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Abstract Information propagation within the blogosphere is of much importance in
implementing policies, marketing research, launching new products, and other applica-
tions. In this paper, we take a microscopic view of the information propagation pattern
in blogosphere by investigating blog cascade affinity. A blog cascade is a group of
posts linked together discussing about the same topic, and cascade affinity refers to the
phenomenon of a blog’s inclination to join a specific cascade. We identify and analyze
an array of macroscopic and microscopic content-oblivious features that may affect a
blogger’s cascade joining behavior and utilize these features to predict cascade affinity
of blogs. Based on these features, we present two non-probabilistic and probabilistic
strategies, namely support vector machine (SVM) classification-based approach and
Bipartite Markov Random Field-based (BiMRF) approach, respectively, to predict the
probability of blogs’ affinity to a cascade and rank them accordingly. Evaluated on a
real dataset consisting of 873,496 posts, our experimental results demonstrate that our
prediction strategy can generate high quality results (F1-measure of 72.5 % for SVM
and 71.1 % for BiMRF) comparing with the approaches using traditional or singular
features only such as elapsed time, number of participants which is around 11.2 and
8.9 %, respectively. Our experiments also showed that among all features identified,
the number of quasi-friends is the most important factor affecting bloggers’ inclination
to join cascades.
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1 Introduction

The popularity of blogs has been increasing dramatically over the last few years.
According to a recent report by Technorati (2008)1, a popular blog search engine,
more than a half of the Internet users read blogs. Technorati have indexed more than
133 million blogs since 2002, and have tracked blogs in 81 languages by June, 2008.
Blogs contain diverse variety of information. General topics include personal diaries,
experiences, opinions, information technology, and politics to name a few. Due to
their accessible and timely nature, many bloggers surveyed have advertisement on
their blogs. The mean annual revenue for blogs with advertisement is estimated to be
$6,000 (Technorati 2008). This figure jumps to $75,000 for those blogs with 100,000
or more unique visitors per month.

1.1 Motivation

A blog consists of several entries. Each entry within a blog, called a post, is time
stamped and the most recent entries always appear at the top. Bloggers can also create
hyperlinks to other blogs or websites in their posts. The universe of all these blogs
and their interconnections is often referred to as blogosphere (Stewart et al. 2007;
Technorati 2008). Blogosphere is an intuitive source for data involving the spread of
information and influence within the network of bloggers (Agarwal et al. 2008; Gruhl
et al. 2004; Kumar et al. 2003; Stewart et al. 2007). By analyzing the linking patterns
from one blog post to another, we can infer the way information is propagated through
the blog network over the Web. In particular, a piece of information flows from a post to
another along the hyperlink between them. For example, consider Fig. 1a. The ellipses
represent different blogs (e.g., b1, b2, b3, b4, b5, and b6), and each ellipse contains
a set of posts. The edges in the figure indicate hyperlinks between posts. Assume that
post p1 in blog b1 contains opinion about recent events related to the spread of H1N1
virus. Some time later, blog b2 visited b1 and wrote a post p2 in response to this topic
of discussion and explicitly created a hyperlink to p1. Subsequently, new posts will
join this conversation by linking to existing posts. For instance, at time T0, the structure
of this conversation related to H1N1 virus containing a group of posts (p1, p2, p3,
and p4) is depicted by the dashed rectangular component in Fig. 1a. Aggregating all
the linked posts by backtracking the hyperlinks will result in a directed acyclic graph
(DAG), where each node is a post. Such a DAG is called a cascade (Leskovec et al.
2007b; Watts 2002) (also known as conversation tree). Cascade is the most common
phenomenon of information propagation within blogosphere. All posts in the same
cascade typically discuss about a similar topic.

Observe that at time T0 there are two blogs, b5 and b6, which did not join the
conversation on H1N1 virus by writing a post and linking to the cascade. Now assume

1 http://technorati.com
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(a) (b)

Fig. 1 Blog cascade

that at time T1 > T0 b6 joined the cascade by writing a post p6 and linking it explicitly
to p2. The modified structure of the cascade is now depicted in Fig. 1b. Notice that
b5 still did not join the conversation. Why did b6 join the cascade but b5 did not? Is
it possible to predict the cascade affinity of b5 and b6 by analyzing the information
embedded in the cascade at time T0? In order to provide answers to these question,
in this paper we propose probabilistic and non-probabilistic techniques based on
Bipartite Markov Random Field (BiMRF) (Shi et al. 2009) and support vector machine
(SVM), respectively, to analyze an array of macroscopic and microscopic cascade
features for predicting which blogs are highly likely to join the cascade in the future2.
We refer to the phenomenon of a blog’s inclination to join a specific cascade as cascade
affinity.

Although the notion of information cascade was formally introduced by Sushil
Bikhchandani (Bikhchandani et al. 1992), it was first systematically studied in the
context of blogosphere by Kumar et al. (2003). Majority of research on blog cas-
cades (Leskovec et al. 2007b) have focused their attention at the macroscopic level.
In particular, these efforts investigated information flow in cascades, common shapes
of cascades and their frequencies, and performed a series of topological analysis. In
contrast, we take a hybrid view by analyzing cascade affinity behavior of individual
bloggers from both microscopic and macroscopic level. To the best of our knowledge,
this is the first approach that undertakes a systematic study to predict such behavior.

1.2 Applications

The knowledge of a blogger’s affinity to cascades is useful in several applications.
It not only facilitates the design of advanced blogging system with more sophisti-
cated personalized recommendations and filters, but also help us to set up intelligent

2 A shorter version of this work has been published in (Li et al. 2009).
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Fig. 2 An example application of blog cascade affinity prediction

strategies in online advertising. By predicting which blogs have stronger affinity to a
cascade, we can make recommendations to those bloggers in case they have not yet
read any post in the cascade. Consequently, we can influence the population faster by
accelerating the information propagation process. In this way, new services or products
can be disseminated and popularized in a shorter time. Furthermore, we can predict to
what scale of population a cascade will finally expand so that when disseminating an
advertisement along blog cascade we can understand the final effect of the advertise-
ment ahead of time and adjust our advertisement strategies accordingly. For example,
assume that the release of “iPhone4” may trigger off a cascade within the blogosphere.
At the very beginning, there is no post talking about iPhone4 at time t0 (see Fig. 2).
Later at time t1 there are two posts talking about this topic which initiates a cascade
over “iPhone4”. By studying the cascade affinity of many candidate blogs who are
most probable to join this cascade, we can predict that two new bloggers have high
chance to join this cascade at time t2. In Fig. 2, a person with a dashed outgoing arrow
represents a blogger who is predicted to join the cascade at current timestamp whereas
a solid arrow denotes the blogger who has already joined it. Thus, we may estimate the
final scope of the cascade at tn−1 by iteratively predicting the set of bloggers who may
join it at the next timestamp. Our ability to forecast the final scope of the population
involved in this cascade at an early stage paves way to more judicious adjustment of
advertisement strategies and budget ahead of time.

1.3 Overview

At first glance, it may seem that we can predict a blogger’s affinity to a cascade by
analyzing the textual content of existing posts in the cascade and estimating the over-
lap between the content of the blogger’s previous posts and cascade content. How-
ever, such content-aware strategy is computationally expensive and may adversely
affect the accuracy of prediction for several reasons. Firstly, the content of posts are
often in conversational language containing flavors of abbreviated words and local
lingo. Secondly, a blog cascade may consists of posts written in different languages.
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Thirdly, posts may only contain multimedia objects such as pictures or video clips.
Consequently, these factors make content analysis significantly challenging. Hence,
we take a content-oblivious strategy to address this issue.

We propose a group of content-oblivious macroscopic and microscopic features of
a blog cascade that may influence a blog’s affinity to the cascade. The macroscopic
features are associated with the overall structure of a cascade such as time elapsed since
the genesis of the cascade, number of participants in the cascade, and the shape of the
cascade defined by the star-likeness ratio. On the other hand, the microscopic features
(number of quasi-friends of a blogger in the cascade, popularity of participants in the
cascade, citing factor, and initiator-media link) are related to the blogs or posts of a
cascade. Note that all these features are computed by analyzing only the link structure
and topology of the cascade. For each of the proposed features, we investigate how
it influences a blog’s affinity to the given cascade and performed a one-way analysis
of variance (ANOVA) to test the significance of each feature’s influence. Then we
present two non-probabilistic and probabilistic methods, namely SVM classification-
based approach and Bipartite Markov Random Field-based (BiMRF) (Shi et al. 2009)
approach, respectively, that exploit these features to predict the probability of blogs’
affinity to a cascade and rank them accordingly. We did not exploit the content of the
posts, our experimental results demonstrated that our prediction strategy can generate
high quality results (F1-measure of 72.5 % for SVM and 71.1 % for BiMRF). In
summary, the main contributions in this paper are as follows.

– We propose an array of content-oblivious macroscopic and microscopic features
that influence a blog’s inclination to join a cascade. To the best of our knowledge,
these features have not been studied together in the context of a blog network
earlier. Further, we present different measures to calculate each feature’s effect on
the cascade affinity phenomenon.

– We formulate the task of predicting cascade affinity of blogs into a standard clas-
sification problem. We take two different methods to evaluate the probability of a
blog’s affinity to a particular cascade and rank them accordingly, namely SVM-
based and BiMRF-based classification strategies.

– We present an exhaustive evaluation of our proposed prediction and ranking meth-
ods demonstrating their effectiveness and practical significance using real-world
datasets. In particular, our proposed techniques perform the best when all features
except citing factor is used. Further, our results demonstrate that the number of
quasi-friends feature is the most important factor affecting bloggers’ inclination
to join cascades.

The rest of this paper is organized as follows. Section 2 presents a brief review
of related work. In Sect. 3, we introduce the dataset as well as the cascade
extraction process. The macroscopic and microscopic cascade features and their
analysis are described in Sects. 4 and 5, respectively. Section 6 describes our pro-
posed models to measure and rank the probability of a blog to join a cascade.
In Sect. 7, we conduct an exhaustive empirical study to evaluate many aspects
of our proposed techniques and their effectiveness. The last section concludes the
paper.
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2 Related work

2.1 Community affinity

Much work have been done in the field of information flow modeling and word-of-
mouth effect. The work in this area can be traced back to the epidemic research in virus
propagation problem (Satorras and Vespignani 2001; Strang and Soule 1998; Newman
2002; Pastor-Satorras and Vespignani 2002; Wang et al. 2003; Dodds and Watts 2004;
Clements et al. 2010). Similar work have been done within large online social networks
recently focusing on modeling the word-of-mouth effect in different social networks.
Backstrom et al. (2006) showed that the probability of joining a social community
depends on the number of acquaintances already in it. Leskovec et al. (2006; 2007a)
reported that an individual’s probability of buying a DVD increases with the number
of recommendation he has received. There is a saturation point at the value of 10,
which means after a person receives 10 recommendations on buying a particular DVD,
the probability of buying does not increase anymore. Cha et al. (2009) conducted a
study on Flickr over the same problem. They showed that the probability for a user to
become a fan of a photo increases with the number of her friends who are already fans
of the photo. These above work all focused on the number of quasi-friends feature,
which can be considered as a microscopic feature of a cascade. Hence, this feature
is also used in our work to model the probability of a blog’s affinity to a cascade.
However, in contrast to the aforementioned work, we exhaustively examine several
additional microscopic as well as macroscopic cascade features that may affect this
behavior.

2.2 Information diffusion

Several recent papers have focused on modeling the information diffusion patterns
within social networks, which is considered to play a significant role in political science
and viral marketing (Watts 2002; Rogers 2003; Gruhl et al. 2004; Iribarren and Moro
2009; Chen et al. 2009b; Lerman and Hogg 2010). In particular, several algorithms
are proposed to find a set of nodes which have the most influence on the others so that
by selecting those nodes as seeds we can make our piece of information spread over a
large population (Kempe et al. 2003; Hartline et al. 2008; Wang et al. 2010; Chen et
al. 2009a; Kimura et al. 2009; Adams et al. 2010; Lee et al. 2010). Gruhl et al. (2004)
modeled the information diffusion within blogosphere by defining a read probability
and copy probability for each blogger, and iteratively computed the two and finally
converged to the best solution. Agarwal et al. (2008) proposed a ranking function
for the blogs according to their influence based on the influence of posts appeared in
each blog. The influence of a post is computed based on its length, comments, and a
propagation factor which is the aggregated influence from the posts that linked to and
from the current one. Another research by Ma et al. (2008) focused on finding a set
of k candidates as target for marketing strategy using heat diffusion models. Recently,
Bao et al. (2010) proposed AdHeat, which diffuses hint words of influential users to
others and then matches advertisements for each user with aggregated hints.
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Our research differs from the aforementioned studies in two key ways. Firstly,
existing approaches mainly focused on finding the most influential blogs in blo-
gosphere (Agarwal et al. 2008) whereas the goal of this research is to discover blogs
that are most probably to be influenced by other blogs. Hence, our work is orthogo-
nal to these efforts. A recent study showed that large-scale changes in public opinion
are not driven by highly influential people who influence everyone else but by easily
influenced people influencing other easily influenced people (Watts and Dodds 2007).
The authors investigated at a global scale the average size of cascades that are initi-
ated by influential nodes and average nodes using different influence models. They
showed that early adopters enrolled in a cascade is more important to affect the final
cascade size than the initiators. Our work differs from it in that we study in detail
under what situation a blogger will be influenced as well as retrieval of most easily
influenced individuals. Secondly, in our work we propose a group of features of blogs
and cascades to model the probability of a blog to join a cascade.

Karagiannis et al. (2009) studied the human behavior (Davidson et al. 2012) related
to email responses. They showed that the email replying probability depends on a
series of factors. By conditioning on each individual factor, they can achieve mod-
erate prediction gains with respect to predicting replied emails. Putting together all
the factors achieves a significant prediction gain. In contrast, our work analyzed the
joining behavior of each individual blogger using a group of features. Additionally, we
proposed two different models for ranking the blogs according to their probabilities
of joining a cascade.

2.3 Retweeting in microblogging

In a different media, Pal and Counts (2011) used the count of original tweets, con-
versational tweets, and re-tweets of a tweeter as features to rank the authority of each
tweeter in the context of different topics. They employed a Gaussian Mixture Model to
compute the authority score of each tweeter. Formally, the authority score for twitter
i can be computed as the following.

RG(xi ) =
d∏

f=1

[
x f

i∫

−∞
N (x;μ f , σ f )]w f (1)

In the above equation, w f is the weight that is put on feature f ; x f
i is the associated

value of node i on feature f ; N (x;μ f , σ f ) is the univariate Gaussian distribution
with model parameters as μ f and σ f . The authority score defined above helps in
devising a total ordering under “≤” over all the users. To validate their results, they
conducted a survey to rate the authority of the tweeters and use it as the ground truth for
authority ranking. Blog posts may contain much more information than microblogs.
A blog post may consist of text in different languages, urls, tables, photos, video clips,
etc. Content-based study in microblogging requires processing all these information
with different formats, which can introduce plenty of unsolvable problems. One main
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contribution of this paper is to resolve the aforementioned problems that multimedia
content and multi-language text introduced. We show that cascade behavior can be
predicted using only link-based features which avoid these problems.

Recently, Goyal et al. (2012) proposed a credit distribution (CD) model that lever-
ages on historical action logs of a network to learn how influence flows in the network
and use this to estimate influence spread. An action log is a set of triples (u, a, t)
which says user u performed action a at time t . The basic idea is that if user v takes
action a and later on v’s friend u does the same, then the authors assume that action a
have propagated from v to u. Based on this assumption the CD model assigns “credits”
to the possible influencers of a node u whenever u performs an action. The sophisti-
cated variant of this model distinguishes between different influenceability of different
users by incorporating a user influenceability function. It is defined as the fraction of
actions that u performs under the influence of at least one of its neighbors (e.g.,v) and
is learnt from the historical log data. In contrast to our approach, this model suffers
from two key limitations. Firstly, it depends on the availability of large amount of
historical action logs to compute influence probability as well as user influenceabil-
ity. Unfortunately, historical action logs may not be available to end-users in many
real-world social networks.

3 Data preparation

In this section, we first introduce the real-world data set we have used for our study.
Then, we present our approach of cascade extraction from the data set. In the sequel,
we shall use the notations shown in Table 1 to represent different concepts. Generally,
we shall use superscript to denote a cascade identifier and subscript to denote a blog
identifier.

3.1 Dataset

We extracted our blog dataset in September, 2008 using Technorati API3. The data set
contains blog posts published from June, 2008 to September, 2008. We first selected the
group of top 100 blogs indexed by Technorati as seeds. From these seeds, we retrieved
the blogs that had linked to these seeds in their posts, and then we iteratively retrieve
the posts that linked to the previous level till the sixth level which has been shown as
the upper boundary size for most chain cascades (Leskovec et al. 2007b). From the
XML collection of blogs, we can get the post-to-post relationships. Notice that a post
of blog bi linking to another post of blog b j does not always indicate a friendship that
author of bi knows author of b j or bi regularly reads b j ’s blog. So we additionally
extracted blog-to-blog relationships with weighted edges where the weight of an edge
from bi to b j indicates the number of times bi has cited b j ’s posts. Such a case, to some
extent, indicates that bi does not read b j ’s blog by chance. We use this weighted graph
as an indication of friends by filtering out the edges with weight less than a friendship
threshold K. The characteristics of the dataset is shown in Table 2. For each blog, the

3 http://technorati.com/developers/api
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Table 1 Definitions of symbols

Symbol Definition

b j Blog j

ci Cascade i

T ∗ The timestamp of the last post in the data set

T i The timestamp when the first post appeared in ci

φi (t) Set of blogs that appeared in ci before time t

φi Set of all the blogs that appeared in ci , φi = φi (T ∗)
t i ( j) The timestamp when b j joins ci if b j ∈ φi ; otherwise, t i ( j) = T ∗

posti (t) The posts appeared in ci before time t

post j (t) The posts appeared in blog j before time t

s(g) Star-likeness ratio of graph G

G(ci ) Shape of cascade ci

K Friendship threshold

ini(ci ) Initiator of the cascade ci

I (ci ) Initiator-media link of the cascade ci

Table 2 Statistics of the data
set

Property Value

Number of posts 873,469

Number of blogs 156,195

Number of blog-to-blog edges 340,124

Number of edges with weight ≥ 2 139,974

Number of cascades 7,269

Cascade size = 2 5674

Cascade size = 3 883

Cascade size > 3 712

posts that do not participate in any cascade are excluded from our dataset. Figure 3a
shows the in-degree distribution of blogs indexed by Technorati till September, 2008.
This figure is plotted using the information extracted from our data set. It is shown to
follow a power law distribution4 with exponent equal to−1.505 whereas in (Leskovec
et al. 2007b) this exponent is reported to be−1.7. Such a phenomenon indicates a few
blogs are more connected than the rest. It is consistent with the result of “preferential
attachment” model (rich gets richer) (Barabasi and Albert 1999).

3.2 Cascade extraction

Recall that each blog participates in a cascade by writing a post which links to another
post that is already in the cascade. We denote a set of cascades as C = {c1, c2, . . . , cs}.
The algorithm for extracting cascades from our data set is outlined in Algorithm 1.

4 We adopted the method described in paper Chekuri et al. (2006) for fitting power-law distributions
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Fig. 3 a Blog in-degree distribution. b Cascade size distribution

Algorithm 1: Cascade extraction algorithm.
Input: A set of post-to-post relations E = {e1, e2, . . . , em }, each element is a pair of posts

connected by a hyperlink
Output: A set of isolated cascades C = {c1, c2, . . . , cs } each of which comprised of connected posts
begin1

initialize each cascade as a single link C ←− E ;2
while ∃c p, cq and c p ∩ cq 
= ∅ do3

forall ci , c j ∈ C and ci 
= c j do4

if φi ∩ φ j then5

add j to i: ci ←− ci , c j ;6

remove j: C ←− C \ {c j };7

end8

Note that the proposed cascades extraction procedure is slightly different from the
one described in (Leskovec et al. 2007b). Let us elaborate on this further. Consider
the scenario in Fig. 4a, depicting blog posts and hyperlinks between them. Based
on (Leskovec et al. 2007b), each cascade should have only one initiator (top-most
post). Hence, the scenario illustrated in Fig. 4a have to be considered as two different
cascades (have two initiators p1 and p2) as depicted in Fig. 4b. In contrast, we treat
the scenario in Fig. 4a as one cascade. The intuitive justification for this is as follows.
Observe that the posts in Fig. 4a are all linked together. That is, both p1 and p2 share
some common posts in the conversation (e.g., p5). This may indicate that all these
posts are discussing about a common topic. Hence, it makes sense to consider them
as part of a single cascade instead of separating them into different ones.

The next step is to post-process the extracted cascades to eliminate the ones which
have been there not more than a month till the time T ∗. The set of “matured” cascades
extracted after the post-processing is represented as: C = {ci

∣∣T i ≤ T ∗ − 30}. The
number of cascades detected after filtering out the immature ones is shown in Table 2.
The reason for post-processing the cascade set is as follows. We need to ensure that the
extracted cascades can provide a robust and accurate framework for feature extraction
and subsequent prediction. However, quantifying values of different features based on
immature cascades (cascades which have not absorbed all potential participants) will
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(a) (b)

Fig. 4 Different approaches for cascades extraction: a observed post-to-post relationship, it is also the
cascade identified by our approach; b the cascades identified from (a) using the approach in (Leskovec et al.
2007b)

distort the prediction accuracy of cascade affinity. Many participants may join these
cascades after time T ∗ and consequently adversely affect the modeling of the ground
truth based on the features set. Obviously, this may result in a deviation between our
knowledge about the participants of these cascades and the ground truth. It is worth
mentioning that it is not possible to justify the prediction performance without knowing
the ground truth.

Figure 3b shows the distribution of cascade size extracted from our dataset. It is
defined as the number of blogs within a cascade. The X and Y -axes represent different
sizes of cascades and the number of cascades, respectively. The minimum size of
cascades is defined as 2 which is the trivial case, while the maximum size of a cascade
is found to be 34 in our dataset. The distribution of cascade size also follows a power
law. The exponent found in our dataset is −3.1 whereas this exponent is found to be
−2 in the dataset used by Leskovec et al. (2007b). This deviation is primarily due to
the differences between the characteristics of the two datasets and different definition
of a cascade in these two approaches.

4 Macroscopic features

We now present an array of content-oblivious cascade features that may influence a
blog’s affinity to a cascade. We classify these features into two types, namely macro-
scopic and microscopic features. The former refers to features that are associated with
the entire cascade whereas the latter refers to features of the blogs or posts of a cas-
cade. In this section, we begin with three macroscopic features, namely elapsed time,
number of participants, and star-likeness ratio. In the next section, we shall elaborate
on the microscopic features.

4.1 Elapsed time

First we present the role of the elapsed time. Informally, it refers to the difference
between the time a blogger joins a cascade and the cascade creation time. We use day
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Fig. 5 a Number of posts joining versus days elapsed. b Cascade affinity probability versus cascade size

as the unit of elapsed time as most bloggers write posts once per day. The distribution
of this feature is shown in Fig. 5a. The X -axis represents the time elapsed in days,
while the Y -axis represents the number of blogs that join cascades at a specific elapsed
time. Observe that 91 % bloggers join a cascade during the first week. After that affinity
to cascades drops almost exponentially with elapsed time. Note that the above results
deviate from other types of social networks, shown in (Leskovec et al. 2008), where
the authors found that the average number of edges attached to each node did not
change much over the lifetime of the node.

4.2 Number of participants

Intuitively, a blogger may have stronger affinity to a cascade which has absorbed
a lot of participants. Hence, we now conduct an analysis using number of partic-
ipants in a cascade as a feature. We compute the probability of joining a cascade
as a function of the number of participants existing in the cascade. Interestingly,
we observed that in only a very small fraction (0.2 %) of cascades the number of
posts is more than the number blogs. It indicates that bloggers seldom re-posts in
the same cascade such that the number of posts is always the same as the number of
blogs in a cascade. Consequently, in the sequel we uniformly use number of blogs
to represent the size of a cascade. The number of participants is formally defined as
follows.

Definition 1 Let t i ( j) be the time when a blog b j joins a cascade ci . Then, the number
of participants in ci at time t i ( j), denoted as N j (ci ), is defined as:

N j (c
i ) = |φi (t i ( j))|

Figure 5b shows the probability of joining a cascade as a function of the number
of participants in that cascade. The number of blogs inside a cascade ranges from 1
to 33. The probability of joining a cascade with β participants, referred to as cascade
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affinity probability (denoted as Pro(β)), can be computed as follows.

Pro(β) =
∑

ci |{b j |N j (ci ) = β, b j ∈ φi }|∑
ci |{b j |N j (ci ) = β}|

We separate the cascades size range into 11 bins each with length 3. The height
of each bar denotes the mean of the three cascade affinity probability values inside
that bin. Notice that at the beginning, as the number of participants grows, the prob-
ability slightly grows, but after some point, the probability drops down. There is a
peak at the point of cascades with the size 13–15. It indicates that before a cascade
absorbed 13–15 participants, the probability for a blog to join this cascade increases.
This represents the cascade initiation period where many new blogs keep on joining
the cascade. However, after the number of participants in the cascade has reached a
value between 13 and 15, the probability of a blog joining this cascade drops down
to a stable value. This represents the stable period after a cascade has got enough
attention.

4.3 Star-likeness ratio

Recent results showed that the type of cascade topology may indicate the genre of the
content in a cascade (McGlohon et al. 2007). We now investigate whether the topology
of a cascade influences a blog’s affinity to join it. Firstly, we extracted different cascade
shapes in the dataset and classified the cascades into 176 different shapes. We observed
that the most common shape contains only two posts. The top-13 frequent cascade
shapes which appear at least 25 times in the dataset are depicted in Fig. 6. The shapes
are listed according to descending order of their frequencies (G1 is the most frequent
cascade shape). Further, the shapes can be classified into two groups, namely chain
and star. Informally, a chain has only one leaf node whereas a star is an n-order shape
having n − 1 leaves. Notice that in this dataset chains appear more frequently than
stars with respect to the same cascade size (i.e., G2 is more frequent than G3 and
G11). Besides, shapes containing multiple-initiators are less frequent than the single-
initiator ones (i.e., G3 is more frequent than G11). Moreover, cascade frequency does
not necessarily decrease with the increase in cascade size (i.e., G6 is more frequent
than G7).

Secondly, we investigate the probability of blogs to join a cascade by varying the
cascade shapes. Formally, the cascade shape of ci is defined as the following.

Definition 2 Let G1, . . . , Gn denote the set of cascade shapes extracted from the
dataset. If cascade ci

t (cascade ci before time t) follows the shape Gs , then the shape
of ci

t , denoted as g(ci
t ), is defined as: g(ci

t ) = Gs .

Figure 7a shows the probability of joining a cascade as a function of the cascade
shapes. Notice that, the probability of joining a cascade is measured using the tem-
poral shape of each cascade. The probability of joining a cascade of shape Gs can be
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Fig. 6 Common cascade shapes by frequency
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Fig. 7 a Joining probability by cascade shape. b Number of quasi-friends versus K

computed as follows.

Protop(Gs) =
∑

ci
t
|{b j |g(ci

t ) = Gs, b j ∈ φi (t)}|
∑

ci
t
|{b j |g(ci

t ) = Gs}|

In general, the curve in Fig. 7a is not informative enough to lead to any conclu-
sion on the relationship between cascade shapes and the probability of joining a
cascade. However, if we plot the probability curves for star (i.e., G3, G7) or chain
(i.e., G1, G2, G4, G6, G10, . . .) cascades, then it is clear that chain-shaped cascades
are more probable to to attract new blogs to join them compared to their star-shaped
counterparts. This phenomenon may be due to the fact that new bloggers can eas-
ily see all the blogs within a chain cascade by tracking the hyperlinks one by one.
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Table 3 Star-likeness ratio of
frequent shapes

s(G) Protop(G)

G1 1 0.026

G2 0.5 0.037

G3 1 0.029

G4 0.333 0.069

G5 0.667 0.040

G6 0.25 0.072

G7 1 0.033

G8 0.5 0.045

G9 0.5 0.047

G10 0.2 0.071

G11 0.25 0.042

G12 0.75 0.048

G13 0.4 0.053

In contrast, new bloggers may only see a small portion of a star-shaped cascade
due to its topology. Also, observe that blogs are much more probable to join a
shape with multiple roots (i.e., Protop(G11) = 0.042) compared to other shapes
(i.e., Protop(G2) = 0.033, Protop(G3) = 0.029) with the same size.

As discussed above, chain cascades are more probable to attract new blogs compared
to their star-shaped counterparts. However, shapes other than chain or star are hard
to classify and describe. Thus, we propose a new feature called star-likeness ratio to
describe how much different a shape is from a star and utilize it in the future prediction
of cascade affinity.

Definition 3 Let root (G) and lea f (G) denote the root nodes and leaf nodes of graph
G(V, E), respectively. That is, root (G) = {v|�u ∈ V,

−→
vu ∈ E} and lea f (G) =

{v|�u ∈ V,
−→uv ∈ E}. Then the star-likeness ratio of graph G, denoted as s(G), is

defined as:

s(G) = |lea f (G)|/|root (G)|
|V | − 1

.

The ratio falls within the range (0, 1]. A shape with ratio close to 1 indicates that it
is closest to star topology. All star-shaped cascades exhibit the same ratio value of 1.
For example, consider the frequent shapes in Fig. 6. The star-likeness ratio (s(G)) as
well as the join probability Protop(G) of these shapes are listed in Table 3. Observe
that the three shapes whose star-likeness ratio are the most (i.e., s(G) = 1) exhibit
the least joining probability. This suggests that star-likeness ratio can contribute to the
analysis of the cascade joining behavior.

5 Microscopic features

In this section, we first investigate four microscopic features of blog cascades that may
play important role in cascade affinity prediction, namely number of quasi-friends,
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popularity of participants, citing factor, and initiator-media links. We conclude this
section by conducting a one-way variance analysis (ANOVA) on these macroscopic
and microscopic features to quantify their significance related to cascade affinity.

5.1 Number of quasi-friends

We introduce the notion of quasi-friend to model friendship within blogosphere based
on post citings. Unlike other social media platforms (i.e. Facebook, Youtube, Twitter)
where users can set up friendship links or select users to listen to, there is no explicit
definition on friendship in blogosphere. Thus, we need to find a way to define quasi-
friendship in blogosphere. Similar way has been adopted by other researchers (Guice
1995). Formally, quasi-friend is defined as follows.

Definition 4 Given two blogs b1 and b2, b1 is a quasi-friend of b2 if and only if b2
cites b1’s posts more than K times.

A quasi-friend indicates that b2 probably often reads b1’s blog. This probability of
frequent reading is controlled by the friendship threshold K. Obviously, K will affect
the number of quasi-friends discovered. As shown in Fig. 7b, K affects the number
of quasi-friends exponentially with exponent α = −3.37. Notice that if we set K to
a large value then we may extract a very limited number of quasi-friends for a blog.
Hence, we set K to 2 by default. We shall justify this value empirically in Sect. 7.2.
Note that quasi-friendship is directed. That is, b2 is not a quasi-friend of b1 unless b1
has cited b2 more than K times. Given a value of K, we denote the set of quasi-friends
of a blog b j as Fj = { f1, f2, . . . , fr }, where each element fr is a blog.

Several recent papers have shown that personal behavior in a social network is
highly affected by the person’s neighbors (Backstrom et al. 2006; Cha et al. 2009;
Leskovec et al. 2007a). Hence, the number of quasi-friends a blogger may have in a
cascade is an important feature that may influence her decision to join the cascade.
Naïvely, the number of quasi-friends a blogger has in a cascade can be computed
at any time after she has joined the cascade. However, this may mislead us from
the actual phenomenon as the number of quasi-friends is highly influenced by the
temporal state of the cascade. Let us elaborate on this further. Consider the Fig. 8a.
Each node is a blog and the dashed rectangle denotes a cascade at a particular time.
Edges represent hyperlinks related to this cascade. Assume that a blog d joined it at
time T0. Note that at time T0, d did not have any quasi-friend in that cascade. We
refer to T0 as joining time. Now assume that at time T0+ΔT node h became a quasi-
friend of d as shown in Fig. 8b. We refer to this time when a friendship is created
as friendship creation time. Observe that the number of quasi-friends d had during
joining time and friendship creation time may be different. However, if we discard
these two different phenomenons, then at any time after T0 +ΔT it may seem that d
had a quasi-friend h in this community when she joined it (Fig. 8c). Obviously, this
is not an accurate reflection of the ground truth. Note that existing work ignore these
two types of temporal features while modeling number of quasi-friends in a social
network.
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(a) (b) (c)

Fig. 8 Effect of friendship creation time

(a) (b) (c)

Fig. 9 Effect of friendship creation time (contd.)

There is another problem if we ignore the above temporal behavior. Consider the
Fig. 9a, which represents the same scenario as depicted in Fig. 8a. Now assume that
another blog i , who is a quasi-friend of d, joined this community at time T0 +ΔT as
shown in Fig. 9b. If we do not distinguish between times T0 and T0+ΔT , then it may
seem that d had a quasi-friend i in the cascade when she joined it (Fig. 9c). However,
the truth is that when d joined this cascade at time T0, she did not have any quasi-friend.
Hence in our approach, we distinguish between the joining time and the friendship
creation time to accurately reflect the ground truth. As we shall see in Sect. 7.2, this
distinction improves the cascade affinity prediction performance significantly.

In our approach, we represent the set of blogs having α quasi-friends in a cascade
ci using �i (α) taking into consideration the time t i ( j). It is computed as follows.

�i (α) = {b j
∣∣|Fj (t

i ( j))
⋂

φi (t i ( j))| = α}

Fj (t i ( j)) denotes the set of blogs that became a quasi-friend of j’s before time
t i ( j), φi (t i ( j)) is the set of blogs that appeared in ci before time t i ( j). Note that
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Fig. 10 a Cascade affinity ratio versus number of quasi-friends. b Joining probability by cascade rank

by incorporating t i ( j) in our approach, we make a contribution to address the above
issues (Figs. 8c, 9c). Based on �i (α), we define the notion of cascade affinity ratio
with respect to the number of quasi-friends.

Definition 5 Given the set of �i (α), the cascade affinity ratio, denoted as Pα , is defined
as:

Pα =
∑
i
|�i (α)

⋂
φi |

∑
i
|�i (α)|

We computed Pα for the whole collection of cascades, and plotted the values in
Fig. 10a. The X -axis is the α value (number of quasi-friends in a cascade). The
Y -axis represents the values of Pα . From the figure, we observe a diminishing return
phenomenon. That is, beyond a number each additional quasi-friends in the cascade
will contribute less to the probability of joining that cascade. This number is around 7
in this figure. Note that the curve showed in the figure follows similar trend as found in
other social networks in (Backstrom et al. 2006), and also in (Leskovec et al. 2007a)
where the author found a saturation point in the probability of buying a DVD by the
number of recommendations received.

5.2 Popularity of participants

Next we study the effect of popularity of cascade participants on the cascade affinity
of a blogger. The idea is similar to the preferential attachment model which was first
proposed in (Barabasi and Albert 1999). In this model, whenever a new vertex arrives
in a network it attaches an edge to an existing vertex with a probability proportional to
that of the old vertex’s degree. Newman performed a series of analysis on the model
in (Newman 2003). Leskovec et al. (2008) also showed a similar pattern in some
real-world data sets. Here we conduct an analysis based on this model. However, in
our study when a blog joins a cascade we consider the model at the cascade-level
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whereas the above approaches consider it at the node level. Then, the popularity of a
cascade ci is the highest rank of the blogs in the cascade. Formally, it is defined as
follows.

Definition 6 Let D(b) be the rank of a blog b. Then the popularity rank of a cascade
ci that b j wants to join, denoted as D j (ci ), is defined as:

D j (c
i ) = min

b∈φi (t i ( j))
(D(b))

Note that the rank of each blog is based on its in-degree (indexed by Technorati).
A blog having the largest in-degree has the highest rank as 1. Observe that the above
definition can be intuitively explained from the social aspect. When a blogger b j

reads a post pr she can also see other posts in the same cascade by tracing back the
hyperlinks. If there is a popular blog which has a large in-degree in that cascade,
then b j will probably join this cascade. Interestingly, this effect is not so obvious
in our result shown in Fig. 10b. The X -axis in the figure is the popularity rank of
cascades. A cascade having lower rank means it contains a more popular blog. We
plot the numbers of blogs that join a cascade (“positive count”) and those who do not
(“negative count”) by varying the ranks. The curve labeled “probability” represents

the ratio: positive count
positive count+negative count . As shown in the figure although the values

along X -axis is in log-scale, the number of joined blogs in each bin do not vary much.
This phenomenon indicates that a minority of cascades which have high popularity
ranks influence a large number of bloggers to join.

5.3 Citing factor

The features discussed above are all related to the cascade that a blog is inclined to
join. Here we analyze a personal characteristics related to the joining behavior of each
blogger. The reason for analyzing this feature is based on the hypothesis that a blogger
b j is more inclined to join a cascade if b j likes to cite others’ posts.

Definition 7 Let out (·) be the number of outlinks of ·. Then the citing factor of a
blogger b j , denoted as Hj (ci ), is defined as:

Hj (c
i ) = |out (post j (t

i ( j)))|

We can compute the probability for a blog b j with p citations to join a cascade as
follows.

Procf (p) =
∑

ci |{b j |Hj (ci ) = p, b j ∈ φi }|∑
ci |{b j |Hj (ci ) = p}|

The result is shown in Fig. 11a. It is distributed almost uniformly with the change
to the number of out-links. It is evident that this feature is not very informative as far
as cascade affinity is concerned.
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5.4 Initiator-media link

Lastly, we investigate a feature that is associated with the initiator(s) of a cascade.
Recall that the initiator of a cascade is the first blogger who initiates discussion in the
cascade. We conduct a series of analysis involving the cascade initiators in order to
study whether there is any correlation between the cascade affinity and the cascade
initiators. We first formally define cascade initiator.

Definition 8 Let ci (B, E) be a cascade containing blogs B = {b1, b2, . . . , bs} with
post–post links E . The initiator ini(ci ) of the cascade ci is defined as follows

ini(ci ) = {b j |�bi ∈ B,
−−→
b j bi ∈ E}.

Notice that it is possible to have more than one initiator in a cascade. For example,
consider the cascade in Fig. 4a. Both p1 and p2 are initiators according to the above
definition.

We now investigate two interesting properties of initiators of blog cascades using the
Technorati dataset. We extract all the initiators for each cascade. Firstly, we investigated
the correlation between the probability of a blog to join the cascade ci and its initiators’
popularity. Similar to Sect. 5.2, the popularity of initiators of a cascade ci is the highest
rank of the initiators in that cascade: min

b∈ini(ci )
(D(b)). We plot the probability of a blog

to join a cascade by varying the initiators’ popularity in Fig. 11b. Observe that there
does not exist any correlation between these two factors.

Secondly, we examine a property of the initiators related to their out-links to other
media resources. Initiators in a cascade are the posts that do not reference any other
post in that cascade. However, they may reference non-blog media sources such as
Flickr, Youtube, etc. We refer to these links as initiator-media links. Formally, it is
defined as follows.

Definition 9 Let ci denote the cascade. Then, the initiator-media link of ci , denoted
as I (ci ), is defined as:
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Table 4 Initiator data

Initiators Count Avg. size of cascades Ratio of join

Initiators with initiator-media links 3,782 23.32 0.11 %
Initiators without out-links 4,537 12.51 0.06 %

Table 5 ANOVA test on
cascade features

Feature name F p-value

Macro features Time elapsed 6.88 
 0.001

Number of participants 4.36 
 0.001

Sar-likeness ratio 1.66 0.024

Micro features Number of quasi-friends 2.85 0.017

Popularity of participants 1.50 0.029

Citing factor 0.77 0.968

Initiator-media link 1.38 0.034

I (ci ) =
{

1 if ∃b ∈ ini(ci ), b hyperlinks to non-blog URLs
0 otherwise.

Table 4 reports the statistics of initiators that link to these media resources against
those which do not. Observe that the average size of cascades containing initiator-
media links is larger than those which do not have such link. It means that the initiators
who reference other media resources are probable to generate larger cascades than the
ones that do not. This phenomenon suggests that bloggers are more inclined to write
post on a topic when they have found related resources from many different media.

Thus, it indicates that bloggers are more probable to join the cascades whose ini-
tiators referenced other media resources. Hence, we propose to use this property as
another feature to predict the cascade affinity. For each cascade, we first identify the
initiators within it. After that, we test whether the initiators have hyperlinks to web
pages that belong to non-blog domains.

5.5 ANOVA Test

In this section, we conduct a one-way variance analysis (ANOVA) on each of the above
macroscopic and microscopic features to quantify their significance related to cascade
affinity. For each feature, we compare the values between blogs which finally joined
a cascade and those did not using the one-way analysis of variance (ANOVA) to test
whether the difference is really caused by the feature values or just by noise in the
data. The F and p-values of each feature is shown in Table 5. The result shows that the
p-value for citation factor is 0.968 while other features are all less than 0.05. It indicates
that the different values of citation factor in both groups should only be considered
as noise. The remaining six cascade features are all significant for predicting cascade
affinity of a blogger.
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Algorithm 2: Candidate blog extraction algorithm.
Input: cascade set C = {c1, c2, . . . , cs } extracted from the data set
Output: candidates Δi for each cascade ci

begin1

foreach cascade ci ∈ C do2

foreach blog b j ∈ φi do3

Δi ( j) = {r ∣∣b j ∈ Fr (t i ( j))};4

Δi = Δi ⋃
Δi ( j);5

end6

6 Cascade affinity prediction

In this section, we describe how the features discussed in previous sections can be
exploited to predict bloggers who may join a cascade. The prediction involves two
steps, namely candidate blog extraction and cascade joining prediction. We elaborate
on these steps in turn.

6.1 Candidate blog extraction

For a given cascade, all blogs in the blogosphere are potential blogs that may join the
cascade in the future. Nevertheless, many of these potential blogs have no interaction
(e.g., read the posts) with the blogs/posts already in the cascade and are unlikely to
join the cascade. We therefore only consider a much smaller set of candidate blogs
that are likely to read one or more posts in the cascade. The candidate blogs are those
that have at least one quasi-friend in the given cascade. Formally, for a given cascade
ci , the candidate blogs c and (ci ) that may join ci is given by the following equation.

cand(ci ) = { j ∣∣Fj ∩ φi 
= ∅} (2)

The algorithm for extracting candidate blogs is outlined in Algorithm 2. Recall that
quasi-friend is defined based on the number of times (i.e.,K) a blog cites posts from
another blog. Hence, the number of candidate blogs extracted for a given cascade
naturally depends on the threshold K. In our experiments, we set K = 2 by default.

For all cascades in our dataset, there are 312, 414 candidate blogs extracted by
Algorithm 2. On average, 43 candidates are extracted for each cascade. Naturally, the
number of candidate blogs increases along the number of participants in a cascade.
Particularly, for a cascade having fewer than 10 participants, there are 39 candidate
blogs on average; for a cascade having 11–20 participants, this value increases to 64
candidates on average; for a cascade having more than 20 participants, there are 81
candidates on average. From the numbers reported, candidate blog extraction greatly
reduces the number of blogs to be considered in the prediction with respect to the
total number of blogs in our data set. As an evaluation of candidate extraction, Table 6
shows 76.1 % blogs that join a cascade have at least a quasi-friend in it when we set
K = 2.

123



464 H. Li et al.

6.2 SVM-based cascade affinity prediction

We now present two techniques that exploits the macroscopic and microscopic features
to predict blogs that may join a cascade. One takes a non-probabilistic approach
whereas the other is probabilistic in nature. In this subsection, we present the former
approach first. We discuss the probabilistic approach in the next subsection. In Sect. 7,
we shall empirically compare these two strategies.

The prediction task can be naturally formulated as a binary classification task.
Many existing classifiers (e.g., Naïve Bayes, k-Nearest Neighbors, and Support Vec-
tor Machines) indeed return a category relevance score for each data instance to be
classified indicating its likelihood of belonging to a pre-defined category. We adopted
a non-probabilistic binary classifier SVMs (Chang and Lin 2001) due to its promis-
ing results reported in many data mining/machine learning tasks. SVM models all
the samples including both positive and negative ones as points in high dimensional
space. The training of SVM learns a hyperplane in the space. The hyperplane learned
from SVM model should be able to separate the positive training examples from the
negative ones with the largest margin.

Formally, the training data in this paper is represented as a set of points in a
7-dimensional space: D = {(xi , yi )|xi ∈ R7, yi ∈ {−1, 1}}. yi is either 1 or −1,
indicating the class to which the point belongs. xi is a 7-dimensional vector. Our tar-
get is to find a hyperplane that divides the points having yi = 1 from those having
yi = −1 with the maximal margin. Actually, any hyperplane can be written as the set
of points x that satisfies the following equation:

w · x − b = 0

where w is normal vector and perpendicular to the hyperplane. The vector w and a
parameter b to be learned from the training data by minimizing the function:

w� · w

subject to

yi (w · xi − b) ≥ 1.

In order to learn an SVM classifier, those candidate blogs that eventually joined
and did not join the target cascades were used as positive and negative examples,
respectively. Moreover, all the candidates extracted using Algorithm 2 are formulated
as vectors in order to fit in the model. For example, a candidate sample b j is represented
as 7-dimensional vector:

−→
b j = [b j1, b j2, . . . , b j7]�

Within the vector, each entry is the value of one of the seven macroscopic and micro-
scopic features discussed in Sects. 4 and 5.

123



Affinity-driven blog cascade analysis and prediction 465

Given the learned model, we compute a score for an unlabeled object b j using its
decision function:

f (b j ) = w · b j − b.

In our setting, a larger f (b j ) indicates more likelihood of b j joining the target cascade.

6.3 Bipartite Markov Random Field-based (BiMRF) cascade affinity prediction

Other than SVM, we then adopted a probabilistic approach to predict the likelihood
of joining a cascade which is based on Bipartite Markov Random Field (BiMRF).
BiMRF (Shi et al. 2009) models the group joining behavior as a bipartite graph where
the vertices at one side of the graph are associated with the variables B = {bi }Ni=1 which
represent users, and the vertices at the other side of the graph are associated with vari-
ables C = {c j }Mj=1 which represent cascades. The advantage of using BiMRF model in
this problem is that it can explicitly incorporate the relationship between bloggers and
cascades. Moreover, it has been proved to be more effective than other approaches in
modeling the group joining behavior (Shi et al. 2009). Similar to SVM-based approach,
based on the observed value of each feature, we study the joining behavior at different
time step using BiMRF model. In the model, each user is a 7-dimensional feature
vector bi = [bi1, bi2, . . . , bi7]�, the values of which may change over time. Let O
denote all the observations, including users and their features, cascades and their fea-
tures as well as the connections of users. Let E = {Et

i j : 1 ≤ i ≤ N , 1 ≤ j ≤ M and

1 ≤ t ≤ T } be a set of random variables where ei j = 1 if the user bi joins cascade c j at
time t ; otherwise it is 0. Let {e} denote an instance of E . Then given the observations,
BiMRF defines a conditional distribution as follows:

p({et }|O) = 1

Z(w)
exp(

K∑

k=1

ωk fk({et }, O))

where fk are feature functions and ωk are their weights which will be learned. Given
the observed features, p({e}|O) =∏T

t=1 p({e}|O).
Formally, the dataset is a pairing of observations and joining behaviors (i.e.,

D = {〈{e}, O〉}). The best model to fit the data is the one with the maximum con-
ditional likelihood: L = log p({e}|O). We define feature functions to compute the
feature values fk({e}, O) in the above equation. For example, the feature function to
compute the feature value of number of participants is as follows.

fnop(e
t
i j = 1, ci , b j , t) = N j (c

i ).

Thus, the optimized ωk is learned by maximizing the likelihood:

L = log p({e}|O).

In line with (Shi et al. 2009), the optimization is achieved using L-BFGS (Limited
Memory Broyden-Fletcher-Goldfarb-Shanno) algorithm (Liu and Nocedal 1989).
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With the weights ωk learned from the training data, the probability that user b j

joins cascade ci at time t is given by computing the marginal probability

p(et
i j = 1|O).

7 Experiments

7.1 Experimental setting

For both prediction models, we conducted experiments on our data set using 5-fold
cross validation to evaluate the effectiveness of the features in predicting cascade
affinity of candidate blogs. That is, the data set was randomly partitioned into 5 parts
and in each evaluation, 4 parts were used as training data and the remaining part was
used as test data. The results reported are averaged over the 5 runs.

The commonly used performance evaluation measures in classification tasks are
precision, recall and F1. Precision, denoted by Pr , is the percentage of blogs that
eventually joined the target cascade among all blogs predicted to be joining. Recall,
denoted by Re, is the percentage of the correct predictions among all blogs that eventu-
ally joined the target cascade. Note that, recall is computed with respect to all blogs that
finally joined the target cascade regardless of whether the blogs are identified as candi-
date blogs or otherwise. F1 = 2×Pr×Re

Pr+Re is the harmonic mean of precision and recall.
However, both precision and recall are threshold-dependent. A higher threshold leads
to higher precision but lower recall. In our experiments, we are more interested in the
effectiveness of the features in ranking the candidate blogs according to the likelihood
of joining the target cascade. We therefore adopted the area under Precision-Recall
curve (AUC-PR) as the evaluation metric.

7.2 Experimental results

7.2.1 Justification of candidate set

Recall that the number of candidate blogs is affected by the parameter K. As K
increases, the number of quasi-friends identified decreases. Consequently, the candi-
date blog set shrinks. As a result, the maximum recall decreases, but the prediction
performance may not. To determine the optimum value for K, we conducted the pre-
diction using different values of K. Table 6 shows the sizes of candidate blog sets for
different K as well as the highest F1-measures achieved by selecting the best thresh-
olds in both models. Observe that in both models the best F1-measures are achieved
at K = 2. Hence, in the subsequent experiments we shall set K = 2.

7.2.2 Comparison of feature sets

Firstly, we compare the prediction performance using either macro features or micro
features in order to find which groups of features are more important in affinity pre-
diction.
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Table 6 Effect of different
values of K Value of K Candidate size (max. recall) Highest F1-measure

SVM BiMRF

K=1 946,329 (0.916) 0.707 0.702

K=2 312,414 (0.761) 0.725 0.711

K=3 80,482 (0.242) 0.227 0.227

Table 7 Feature set notations and prediction performance in AUC-PR

Features/AUC-PR/feature set ALL A-NF A-PP A-NP A-CF A-ET A-IP A-SR

Number of quasi-friends � - � � � � � �
Popularity of participants � � - � � � � �
Number of participants � � � - � � � �
Citing factor � � � � - � � �
Elapsed time � � � � � - � �
Initiator-media link � � � � � � - �
Sar-likeness ratio � � � � � � � -
AUC-PR (SVM) 0.615 0.066 0.588 0.604 0.625 0.604 0.592 0.595
AUC-PR (BiMRF) 0.610 0.055 0.588 0.599 0.618 0.587 0.587 0.589

Secondly, recall that we have identified seven features for cascade affinity pre-
diction, namely number of quasi-friends, popularity of participants, number of par-
ticipants, citing factor, elapsed time, star-likeness ratio and initiator-media link. To
evaluate the effectiveness of these features, we conducted 8 sets of experiments. The
first set of experiments used all 7 features for prediction. This feature set is denoted by
“ALL” in Table 7. In each of the following seven experiments, one feature is removed.
For instance, “A-NF” denotes that the feature number of quasi-friends is removed and
the remaining four features were used for prediction. In Table 7, a ‘�’ indicates that
the feature is used and ‘-’ otherwise.

The prediction performances measured by AUC-PR are reported in the last two
rows in Table 7. Using all the seven features, the prediction achieved AUC-PR of
0.615 for SVM and 0.610 for BiMRF. We can make the following observations:

– Removal of number of quasi-friends resulted in significant drop in prediction
performance to 0.046 in both models indicating that number of quasi-friends is
the most important factor that affects a blogger’s cascade affinity. We validated
this by performing another experiment using only the number of quasi-friends as
feature. The AUC-PR in this case is 0.445 for SVM and 0.434 for BiMRF.

– Removal of either popularity of participants, number of participates, star-likeness
ratio, elapsed time or initiator-media link led to a small performance degradation.
These five features indeed contributed to the cascade affinity modeling.

– An interesting observation is that removal of the citing factor in both models led
to better AUC-PR than using all the seven features. This result clearly indicates
that the citing factor introduced noise in the prediction, which is consistent with
our ANOVA test results reported in Sect. 5.5. The remaining six features: number
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Fig. 12 Precision-Recall Curves for different features
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Fig. 13 Precision, Recall and F1-measure for “A-CF”

of quasi-friends, popularity of participants, number of participates, elapsed time,
star-likeness ratio and initiator-media link achieved the best performance.

– We conducted additional two experiments using only macroscopic or microscopic
features. Microscopic features achieved AUC-PR of 0.533 for SVM (0.519 for
BiMRF) whereas macroscopic ones only exhibit AUC-PR of 0.064 for SVM (0.059
for BiMRF). This is because the number of quasi-friends is one of the microscopic
features.

For the completeness of the results, Figure 12 plots the Precision-Recall curves of
using eight different feature sets. Under SVM model, all the seven runs (except for
“A-NF”) achieved almost perfect precision before recall reached 0.57. Sharp drop of
precision is then observed along with the increase of recall. In contrast, all the seven
runs of BiMRF model (except for “A-NF”) achieved almost perfect precision before
recall reached 0.48. As the recall increases, precision in BiMRF drops down more
smoothly than that of SVM model. However, SVM and BiMRF show almost the same
AUC-PR. Thus, both models can be applied in cascade affinity prediction.

Figure 13 shows the precision, recall and F1-measure by varying the threshold
for the feature set “A-CF”, which has the best prediction performance among all the
approaches. Both precision and recall of BiMRF model change more smoothly than
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Fig. 14 Significance of time for modeling number of quasi-friends

those of SVM model as the thresholds increase, indicating that SVM model results in
a clearer margin between the score of positive samples and negative ones.

7.2.3 Significance of time for modeling number of quasi-friends

Recall that in Sect. 5.1, we illustrated the significance of time in modeling the number
of quasi-friends. To justify the goodness of our solution, we compared it with the
approach that ignores time. Specifically, if we discard temporal issue in modeling
quasi-friends then the definition of �i (α) (the set of blogs having α quasi-friends in
cascade ci ) is modified as follows.

�i (α) = {b j
∣∣|Fj (T

∗)
⋂

φi | = α}

We updated the number of quasi-friends feature in each candidate vector using
the above formula. Using the updated feature vectors, we performed the prediction
again. The performance of ignoring the time in quasi-friend identification shows a
small AUC-PR 0.211 (0.216 for BiMRF) whereas our proposed solution achieves
0.615 (0.610 for BiMRF). The comparison between the Precision-Recall curve of this
approach and our proposed solution is shown in Fig. 14. Both of the curves use all the
seven features. “FRTM” represents the approach that discards the temporal aspects
in number of quasi-friends. It is clear that time is an important factor in quasi-friend
identification as it achieved significantly better prediction compared to the approach
that ignores time. In fact, whenever K is set to 1, 2, or 3, the experiment result indicates
that distinguishing joining time and friend creation time is important, we select not to
show the detailed statistics on K=1 and 3 to avoid making the paper to lengthy and
tedious.

7.2.4 Prediction of top-k bloggers

To study the prediction of accuracy of top-k blogs that are inclined to join a cascade,
we computed the precision of our approach to retrieve top-k bloggers ranked based
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Table 8 Average precision versus top-k

k 1 2 3 4 5

Pravg(k) (SVM) 0.970 0.783 0.722 0.734 0.763
Pravg(k) (BiMRF) 0.970 0.762 0.716 0.722 0.744

Fig. 15 Top 10 candidates that are most probable to join a cascade (SVM)

Fig. 16 Top 10 candidates that are most probable to join a cascade (BiMRF)

on the predicted scores. Specifically, for each cascade ci having more than k positive
samples, we generate the top-k predicted blogs and compute the precision as follows:

Pri (k) = #true positive
k . Then for a given k, we compute the average precision,

denoted as Pravg(k), using the following formula.

Pravg(k) =
∑
|φi |≥k Pri (k)

∣∣{ci
∣∣|φi | ≥ k}∣∣

Table 8 shows average precision values for different k values highlighting the goodness
of our approach. Note that Pravg(k) may not monotonically decrease with increasing
k as the number of cascades in the denominator depends on k.

Figures 15 and 16 show the top-10 candidate blogs over entire cascades collection.
If the candidate is a positive sample, we also showed the corresponding URL of the
post that joins the target cascade.

7.2.5 Using only the number of quasi-friends as feature

As mentioned above, we found that number of quasi-friends is the most important
factor that affects a blogger’s cascade affinity. To further validate this, we conducted
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Table 9 Average precision versus top-k using only number of quasi-friends

k 1 2 3 4 5

Pravg(k) (SVM) 0.643 0.561 0.597 0.571 0.573

Pravg(k) (BiMRF) 0.612 0.515 0.535 0.564 0.558

another experiment using only the number of quasi-friends as feature. The AUC-PR
in this case is 0.445 for SVM and 0.434 for BiMRF.

In fact, just as we did in Figs. 15 and 16, if we list the top-10 candidate blogs over
the entire collection for the approach of using only the number of quasi-friends in
SVM or BiMRF, we can also get 10 positive samples which eventually join the target
cascades. However, when we compute the average precision values for for different
k values as what we did in Table 8, the approach of using only the number of quasi-
friends shows poor result which is shown in Table 9. It indicates that using only the
number of quasi-friends does not perform so well as the other approaches combining
several informational features. It can only found very limited number of candidate
blogs which are most possible to join target cascades over the entire collection but
fails to give enough precision in order to predict the affinity in each individual cascade.

7.2.6 Comparison of the performance between SVM and BiMRF model

Referring to the prediction results shown in Table 7 and Fig. 13, we compare the
performance between the SVM and BiMRF models. The observations are as follows.

– In both models, removal of the citing factor perform the best, then is the approach
using all the features. However, the removal of either elapsed time or initiator-
media link does not perform better than the removal of popularity of participants
in BiMRF, which is not the case in SVM.

– In general, both SVM and BiMRF models show satisfactory prediction results
with AUC-PR over 0.61 when using the best feature set “A-CF”. However, SVM
performs slightly better than BiMRF model for all the other feature sets.

– The precision and recall curves by varying the threshold of both SVM and BiMRF
model almost exhibit the same shape, except that the curves of BiMRF model is
smoother than those of SVM. It suggests that SVM model tends to produce clearer
margin between positive class and negative one.

– Both svm and BiMRF models exhibit the best average precision with 0.970 when
predicting the top-1 blogger according to Table 8. In addition, the average precision
of top-k (k = 2, . . . , 5) of both methods do not vary much. Moreover, 8 out of 10
records in Fig. 16 also appear in Fig. 15, indicating that the results of both models
do not vary much.

8 Conclusions and future work

In this paper, we analyzed a large publicly available collections of blog information, to
investigate bloggers’ behavior and interaction with blog cascades. We have identified
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in total seven macroscopic and microscopic features, namely number of quasi-friends,
popularity of participants, number of participants, time elapsed since the genesis of
the cascade, star-likeness ratio, initiator-media link and citing factor of the blog, that
may play important role in predicting blog cascade affinity so as to identify most
easily influenced bloggers. Such bloggers play important role in several real-world
applications such as viral marketing. Note that our proposed features are derived from
structural information of the cascades without any content analysis of posts/blogs.
We performed anova test on these features and showed that all of them, except cita-
tion factor, have significant impact on cascade affinity. The cascade affinity prediction
is then formulated as a classification task and a non-probabilistic (svm -based) and
probabilistic (BiMRF classifier) methods are employed. Using the prediction scores
from the svm -based approach or the conditional probability from BiMRF, the candi-
date blogs can be ranked according to their probability of joining a cascade. We have
evaluated different combinations of the features and our results on cascade affinity
prediction is consistent with the anova test. In general, svm model performs slightly
better than BiMRF model in most of the feature sets. Moreover, svm model tends to
generate clearer margin between positive class and negative one. The six features that
have significant impact on cascade affinity achieved the best prediction accuracy of
0.625 (0.618 for BiMRF) measured by auc- pr . Our experimental results also showed
that the number of quasi-friends plays a significant role in blog cascade affinity pre-
diction. The features proposed in this paper may not be independent to each other
(i.e., number of participants and number of quasi-friends). As part of future work, we
intend to investigate the correlation between different features and how they influence
the cascade affinity.

On the other hand, we intend to study micro-blogging behavior using the model
and results proposed in this paper. However, the model we proposed in this paper may
not be applied directly in micro-blogging scenario, as there exist several differences,
which are shown as follows, between retweeting in micro-blog and blog cascade.
Firstly, instead of web pages, all micro-blog posts are kept in the server by some
operator (i.e., Twitter). An arbitrary blogger can view any blog posts that is published
on the Web. However, an arbitrary micro-blogger can only see the content posted by
those whom he is listening to. Secondly, micro-blog posts are platform dependent
in that a twitter user can never re-tweet a post that is published at another platform
such as Tumblr. Thirdly, there is only one initiator in microblogging which is different
with blog cascade. Lastly but not the least, collecting data for blog posts study can be
done by crawling the static web pages. However, we can only get tweets by querying
the database of Twitter through the API provided by Twitter. Twitter API can only
provide the tweets that appeared within 2 weeks’ time. Thus, in order to apply out
model towards micro-blog domain, definition of some features may be changed, such
as quasi-friends, elapsed time, star-likeness ratio, popularity of participants. Moreover,
some other features which are specific in micro-blog need to be taken into consider.
In fact, this is what we intend to do in future work.
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