days 2 23 861 136 0.190 0.214 0.183 0.203 0.232 0.210

FacesUCR 14 200 2,050 131 0.157 0.204 0.090 0.088 0.095 0.215

Haptics 5 155 308 1,092 0.485 0.513 0.488 0.588 0.623 0.551

InlineSkate 7 100 550 1,882 0.562 0.562 0.603 0.613 0.616 0.665

ItalyPowerDemand 2 67 1,029 24 0.038 0.090 0.096 0.045 0.050 0.033

MALLAT 8 55 2,345 1,024 0.052 0.034 0.037 0.086 0.066 0.082

MedicalImages 10 381 760 99 0.273 0.345 0.269 0.253 0.263 0.277

MoteStrain 2 20 1,252 84 0.051 0.126 0.135 0.134 0.165 0.119

SonyRobot 2 20 601 70 0.208 0.394 0.175 0.305 0.275 0.321

SonyRobotII 2 27 953 65 0.151 0.197 0.196 0.141 0.169 0.197

StarLightCurves 3 1,000 8,236 1,024 0.025 0.026 0.022 0.095 0.093 0.052

Symbols 6 25 995 398 0.035 0.104 0.034 0.062 0.050 0.148

TwoLeadECG 2 23 1,139 82 0.027 0.036 0.046 0.132 0.096 0.268

uWaveGesture_X 8 896 3,582 315 0.180 0.217 0.164 0.227 0.273 0.245

uWaveGesture_Y 8 896 3,582 315 0.257 0.293 0.249 0.301 0.366 0.314

uWaveGesture_Z 8 896 3,582 315 0.242 0.275 0.217 0.322 0.342 0.290

WordsSynonyms 25 267 638 270 0.399 0.409 0.302 0.252 0.351 0.439

Thorax1 42 1,800 1,965 750 0.099 0.126 0.138 0.185 0.209 0.123

Thorax2 42 1,800 1,965 750 0.071 0.102 0.130 0.129 0.135 0.090

Bold values indicate the best performance (i.e. minimum error rate)

better for most of the datasets when compared to NN approaches. We are performing
slightly better than NNBoP approach over the 20 datasets considered. TSBF outper-
forms SMTS in most of the UTS datasets, but there is not a significant difference. The
good performance of TSBF lies in its own representation, because each time series is
represented with multiple subsequences from which features are extracted. This allows
for mechanisms to handle the possible problems related to noise, translation and dila-
tion of patterns. We mentioned previously that additional steps would be needed to
extend TSBF to multivariate series which are the focus here, and this is discussed in
a following section.

Although not shown here, SMTS experiments with and without difference features
were also conducted. SMTS with difference features provided better results for 39
datasets of the 45 datasets and this illustrates the benefits of the difference information.
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Table 6 Characteristics of MTS: number of classes, number of attributes, length of time series, number of
training instances and number of testing instances

# of
Classes

# of
Attributes

Length Dataset size CV Source

Train Test

AUSLAN 95 22 45–136 1140 1425 Tenfold Bache and
Lichman
(2013)

Pendigits 10 2 8 300 10692

Japanese Vowels 9 12 7–29 270 370

Robot Failure

LP1 4 6 15 38 50 Fivefold Bache and
Lichman
(2013)

LP2 5 6 15 17 30

LP3 4 6 15 17 30

LP4 3 6 15 42 75

LP5 5 6 15 64 100

ECG 2 2 39–152 100 100 Tenfold Olszewski
(2012)

Wafer 2 6 104–198 298 896

CMU_MOCAP
_S16

2 62 127–580 29 29 Tenfold CMU (2012)

ArabicDigits 10 13 4–93 6600 2200 × Bache and
Lichman
(2013)

CharacterTrajectories 20 3 109–205 300 2558 ×
LIBRAS 15 2 45 180 180 ×
Test performance is also reported for all datasets. Column “CV” indicates if comparisons are also based on
cross-validation. The source of the datasets are in the last column

5.2.2 Multivariate datasets

The MTS datasets used to evaluate SMTS are commonly used by other MTS clas-
sification studies. However, some researchers downsample certain datasets to fewer
classes or instances due to the high number of classes [e.g., Weng and Shen (2008)
used instances from 25 classes of AUSLAN]. Moreover, some algorithms preprocess
the data for different purposes such as smoothing or obtaining an appropriate rep-
resentation [e.g., Bankó and Abonyi (2012), Weng and Shen (2008) truncated some
datasets to obtain time series of same length]. We compare SMTS to the approaches
which do not preprocess the data.

Most of the MTS studies follow different strategies for experimentation which com-
plicates the comparisons. For instance, Lin et al. (2012) and Orsenigo and Vercellis
(2010) evaluated the performance using cross-validation (CV). To have a fair compar-
ison with the competitor algorithms, we also follow their experimental strategy. The
datasets for which CV is performed are given in Table 6. For the CV, we combine the
training and test data to obtain a single dataset. We replicate the CV five times and
report average error rates.
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The motif discovery approach by McGovern et al. (2011) works on binary classi-
fication problems and the critical success index (CSI) by Schaefer (1990) is used to
assess the performance of the approach. This measure evaluates success as the ratio
of the number of true positives to the number of instances that are predicted to be pos-
itive. In order to make this approach comparable to SMTS, we modified the proposed
approach and use the accuracy as the performance measure. As a binary classifier, we
are able to run the approach on only three datasets in Table 6. There are five parameters
of the approach: alphabet size ∈ {3, 4, . . . , 8}, word size ∈ {2, 3}, the number of time
steps averaged into piecewise aggregation ∈ {1, 2, . . . , 5}, minimum probability of
detection (POD) as 0.9 and maximum false alarm ratio (FAR) as 0.8. This yields 60
different parameter combinations for the experiment. The error rates are reported for
the parameter setting that provides the best accuracy on training data over tenfold CV.
This approach required an average of 18 hours per dataset with the same hardware
used for SMTS. Computational times are discussed in Sect. 5.3.

We also compare SMTS with 1-NN classifiers with DTW and a multivariate exten-
sion of TSBF (MTSBF) (Baydogan et al. 2013) on the test data. For DTW calculations,
each time series is standardized to have a mean of zero and a standard deviation of
one before distance computations. The DTW distance between two MTS is taken to
be the sum of the DTW distances between the associated univariate time series. TSBF
generates a representation based on the features extracted from univariate time series
in its original implementation. For MTSBF, we generate a representation for each
attribute of MTS and then concatenate these representations columnwise to obtain the
final representation for MTS. Therefore, this requires running TSBF on each attribute.
The only important parameter of TSBF is the subsequence length factor (z in TSBF’s
notation) which determines the minimum length of the subsequences to be used for
feature extraction. The other parameters are kept as recommended by Baydogan et al.
(2013). Evaluated z values are z ∈ {0.25, 0.5, 0.75}. For each univariate series, this
parameter is selected based on the procedure described by Baydogan et al. (2013).
The codes for MTSBF are available on Baydogan (2013). MTSBF generates a repre-
sentation for each attribute of MTS which requires running TSBF M times. This may
not be adequate for MTS with a large number of attributes.

Table 7 summarizes the results from our CV experiments and reported error rates
from other references. SMTS performs consistently better when compared to the clas-
sification approaches considered by Orsenigo and Vercellis (2010). The best error rate
for AUSLAN reported by Kadous and Sammut (2005) is from an ensemble of 11 differ-
ent classifiers trained on the extracted metafeatures. SMTS performs equally well for
this particular dataset. Also, Lin et al. (2012) reported error rates for two versions of
NN classifiers with DTW: NNDTW-Best and NNDTW-NoWin. SMTS outperforms
the similarity-based approaches for these two datasets.

For binary classification problems, SMTS outperforms the predictive motif discov-
ery method from McGovern et al. (2011) with an approach that is conceptually and
operationally quite simple. Our experiments show that the motif discovery approach is
sensitive to the setting of the parameters and has problems with overfitting. The para-
meters are set based on the suggestions and experiments in McGovern et al. (2011). It
has the potential to perform better with different settings and how parameters should
set to avoid overfitting is further discussed by McGovern et al. (2011).
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Table 8 Test error rates for SMTS (average over 10 replications), nearest-neighbor classifier with dynamic
time warping distance, and a multivariate version of a bag of features method

SMTS NNDTW MTSBF Other
NoWin

CMU_MOCAP_S16 0.003 0.069 0.003

AUSLAN 0.053 0.238 0.000

ArabicDigits 0.036 0.092 – 0.069 by Hammami and Bedda (2010)

Japanese Vowels 0.031 0.351 – 0.032 by Bicego et al. (2009),
Geurts (2001), 0.059 by
Kudo et al. (1999)

Robot Failure

LP1 0.144 0.280 –

LP2 0.240 0.467 –

LP3 0.240 0.500 –

LP4 0.105 0.187 –

LP5 0.349 0.480 –

Wafer 0.035 0.023 0.015

CharacterTrajectories 0.008 0.040 0.033

uWaveGestureLibrary 0.059 0.071 0.101

LIBRAS 0.091 0.200 0.183

ECG 0.182 0.150 0.165

Pendigits 0.083 0.088 –

Best error rates reported by other MTS classification papers

The error rates on the test data are given in Table 8. The datasets are sorted (descend-
ing) based on the number of attributes to illustrate the effectiveness of SMTS. SMTS
provides better results for the datasets with larger number of attributes, while the per-
formance is comparable for the remaining datasets when compared to similarity-based
approaches.

SMTS performs better than MTSBF for some datasets where MTSBF significantly
outperforms for the others. TSBF generates a representation for each attribute without
taking the others into consideration. However, as discussed in Sect. 2, this approach
is greedy because the relationships between the attributes may describe the class.
Depending on the problem characteristics, individual handling of the attributes may
provide inferior results. For example, certain classes from uWaveGestureLibrary are
defined by the patterns over multiple time series as shown by Baydogan (2012) and
MTSBF provides worse results for this particular dataset. SMTS performs equally well
on the ArabicDigits and Japanese Vowels dataset when compared the other studies in
the literature.

5.3 Computational time analysis

Here we empirically evaluate the runtime of SMTS with different settings of problem
characteristics and parameters. SMTS is implemented in both C and R Software and
our experiments use an Ubuntu 12.04 system with 16 GB RAM, quad core CPU
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(i7-3620M 2.7 GHz). Although the CPU can handle eight threads in parallel, only
two threads are used. The parallel implementation of SMTS is also available from
Baydogan (2013).

The overall computational complexity of SMTS is mainly determined by RFins
and RFts. The time complexity of building a single tree in RF is O(

√
νηβ), where ν is

the number of features, η is the number of instances, and β is the depth of the tree. For
RFins, ν = 2M +1 is the number of features, η = (N ×T ) is the number of training
instances and β = R−1 is the depth of the tree in the worst case assuming that the depth
takes the largest possible value. Thus, complexity is O[Jins

√
2M + 1(N T )(R − 1)]

in the worst case. For RFts, η = N , ν = R × Jins and β = log N (assuming the
depth of tree is O(log N )) which is O(Jts

√
R × Jins N log N ).

The StarLightCurves dataset from Keogh et al. (2011) is used to demonstrate the
effect of the parameters Jins, N , T and R on the computation times. For the mul-
tivariate case, SMTS’s performance as a function of the number of attributes M , is
illustrated on the AUSLAN dataset from Bache and Lichman (2013). For each dataset,
we randomly selected δ ∈ {0.2, 0.4, . . . , 1} proportion of the number of instances
(δN ), number of observations (δT ) and number of attributes (δM ). The levels consid-
ered for R and Jins are R ∈ {20, 40, 60, 80, 100}, Jins ∈ {20, 40, 60, 80, 100}. Here
10 replications are conducted for each setting combination.

We first illustrate the computation time required to generate symbols. Figure 4a,
b schematize the average symbol generation time across a variety of settings. The
computation times with changing N and T are analyzed for fixed values of R = 100
and Jins = 100. If both N and T increase, the symbol generation time is expected
to increase quadratically (because the number of instances for RFins is N × T ).
However, the symbol generation works faster in practice. This is due to the nature of
the time series. The time to sort all observations in each dimension prior to building
the tree does not increase drastically. Since the values are in some fixed range, a faster
computation time is achieved by avoiding the comparisons during the sorting process.
We also analyzed the symbol generation times with selected values of R and Jins with
fixed values of δN = 1 and δT = 1. From the computation times in Fig. 4b, the practical
complexity of symbol generation is approximately linear on both R and Jins settings.

The complexity of training is also evaluated with changing R and Jins where δ = 1
for the remaining parameters. Here R and Jins determine the representation size.
Figure 4c illustrates the average training time with these parameters. The time for
training increases linearly with the increase in R and Jins which is consistent with the
complexities of RFins and RFts. Furthermore, the linear behavior of the training
time with the increase in the representation size (i.e. both R and Jins) is an advantage
of the proposed approach. This behavior is due to the selection of the square root of
the number of features to evaluate at each split node by RFts.

SMTS symbol generation times for selected numbers of attributes are illustrated
in Fig. 4d when other parameters are fixed. The runtime increase with the number
of attributes is consistent with O(

√
2M + 1) from RFins. The discrete levels of M

evaluated are M ∈ {4, 8, 13, 17, 22} which explains the near-linear behavior of the
symbol generation times.

The median training time is 16.4 s per dataset with a minimum of 0.8 s and a max-
imum of 1381.9 s (for SonyRobot and Thorax2, respectively) for univariate datasets.
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Fig. 4 Average symbol generation times with changing N and T (R = 100, Jins = 100) and R and
Jins (δN = 1, δT = 1) (top) and with changing M (R = 100, Jins = 100, δN = 1, δT = 1) (bottom
left). Overall training time with changing R and Jins (δN = 1, δT = 1) (bottom right)

For multivariate datasets, the median training time is 9.8 s per dataset with a minimum
of 0.6 s and a maximum of 2025.7 seconds (for LP2 and ArabicDigits, respectively).
We did not evaluate the time for testing since our approach is very fast in classification
of the series (takes less than a millisecond). It only requires the traversal of the trees
from RFins and RFts after feature representation. SMTS is very fast and convenient
for real-time classification of time series data.

5.4 Missing values

For time series with missing values, missing values are usually interpolated. However,
the estimation method itself adds an additional parameter to the time series problem.
Our proposed approach naturally handles the data with missing values, without any
additional steps, because tree-based learning implicitly handles the attributes with
missing values (Breiman et al. 1984).

CBF, GunPoint, MoteStrain, Symbols and ECG 5 days datasets are selected to
illustrate the performance of SMTS when there are missing values. We randomly
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Fig. 5 The test error rates with different proportions of missing values in the training observations for five
univariate datasets from Keogh et al. (2011). SMTS does not require a specific mechanism to handle the
missing values and it is insensitive to large proportions of missing values

removed δ ∈ {0.05, 0.1, . . . , 0.5} proportion of the values for each time series. The
error rates over 10 replications are provided in Fig. 5. For these datasets, SMTS
performs reasonably well even with large proportions of missing values.

6 Conclusions

The representation of the complex data in MTS is an important challenge for many
methods. The SMTS here does not require pre-defined time intervals or features.
Instead, the symbolic representation is learned, and all attributes of MTS are consid-
ered simultaneously during a supervised process. Thus, relationships between the indi-
vidual attributes are taken into account. Furthermore, the initial representation of raw
data (and first differences) is quite simple conceptually and operationally. Still, a RF
can detect interactions in the space S of time index and time value and this is exploited
to generate a codebook. The codebook is processed with a second RF where now the
implicit feature selection is exploited to handle the high-dimensional input. The con-
stituent properties yield an approach quite different from current methods. Moreover,
MTS with nominal and missing values are handled efficiently with tree learners.

Ensemble learners that scale well with large number of attributes and long time
series make SMTS computationally efficient. Our experiments demonstrate the effec-
tiveness of the proposed approach in terms of accuracy and computation times for
MTS, and that the approach is approximately equal to the best alternatives for univari-
ate time series. Although not explored here, the proposed representation can be used
for similarity analysis, and tasks such as clustering.
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