
Data Min Knowl Disc (2013) 27:344–371
DOI 10.1007/s10618-013-0311-4

A framework for semi-supervised and unsupervised
optimal extraction of clusters from hierarchies

R. J. G. B. Campello · D. Moulavi · A. Zimek ·
J. Sander

Received: 3 October 2012 / Accepted: 21 March 2013 / Published online: 4 April 2013
© The Author(s) 2013

Abstract We introduce a framework for the optimal extraction of flat clusterings from
local cuts through cluster hierarchies. The extraction of a flat clustering from a cluster
tree is formulated as an optimization problem and a linear complexity algorithm is pre-
sented that provides the globally optimal solution to this problem in semi-supervised as
well as in unsupervised scenarios. A collection of experiments is presented involving
clustering hierarchies of different natures, a variety of real data sets, and comparisons
with specialized methods from the literature.

Keywords Hierarchical clustering · Optimal selection of clusters · Should-link and
should-not-link constraints · Cluster quality

1 Introduction

One of the primary data mining tasks is cluster analysis, in which one aims at deter-
mining a finite set of categories to describe a data set according to similarities or
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relationships among its objects (Hartigan 1975; Everitt et al. 2001). This task is
often a first and important step in analyzing data, understanding their properties,
and preparing them for further analysis. An important paradigm in cluster analy-
sis is hierarchical clustering, in which a clustering solution is represented as a tree
describing hierarchical relationships between nested clusters (Jain and Dubes 1988;
Everitt et al. 2001). This paradigm has been of particular interest in a large vari-
ety of application areas. The reasons are manifold. First, it is a property of real
data sets that clusters may be nested. Typically, nested clusters are characterized
by having different densities, which is essentially the rationale behind Hartigan’s
classic definition of density–contour trees (Hartigan 1975) as a conceptual hierarchi-
cal model for data clustering. In addition, in some areas, such as biology, domain
experts may prefer tree representations, as they are more used to them. In fact, some-
times the underlying application domain is hierarchically structured in its nature, as
it is usually the case in areas such as biological taxonomy and document catego-
rization, just to mention a few (Zhao and Karypis 2005). In conceptual clustering,
for example, the hierarchical structure can also provide an attribute-value descrip-
tion that allows interpretation of the resulting clusters (Blockeel et al. 1998; Struyf
and Džeroski 2007). Furthermore, hierarchical models are useful tools for visual-
ization of high-dimensional data, e.g., in the form of a traditional dendrogram (Jain
and Dubes 1988; Everitt et al. 2001), a compacted cluster tree (Sander et al. 2003;
Stuetzle and Nugent 2010), a reachability-like plot (Ankerst et al. 1999; Brecheisen
et al. 2004), or a silhouette-like plot (Gupta et al. 2010). For all these reasons,
hierarchical models often represent a natural choice to describe clustering struc-
tures.

Hierarchical models are able to provide richer descriptions of clustering struc-
tures than those provided by “flat” models, in which a given label (possibly null,
representing “noise”) is assigned to every object of the data set. In spite of this,
applications in which the user also (or even only) needs a flat solution are com-
mon, either for further manual analysis by a domain expert or in automated KDD
processes in which the output of a clustering algorithm is the input of a subsequent
data mining procedure—e.g., pattern recognition based on image segmentation. In
this context, the extraction of a flat clustering from a hierarchy may be advanta-
geous when compared to the extraction directly from data by a partitioning-like
(i.e. non-hierarchical) algorithm. One reason is that hierarchical models describe
data from multiple levels of specificity/generality, providing a means for explo-
ration of multiple possible solutions from different perspectives while having a
global picture of the cluster structure available. For example, as we will dis-
cuss later, for a multitude of types of hierarchies we can effectively evaluate
the quality of clusters according to their behavior (e.g. stability) along different
hierarchical levels.

The usual approach to extract a flat solution from a hierarchical clustering is by
(manually or automatically) choosing one of the levels of the hierarchy. Choos-
ing the most appropriate level is the well-known problem of performing a hori-
zontal cut through a dendrogram, which has been widely studied in classic cluster
analysis (Milligan and Cooper 1985; Jain and Dubes 1988). In spite of its wide-
spread use in practice, this approach has a major limitation as it cannot provide
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Fig. 1 a Illustrative data set and b its single-linkage dendrogram (Euclidean distance)

solutions composed of clusters described at different levels of abstraction or gran-
ularity (Boudaillier and Hébrail 1997, 1998). The toy example in Fig. 1 illustrates
one possible consequence of such a limitation. Specifically, it is clear that there is
no horizontal cut through the single-linkage dendrogram in Fig. 1b that would be
able to simultaneously provide clusters A1, A2, A3, B, and C as a flat clustering
solution for the data set in Fig. 1a, even though this is a discernibly valid alterna-
tive.

Situations like the one described above and illustrated in Fig. 1 can also
occur when considering hierarchical clustering algorithms other than single-linkage
(Kettenring 2006). In particular, in the case of hierarchical algorithms based on den-
sity estimates, such as OPTICS (Ankerst et al. 1999; Sander et al. 2003), AUTO-
HDS (Gupta et al. 2006, 2010), and gSkeletonClu (Sun et al. 2010), a horizontal
cut corresponds to a clustering solution induced by a single, global density thresh-
old. As has been discussed in the literature, it is often not possible to simultaneously
detect clusters of varied densities by using this kind of threshold (Ankerst et al. 1999;
Stuetzle 2003; Tan et al. 2006; Kriegel et al. 2011), which is also a major short-
coming of many density-based non-hierarchical algorithms, such as DBSCAN (Ester
et al. 1996) and DENCLUE (Hinneburg and Keim 1998), among others. Devising
appropriate means to perform local cuts at different hierarchical levels for different
branches (subtrees) of a cluster tree or dendrogram is therefore an important prob-
lem.

Performing local cuts through a clustering hierarchy is equivalent to adopting dif-
ferent granularity or density thresholds for different subsets of the data and allows
one to get flat solutions that cannot be obtained by a traditional horizontal, global cut.
Although there is a plethora of different methods for hierarchical clustering, only very
few are (directly or indirectly) able to automatically perform some sort of local cut
in the resulting hierarchy (Sander et al. 2003; Stuetzle 2003; Ferraretti et al. 2009;
Stuetzle and Nugent 2010; Gupta et al. 2010), and they essentially do this in a fully
unsupervised way.

Apart from unsupervised approaches, there has been a growing interest in semi-
supervised hierarchical clustering methods, i.e., methods that produce cluster trees
using partial supervision in the form of labels or constraints which represent
previous knowledge about the data (e.g. Klein et al. 2002; Struyf and Džeroski 2007;
Bade and Nürnberger 2008; Davidson and Ravi 2009; Zheng and Li 2011; Gilpin
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and Davidson 2011).1 The area of semi-supervised clustering has earned particular
attention in recent years (Basu et al. 2008) and the branch of hierarchical approaches
has followed a similar trend. Formulations of the problem have been discussed from a
theoretical perspective (Davidson and Ravi 2005, 2009) and semi-supervised hierar-
chical clustering algorithms have been developed to deal with constraints in different
ways. These algorithms are mostly based on some form of distance learning (Kim and
Lee 2002; Klein et al. 2002; Bade and Nürnberger 2006, 2008; Bade et al. 2007; Zheng
and Li 2011) or on the adaptation of agglomerative (Davidson and Ravi 2005, 2009;
Gilpin and Davidson 2011; Hamasuna et al. 2012) and divisive (Kestler et al. 2006;
Kraus et al. 2007; Xiong et al. 2011) hierarchical methods towards enforcing constraint
satisfaction during the construction of the cluster tree. In spite of these advances, the
focus has been on constructing hierarchies only, by satisfying constraints completely
or as much as possible. To the best of our knowledge, the problem of selecting clusters
to compose a flat solution from a cluster tree, when such type of solution is needed or
desired, has been virtually untouched in the semi-supervised clustering literature. The
only option is the traditional horizontal cut approach, which imposes an arbitrary and
unnecessary additional constraint to the problem. In fact, by requiring that all extracted
clusters must lie on the same level of the hierarchy, one would never be able to fully
satisfy user-specified constraints that suggest the existence of A1, A2, A3, B, and C
as clusters in the example of Fig. 1.

This paper is mainly intended to contribute towards filling the existing gaps in the
literature in regard to the extraction of clusters from cluster trees. More specifically,
the main contributions are:

– We formulate the problem of extracting a flat solution from local (non-horizontal)
cuts through a generic cluster tree as an optimization problem.

– To solve this problem, we present an algorithm which is optimal in that, if an exter-
nal collection of instance-level constraints of the type should-link and should-not-
link is provided (semi-supervised case), the resulting solution globally maximizes
the fraction of constraint satisfactions or, equivalently, it minimizes the fraction of
constraint violations. This algorithm can in principle be applied to any cluster tree
in which the clusters satisfy/violate the constraints to different degrees, because
either (i) the tree has been constructed taking into account the constraints as soft
(rather than hard) constraints, or (ii) it has been constructed not taking into account
the constraints at all (i.e., in an unsupervised way).

– We present an unsupervised version of the algorithm that uses as an objective func-
tion an overall aggregation of the individual qualities of the composing clusters,
measured by some local measure of cluster quality. This version can be applied to
cluster trees in which clusters do not violate constraints, either because (i) there
are no constraints at all (unsupervised case), or because (ii) the tree has been con-
structed by forcing all the existing (hard) constraints not to be violated by any
cluster, which is sometimes possible under certain assumptions (e.g., see Gilpin
and Davidson 2011).

1 These methods should be distinguished from those that use hierarchical clustering and partially labeled
data to categorize unlabeled data into predefined categories (semi-supervised categorization; e.g., see
Skarmeta et al. 2000; Benkhalifa et al. 2001).
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– We also discuss two different ways of integrating the unsupervised and semi-
supervised versions into a single algorithm; namely: (i) unsupervised cluster qual-
ity can be used as a secondary objective to solve ties involving candidate clusters
satisfying/violating the same fraction of constraints (the primary objective func-
tion); or (ii) the relative importance of these two objectives can be arbitrarily bal-
anced by means of a convex combination of the corresponding objective functions.
Unlike most non-hierarchical algorithms—which attempt at directly producing a
flat clustering from the data—our method provides not only a globally optimal
solution w.r.t. the criteria it optimizes, but also the number of clusters as a by-
product, rather than as an explicit or implicit input parameter.

– A theoretical asymptotic analysis is provided which shows that the proposed
method is scalable, having linear computational complexity w.r.t. both the number
of constraints and the number of clusters in the cluster tree to be processed.

– A collection of experiments is presented that involves clustering hierarchies pro-
duced by different methods, from a variety of real data sets.

The remainder of this paper is organized as follows. In Sect. 2 we define and for-
mulate the optimization problem of interest. In Sect. 3 we present a globally optimal
solution to this problem along with an algorithm that can efficiently compute it in the
semi-supervised, unsupervised, or mixed scenarios. In Sect. 4 we review the related
work. In Sect. 5 we report experiments involving a variety of real data sets and cluster-
ing methods. At last, some final remarks and perspectives for future work are addressed
in Sect. 6.

2 Problem statement

2.1 Preliminaries

Let X = {x1, . . . , xn} be a data set containing n data objects and let {C1, . . . , Cκ }
be the collection of clusters in a clustering hierarchy of X from which a flat solution
has to be extracted. We represent the clustering hierarchy as a cluster tree in which
each node is associated with a particular cluster. Let C1 be the root of the tree, which
represents the all-inclusive “cluster” composed of the entire data set (i.e. C1 = X).
For simplicity and without any loss of generality, we consider that the cluster tree is
binary, for two main reasons: (i) it is simpler to formalize the problem for binary trees,
which is actually the type of tree produced by most hierarchical clustering algorithms;
and (ii) the solution of the problem can be straightforwardly generalized to deal with
non-binary trees. Formally, the tree is such that each internal node, associated with
a given cluster Ci , has two children nodes associated with nested sub-clusters of Ci .
These nodes are denoted as Cil and Cir , in reference to the left and right child of
Ci , respectively. The leaf nodes of the tree are associated with clusters that do not
have sub-clusters. As we will see later, leaf nodes are not necessarily associated with
singletons.
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2.1.1 Problem overview

Before running into peculiarities and possible complications associated with the dif-
ferent aspects of clustering that will be considered in this paper, we first provide the
reader with a preliminary, more abstract overview of the problem and outline the basic
solution strategy that will be further elaborated in Sect. 3. Let us assume that we are
given a cluster tree as described above as well as a numerical value associated with
each cluster, which quantifies a certain property of interest related to the clusters. The
fundamental problem we want to solve is to select a collection of clusters from the tree
that represents a flat clustering solution and for which a predefined form of aggregation
of the corresponding numerical values is maximized. For instance, if the meaningful
aggregation for the problem at hand is the sum, then we want to maximize the sum
of the numerical values associated with the selected clusters subject to the constraint
that these clusters cannot overlap. Possible meanings for such numerical values are
not relevant at this point.

As an example, consider the cluster tree illustrated in Fig. 3a. To get a flat solution,
no other cluster can be selected in the subtree rooted at a given selected cluster.
Among the solutions that satisfy this condition, the one composed of C3, C4, and
C5 can be shown to be optimal in the sense that it maximizes the sum of the values
displayed beside the clusters in the figure. To find such a solution efficiently, it is worth
noticing that the sub-selection of clusters in any subtree represents a sub-problem of
the very same nature of the original problem (i.e., the one that refers to the complete
tree). From this observation, a dynamic programming strategy can be applied that
incrementally solves sub-problems (subtrees) of increasing sizes, starting from the
leaves and aggregating the intermediate solutions upwards in the tree. At this very
high level of abstraction, this strategy is analogous to the one used in error based
pruning of decision-tree classifiers.

In the example of Fig. 3a, starting from the deepest leaves, it can be seen that C8 and
C9 must be discarded as their values sum up to 2.9 and, therefore, they are worse than
C5 (21.1). At the level above, C5, as the best sub-selection in its subtree, and C4, as a
subtree on its own, are together (37.5) better than C2 (32.7), which is then discarded.
In the other branch, clusters C6 and C7 are also discarded as they are together (2.4)
worse than C3 (36.9). In the end, clusters C3, C4, and C5 remain, which is the optimal
global solution in this example, with a total aggregated value of 74.4. Further in this
paper, this basic solution strategy will be specialized, extended, and formalized as an
algorithm for applications in different contexts of clustering.

2.1.2 Hierarchies with noise objects

It is worth remarking that many clustering hierarchies are not only able to represent
parent-child relationships involving groups of objects with valid cluster labels, but
they can also model the fact that some objects in a given parent cluster may become
noise and be given a null label before this cluster is split into its children (from a top-
down perspective of the cluster tree), thus no longer belonging to any cluster below
the respective hierarchical level. Noise objects are a natural consequence when using
density-based hierarchical algorithms (e.g. Ankerst et al. 1999; Sander et al. 2003;
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Fig. 2 a Illustrative data set and b its average-linkage dendrogram (Euclidean distance)

Gupta et al. 2010), as such algorithms produce hierarchies in which the hierarchical
levels are associated with different density thresholds, and objects whose density is
below the threshold are deemed noise at the corresponding levels. The concept of
noise, however, can be easily extended to other types of hierarchies, for instance, by
using a minimum cluster size. In fact, in many practical applications of clustering
(not just hierarchical clustering) a minimum cluster size is used as a user-specified
parameter in order to prevent algorithms from finding very small clusters of objects
that may be highly similar to each other just by chance, i.e., as a consequence of
the natural randomness associated with the use of a finite data sample. Requiring a
minimum cluster size, mclSize ≥ 1, allows only clusters with at least mclSize objects
to be reported, and the case where a subcomponent with fewer than mclSize objects is
disconnected from a cluster top-down along the hierarchy can be treated as not being
a “true” split of that cluster, but as a simple reduction in its size.

As an example, Fig. 2 shows a simple data set and its average-linkage dendrogram,
where there are 27 clusters (including 14 singletons), 9 of which have been highlighted.
Table 1 shows the application of the idea described above to the dendrogram in Fig. 2b,
with mclSize = 2. When a single object—as a subcomponent with fewer than mclSize

objects—is disconnected from a cluster top-down along the hierarchy (which reads
from left to right along the table), the original cluster is just regarded as having reduced
in size, so it keeps its original label. This procedure reduces the 27 clusters in the
dendrogram to 9 more prominent ones (labeled “1” to “9” in Table 1)2, which however
may exhibit different configurations along different hierarchical levels (e.g., cluster “4”
with and without objects x4 and x2). In our framework, such different configurations
can be modeled as parent-child nodes in the tree of candidate clusters, which in this
case would not be strictly binary. Optionally, the cluster tree and the corresponding
cluster extraction problem can be simplified by considering as significant hierarchical
levels only those in which a cluster is truly split, giving rise to new sub-clusters. The
clusters at such hierarchical levels are those highlighted in Fig. 2b (C1, . . . , C9) and
refer back to Hartigan’s concept of rigid clusters (Hartigan 1975), which is adopted
in this paper and has also been explored, e.g., by Herbin et al. (2001) and Gupta et al.

2 Note that such a reduction may be even more noticeable for higher values of mclSize.
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Table 1 Hierarchy for the data in Fig. 2a with mclSize = 2

x1 1 2 4 4 4 4 4 4 4 4 0 0 0 0

x2 1 2 4 4 4 4 4 0 0 0 0 0 0 0

x3 1 2 4 4 4 4 4 4 4 4 0 0 0 0

x4 1 2 4 4 0 0 0 0 0 0 0 0 0 0

x5 1 2 5 5 5 0 0 0 0 0 0 0 0 0

x6 1 2 5 5 5 5 5 5 8 8 8 8 8 0

x7 1 2 5 5 5 5 5 5 9 9 9 9 0 0

x8 1 2 5 5 5 5 5 5 8 8 8 8 8 0

x9 1 2 5 5 5 5 5 5 9 9 9 9 0 0

x10 1 3 3 0 0 0 0 0 0 0 0 0 0 0

x11 1 3 3 3 3 3 6 6 6 6 6 0 0 0

x12 1 3 3 3 3 3 6 6 6 6 6 0 0 0

x13 1 3 3 3 3 3 7 7 7 0 0 0 0 0

x14 1 3 3 3 3 3 7 7 7 0 0 0 0 0

Scale 9.42 5.78 2.8 2.56 2.02 1.83 1.72 1.44 1.28 1.22 1.17 0.78 0.6 0

Higher (lower) hierarchical levels are on the left (right). Scale values (bottom bar) are the average-linkage
distances. The remaining values are labels: a non-null value i in the j th row means that object x j belongs
to cluster Ci at the corresponding level, whereas a null value denotes noise

(2010). The corresponding cluster tree is displayed in Fig. 3a (the actual meaning of
the values beside the nodes in that figure will be discussed later).

Note that, in principle, the cluster tree as represented in Fig. 3a does not explicitly
account for the fact that object x10 of cluster C3 is not part of either of C3’s children,
namely, C6 (C3l ) and C7 (C3r ), as x10 is already deemed noise at the level at which C6
and C7 appear as clusters and below. The same holds true w.r.t. object x5 and clusters
C5, C8 (C5l ), and C9 (C5r ). We will see later that these objects can affect the optimal
extraction of clusters in the semi-supervised case. For this reason and for the sake of
generality, we assume that the information about objects that are part of a cluster yet
not part of its sub-clusters (if any) is available in the hierarchy to be processed. This
information can be represented in the cluster tree by means of “virtual” nodes, like
the ones displayed in dashed lines in Fig. 3b–d.

In order to simplify the formulation of the problem, we assume that every internal
node of the cluster tree has one virtual child node, even though only some of them
are actually associated with noise objects. The remaining ones store no information
at all and play no practical role for the algorithmic solution of the problem, though
they simplify the notation used to describe it.3 The virtual child node of a cluster Ci

in the cluster tree will be denoted hereafter as C∅
i , no matter whether it actually stores

information or not.

3 In the example of Fig. 3b–d, these nodes would be virtual children of C1 and C2, which have been omitted
for the sake of clarity.
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(a) unsupervised case (b) semi-supervised case 1

(c) semi-supervised case 2 (d) mixed case

Fig. 3 Simplified cluster trees corresponding to the hierarchy in Table 1. Figures beside the nodes denote:
a cluster quality (measured by means of stability); b, c fractions of constraint satisfactions for different
constraints; d convex combination of stability and fractions of constraint satisfactions. Boldfaced solid
nodes indicate optimally selected clusters. Dashed circles in b–d represent virtual nodes associated with
noise objects

2.2 Problem formulation as a mathematical programming task

It is assumed that we are given a cluster tree of a data set X as described in Sect. 2.1.
It is also assumed that we are given a collection of constraints representing previous
knowledge about the data set and being violated or satisfied to different degrees by the
clusters in the cluster tree; the case where such a collection of constraints is empty will
be discussed later as a particular, unsupervised extraction case. Recalling that the focus
here is not on the construction of the hierarchy itself, but on the extraction of a flat
clustering from it, we consider that the constraints used in the extraction stage are of the
(instance-level) type should-link and should-not-link, which are those most commonly
adopted in the broad context of semi-supervised clustering, and actually those most
easily encountered in practical applications as well. Such constraints encourage pairs
of objects to be grouped together in the same cluster or separated apart in different
clusters (Wagstaff 2002).

Our primary objective is to extract a flat solution from the cluster tree that is globally
optimal w.r.t. the constraints. Specifically, the objective is to extract a collection of
clusters that altogether maximize the number of constraint satisfactions computed over
the whole data set X = {x1, . . . , xn}. Unsupervised measures of cluster quality will
in principle be considered as a secondary objective, to be discussed further. Formally,
the primary objective function can be written as
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J = 1

2nc

n∑

j=1

γ (x j ), (1)

where nc is the number of available constraints (should- and should-not-link) andγ (x j )

is the number of constraints involving object x j that are satisfied (not violated). The
scaling constant 1/2 is due to the fact that a single constraint involves a pair of objects
and, as such, it is taken into account twice in the sum. Term nc in the denominator
is used to normalize J in the unit interval. Thus, J is the fraction of constraints
that are satisfied or, equivalently, the complement of the fraction of constraints that
are violated. Evidently, maximizing J is equivalent to minimizing the number of
constraint violations.

In principle, the candidate clusters are all the clusters in the cluster tree. Whether the
all-embracing “cluster” C1 (root) should be kept as a viable candidate or not is up to the
user and does not change the essence of the problem or its solution. In the following,
we consider that the user does require a partitioning of the data. So, we exclude C1
from the collection of eligible clusters, which is therefore E = {C2, . . . , Cκ }.

When selecting clusters for a flat clustering solution, nested clusters in the tree must
be mutually exclusive, i.e., each object can only be assigned a single label (possibly
null, representing noise). This condition can be formulated as a set of constraints for
the problem of maximizing J in Eq. (1). By noticing that terms γ (·) in Eq. (1) are a
function of the clusters that will be selected, the optimization problem can be written
as

maximize J in Eq. (1)

δ2, . . . , δκ

subject to

{
δi ∈ {0, 1}, i = 2, . . . , κ∑

j ∈ Ih
δ j = 1, ∀h such that Ch is a leaf cluster,

(2)

where δi (i = 2, . . . , κ) is an indicator that denotes whether cluster Ci is included in
the flat solution (δi = 1) or not (δi = 0) and Ih is the set of indexes for those clusters
on the path from leaf cluster Ch (included) to the root (excluded). The constraints in
Problem (2) enforce that exactly one cluster will be selected along any branch from
the root to a leaf. Accordingly, they ensure that each data object will be either assigned
to a single cluster or labeled as noise for not being part of any selected cluster. It is
worth remarking that, since a noise object is, by definition, not clustered with any other
object, a should-not-link constraint involving one or both objects labeled as noise is
deemed satisfied, while a should-link constraint is deemed violated.

Problem (2) is mathematically well-defined, but if the objects of a parent cluster
are not involved in any constraints, then it is not possible to discriminate between this
cluster and its sub-clusters in terms of constraint satisfiability. This is a particular case
of a tie between nested (and therefore “competing”) clusters, which can also occur
in more general scenarios, even for clusters involved in constraints (as we will see in
an example in Sect. 3.1). In these cases, there will be multiple valid cluster selections
with the same globally optimal value for the objective function in Problem (2). In
practice, this means that, instead of a unique flat clustering, one might return as a

123



354 R. J. G. B. Campello et al.

result a clustering that is only partially flat, possibly including subtrees of nested
clusters whose selection is undecidable. If the user does require a truly flat solution,
the ties can be decided arbitrarily or a secondary objective must be considered to
solve such subtrees. As a secondary objective, we consider an overall aggregation of
the individual qualities of the composing clusters. Specifically, let S(Ci ) be a given
unsupervised measure of quality for cluster Ci . Then, an overall aggregation of the
qualities of those clusters selected from the cluster tree to compose a flat solution can
be written as

J =
κ∑

i=2

δi S(Ci ). (3)

Using J given by Eq. (3) in lieu of Eq. (1) allows for resolving ties in subtrees.4

By doing so, when the whole tree is indistinguishable w.r.t. constraint satisfiability
(because it has been successfully constructed by enforcing that all clusters satisfy all
the constraints or because there are no constraints at all), the problem falls into the
particular, unsupervised case and clusters are purely extracted based on their qualities
S(Ci ).

2.3 Unsupervised measures of cluster quality

A suitable unsupervised measure of cluster quality depends on the characteristics
of the cluster tree at hand. Cluster trees can be of varied natures and be produced by
algorithms based on different paradigms. It is beyond the scope of this paper to discuss
appropriate measures for cluster trees of all possible types. Instead, we will introduce
a measure that can be applied to any algorithm that produces hierarchies of the same
nature as that illustrated in Table 1. This includes, for instance, density-based methods
(e.g. Sander et al. 2003; Gupta et al. 2006) and all the methods that produce traditional
dendrograms as a result (e.g., see Jain and Dubes 1988; Everitt et al. 2001), and to
which the hierarchy simplification technique based on minimum cluster size and noise
labels described in Sect. 2.1 can be applied.

The measure considered here is based on the premise that more prominent clusters
will survive longer after they appear, which is essentially the rationale behind the
definition of cluster lifetime as a measure of cluster stability in classic cluster analysis
(Jain and Dubes 1988). The lifetime of a given cluster in a traditional dendrogram
is defined as the length of the dendrogram scale along those hierarchical levels in
which that cluster exists. For hierarchies like the one in Table 1, this concept can be
adjusted to account for the fact that objects of a cluster may have different lifetimes.
The adjustment we consider here, which will be used in all the experiments reported
in Sect. 5, is summing up the lifetimes of the objects belonging to the cluster. For
example, from a bottom-up perspective of the hierarchy in Table 1, cluster C4 appears
with 2 objects at level 1.22 of the scale and disappears when it is merged with C5,

4 An alternative setting, in which both objectives in Eqs. (1) and (3) are combined into a single, mixed one,
will be discussed further, in Sect. 3.2.
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giving rise to C2 at level 5.78. In between these levels, a third object joins the cluster
at level 1.72 and a fourth one joins it at level 2.56. Then, the stability of this cluster
is given by S(C4) = 2 ∗ (5.78 − 1.22) + (5.78 − 1.72) + (5.78 − 2.56) = 16.4. The
values for the other clusters can be computed analogously and are displayed beside
the nodes of the tree in Fig. 3a.

Cluster stability as defined above is endowed with two important properties that
are required for a quality measure to qualify for use in the framework proposed in
this paper. First, it is local in the sense that it can be computed for each cluster
independently of the clusters that will be selected to compose the final flat solution,
which are obviously unknown beforehand. Second, it is additive w.r.t. the objects that
compose the cluster. This means that adding the values corresponding to the clusters
to be selected is meaningful and compatible with the aggregation operator used in the
objective function of the optimization problem, which is the sum operator in the case
of Eq. (3).

3 Optimal cluster extraction

3.1 Problem solution and algorithm

Recalling that E = {C2, . . . , Cκ } is the whole collection of eligible clusters, let F ⊆ E
be any candidate flat clustering solution satisfying the structural constraints of Problem
(2). Furthermore, let XL ⊆ X be the subset of data objects that have a non-null label
in such a candidate flat solution, i.e., XL = {x j | ∃ Ci ∈F : x j ∈Ci }. Finally, let XL

be the subset of data objects that have a null label (noise) in this candidate solution,
i.e., XL = X − XL . Then, the objective function in Eq. (1) can be rewritten as

J = 1

2nc

∑

x j ∈xL

γ (x j ) + 1

2nc

∑

x j ∈xL

γ (x j ) (4)

=
κ∑

i=2

δi Γ (Ci ) + 1

2nc

∑

x j ∈xL

γ (x j ),

where Γ (Ci ) = 1
2nc

∑
x j ∈Ci

γ (x j ) is the fraction of constraint satisfactions involv-
ing the objects of cluster Ci (which is zero for clusters whose objects are not
involved in constraints). For example, let us consider three should-link constraints,
(x1, x6), (x2, x5), and (x5, x8), as well as two should-not-link constraints, (x4, x9)

and (x3, x10), for the data set in Fig. 2a. Given the clusters in Table 1, we can compute
Γ (C9) = 1

2×5 (γ (x7) + γ (x9)) = 1
10 (0 + 1) = 0.1. The values for the other clusters

can be computed analogously and are displayed beside the (non-virtual) nodes of the
tree in Fig. 3b.

Similarly to the first term of Eq. (4), we can also decompose its second term, which
refers to objects labeled as noise, into a sum of fractions, each of which is associated
with a virtual node of the cluster tree. Every object labeled as noise in a flat solution
extracted from the tree is associated with one of the virtual nodes. Hence, we can
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rewrite Eq. (4) as5

J =
κ∑

i=2

δi Γ (Ci ) +
m∑

l=1

ϕl Γ (C∅
l ), (5)

where m is the number of virtual nodes in the tree (m = κ−1
2 for binary trees, i.e., the

number of internal nodes), ϕl is an indicator that denotes whether the objects associated
with the virtual node C∅

l (the virtual child of Cl ) are labeled as noise in the flat solution
(ϕl = 1) or not (ϕl = 0), and Γ (C∅

l ) = 1
2nc

∑
x j ∈C∅

l
γ (x j ) is the fraction of constraint

satisfactions involving the noise objects associated with C∅
l . For instance, considering

the same set of constraints as in the example above (and recalling that a should-not-link
constraint involving one or both objects labeled as noise is deemed satisfied, while a
should-link constraint is deemed violated), one has Γ (C∅

3) = 1
10γ (x10) = 0.1 and

Γ (C∅
5) = 1

10γ (x5) = 0, which are the values displayed beside the respective virtual
nodes in Fig. 3b. For virtual nodes not associated with any noise object at all (those
omitted in Fig. 3b), Γ (C∅

l ) is defined as zero.
Notice that the objects associated with a virtual node C∅

l will end up being labeled
as noise (ϕl = 1) if and only if any descendant of Cl is included into the final solution.
This means that ϕl (l = 1, . . . , m) is a function of the original decision variables δi of
Problem (2), which can then be rewritten as

maximize J in Eq. (5)

δ2, . . . , δκ

subject to

⎧
⎨

⎩

the same constraints as in (2)

ϕl =
{

1 if l ∈ A
0 otherwise,

(6)

where A = {l | ∃ i 	= l : δi = 1 ∧ Cl is an ancestor of Ci } are the indexes of
clusters that are ancestors of any cluster Ci to be selected as part of the final flat
solution (δi = 1). In brief, Problem (6) formulates the maximization of the constraint
satisfactions, written as a sum of fractions associated with the original and virtual
nodes of the tree, provided that: (a) clusters located along a common branch of the
tree (nested clusters) must be mutually exclusive; and (b) if a cluster is selected, then
the objects associated with all virtual nodes of this cluster’s ancestors must be labeled
as noise.

To solve Problem (6), we process every cluster node except the root, starting from
the leaves (bottom-up), deciding at each node Ci whether Ci or the best-so-far selection
of nodes in Ci ’s subtrees should be selected. To be able to make this decision locally

5 Notice that Γ has the same properties as S discussed in Sect. 2.3: it can be computed locally for each
node and it is additive w.r.t. the objects in the node, so it is compatible with the aggregation operator (sum)
used in the objective function in Eqs. (1) and (5).
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Algorithm 1: Solution to Problem (6)
Input: Cluster tree and the fraction of constraint satisfactions for each node, Γ (·).
1. Initialize δ2 = · · · = δκ = 1.
2. Initialize the Γ̂ values of the leaf nodes as Γ̂ (Ch) = Γ (Ch).
3. For every internal node Ci (except the root C1), starting from the deepest levels and going up the
tree, do:

3.1 If Γ (Ci ) < Γ̂ (Cil ) + Γ̂ (Cir ) + Γ (C∅
i ):

Set Γ̂ (Ci ) = Γ̂ (Cil )+ Γ̂ (Cir )+Γ (C∅
i ) and remove Ci from the list of candidate clusters

by setting δi = 0.
3.2 Else If Γ (Ci ) > Γ̂ (Cil ) + Γ̂ (Cir ) + Γ (C∅

i ):

Set Γ̂ (Ci ) = Γ (Ci ) and remove from the list of candidates (by setting their δ(·) values to
0) all the clusters in Ci ’s subtrees.

3.3 Otherwise, resolve the tie by performing either the actions in Step 3.1 or those in Step 3.2,
according to a secondary criterion.

4. Return: δ2, . . . , δκ .

at Ci , we propagate and update the sum of constraint satisfactions Γ̂ (Ci ) of nodes
provisionally selected in the subtree rooted at Ci in the following, recursive way:

Γ̂ (Ci )=
{

Γ (Ci ), if Ci is a (non-virtual) leaf node
max{Γ (Ci ), Γ̂ (Cil ) + Γ̂ (Cir ) + Γ (C∅

i )}, if Ci is an internal node,
(7)

where Cil and Cir are the sub-clusters of Ci , while C∅
i is its virtual child.

Algorithm 1 gives the pseudo-code. Note that Step 3.3 does not specify a particular
criterion to resolve ties. Different decisions when resolving a tie will lead to different
flat solutions, but the (globally optimal) value of the primary objective function in
Eq. (5) will necessarily be the same for any of these solutions. In other words, the
choice of the secondary objective does not affect the optimality of the final solution
w.r.t. the primary objective. Technically, therefore, in order to provide a single optimal
solution to Problem (6), ties (if any) can be resolved arbitrarily. From a practical
perspective, however, a more justified approach is to consider a suitable measure of
cluster quality as a secondary objective. Specifically, a tie can be decided analogously
to Steps 3.1–3.2, but replacing Γ (·) with an unsupervised measure of cluster quality
S(·) (Sect. 2.3) and considering it to be null for virtual nodes (S(C∅

i ) = 0). Under these
conditions, J in Eq. (5) becomes structurally equivalent to the unsupervised objective
function given by Eq. (3). In this case, the solution of a sub-problem that refers to
a subtree involved in a tie will therefore be optimal with respect to this secondary,
unsupervised objective function. The detailed pseudo-code is given in Algorithm 2.

When there are no constraints, Algorithm 2 processes the whole tree in an unsu-
pervised way, as in the example displayed in Fig. 3a. We have preliminary shown in
Sect. 2.1.1 that the optimal solution in that example consists of clusters C3, C4, and
C5, with J in Eq. (3) equal to 74.4.

When the collection of five constraints previously used for illustration purposes in
this section is considered, which refers to the example in Fig. 3b, the solution changes
to C2 and C3, with J in Eq. (5) equal to 0.8 (i.e., 80 % of the constraints satisfied, 20 %
violated). In details, C8 and C9 are discarded as they are together (and along with C∅

5)
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Algorithm 2: Solution to Problem (6) with quality-based tiebreaker
Input: Cluster tree, the fraction of constraint satisfactions for each node, Γ (·), and the unsupervised
quality of each non-virtual node, S(·) (null for virtual nodes).
1. Initialize δ2 = · · · = δκ = 1.
2. Initialize Γ̂ and Ŝ for the leaf nodes as Γ̂ (Ch) = Γ (Ch) and Ŝ(Ch) = S(Ch).
3. For every internal node Ci (except the root C1), starting from the deepest levels and going up the
tree, do:

3.1 If Γ (Ci ) < Γ̂ (Cil ) + Γ̂ (Cir ) + Γ (C∅
i ):

Set Γ̂ (Ci ) = Γ̂ (Cil )+ Γ̂ (Cir )+Γ (C∅
i ) and remove Ci from the list of candidate clusters

by setting δi = 0. Also, set Ŝ(Ci ) = Ŝ(Cil ) + Ŝ(Cir ).

3.2 Else If Γ (Ci ) > Γ̂ (Cil ) + Γ̂ (Cir ) + Γ (C∅
i ):

Set Γ̂ (Ci ) = Γ (Ci ) and remove from the list of candidates (by setting their δ(·) values to

0) all the clusters in Ci ’s subtrees. Also, set Ŝ(Ci ) = S(Ci ).
3.3 Otherwise, resolve the tie in an unsupervised manner:

3.3.1 If S(Ci ) < Ŝ(Cil ) + Ŝ(Cir ), then do the same as if the condition in Step 3.1 had
been satisfied.
3.3.2 If S(Ci ) >= Ŝ(Cil ) + Ŝ(Cir ), then do the same as if the condition in Step 3.2 had
been satisfied.

4. Return: δ2, . . . , δκ .

worse than C5. At the level above, the pair C4 and C5 is also discarded as C2 is better.
In the other subtree of the root, there is a tie w.r.t. constraint satisfiability: either C3
or its children (C6, C7, and C∅

3) would add the same amount of 0.1 to the objective
function. A particular choice does not affect the global optimality of the final solution
w.r.t. Eq. (5), but C3 is kept in this case because its unsupervised quality (36.9) is
higher than that of C6 and C7 together (2.4), which are thence discarded. Note that,
in what concerns the secondary objective in Eq. (3), this sub-selection is optimal for
the subtree rooted at C3.

As an additional example, if we change, e.g., two of the should-link constraints to
should-not-link ones, namely, (x2, x5) and (x5, x8), then we get the scenario illustrated
in Fig. 3c. In this case, the optimal solution changes to C3, C4, C8, and C9, once again
with J = 0.8 (which includes the fraction of 0.2 corresponding to the virtual child of
C5).

3.2 Alternative formulation: single, mixed objective function

So far it has been assumed that, in the semi-supervised scenario, one wants to give
priority to satisfy the available constraints and use an unsupervised measure of clus-
ter quality solely to decide ties. Alternatively, one may prefer to balance the relative
importances of these two objectives in the optimization problem. This can be under-
taken in the proposed optimization framework by means of a convex combination
of the corresponding objective functions, i.e., J = α JU + (1 − α)JSS , where JU is
the unsupervised objective function in Eq. (3) and JSS is the semi-supervised one in
Eq. (1). Based on the very same reasoning previously described in Sect. 3.1, all we
need to do now is to store, in the nodes of the tree, the convex combination of the val-
ues of unsupervised quality and constraint satisfactions of the corresponding clusters,
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i.e., Ω(Ci ) = αS(Ci ) + (1 − α)Γ (Ci ). For virtual nodes, S is null and the value to
be stored is therefore Ω(C∅

i ) = (1 − α)Γ (C∅
i ). An auxiliary variable Ω̂(Ci ) can then

be recursively defined in the very same way as in Eq. (7), but replacing Γ and Γ̂ with
Ω and Ω̂ , respectively. This way, Algorithm 2 can be directly applied by using Ω and
Ω̂ in place of Γ and Γ̂ , respectively.

Note that the semi-supervised and unsupervised scenarios discussed in Sect. 3.1
now become special cases of this new, mixed one. On the one hand, by setting α = 1
the values stored in the non-virtual nodes reduce to the measure of cluster quality,
S, whereas the values in the virtual nodes become zero, which leads to the purely
unsupervised scenario. On the other hand, by setting α = 0 the values stored in
all non-virtual and virtual nodes reduce to the corresponding fractions of constraint
satisfactions, Γ , all of them multiplied by the same scalar term 1−α (which, therefore,
does not affect the solution), thus leading to the semi-supervised scenario originally
discussed.

Intermediate values of α allow one to perform exploratory data analysis w.r.t. a
trade-off between the relative importances of constraint satisfaction and unsupervised
quality in the resulting clustering solution. As a weighting factor, the interpretation of
this parameter is clearer if both objective functions are normalized within a common
interval. In the case of JSS and JU , the former is by definition within [0, 1], but
the latter has no predefined upperbound. Nevertheless, it is possible to normalize JU

within [0, 1] by dividing it by its maximum possible value for the problem at hand,
J ∗

U , which is the optimal solution to the purely unsupervised problem. Solving this
particular problem a priori does not change the asymptotic complexity of the method.
By doing so, the precomputed value of J ∗

U can be used to normalize JU , implicitly,

when computing Ω , as Ω(Ci ) = α
S(Ci )

J∗
U

+ (1 − α)Γ (Ci ).

Let us recall the example of the hierarchy in Table 1, whose cluster tree and the
corresponding values of unsupervised cluster quality (stability) are displayed in Fig. 3a.
We already know that the optimal value of the objective function for this example is
J ∗

U = 74.4 in the purely unsupervised case. If we now consider a collection of three
should-link constraints, (x1, x6), (x2, x5), and (x5, x8), as well as two should-not-
link constraints, (x4, x9) and (x12, x14), we have fractions of constraint satisfactions
computed as Γ (C2) = 0.6, Γ (C4) = Γ (C6) = Γ (C7) = Γ (C9) = 0.1, and
Γ (C5) = 0.3 (for the other nodes of the tree the value is zero). In this case, by
computing the values of Ω as a function of α, it can be shown that we have three
different possible solutions to the mixed optimization problem, depending on the value
of α. Specifically, clusters C3, C4, and C5 are selected for values of α greater than
≈ 0.756, while C2, C6, and C7 are selected for values of α smaller than ≈ 0.3. For
intermediate values of α, a third solution composed of clusters C2 and C3 is obtained.
The scenario for α = 0.5 is illustrated in Fig. 3d.

3.3 Efficient implementation and asymptotic complexity analysis

Note that Step 3.2 of Algorithm 1 (or Algorithm 2) can be implemented in a more
efficient way by not setting δ(·) values to 0 for discarded clusters down in the subtrees

123



360 R. J. G. B. Campello et al.

(which could happen multiple times for nodes present in multiple subtrees of its
ascendant nodes). Instead, in a simple post-processing procedure, the tree can be
traversed top-down in order to find, for each branch, the shallowest cluster that has not
been discarded (δ(·) = 1) by Step 3.1. This way, the solution can be found with two
traversals of the tree, one bottom-up and another one top-down. This means that the
complexity of the algorithm, having as inputs the cluster tree and the values of Γ (·)
and S(·) associated with its nodes, is O(κ), i.e., it is linear w.r.t. the number of nodes
(or candidate clusters) in the tree, both in terms of running time and memory space.

It is worth noticing that, if the cluster tree results from a hierarchy simplification
procedure like the one described in Sect. 2.1, κ is typically much smaller than the
number of data objects (κ � n). It is theoretically possible, however, that a cluster
split is observed at each of the n hierarchical levels, leading to the worst case in which
κ = 2n − 1, i.e., κ is O(n).

The pre-computation of the input values Γ (·) and S(·) depends on the nature of
the particular hierarchy at hand. S(·) also depends on the particular cluster quality
measure to be adopted. For the type of hierarchy considered in the examples and
experiments provided in this paper, which are dendrogram-like hierarchies possibly
modeling noise, it follows that: (i) it is straightforward to compute Γ (·) associated with
both the original and virtual nodes of the tree with a single pass through the hierarchical
levels for each constraint, checking the labels of the pair of objects involved in that
constraint. So, the complexity to compute Γ (·) for all nodes of the tree is O(nc n),
where nc is the number of constraints; and (ii) similarly, it is also straightforward to
compute S(·) for all cluster nodes of the tree—as the stability measure described in
Sect. 2.3—by means of a single bottom-up screening of the hierarchy, which is O(n2)

(i.e., no greater than the complexity of computing the clustering hierarchy itself).

4 Related work

Apart from important research towards the semi-supervised construction of clustering
hierarchies (Kim and Lee 2002; Klein et al. 2002; Davidson and Ravi 2005, 2009;
Kestler et al. 2006; Bade and Nürnberger 2006, 2008; Bade et al. 2007; Kraus et al.
2007; Struyf and Džeroski 2007; Zhao and Qi 2010; Miyamoto and Terami 2010;
Zheng and Li 2011; Xiong et al. 2011; Gilpin and Davidson 2011; Hamasuna et al.
2012; Ahmed et al. 2012), we are not aware of an approach in the literature for the
semi-supervised extraction of clusters based on optimal cuts through a generic cluster
tree. The algorithm SS-DBSCAN (Lelis and Sander 2009) uses semi-supervision in
the form of partially labeled objects and implicitly provides as a result a collection of
clusters that would be equivalent to local cuts through the OPTICS hierarchy (Ankerst
et al. 1999) performed so as to force clusters’ maximality and purity. SS-DBSCAN is
an improvement over HISSCLU (Böhm and Plant 2008), which obtains clusters based
on a simple horizontal cut through a related hierarchy and whose cut level (single
density threshold) depends on a user-specified parameter. An underlying, restrictive
assumption of SS-DBSCAN is that there should be at least one labeled object of each
data category to be discovered as a cluster; the method cannot discover natural clusters
whose objects are not involved in the partial information provided a priori by the user.
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In the unsupervised domain, a few methods are able to explicitly or implicitly pro-
vide local cuts through some kind of clustering hierarchy. Boudaillier and Hébrail
(1997, 1998) described an interactive tool for manual local cuts in traditional dendro-
grams based on exploratory visualization. In regard to automated methods, Ferraretti et
al. (2009) proposed a greedy heuristic approach to iteratively select clusters to be split,
top-down through a traditional dendrogram, attempting to improve the Dunn’s validity
index as a global measure of cluster quality; the remaining clusters are extracted as the
final flat solution. Stuetzle (2003) and Stuetzle and Nugent (2010) proposed algorithms
to detect clusters of spatial point sets as modes of continuous-valued density estimates.
These algorithms are equivalent to performing local cuts through a single-linkage-like
dendrogram, but in both cases the cuts are based on criteria that are critically dependent
upon a user-specified threshold. Gupta et al. (2010) proposed a heuristic approach to
extract a flat solution from density-based hierarchies produced by the HDS algorithm
(Gupta et al. 2006), based on an iterative greedy procedure guided by the stabilities
of the candidate clusters. Sander et al. (2003) presented two different proposals. The
first one is an algorithm to transform an OPTICS reachability plot into an equivalent
density-based dendrogram. The second one is a method to derive from those plots a
compacted tree containing only significant clusters, which was claimed to be less sen-
sitive to the user settings than the original method of Ankerst et al. (1999). However,
the only (ad-hoc) approach to the problem of extracting a flat solution from local cuts
in the cluster tree was to arbitrarily take all the leaf clusters and simply discard the
others.

5 Experimental evaluation

5.1 Data sets

We used real data sets with a variety of characteristics (no. of objects, dimensionality,
and no. of clusters) and from different domains, namely, biology, text, image, and UCI
data sets. Two data sets, “Articles-5” and “Cbrilpirivson”, consist of very high dimen-
sional representations of text documents. They are formed by 253 and 945 articles
represented by 4636 and 1431 dimensions, respectively, both with 5 classes. Articles-
5 is made available upon request by Naldi et al. (2011) and Cbrilpirivson (Paulovich et
al. 2008) is available at http://infoserver.lcad.icmc.usp.br/infovis2/PExDownload. We
used the Cosine measure as dissimilarity function for these data sets. Two data sets,
“CellCycle-237” [made public by Yeung et al. (2001)] and “YeastGalactose” [used by
Yeung et al. (2003)] represent gene-expression data and contain 237 resp. 205 objects
(genes), 17 resp. 20 dimensions (conditions), and 4 known classes. For these data sets
we used Euclidean distance on the z-score normalized objects, which is equivalent
to using Pearson correlation on the original data. Two data sets, “Wine” and “Ecoli”,
are from the UCI Repository (Frank and Asuncion 2010). They contain 178 resp. 336
objects in 13 resp. 7 dimensions, with 3 resp. 8 classes. For these data sets we used
Euclidean distance.

In addition to individual data sets, we also report average performance on two data
set collections based on the Amsterdam Library of Object Images (ALOI) (Geusebroek
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et al. 2005). Image sets were created as in (Horta and Campello 2012) by randomly
selecting k ALOI image categories as class labels 100 times for each k = 2, 3, 4, 5,
then sampling (without replacement), each time, 25 images from each of the k selected
categories, thus resulting in 400 sets, each of which contains 2, 3, 4, or 5 clusters and
50, 75, 100, or 125 images (objects). The images were represented using 6 different
descriptors: color moments, texture statistics from the gray-level co-occurrence matrix,
Sobel edge histogram, 1st order statistics from the gray-level histogram, gray-level
run-length matrix features, and gray-level histogram, with 144, 88, 128, 5, 44, and 256
attributes, respectively. We report results for the texture statistics (as a typical case),
denoted by “ALOI-TS88”, and for a 6-dimensional representation combining the first
principal component extracted from each of the 6 descriptors using PCA, denoted by
“ALOI-PCA”. We used Euclidean distance in both cases.

5.2 Evaluation measures

We report the Adjusted Rand Index (ARI) (Hubert and Arabie 1985) in all experiments,
considering noise objects as singletons. We have also computed the Overall F-measure
(Larsen and Aone 1999), but the results are omitted for the sake of compactness as
the conclusions that can be drawn are precisely the same as for ARI. Both ARI and
F-measure are measures commonly employed in the literature and they have been
computed here not taking into account those data objects involved in the constraints
used by the algorithms under evaluation.

5.3 Algorithms

Our general method, denoted here as “Framework for Optimal Selection of Clus-
ters” (FOSC), is compared with the following specialized algorithms: (i) the greedy
method by Ferraretti et al. (2009), designed for traditional dendrograms and denoted
here as “ACS”; (ii) the heuristic method by Sander et al. (2003), referred to here as
“OPTICS-AutoCl”, which consists of the extraction of the leaf nodes of a compacted,
density-based cluster tree from an OPTICS reachability plot; and (iii) Semi-Supervised
DBSCAN (SS-DBSCAN) (Lelis and Sander 2009), which is also density-based.

5.4 Experimental settings

We performed experiments in three different scenarios. In the first scenario, we con-
sider the extraction of clusters from density-based hierarchies. Specifically, FOSC has
been applied to the equivalent dendrogram that can be constructed from an OPTICS
reachability plot by using the transformation algorithm described by Sander et al.
(2003). We refer to this approach as “FOSC-OPTICSDend”. The results have been
compared with those of SS-DBSCAN (semi-supervised) and OPTICS-AutoCl (unsu-
pervised, as a baseline), which are both also based on OPTICS. In the second scenario,
we consider traditional hierarchical clusterings. We report the results of FOSC when
applied to average-linkage dendrograms and compare them with those obtained by

123



Optimal extraction of clusters from hierarchies 363

ACS (unsupervised). These approaches are referred to here as “FOSC-AvLink” and
“ACS-AvLink”, respectively. In this scenario, we are not aware of a semi-supervised
method to compare with.

In the third scenario, we compare the results of FOSC when the framework is applied
to dendrograms that are obtained in an unsupervised versus in a semi-supervised
way. Specifically, we compare FOSC-AvLink described above for the second sce-
nario against FOSC itself, but now applied to modified average-linkage dendrograms
obtained in a semi-supervised way. The resulting approach is referred to here as
“FOSC-SAT”, because it takes as an input dendrograms that have been computed
using the SAT-solver-based method described by Gilpin and Davidson (2011). Specif-
ically, this method incorporates propositional logic solvers into the construction loop
of agglomerative hierarchical algorithms and can cope with constraints of varied
natures, including instance-level constraints of the types used here in this paper. It
tries to find a dendrogram in which no cluster violates any constraints. However,
when both (so-called global) should-link and should-not-link constraints take place
at the same time, such a dendrogram does not exist. To overcome this drawback
and perform our experiments, we have allowed constraints to be violated in the root
of the cluster tree (i.e., in “cluster” C1), which is not deemed a valid candidate by
FOSC anyway. In this case, the method of Gilpin and Davidson (2011) starts con-
structing the cluster tree by satisfying the should-link constraints at the bottom and
goes upwards by iteratively performing the best legal join (according to the linkage
policy and the available should-not-link constraints), until no more legal joins exist.
At this point, the current clusters are finally merged into a single “cluster” at the
root.

The methods based on OPTICS demand a parameter MinPts, which is a non-
critical smoothing factor also used by other density-based clustering algorithms (e.g.
Ester et al. 1996; Gupta et al. 2010; Sun et al. 2010). We set it to MinPts = 4 in
all experiments, which is a value commonly used in the literature. The speed up
control value ε in OPTICS was not used (ε = “infinity”). The parameters required
by OPTICS-AutoCl and ACS were set as suggested by the authors. Finally, in
all the experiments involving dendrograms, we applied the procedure in Sect. 2.1
with mclSize = MinPts = 4, also as a smoothing factor. We also ran experi-
ments for other values of mclSize and MinPts, and the main conclusions do not
change.

The partial information provided to the semi-supervised methods was obtained in
the form of labeled objects randomly selected from the data sets. These objects were
not considered when assessing the quality of the results. SS-DBSCAN uses the labels
explicitly. The should-link and should-not-link constraints that can be derived from
the labels are used by FOSC. We set the number of labeled objects to 0, 2, 4, 6,
8, and 10 % of the number of objects in each data set, where 0 corresponds to the
particular, unsupervised case. In the other cases, the results reported are averages over
100 random selections of label sets. Note that ACS-AvLink and OPTICS-AutoCl are
unsupervised methods, therefore their results do not change with the number of labeled
objects available.
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Fig. 4 ARI results for FOSC-OPTICSDend, SS-DBSCAN, and OPTICS-AutoCl methods. SS-DBSCAN
is not shown when there are no objects labeled as this algorithm does not work in an unsupervised way
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Fig. 5 ARI results for FOSC-AvLink and ACS-AvLink
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Fig. 6 ARI results for FOSC-AvLink and FOSC-SAT
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5.5 Clustering results

The results are shown in Figs. 4, 5, and 6. When there are no labeled objects, FOSC
operates in an unsupervised way based on cluster quality only. Notice from Figs. 4 and
5 that, even though FOSC is a general framework, its overall results in the unsuper-
vised case are comparable to those of the specialized algorithms OPTICS-AutoCl and
ACS-AvLink. In some cases, such as Articles-5 and YeastGalactose, the unsupervised
performance leaves no much room for improvements, and the addition of constraints
does not have effect. In many other cases, the performance of FOSC improves by
adding constraints. This is to an extent that, as expected, FOSC outperforms the base-
line, unsupervised methods in almost all cases involving labeled objects, often by a
large margin (e.g. Cbrilpirivson and ALOI).

When compared with SS-DBSCAN, FOSC provides better results virtually in all
cases, in many cases by a large margin, and more prominently with reduced amounts of
labeled objects. Having the unsupervised selection method based on cluster quality as a
secondary objective, which can help the algorithm in the absence of constraints, FOSC
operates very well even with smaller amounts of labeled objects. Furthermore, FOSC
improves faster than SS-DBSCAN as the number of labeled objects increases. For
Articles-5, for example, it can be seen in Fig. 4 that SS-DBSCAN can only achieve the
same quality as FOSC when it uses about 8% of labeled objects. For YeastGalactose,
FOSC with no semi-supervision outperforms SS-DBSCAN even when the latter uses
10% of labeled objects.

In some of the data sets (e.g. Ecoli), the performance of SS-DBSCAN dropped when
larger amounts of constraints were added. As a matter of fact, it has been observed
and discussed in the semi-supervised clustering literature that adding constraints may
possibly decrease the performance of clustering algorithms (Davidson et al. 2006). In
our experiments, considering that we have excluded the objects involved in constraints
when computing the evaluation measures, this is particularly plausible. In the case
of FOSC, however, such a behavior is more rarely observed and is noticeably less
pronounced.

In the experiments displayed in Figs. 4 and 5 the cluster trees provided as an
input to FOSC have been obtained in an unsupervised way. In other words, exter-
nal constraints have not been used in the first (preprocessing) stage in which the
hierarchical clusterings are built from data. Instead, only implicit constraints follow-
ing from the inductive biases of the respective clustering models (e.g. the concept
of density-based clusters underlying the algorithms in Fig. 4) have been considered
in this stage. When available, external constraints have only been used in the sec-
ond stage in which clusters are extracted by FOSC. This particular approach can
be interpreted as a strategy that gives priority to satisfy the implicit model con-
straints when constructing the cluster hierarchy and then uses constraints provided
by the user as preferences (rather than hard requirements) to extract a flat solution.
A different approach is to give priority to the external constraints when building
the hierarchy in the first stage and, then, extract a flat solution in the second stage
mostly based on unsupervised cluster quality. Whether or not a particular approach
will be more appropriate than the other in a particular application scenario seems
to depend on different factors, such as the data set, the quality of the constraints,
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and the clustering model adopted. For example, when constructing the unsupervised
average-linkage dendrograms used in the experiments displayed in Fig. 5, if an impor-
tant should-not-link constraint is violated at the bottom then the mistake will not
be fixed above in the tree. On the other hand, if such a constraint is one of those
that could actually deteriorate the quality of the clustering solution, then forcing
it to be satisfied might produce adverse results. The decision on which approach
should be adopted in a given application depends on how the (model and external)
constraints should be treated. This decision refers to the type of hierarchy that will
be provided as an input to FOSC and, as such, it precedes the use of the proposed
framework. It is not our intention in this paper to promote either approach. We will,
however, show experiments that suggest that FOSC can be reasonably robust to this
choice.

In Fig. 6 we contrast the results of FOSC-AvLink (as shown in Fig. 5) with those
of FOSC-SAT, which, as previously described, refers to FOSC applied to average-
linkage dendrograms obtained in a semi-supervised way. Notice that, apart from small
differences observed in particular experimental settings (data sets and percentages of
labeled objects), the results are rather comparable and no particular approach can be
deemed superior based on this collection of data sets.

6 Conclusions and perspectives

We have introduced a framework for the semi-supervised or unsupervised extraction
of flat clusterings from optimal local cuts through cluster hierarchies. The extraction
of a flat clustering from a cluster tree has been formulated as an optimization problem
and a linear complexity algorithm (w.r.t. time and memory) has been presented that
provides the globally optimal solution to this problem. Unlike most non-hierarchical
(partitioning-like) algorithms for clustering, our method provides not only an optimal
solution w.r.t. the different criteria it optimizes, but also the number of clusters as a
by-product, rather than an explicit or implicit input parameter.

The proposed framework can, in principle, be applied to hierarchies of varied
natures, so it is not hooked on a particular clustering inductive bias. In our experi-
ments, we applied it to density-based cluster trees and average-linkage dendrograms
(built in unsupervised and semi-supervised ways). We observed very promising results
for real data sets in both scenarios, especially when contrasting our general framework
with algorithms specialized in the respective scenarios.

In the semi-supervised extraction case, the proposed framework needs only a cluster
tree and the degree to which the clusters in the tree satisfy instance-level constraints
provided by the user. We have not considered weighted constraints, but all the devel-
opments in the paper can be straightforwardly generalized to do so. When the user
provides no constraints at all (unsupervised case) or part of the clusters in the hierarchy
cannot be distinguished in terms of constraint satisfactions/violations, then unsuper-
vised measures of cluster quality can be applied. Such measures can also be used if one
wants to balance the relative importance of constraint satisfaction and unsupervised
cluster quality when solving the problem. The study of quality measures suitable for
clustering hierarchies of varied natures, eventually constructed in a semi-supervised
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way by using constraints of different types (possibly other than should- and should-
not-link—e.g., see Davidson and Ravi 2009; Gilpin and Davidson 2011; Zheng and
Li 2011), is an important topic for future research.
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