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Abstract Location-based social networks (LBSNs) have attracted an increasing num-
ber of users in recent years, resulting in large amounts of geographical and social data.
Such LBSN data provide an unprecedented opportunity to study the human movement
from their socio-spatial behavior, in order to improve location-based applications like
location recommendation. As users can check-in at new places, traditional work on
location prediction that relies on mining a user’s historical moving trajectories fails as
it is not designed for the cold-start problem of recommending new check-ins. While
previous work on LBSNs attempting to utilize a user’s social connections for loca-
tion recommendation observed limited help from social network information. In this
work, we propose to address the cold-start location recommendation problem by cap-
turing the correlations between social networks and geographical distance on LBSNs
with a geo-social correlation model. The experimental results on a real-world LBSN
dataset demonstrate that our approach properly models the geo-social correlations of
a user’s cold-start check-ins and significantly improves the location recommendation
performance.
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300 H. Gao et al.

1 Introduction

Location-based social media attracts millions of users, and generates large location-
based social networks (Kessler 2012). A recent survey from the Pew Internet and
American Life Project reports that over 28 % of Americans use mobile or social
location-based services (Zickuhr and Smith 2011). Typical online location-based
social networking sites such as Foursquare1 and Facebook Places2 provide location-
based services for users to “check-in” at a physical place, and automatically include
the location into their posts. The online “check-in” posts a user’s current geographi-
cal location, making known to his friends the information on when and where he is.
Compared with many other online activities, “check-in” reflects a user’s geographical
action in the real world, residing where the online world and real world intersect. Thus,
the study of check-ins provides an ideal environment to understand human behavior,
and could also benefit a variety of location-based services such as mobile marketing
(Barnes and Scornavacca 2004; Li 2011) and disaster relief (Goodchild and Glennon
2010; Gao et al. 2011). Among various applications on LBSNs, location recommen-
dation has become a significant task in recent years since it is proposed to help users
filter out uninteresting items and reduce time in decision making, which could also
benefit virtual marketing.

One of the most significant properties of check-in behavior is the user-driven prop-
erty (Noulas et al. 2011). When using location-based social networking services, a
user is able to choose where and when to make a check-in. It is reported in previous
research that a user’s check-ins displays a power-law distribution on LBSNs, i.e., a
user goes to a few places many times and to many places a few times (Gao et al.
2012b), indicating that users do visit new places, resulting in the cold-start check-
in problem. Recommending a none cold-start location to a user (also referred to as
“location prediction”) has been widely studied by taking advantage of spatial trajec-
tories (Monreale et al. 2009; Spaccapietra et al. 2008), periodical patterns (Thanh et
al. 2007), spatial-temporal patterns (Scellato et al. 2011a; Gao et al. 2012a), etc. The
success of these methods relies on sufficient numbers of observations on the target
location in an individual’s check-in history; hence, it is difficult to apply them to the
cold-start check-ins as there is no historical information on the user for the new place
he will go to.

Facing the difficulty of recommending cold-start check-in locations, researchers
resort to social network information on LBSNs and investigate if it could help solve
the recalcitrant cold-start problem. As suggested by social theories (e.g., social corre-
lation (Anagnostopoulos et al. 2008)), human movement is usually affected by their
social networks, such as watching movies with families, visiting friends, traveling by
following friends’ recommendations, and so on, providing the potential opportunity to
solve the cold-start recommendation problem from a user’s social friends. However,
recent work on utilizing social information for location recommendation has reported
limited improvement (Cho et al. 2011; Gao et al. 2012b; Ye et al. 2010, 2011). One

1 https://foursquare.com.
2 https://www.facebook.com/about/location.
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Addressing the cold-start problem in location 301

explanation of this phenomenon could be the check-in characteristics of LBSNs. It
has been reported that in general users with social connections only share less than
10 % common check-in locations (Gao et al. 2012b; Cho et al. 2011), which provide
very limited observation for social recommendation.

Since the check-in action connects a user’s geographical movement and his social
networks, it actually provides a new perspective to study a user’s cold-start check-in
behavior not only through social aspect but also from the closely correlated geographi-
cal aspect, i.e., geo-social perspective. Researchers investigated how geographical dis-
tance influences social networks, and how social networks influence human movement
on LBSNs (Scellato et al. 2011b, c; Cheng et al. 2011) indicating the necessity to con-
sider these two factors together when studying human mobile behavior, and suggesting
the potential opportunity to improve current location recommendation approaches. In
this paper, we propose the concept of geo-social correlations to combine both social
networks and geographical distance for recommending cold-start check-in locations.
In particular, we study the following issues:

– Are user’s cold-start check-ins correlated to their social ties on LBSNs?
– How to capture the social correlations on LBSNs? and
– How to utilize the social correlations for solving the cold-start location recommen-

dation problem?

To the best of our knowledge, this work presents the first comprehensive study of
geo-social correlations for the cold-start problem on location-based social networks.
The contributions of our work are summarized below:

– We study the usability of social network information on LBSNs, and propose a
feasible solution for the cold-start location recommendation problem by taking
advantage of geo-social correlations.

– We investigate the social correlations in geo-social perspective, and observe that
users in different geo-social circles have various correlation strength.

– We suggest various correlation measures to capture the geo-social correlations of a
user’s check-in behavior on the cold-start problem, and determine the most effective
correlation measures for each geo-social circle.

– We propose a geo-social correlation model (gSCorr) to solve the cold-start loca-
tion recommendation problem by considering four types of geo-social circles with
corresponding correlation strength.

The remainder of this paper is organized as follows. We first introduce the concept
of geo-social correlations of check-in behavior on LBSNs in Sect. 2, present the
proposed model for geo-social correlations in Sect. 3, discuss the experimental design
and results on the real-world dataset in Sect. 4, followed by related work in Sect. 5,
and provide some conclusions with future work in Sect. 6.

2 Geo-social correlations on LBSNs

When we observe a check-in from a user, there are two scenarios: checking in at a
previous visited location, or a new location that the user has never checked in before.
In this paper, we define the former one as “existing check-in(s)”, and the latter one
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as “‘cold-start’ check-in(s)”, with respect to a user’s check-in history. In Gao et al.
(2012b), the authors explored the social-historical ties of check-in behavior on LBSNs,
and found that both ties have effects on explaining a user’s check-in behavior. To
investigate the social correlations on a user’s check-in behavior, we need a controlled
social environment that excludes the effects of users’ historical ties. However, to
distinguish whether a user’s existing check-in is correlated to his historical ties or
social ties is actually a big challenge (Gao et al. 2012b), while on the other hand,
when a user performs a cold-start check-in, the effect of this behavior is more likely
from his social ties than his historical ties, which indicates the chance to study the
correlation between such check-ins and his social networks, while in turn also provides
a feasible perspective of solving the traditional cold-start location recommendation
problem. Therefore, we focus on investigating the social correlations with a user’s
cold-start check-ins by eliminating the historical tie effect to the largest extent.

Figure 2a shows the percentage of cold-start check-ins over the total number of
observed check-ins in a period of a half year (January 1, 2011 to June 30, 2011)
with 11,326 users and 1,171,521 check-ins on Foursquare (more details about this
dataset in Sect. 4.1). The x-axis represents the number of observed check-ins in a
chronological order, and the y-axis represents the percentage of cold-start check-ins.
There are around 50 % cold-start check-ins within 2 × 105 observed check-ins, and
around 35 % ‘cold-start” check-ins among 1.2 × 106 observed check-ins, indicating
that a user would like to go to a new location when he does not have much check-in
history at early time; and then, as time goes by, the user would gradually shift his
check-ins from new locations to existing locations. Furthermore, the high cold-start
check-in ratio suggests cold-start check-ins take a big proportion of a user’s check-in
behavior. With half-year check-in history, a user would still have approximated one
third probability to perform a cold-start check-in. Therefore, capturing a user’s cold-
start check-in location is necessary for designing improving location recommendation
services.

Social scientists found that geographical distance plays an important role in social
connections (Mok et al. 2010; Goldenberg and Levy 2009; Cairncross 2001). Previous
work on LBSNs studied the spatial property of social networks, and reported that the
probability of having a social connection between two individuals is a function of
their distance (Scellato et al. 2011b). Therefore, to study the social correlation of a
user’s cold-start check-in behavior, we divide the social correlations into four sub-
correlations, namely geo-social correlations, corresponding to four social circles with
respect to the factors of social friendship and geographical distance. The confusing
matrix of the four social circles is listed in Table 1, where F indicates observed social
friendship, F̄ indicates non-friendship, D indicates long geographical distance, and
D̄ indicates short geographical distance.

Table 1 Geo-social correlations
F F̄

D̄ SF D̄ : Local friends SF̄ D̄ : Local non-friends

D SF D : Distant friends SF̄ D : Distant non-friends

123



Addressing the cold-start problem in location 303

Fig. 1 The geo-social correlations of cold-start check-in behavior

– SF D̄: user’s social circle consisting of his friends who live close;
– SF D: user’s social circle consisting of his friends who live distant;
– SF̄ D̄: user’s social circle consisting of non-friend users who live close; and
– SF̄ D: user’s social circle consisting of non-friend users who live distant.

We define the four social circles as “geo-social circles”. In Cho et al. (2011),
it is reported that the relative influence of a friend who lives 1,000 km away is ten
times greater than the influence of a friend who lives 40 km away on a user mak-
ing check-ins. Therefore in this paper, we consider a pair of users within the same
state/province as living close with short geographical distance, and a pair of users in
different states/provinces as living distant with long geographical distance.

Figure 1 illustrates a user’s cold-start check-in behavior in different social corre-
lation aspects. User u goes to the airport at t1, and then the restaurant at t2 followed
by the hospital at t3. When u performs a cold-start check-in at t4, i.e., the check-in
location does not belong to {l1, l2, l3}, then it may be correlated to those users that
are from u’s different geo-social circles SF D̄, SF D, SF̄ D̄ and SF̄ D .

The investigation of geo-social correlations between a user’s cold-start check-in
behavior and the four geo-social circles, i.e., SF D̄, SF D, SF̄ D̄ and SF̄ D , enables us to
study a user’s check-in behavior in four aspects. The geo-social circle SF D̄ captures
a user’s local social correlations, sometimes also including local influence, such as
going out with friends, or following friends’ recommendations. The geo-social circle
SF D captures a user’s distant social correlations, such as visiting friends in another
state. The third geo-social circle, SF̄ D̄ , indicates that a user goes to a place where his
local non-friends usually go to, usually referred to as “confounding” effect (Easley
and Kleinberg 2010). The last geo-social circle, i.e., SF̄ D , suggests that a user would
randomly visit some new locations due to an unknown effect regardless of what his
friends or local users do. This could be, for example, visiting famous points of interest.
Note that there could be some cold-start check-ins that cannot be correlated to any of
the four geo-social circles. In our foursquare data, we found that such kind of cold-start
check-ins only correspond to a small proportion (to discuss later in Table 3), therefore
we consider it as an unknown effect and combine it to SF̄ D as well.
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3 Modeling geo-social correlations

3.1 Problem formulation

To model the geo-social correlations of a user’s cold-start check-in behavior, we con-
sider the probability of a user u checking-in at a new location l at time t as Pt

u(l).
With the four geo-social circles defined above, we further define this probability as a
combination of the four geo-social correlations,

Pt
u(l) = Φ1 Pt

u(l|SF̄ D̄)+Φ2 Pt
u(l|SF D̄)

+ Φ3 Pt
u(l|SF D)+Φ4 Pt

u(l|SF̄ D). (1)

where Φ1, Φ2 and Φ3 and Φ4 are correlation strength of different geo-social correla-
tions, Pt

u(l|Sx ) indicates the geo-social correlation probability, which is the probability
of user u checking-in at location l that is correlated to u’s geo-social circle Sx . For
example, Pt

u(l|SF D) indicates the probability of user u checking-in at l that is corre-
lated to u’s distant friends. In the following sections, we will further discuss how to
model the geo-social correlation strength and correlation probabilities.

3.2 Modeling geo-social correlation strength

To explicitly model the correlation strength Φ1, Φ2, Φ3 and Φ4, we investigate the
intrinsic patterns of correlations between a user’s check-ins and his geo-social circles.
We plot the percentage of cold-start check-ins that can be found from the different
geo-social circles versus the total number of observed cold-start check-ins in Fig. 2b,
with the same data set used in Fig. 2a. The x-axis represents the number of observed
cold-start check-ins in a chronological order, and the y-axis represents the percentage
of cold-start check-in locations that have been checked-in before by users from that
specific geo-social circle. For example, the blue line represents the percentage of cold-
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Fig. 2 The cold-start check-in rate and social correlation on Foursquare Data, a The ratio of cold-start
check-ins, b observed social correlations on cold-start check-ins
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start check-in locations that have been visited by the user’s local non-friends before.
The percentage of cold-start check-ins from SF̄ D is not presented, since it can be
deduced from the other three. Note that the geo-social correlations of the four geo-
social circles may overlap. For example, a user may visit a new location l where both
of his local friends and distant friends have visited before.

Equation (1) indicates that with probability Φ1, the current cold-start check-in is
correlated to SF̄ D̄ . According to the observation in Fig. 2b, the correlation between
cold-start check-ins and the geo-social circle SF̄ D̄ (blue line) increases with the incre-
ment of the number of observed cold-start check-ins. It keeps increasing rapidly early
on, and then gradually becomes stable. The reason for this trend may come from two
parts: (1) user u would like to go to new locations when he does not have many histori-
cal check-ins, therefore in the early time, a lot of cold-start check-ins correlated to SF̄ D̄
are observed; and (2) as time goes by, the number of check-ins from u’s geo-social cir-
cle is also increasing, which provides opportunities of co-occurrent check-ins between
u and his geo-social circle, hence the social correlation keeps increasing. Therefore,
we set Φ1 as an active function to control the social correlation strength from local
non-friend users, which considers a set of features capturing u’s historical check-in
behavior and his different geo-social circles.

Φ1 = f
(

wT f t
u + b

)
, 0 ≤ Φ1 ≤ 1, (2)

where f t
u is a check-in feature vector of a single user u at time t, w is a vector of the

weights of f t
u , and b controls the bias. In this work, we define a user’s check-in and

social features f t
u in Table 2. Note that f t

u is time sensitive, where all the features in

Table 2 Check-in and social
features

Features Description

N c Number of check-ins in u’s history

N nc Number of cold-start check-ins in u’s history

NF D̄ Number of friends in SF D̄

N c
F D̄

Number of check-ins from SF D̄

N uc
F D̄

Number of unique check-ins from SF D̄

Nvc
F D̄

Number of visited check-ins from SF D̄

N uvc
F D̄

Number of visited unique check-ins from SF D̄

NF D Number of friends in SF D

N c
F D Number of check-ins from SF D

N uc
F D Number of unique check-ins from SF D

Nvc
F D Number of visited check-ins from SF D

N uvc
F D Number of visited unique check-ins from SF D

NF̄ D̄ Number of users in SF̄ D̄

N c
F̄ D̄

Number of check-ins from SF̄ D̄

N uc
F̄ D̄

Number of unique check-ins from SF̄ D̄

Nvc
F̄ D̄

Number of visited check-ins from SF̄ D̄

N uvc
F̄ D̄

Number of visited unique check-ins from SF̄ D̄
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f t
u are computed at time t, and SF D̄, SF D , and SF̄ D̄ are related to user u’s geo-social

circles.
f (•) is a real-valued and differentiable function that guarantees the range of Φ1

limited in [0, 1]. In this case, a sigmoid function is often used (Anderson et al. 1986),
which can approximately capture the observations about SF̄ D̄ in Fig. 2b.

f
(

wT f t
u + b

)
= 1

1+ e−(wT f t
u+b)

, (3)

Similarly, we observe that the social correlations of SF D and SF D̄ are fairly constant
in Fig. 2b, therefore we define,

Φ2 = (1−Φ1)φ1

Φ3 = (1−Φ1)(1− φ1)φ2

Φ4 = (1−Φ1)(1− φ1)(1− φ2), (4)

where φ1 ∈ [0, 1], φ2 ∈ [0, 1] are two constants to govern the social correlation
strength of local friends and distant friends respectively.

Based on above definitions, we can rewrite the probability Pt
u(l) in Eq. (1) as below,

Pt
u(l) = f

(
wT f t

u + b
)

Pt
u(l|SF̄ D̄)

+ (
1− f (wT f t

u + b)
)
φ1 Pt

u(l|SF D̄)

+ (
1− f (wT f t

u + b)
)
(1− φ1)φ2 Pt

u(l|SF D)

+ (
1− f (wT f t

u + b)
)
(1− φ1)(1− φ2)Pt

u(l|SF̄ D). (5)

3.3 Modeling geo-social correlation probabilities

In this section, we discuss the modeling of geo-social correlation probabilities, i.e.,
Pt

u(l|Sx ), representing the probability of user u checking in at location l at time t that
is correlated to u’s social circle Sx , Sx = {SF D, SF D̄, SF̄ D, SF̄ D̄}.

Gao et al. (2012b) reported that check-in sequence and text sentence share a large
number of common properties, where a check-in location can be analog to a word.
Thus, inspired by the “TF-IDF” strategy which is commonly used in text mining and
information retrieval to determine the importance of a word, we propose location
frequency (LF), user frequency (UF), and LF.UF correspondingly. The underlying
assumption of “LF” is that a user tends to go to a place where his friend usually goes to.
Previous work has also reported such property that the number of check-ins previously
made by friends of a user is a good predictor for the user’s next check-in location
(Chang and Sun 2011). Furthermore, to consider the uncertainty of normalization,
we also propose a normalized version of “LF”, i.e., “NLF”. On the other hand, the
underlying assumption of “UF” is that a user tends to go to a place where many of
his friends have been to, which can be considered as another way to determine the
importance of check-in location.
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In Cho et al. (2011), user similarity is also considered as important to explain
the user’s check-in behavior as different friendship may present different behavior
similarity. In this work, to examine the probability Pt

u(l|Sx ), we first propose five
geo-social correlation measures according to LF and UF without considering user
similarity, and then propose another five geo-social correlations measures with user
similarity accordingly, as described below,

– Location frequency (LF)

A user may go to a new location that has been frequently visited by his geo-social
circle before, therefore we define the probability of a user u checking at location l
at time t that is correlated with his geo-social circle Sx as:

Pt
u(l|Sx ) =

∑
v∈Sx

N t
v(l)∑

v∈Sx
N t

v

, (6)

where N t
v(l) represents the number of check-ins at location l by user v before time

t , and N t
v the total number of locations visited by user v that user u has not visited

before time t .

– Normalized location frequency (NLF)

Normalized location frequency (NLF) calculates the ratio of check-ins at location l
for each user in Sx , and then normalized by the total number of users. The purpose of
introducing this normalized measure of LF is due to the uncertainty of normalization
in improving performance of user behavior modeling (Wang et al. 2010).

Pt
u(l|Sx ) =

∑
v∈Sx

N t
v(l)
N t

v

NSx

, (7)

where NSx represents the number of users in Sx .

– User frequency (UF)

User frequency (UF) computes the probability Pt
u(l|Sx ) as the ratio of users in Sx

who have checked-in at l,

Pt
u(l|Sx ) =

∑
v∈Sx

δt
v(l)

NSx

, (8)

where δt
v(l) equals to 1 if user v has checked-in at l before t , and 0 otherwise.

– Location frequency & user frequency (LF.UF)

As reported in Gao et al. (2012b), location sequences and document segments share
a lot of common features. Traditional language model on language processing also
achieves good performance when applied to the location prediction task. Therefore,
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inspired by the Tf-idf (a state-of-the-art weighting strategy widely used in language
processing and information retrieval), we propose a LF.UF strategy to explore the
geo-social correlations on LBSNs.

Pt
u(l|Sx ) =

∑
v∈Sx

N t
v(l)∑

v∈Sx
N t

v

·
∑

v∈Sx
δv(l)

NSx

, (9)

– Normalized location frequency & user frequency (NLF.UF)

Similar to the LF.UF measure, NLF.UF is defined as,

Pt
u(l|Sx ) =

∑
v∈Sx

N t
v(l)
N t

v

NSx

·
∑

v∈Sx
δv(l)

NSx

, (10)

To integrate the effect of user similarities, we further propose another five measures
that consider user similarities, corresponding to the five measures above.

– Sim-location frequency (S.LF)

Pt
u(l|Sx ) =

∑
v∈Sx

s(u, v)N t
v(l)∑

v∈Sx
s(u, v)N t

v

, (11)

where s(u, v) represents the user similarity between user u and user v.
– Sim-normalized location frequency (S.NLF)

Pt
u(l|Sx ) =

∑
v∈Sx

s(u, v)
N t

v(l)
N t

v∑
v∈Sx

s(u, v)
, (12)

– Sim-user frequency (S.UF)

Pt
u(l|Sx ) =

∑
v∈Sx

δv(l)s(u, v)∑
v∈Sx

s(u, v)
, (13)

– Sim-location frequency & user frequency (S.LF.UF)

Pt
u(l|Sx ) =

∑
v∈Sx

s(u, v)N t
v(l)∑

v∈Sx
s(u, v)N t

v

∑
v∈Sx

δv(l)

NSx

, (14)

– Sim-normalized location frequency & user frequency
(S.NLF.UF)

Pt
u(l|Sx ) =

∑
v∈Sx

s(u, v)
N t

v(l)
N t

v∑
v∈Sx

s(u, v)

∑
v∈Sx

δv(l)

NSx

. (15)

In our model, the correlation probability from each circle, i.e., Pt
u(l|SF̄ D̄),

Pt
u(l|SF D̄), Pt

u(l|SF D), and Pt
u(l|SF̄ D), can be calculated with various measures.

Due to the different user and check-in distributions of each geo-social circle, the
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measures may perform variously. Therefore measure selection is necessary for each
sub-correlation to achieve a better model performance. We’ll discuss the measure
performance and selection in the experiment section.

3.4 Parameter inference

With the definitions described in the last section, we discuss the process of inferring
the parameters defined in Eq. (5). We define (u, l, t) as a check-in action at location l
performed by user u at time t , the likelihood of the observation over the whole data
set is the product of the probability of each (u, l, t) action, defined as:

P(C|Θ) =
∏

(u,l,t)∈C
Pt

u(l), (16)

where C is the set of all the observed (u, l, t) actions, and Θ is the parameter set
consisting of w, b, φ1, φ2. We learn these parameters through maximum likelihood,
which is equivalent to the following minimization problem:

min
∑

(u,l,t)∈C
− ln P(C|Θ)+ λ

(
||w||22 + ||b||22 + ||φ1||22 + ||φ2||22

)
(17)

where parameter λ controls the quadratic regularized term to avoid overfitting. In this
paper, we set the value of λ as 0.05, and get the objective function below,

min
∑

(u,l,t)∈C
− ln

(
f (wT f t

u + b)Pt
u(l|SF̄ D̄)

+ (
1− f (wT f t

u + b)
)
φ1 Pt

u(l|SF D̄)

+ (
1− f (wT f t

u + b)
)
(1− φ1)φ2 Pt

u(l|SF D)

+
(

1− f (wT f t
u + b)

)
(1− φ1)(1− φ2)Pt

u(l|SF̄ D)
)

+ λ
(
||w||22 + ||b||22 + ||φ1||22 + ||φ2||22

)

s.t. 0 ≤ φ1 ≤ 1, 0 ≤ φ2 ≤ 1 (18)

We take the projected gradient method (Boyd and Vandenberghe 2004) to solve
Eq. (18). The basic idea is to update each current parameter towards an optimal direc-
tion (determined by the first derivative of the objective function) with an appropriate
step size in each learning step. In each step, if the parameter value runs out of the
constraints (e.g., 0 ≤ φ1 ≤ 1, 0 ≤ φ2 ≤ 1), we project it back to the corresponding
range. The process will go iteratively to update the parameters until convergence. As
shown below, the parameters are updated as,

w← w − γw∇w

b← b − γb∇b
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φ1 ←
⎧
⎨
⎩

0 φ1 − γφ1∇φ1 < 0
1 φ1 − γφ1∇φ1 > 1
φ1 − γφ1∇φ1 else

φ2 ←
⎧⎨
⎩

0 φ2 − γφ2∇φ2 < 0
1 φ2 − γφ2∇φ2 > 1
φ2 − γφ2∇φ2 else

(19)

whereγw, γb, γφ1 andγφ2 are learning step sizes, which are chosen to satisfy Goldstein
conditions (Nocedal and Wright 1999).∇w, ∇b, ∇φ1 and∇φ2 are the partial derivatives
of the objective function in Eq. (18) with respect to w, b, φ1 and φ2 respectively,

∇w = 2λw −
∑

(u,l,t)∈C

B

A

e1

(1+ e1)2 f t
u

∇b = 2λb −
∑

(u,l,t)∈C

B

A

e1

(1+ e1)2

∇φ1 = 2λφ1 −
∑

(u,l,t)∈C

(1−Φ1)

A
C

∇φ2 = 2λφ2 −
∑

(u,l,t)∈C

(1−Φ1)(1− φ1)

A
D (20)

where

e1 = e−(wT f t
u+b)

A = Φ1 Pt
u(l|SF̄ D̄)+ (1−Φ1)φ1 Pt

u(l|SF D̄)

+ (1−Φ1)(1− φ1)φ2 Pt
u(l|SF D)

+ (1−Φ1)(1− φ1)(1− φ2)Pt
u(l|SF̄ D),

B = Pt
u(l|SF̄ D̄)− φ1 Pt

u(l|SF D̄)− (1− φ1)φ2 Pt
u(l|SF D)

− (1− φ1)(1− φ2)Pt
u(l|SF̄ D)

C = Pt
u(l|SF D̄)− φ2 Pt

u(l|SF D)− (1− φ2)Pt
u(l|SF̄ D)

D = Pt
u(l|SF D)− Pt

u(l|SF̄ D) (21)

4 Experiments

In this work, we use location prediction to evaluate our proposed geo-social correlation
model (gSCorr).3 In particular, we evaluate the following: (1) how well the proposed
geo-social correlation measures capture the geo-social correlation probabilities; (2)
how the geo-social correlation strengths and measures affect the cold-start check-in
behavior; and (3) whether social correlations help cold-start location recommenda-
tion. Before we delve into experiment details, we first discuss an LBSN dataset and
experiment settings.

3 The code can be downloaded at http://www.public.asu.edu/~hgao16/code/gSCorr.zip.
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Table 3 Statistical information
of the dataset

Duration January 1, 2011–December
31, 2011

No. of users 11,326

No. of check-ins 2,290,997

No. of unique locations 187,218

No. of links 47,164

Average check-ins per user 202

Clustering coefficient 0.1560

Average degree 8.33

4.1 Data collection

We use a Foursquare dataset4 to study the geo-social correlations of check-in behav-
ior on location-based social networks. Foursquare is one of the most popular online
LBSNs. It has more than 20 million users and 2 billion check-ins as of April, 2012.5 The
web site itself does not provide a public API to access users’ check-in data, however,
it provides an alternative way for users to link their twitter accounts with Foursquare,
and then pop out the check-in messages as tweets to Twitter. Previous work (Scellato
et al. 2011b; Gao et al. 2012b) uses this way to collect the data from Twitter for study-
ing check-in behavior. Similarly, by getting access to the check-in tweets through the
Twitter REST API, we collected public Foursquare check-in data from January 2011
to December 2011. We also collected the user friendships and hometown information
through Foursquare. Note that the friendships on Foursquare are undirected. The sta-
tistics of the final dataset are shown in Table 3. The user distributions w.r.t. the world
and the USA are given in Fig. 3a, b, respectively.

4.2 Experiment setup

We test our proposed model gSCorr on the data of each month from July to December
respectively, with the corresponding training data from the previous 6 months to learn
our model parameters as in Eq. (19). For example, when testing gSCorr on September
data, we use the data from March to August to train our model.

For each month from July to December, we construct its test set and ground truth
based on the observation of their corresponding cold-start check-in distributions in
four geo-social circles. Table 4 lists detailed statistical information of the observed
cold-start check-in distribution in four geo-social circles on the check-in data in July.
Due to the space limit, we do not present the statistical information from the other
months since they all have the similar distributions. We define “Social Co-occurrence
Check-ins” (SCCs) as the cold-start check-ins whose check-in locations can be found
from the user’s different social circles before its checking in time. The check-in data

4 The dataset is publically available at http://www.public.asu.edu/~hgao16/dataset.html.
5 https://foursquare.com/about/.
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(a)

(b)

Fig. 3 The user distribution on Foursquare, a the user distribution over the world, b the user distribution
over the USA

in July contains 213,702 check-ins, with 77,581 cold-start check-ins performed at the
locations that have never been visited before (the July test data is a closed set in the
sense that it does not consider the historical check-ins before July, as the same as the test
data from other months). Among the 77,581 cold-start check-ins, around 44.5 % SCCs
can be found from the SF̄ D̄, 7.26 % from SF D̄, 4.62 % from SF D and 50.82 % from
SF̄ D . Only 10.61 % SCCs are from a user’s direct friendship circle. In other words,
only 8,235 among 77,581 cold-start check-ins co-occurred with check-ins of the user’s
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Table 4 Statistical information
of the July data

Social circle No. of SCCs Ratio (%)

SF̄ D̄ 34,523 44.50

SF D̄ 5,636 7.26

SF D 3,588 4.62

SF̄ D 39,423 50.82

Others 1,672 2.2

SF̄ D̄ ∪ SF D̄ 35,277 45.47

SF̄ D̄ ∪ SF D 35,784 46.12

SF D̄ ∪ SF D 8,235 10.61

SF̄ D̄ ∪ SF D̄ ∪ SF D 36,486 47.03

friendships. SF̄ D̄ has a large proportion of co-occurrences, indicating that user would
like to go to a new location where his local non-friends in the state usually go. The
number of SCCs of SF̄ D̄ ∪ SF D̄ ∪ SF D doesn’t increase much compared to SF̄ D̄ ,
indicating that local non-friends have already covered most of the co-occurrences.
Finally, we found that more than 50 % of SCCs are correlated to SF̄ D , which is difficult
to capture for location prediction as the unknown effect. Note that there are 2.2 %
“Others”, indicating that at the time of check-in, 1,672 cold-start check-ins cannot be
found from any of the four social circles. We consider this as an unknown effect and
merge it into SF̄ D .

We use location recommendation to evaluate our correlation measures and model
performance. The user similarities are computed based on the check-in data in the first
half year by cosine similarity, while each user is represented by a check-in vector, and
the entry in the vector indicates the visiting frequency of the user at the location. For
each test month, the test set is selected as the SCCs of SF̄ D̄∪SF D̄∪SF D , and the ground
truth is the corresponding check-in locations. We do not consider SF̄ D because from a
user’s perspective, friends and local non-friends are the ones that are reachable, while
the distant non-friend users are too weak in relation for the user to correlate.

4.3 Geo-social correlation measure selection

Before we discuss the performance of our proposed model gSCorr, we first evaluate
the ten geo-social correlation measures described in Sect. 3.3. Each measure can be
directly applied to the test set and generates a ranking list of location probabilities
Pt

u(l|Sx ) with respect to the geo-social circles. We select the location with the highest
Pt

u(l|Sx ) as recommended location for the cold-start check-in, and evaluate the perfor-
mance with accuracy. The purpose of this comparison is to select the best correlation
measure for each geo-social circle, and utilize the most suitable ones for Pt

u(l|Sx ) in
Eq. (1). The results are shown in Tables 5, 6 and 7 with some observations summarized
below:

– The user similarity consistently improves the recommendation performance. Com-
paring with measures without considering user similarities, measures with user
similarities on average have 5.36 % relative improvement on SF D̄ , 30.53 % relative
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Table 5 Location recommendation for measure selection on SF D̄

Ranking strategy SF D̄

July (%) August (%) September (%) October (%) November (%) December (%)

LF 5.85 6.24 6.49 6.76 6.47 7.29

NLF 5.60 6.07 6.11 6.42 6.32 6.88

UF 5.18 5.54 5.68 5.70 5.69 6.33

LF.UF 6.16 6.50 6.72 6.99 6.70 7.33

NLF.UF 5.92 6.39 6.49 6.78 6.58 7.22

S.LF 6.30 6.73 6.99 7.32 7.04 7.90

S.NLF 5.89 6.31 6.34 6.64 6.62 7.21

S.UF 5.38 5.83 5.77 5.97 5.96 6.58

S.LF.UF 6.51 6.85 7.02 7.37 7.11 7.76

S.NLF.UF 6.23 6.68 6.75 7.07 6.92 7.55

The best performance of each month in bold

Table 6 Location recommendation for measure selection on SF D

Ranking strategy SF D

July (%) August (%) September (%) October (%) November (%) December (%)

LF 2.39 2.39 2.91 3.35 3.26 3.65

NLF 2.65 2.50 3.07 3.39 3.33 3.38

UF 2.23 2.22 2.66 3.15 3.03 3.15

LF.UF 2.65 2.70 3.20 3.66 3.52 3.59

NLF.UF 2.79 2.70 3.26 3.64 3.52 3.56

S.LF 3.65 3.52 4.15 4.63 4.37 4.91

S.NLF 3.45 3.46 3.92 4.31 4.14 4.40

S.UF 3.14 3.00 3.43 3.86 3.76 4.01

S.LF.UF 3.64 3.57 4.19 4.56 4.31 4.64

S.NLF.UF 3.58 3.52 4.11 4.47 4.25 4.47

The best performance of each month in bold

improvement on SF D , and 15.89 % relative improvement on SF̄ D̄ , suggesting that
user similarity is a significant factor to capture human mobile behavior.

– The comparison of LF and its normalized version NLF (including those measures
containing LF and NLF) indicates that normalization does not always improve the
performance, which is consistent to the findings in Wang et al. (2010). Depending
on which social circle we apply the measure to, normalization may result in various
performances in capturing the geo-social correlations.

– S.Lf.Uf is the best measure for capturing the social correlations of local friends
SF D̄ . It also performs well on the other two geo-social circles especially on SF D̄ . It
considers the user frequency, location frequency and user similarities together, and
obtains 1 % relative improvement compared to the second best rated (S.LF), and
24.88 % relative improvement compared to the worst rated (Uf).
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Table 7 Location recommendation for measure selection on SF̄ D̄

Ranking strategy SF̄ D̄

July (%) August (%) September (%) October (%) November (%) December (%)

LF 14.42 15.47 15.34 16.17 16.32 18.70

NLF 15.23 16.30 16.35 17.32 17.45 19.67

UF 15.35 16.54 16.50 17.64 17.77 19.81

LF.UF 15.22 16.44 16.40 17.41 17.53 19.87

NLF.UF 15.44 16.59 16.58 17.66 17.77 19.84

S.LF 17.84 18.75 18.60 19.56 19.72 22.38

S.NLF 18.00 19.01 19.04 19.81 19.84 22.39

S.UF 18.37 19.40 19.45 20.21 20.34 22.82

S.LF.UF 17.75 18.86 18.80 19.74 20.10 22.34

S.NLF.UF 17.68 18.66 18.66 19.69 19.80 22.36

The best performance of each month in bold

– S.Lf shows good performance in capturing the social correlations of distant friends
SF D . It considers the location frequency and user similarity without the user fre-
quency. One possible reason of this may be due to the smaller number of distant
friends (2.68 per user on average) compared with the number of local friends (5.64
per user on average), which makes it a weak measure by counting the user frequency
of distant friends.

– The performance on SF̄ D̄ indicates that its best correlation measure is S.Uf, sug-
gesting that a user would like to go to a location that has been visited by a large
proportion of local non-friend users, no matter how frequently the location is vis-
ited by each individual user. This is consistent to the confounding effect that people
who live in similar environment tend to share similar behavior, which is exactly the
geo-social circle SF̄ D̄ supposed to capture.

Due to the varied performances of each correlation measure on each geo-social
circle, we conclude that measure selection is necessary for computing geo-social
correlation probabilities. Hence, we apply S.Lf.Uf, S.Lf and S.Uf to compute
Pt

u(l|SF D̄), Pt
u(l|SF D) and Pt

u(l|SF̄ D̄) respectively in the following experiments, con-
sidering their good performance on the corresponding geo-social circles. We do not
report the results on SF̄ D , since for the unknown effect Pt

u(l|SF̄ D), all the measures
applied to SF̄ D perform as a random guess in our experiment, one possible reason
may be the large number of users and candidate locations within this geo-social circle.
Therefore, to reduce the time complexity, we consider Pt

u(l|SF̄ D) as a probability of a
random jump to a location in current location vocabulary that user u has not checked-in
before.

4.4 Performance of gSCorr

In this section, we discuss the performance of gSCorr on cold-start check-in location
recommendation problem with the correlation measures selected in the above sec-
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tion. Note that gSCorr is different from traditional recommendation approaches. The
traditional recommendation methods, such as collaborative filtering, usually perform
recommendation based on a single user-location matrix generated from training data,
which ignore the temporal information among user’s check-ins. While in gSCorr, for
each test case (a cold-start check-in location in test set), only check-ins before the
check-in time of test case are used for prediction. Of course, methods based on col-
laborative filtering can still be applied with the consideration of temporal information,
by generating a user-location matrix considering only the previous user check-ins for
each test case in the test set. We will use this approach as one baseline to compare
with gSCorr in our experiment, and show its relationship to our proposed correlation
measures.

We compare gSCorr with four baselines, one is from the observation of the measure
selection in Tables 5, 6 and 7, the other three are selected as the existing most popular
location recommendation model on LBSNs.

– S.LF.UF: We select S.LF.UF to capture the geo-social correlations and predict cold-
start check-ins. It performs well on all the geo-social circles, and achieve the best
performance on SF D̄ and many times on SF D̄ . We apply it to the whole test set to
predict the cold-start check-ins.

– Periodic & social mobility model (PSMM): PSMM ranks the locations based on a
user’s periodic and social patterns (Cho et al. 2011). Since the periodic patterns can
only recommend existing locations, we adopt the social patterns to recommmend
the cold-start check-ins.

– Social-historical model (SHM): SHM integrates a user’s historical ties and social
ties to recommend/predict the next check-in location (Gao et al. 2012b). Similar to
PSMM, we leverage the social model which utilizes the social ties to recommend
cold-start check-in locations.

– Collaborative filtering (CF): CF is a state-of-the-art approach for recommender
systems. It computes a user’s interest in a location based on other users’ interests in
that location. Since it can recommend new locations to a user, we apply it to each
test case of our test set and consider that a correct recommendation happens when
the recommended location is the same as the ground truth of the test case. We choose
user-based collaborative filtering for such recommendation (Su and Khoshgoftaar
2009) as shown below:

Pt
u(l) =

∑
v∈U s(u, v)rv,l∑

v∈U s(u, v)
. (22)

where U is the set of users who have visited l, rv,l is the preference of user v on
location l, which in our experiment is chosen as proportional to number of v’s

check-ins on l normalized by v’s total number of check-ins, i.e., N t
v(l)
N t

v
.

The results are shown in Table 8, we summarize several interesting observations
below:

– Both PSMM and SHM do not perform well in recommending the cold-start check-in
locations. SHM performs better than PSMM, but still only achieve a low accuracy.
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Table 8 Performance comparison for location recommendation

Dataset July (%) August (%) September (%) October (%) November (%) December (%)

S.LF.UF 18.31 19.58 19.71 20.79 21.10 23.53

PSMM 1.04 1.19 1.24 1.22 1.26 1.23

SHM 5.30 5.08 5.39 5.65 5.03 5.58

CF 18.24 19.57 19.45 20.74 20.84 23.59

gSCorr 19.21 20.25 20.36 21.26 21.42 24.13

The best performance of each month among all the approaches is in bold

They recommend a user’s next location based on the observation of his friends’
check-in history. The performance indicates that a user does not follow his friends’
check-in sequence a lot on LBSNs, especially when performing a cold-start check-
in.

– CF has comparable performance with S.LF.UF. Comparing to Eq. (12), applying
S.NLF.UF to the whole test set is actually equivalent to user-based collaborative
filtering, resulting in a close performance to S.LF.UF according to Tables 5, 6 and
7. This also demonstrates the practicability of our proposed correlation measures.

– gSCorr performs the best among all the approaches. To demonstrate the signifi-
cance of its improvement over other baseline methods, we launch a random guess
approach to recommend the cold-start check-ins. The recommendation accuracy of
the random guess is always below 0.005 %, indicating that gSCorr significantly
improves the baseline methods.

4.5 Effect of geo-social correlation strength and measures

To further investigate gSCorr, we consider the effect of both geo-social correlation
strength and measures in capturing the user’s cold-start check-in behavior. Therefore,
we set up five alternative approaches with various correlation strength and measures, to
compare the location recommendation performance with gSCorr, as shown in Table 9
with the details below:

– EsSm. We select the measure S.LF.UF, which works well in all the geo-social
circles, to compute the geo-social correlation probabilities for each social circle.
We set all the geo-social correlation strength equaling to 1.

– EsVm. We select the same measures as in gSCorr, but set all the geo-social corre-
lation strength as 1.

Table 9 Evaluation measures
Single measure Various measures

Equal strength EsSm EsVm

Random strength RsSm RsVm

Various strength VsSm gSCorr
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Table 10 Location recommendation with various geo-social correlation strength and measures

Dataset July (%) August (%) September (%) October (%) November (%) December (%)

EsVm 17.88 18.60 18.86 19.48 19.64 21.94
EsSm 16.20 16.86 17.11 17.94 18.16 20.57
VsSm 16.49 17.94 18.08 18.17 18.45 20.90
RsSm 14.93 15.49 15.88 16.70 16.97 19.29
RsVm 15.23 15.78 16.17 16.81 17.02 19.10
gSCorr (VsVm) 19.21 20.25 20.36 21.26 21.42 24.13

The best performance of each month in bold

– RsSm. We select the same measure as in EsSm, and randomly assign the geo-social
correlation strength.

– RsVm. We select the same measures as in gSCorr, and randomly assign the geo-
social correlation strength.

– VsSm. We select the same measure as in EsSm, and perform the same training
procedure to obtain the geo-social correlation strength.

Note that gSCorr is a various strength and various measures approach. The results
are shown in Table 10; For each random strength approach (RsSm and RsVm), we run
30 times and report the average accuracy. We summarize the essential observations
below:

– The geo-social correlations from different geo-social circles contribute variously to
a user’s check-in behavior. Both VsSm and gSCorr perform better than their equal
strength versions (i.e., EsSm and EsVm), respectively, indicating that the geo-social
correlations are not equally weighted.

– The randomly assigned strength approaches (RsSm and RsVm) perform the worst
comparing to the other approaches, where the average performance of VsSm has
a 9.40 % relative improvement over RsSm, and gSCorr has a 27.51 % relative
improvement over RsVm, indicating that social correlation strength do affect the
check-in behavior.

– The single measure approaches (EsSm, RsSm, VsSm) always perform worse than
the various measures approaches (EsVm, RsVm, gSCorr), which suggests that for
different social circles, there are different suitable correlation measures.

– gSCorr performs the best on all the test data, suggesting the advantage of gSCorr
as considering different geo-social correlation strength and measures for each geo-
social circle, which results in a flexible model for capturing the geo-social correla-
tions on a user’s check-in behavior.

4.6 Effect of different geo-social circles

To further investigate the contribution of different geo-social circles, we compare the
recommendation results by utilizing various combinations of geo-social circles, as
shown in Table 11. The geo-social correlation measures are all selected as the best one
for the corresponding social circles, and the geo-social correlation strength is learned
in the previous section through gSCorr.
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Table 11 Location recommendation with various social circle combinations

Methods July (%) August (%) September (%) October (%) November (%) December (%)

SF D̄ 6.51 6.85 7.02 7.37 7.11 7.76

SF D 3.65 3.52 4.15 4.63 4.37 4.91

SF̄ D̄ 18.37 19.40 19.45 20.21 20.34 22.82

SF̄ D̄ ∪ SF D̄ 18.62 19.60 19.62 20.49 20.73 23.22

SF̄ D̄ ∪ SF D 19.01 20.09 20.23 21.08 21.17 23.97

SF D̄ ∪ SF D 8.33 8.46 9.04 9.43 9.23 10.09

SF̄ D̄ ∪ SF D̄ ∪ SF D 19.21 20.25 20.36 21.26 21.42 24.13

The results show that the social correlations of user’s direct friendships SF D and
SF D̄ are significantly lower than the local non-friend users SF̄ D̄ . The latter contributes
more than 95% of accurate recommendation, which indicates that there is a big overlap
of check-in locations between local non-friend users and direct friends. On the other
hand, the correlations of SF D and SF D̄ do not overlap much, where the combination of
them has significant improvement over SF D and SF D̄ individually. This is due to the
diversity of friend distribution since local friends and distant friends do not share much
common geographical environment. Furthermore, the combination of SF̄ D ∪ SF D̄
performs much better than SF̄ D∪SF D , indicating that local non-friend users share more
common check-in locations with local friends than distant friends. Finally, gSCorr
always performs the best among all the combinations of social circles (in bold font),
demonstrating that by taking advantage of both social networks and geographical
distance, our approach properly captures the user’s cold-start check-in behavior on
LBSNs, and could be utilized to benefit cold-start location recommendation.

4.7 Discussion

We summarize the experiment results in this section, and explain a set of observations
of user check-in behavior on LBSNs as below:

– Social correlations do exist on LBSNs. The correlation is more relevant to a user’s
local non-friends than direct social friends, where the latter only contribute a small
proportion in a user’s check-in behavior. This in turn explains the previous findings
(Cho et al. 2011; Gao et al. 2012b; Chang and Sun 2011;Ye et al. 2010, 2011) that
utilizing social friends’ check-ins can only slightly improve the location predic-
tion/recommendation on LBSNs.

– To capture the social correlations on LBSNs, a set of factors need to be considered,
which consists of user similarity, location frequency and user frequency. Further-
more, the factors affect variously on user’s different geo-social circles.

– Social correlations can be utilized to solve the cold-start problem to a certain extent.
From the results in Tables 10 and 11, gSCorr could accurately recommend 19.21 %
cold-start check-in locations from SF̄ D̄ ∪ SF D̄ ∪ SF D . Considering the total number
of cold-start check-ins (77,581) in the data set, it is equivalent to around 10 %
accuracy among the whole dataset, while a random guess of a user’s next location
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from our testing set is below 0.005 %, indicating that the improvement of gSCorr
in recommending the cold-start location is actually very significant.

4.8 Limitations of gSCorr

gSCorr considers both geographical distance and social friendships, providing a better
perspective to compute user similarity for recommendation purpose. According to the
comparison between gSCorr and state-of-the-art baseline methods, the geographical
property does present significant effect in improving the location recommendation.
However, there are several limitations of gSCorr that could be considered for future
improvements.

– Discrete geographical distance

The geographical separation of social relationships in this work is discrete due to the
limitation of data availability. According to the observed user profiles, hometown
information is usually provided in city or state level. Considering geographical dis-
tance in state level may loss valuable local information, while adopting city level
distance measure may result in the incorrect use of state level information. One
possible way is to consider all the check-ins of a user and take the average; however
this strategy is highly affected by the check-in outliers, i.e., check-in locations far
away from the hometown. Thus, under which granularity to compute the geograph-
ical distance is still an open question. We will continue to study this problem and
investigate an appropriate social correlation function of continuous geographical
distance.

– Temporal dynamics of check-in behavior

As human movement is a stochastic process over the time, the corresponding geo-
social correlations may also change over the time. Adopting geo-social correlation
measures analog to “TF-IDF” is under the assumption of “bag of check-ins”, where
check-in locations are independent to each other. This may result in the temporal
information loss as the older check-in could have a decreasing correlation to the
current check-in. We have performed preliminary experiments to evaluate such
effect. The experimental results show that geo-social correlations do decrease over
the time. In our observations, we have found that using the recent 30 % check-
ins in half-year duration from a user is sufficient to compute the user similarity and
perform recommendation. This observation could be potentially utilized to improve
our algorithm efficiency significantly, as human check-in sequence is usually too
long to be efficiently leveraged in similarity computation.

5 Related work

Researchers have investigated the social network and check-in properties on location-
based social networks (Gao and Huan 2013). Noulas et al. (2011) studied the spatio-
temporal patterns of user activity on Foursquare, and found that the check-in activity
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varies within the course of a day and a week. Long et al. (2012) investigated the local
geographical topics of check-ins with LDA, and studied the spatial and temporal prop-
erties of discovered topics. Cheng et al. (2011) reported that user’s check-in behavior
on LBSNs follows the “Lèvy Flight” mobility pattern, and is influenced by the social
status, sentiment and geographic constraints. Gao et al. (2013a, b) investigated the tem-
poral properties of geographical check-ins, and leverage them for location prediction
and location recommendation. In Scellato et al. (2010, 2011b), the authors studied the
correlation between friends and their average distance on three LBSNs, and observed
that the probability of having a social connection between two users is a function of
their geographical distance. In Backstrom et al. (2010), the authors found that the prob-
ability of friendship is roughly inversely proportional to distance, and this information
has been further studied to predict a user’s home address with Facebook data.

Efforts have also been made to utilize user’s social network information on LBSNs
for improving location based services. In Chang and Sun (2011), the authors investi-
gated various features for location prediction on LBSNs, and reported that the number
of check-ins made by friends is a significant predictor. In Long and Joshi (2013), the
authors proposed a HITS-based POI recommendation algorithm to recommend POIs
to LBSN users with the consideration of social relationships. In Ye et al. (2010), the
check-in information from nearby friends was utilized for location recommendation
while other users were ignored. The results indicate that social network only brings
minor improvement. Gao et al. (2012c) investigated geo-social correlations on LBSNs
to solve the “cold start” location prediction problem, which can be analog to the loca-
tion recommendation problem specifically on a user’s next check-in. In Ye et al. (2011),
the authors utilized both user-based and friend-based collaborative filtering for location
recommendation. This approach did not consider the geographical property of social
correlations, and could be related to the equal strength and single measure version
of our gSCorr. Cho et al. (2011) studied the periodic patterns of check-in behavior
on LBSNs, and proposed a Gaussian mixture model together with the social network
information considered for location prediction, while their results also show limited
improvements from social network. Gao et al. (2012b) studied the social-historical
ties on Foursquare, and found that both ties have contributions to the user’s check-in
behavior, while social ties are complementary to the historical ties, especially when
the historical model does not perform well due to the long and noisy history.

6 Conclusions and future work

In this paper, we propose a geo-social correlation model to capture the social corre-
lations of check-in behavior on LBSNs. We investigate the correlations in context of
social networks and geographical distance. The work presented in this paper suggests
many future directions. Firstly, the geographical separation of social relationships in
this work is binary. It would be interesting to consider a continuous function of social
correlations with the changing of geographical distance. Secondly, in this work we
focus on utilizing social network information to solve the cold-start problem, while
ignoring a user’s own check-in history. In the future we will continue to study how to
take advantage of both social correlations and historical check-ins, and explore novel
usage of such information.
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