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Abstract In this paper we face the problem of searching for rare itemsets. A main
issue regards the strategy to adopt in exploring the power set lattice. Assuming a
power set lattice with full set at the top and empty set at the bottom, the most of the
algorithms adopt a bottom-up exploration, i.e. moving from smaller to larger sets.
Although this approach is advantageous in the case of frequent itemsets, it might not
be worth being used for rare itemsets, as they occur on the top of the lattice. We
propose Rarity, a top-down breadth-first level-wise algorithm. Experimental results
and comparisons are illustrated in order to provide a quantitative characterization of
algorithm performances and complexity. Application to some UCI benchmark and
real world datasets is provided. An algorithm parallelization is outlined. Experiments
showed that this approach takes advantage of finding all rare non-zero itemsets in less
time than other solutions, at expenses of higher memory demand.

Keywords Data mining methods and algorithms · Rare itemsets

1 Introduction

Knowledge discovery in databases aims at searching for interesting patterns con-
cerning sets, collections, sequences and relations of data. The identification of target
itemsets, i.e. subsets of occurring items, represents the starting point of analysis.
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Although most frequent itemsets are surely appealing in searching for interesting
and previously unknown facts (Agrawal et al. 1993a,b; Agrawal and Srikant 1994;
Agrawal et al. 1996), less occurring itemsets are still of interest, especially in larger
databases. Indeed, the most of the times the focus is on finding rules among frequent
patterns, but it might be interesting to search for rare patterns, i.e. those that do not
frequently occur in the database.

The search for less frequent collections of items can lead algorithms to identify
relationships between items that, although supported by a minority of cases, can still
reveal non-trivial, novel and valuable information. This is the case for patterns whose
support is unexpectedly low or the appearance of items together in low support itemsets
is unexpectedly high. Examples can be drawn in medical research, homeland security,
basket analysis and other applications. As an example, let us consider data concerning
passenger behavior in airports. Frequent patterns are due to normal behavior, whereas
rare patterns could identify suspicious and still unknown threats. As another example,
searching for rare patterns of adverse drug effects in pharmacovigilance can help to
identify cases where drugs have serious or fatal consequences. Other examples deal
with discovery of rare DNA gene co-occurrences, or infrequent product baskets able
to reveal unexpected and profitable market niches.

Both the search for frequent or rare patterns are NP-hard (Yang 2004). Until now
few algorithms and techniques have been developed for mining rare itemsets, that are
those patterns whose support is below a given threshold. Algorithms designed to mine
frequent itemsets are not suitable for mining rare patterns. Indeed the search for rarities
entails different but still relevant difficulties for data mining algorithms (Weiss 2004).
There is a need for developing specific algorithms more than adapting existing strate-
gies. In this paper we investigate a breadth-first level-wise lattice-traversal algorithm,
Rarity, able to mine rare patterns performing a time-efficient exploration of the search
space and support computation, moving from largest to smaller itemsets. Therefore if
we assume an orientation of power set lattice such that the full set is at the top and
the empty set at the bottom, lattice traversal per formed by Rarity can be described as
top-down. This convention will be followed in the remainder.

This paper is a revised and extended version of results presented in Troiano et al.
(2009). The main contribution is to investigate properties and performances of this
algorithm and to suggest enhancements to scale problem complexity. This approach
makes use of a procedure for computing the support count that takes advantage of the
regularity in the itemset lattice structure. Indeed itemsets at upper levels in the lattice
contribute to the support count of their sub-itemsets. For each itemset, the different
contribution to the support count is held by a vector whose entries keep memory of
how many times transactions of the corresponding length comprise the associated
itemset. Support count is computed by summing up the vector entries divided by the
number of times such a contribution has been considered. Computing the support
count aims at discarding those itemsets of length k − 1, generated by itemsets of
length k, occurring over the given threshold. Discarded itemsets are kept in a veto
list in order to further discard the sub-itemsets they entail. The proposed method is
experimented against synthetically generated datasets in order to assess the algorithm
behavior under different circumstances, and against some benchmark datasets from
UCI repository with different characteristics. We also provide three applications as
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motivating examples. As the lattice traversal is memory demanding, issues regarding
problem decomposition and parallelization have to be considered. This paper mainly
focuses on explaining the algorithm logic, although considerations regarding effective
implementation on real datasets are considered. Pre-filtering is suggested in order to
discard those itemsets which are spurious. Parallelization is only outlined as mostly
based on consolidated techniques.

The remainder is organized as follows: Sect. 2 illustrates three motivating examples;
Sect. 3 provides some preliminary definitions and properties of rare itemsets; Sect. 4
overviews related works; Sect. 5 describes the algorithm; Sect. 6 presents experimental
results; Sect. 7 suggests algorithm enhancements in order to address some issues;
Sect. 8 illustrates experimental results; Sect. 9 estimates algorithm complexity; Sect. 10
suggests a possible algorithm parallelization; Sect. 11 shows possible solutions to
problems stated in Sects. 2; 12 outlines conclusions.

2 Motivating examples

The mining of rare itemsets could be limited to classes which would include potential
itemsets never occurring in data (zero-itemsets) and those that are sporadic (occurring
a number of times below a minimal threshold). Both cases are not of interest in many
circumstances, and testing occurrences of all potential itemsets belonging to these
classes only adds complexity to the mining process, since all possible combinations
should be taken into account and explored.

In this section we state three problems, where the list of occurring non-sporadic
rare itemsets would be of interest. These problems do not mean to be exhaustive, but
only to motivate and suggest when and why the problem of listing rare itemsets could
arise in similar situations. Solution to following examples is given in Sect. 11.

2.1 Spare parts

For machine maintenance, each repair involves a set of spare parts to change. In
production plants, it becomes critical to have spare parts stocked, so that when a stop
occurs, plant can be repaired and restarted as soon as possible, without any delay due
to parts provisioning. So that stocks should be managed in order to assure a given level
of quality of service (QoS). Keeping stocks of spare parts can be expensive, but being
ready to repair unexpected and unusual stops can be relevant in managing maintenance
inventory. Therefore identifying non-frequent (rare) groups of spare parts can help to
better manage spare part stocks.

The data source is the maintenance log. Each record provides the list of spare parts
(items) used to repair a stop. Besides parts that are generally occurring in repairs, infre-
quent groups of spare parts can provide useful information. A group can implement
a machine function, so that parts belonging to that group assume a specific meaning.
Mining those groups can help to identify critical stops and to level the stocks of parts
involved, in order to face future stops.
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2.2 Unit test

The problem of testing software units is known to be infeasible due to the large number
of paths that can be activated by all potential inputs to the unit. This problem is par-
ticular relevant for units implementing data analysis or automatic control algorithms.
In this case, it would worth to find groups of values that although rare, could be able
to lead to possible lacks in the unit code.

In this case, the source is given by the log of values (the items) being passed to
the unit as arguments at each invocation. If the number and type of arguments is kept
constant, the log structure is regular, and each column represent the sequence of values
to pass to the unit as corresponding argument. Looking for rare subgroups of values can
help to identify conditions to test, that although infrequent could lead to unit failures.

2.3 Text analysis

The focus of text analysis, in particular text categorization (or classification), is on
sub-sequences of words able to characterize documents. Therefore sequences should
be not too frequent (common terms and phrases) and not too sporadic (unrelated terms
and phrases). In this case, mining rare itemsets would help to identify those patterns
worth of being analysed. For example, those patterns that can help document indexing.

Data sources used by this example are collections of (stemmed) sets of terms (the
items). Mining can be addressed to identify those groups of terms specific for a subset
of documents. Those groups should not be too infrequent to be considered sporadic
and unrelated, therefore a minimum support threshold should be fixed accordingly.

3 Preliminaries

A group or set of items entailed by database records, e.g. the set of items a cus-
tomer collects in a market basket, is referred to as an itemset. More formally, let
I = {i1, i2, ..., im} be a set of m distinct literals called items. Let the database D be a
collection of transactions over I . Each transaction T is associated to a unique identifier
TID and contains a subset of items X ≡ {ii , i j , ..., ik} ⊆ I . The number of items in X
provides its length. Transactions in D can entail different itemsets of different length
k, referred to as k-itemsets. The number of times an itemset X occurs in transactions
is the support count of X (Agrawal et al. 1993a,b), denoted by supp(X).1

Frequent and rare itemsets are defined with respect to support count threshold t f

and tr , with tr < t f . In particular, itemsets are said:

– frequent, iff supp(X) ≥ t f

– rare, iff supp(X) ≤ tr

1 Terms “support” and “support count” assume different meaning in data mining. In the context of this
work, they refer to how frequent an itemset is. When this is computed in terms of number of occurrences,
it is more appropriate the use of “support count”. More in general, we will refer to “support” as expression
of itemset occurence.
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Fig. 1 A dataset and corresponding itemset lattice

The itemset’s support count is related to the support count of its supersets. Indeed,
given two itemsets X and Y such that X ⊂ Y , the number of occurrences of X is at
least the number of occurrences of Y , as X is the part of Y . Therefore,

supp(X) ≥ supp(Y ), ∀X ⊂ Y (1)

It is useful to make a distinction between non-zero itemsets that are actually in
D, from zero itemsets that are not having any occurrence in any transaction of D
(Szathmary et al. 2007).

As proven in Yang (2004) the problem of counting the number of distinct itemsets
in a dataset, given an arbitrary support threshold, is NP-complete and the problem
of mining itemsets is NP-hard. If m = |I | is the cardinality of the item collection I ,
the number of possible distinct itemsets is 2m . In order to reduce the combinatorial
complexity of search space, most algorithms exploit the following two properties:

- Downward closure: all subsets of a frequent itemset are frequent;2

- Anti-monotonocity: all supersets of a rare itemsets are infrequent.

Complexity comes out from the need of traversing the item power set lattice P . An
example of item power set lattice is given by Fig. 1 presented in Sect. 4. In the example
we define t f = 3 and tr = t f − 1 = 2, so that each infrequent itemset is also a rare
itemset. The support count is reported in the top right-hand corner of itemsets. The set
of all rare itemsets forms a join-semilattice since, as we said, it is closed under the join
operation, i.e., for any rare itemsets X and Y , X ∪Y is rare as well. On the other hand,
it does not form a meet-semilattice, since if X and Y are rare, it does not entail X ∩ Y

2 The name of the property comes from the fact that the set of frequent itemsets is closed with respect to
set inclusion.
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is rare. Note that frequent itemsets form a meet-semilattice, i.e. for any two frequent
itemsets, X and Y , X ∩ Y is also frequent. In drawing the structure of the power set
lattice, we follow the convention of placing the full set at the top and the empty set at
the bottom, as depicted in Fig. 1. Between frequent and rare itemsets a border can be
drawn. In Fig. 1 such a border is denoted by a dashed line. The border emphasizes that
rare itemsets have place on the top of the lattice whereas frequent itemsets populate
the bottom. At the bottom we find the smallest common itemset, i.e. the empty set ∅,
whereas at the top of the lattice we find the largest one, i.e. I . At each level there are
itemsets of the same length.

4 Related work

Traditionally, frequent patterns mining is associated to the discovery of association
rules (Agrawal et al. 1993b; Piatetsky-Shapiro and Frawley 1991) as they provide a
subset of patterns which to search among. Techniques are different if they address
the search for frequent itemsets, or rare itemsets. Whereas the problem of mining
frequent itemsets has been largely investigated and many solutions have been proposed,
research on the problem of mining rare itemset is still on progress, although some
algorithms have been proposed. They differ by the representation of data, the strategy
of traversing the itemset lattice, and the way of counting occurrences. Although the
topic investigated in this paper is related to the search for rare itemsets, an overview of
techniques used in mining frequent itemsets is still of interest in order to compare the
different approaches. The following subsections provide a review of main contributions
to mining both frequent and rare itemsets.

4.1 Frequent itemsets mining

The first and most noticeable algorithm for mining frequent itemsets is Apriori, pro-
posed independently by Agrawal and Srikant (1994) and by Mannila et al. (1994), and
later joined in Agrawal et al. (1996). Apriori is a level-wise, breadth-first, bottom-up
algorithm. The algorithm starts by considering frequent 1-itemsets collecting them in
F1. From these, candidate 2-itemsets, are generated by joining frequent 1-itemsets.
Their support is computed by searching for their occurrences in the database and those
below the given threshold are discarded. The process is iterated, so that at step k, can-
didates are generated from frequent itemsets in Fk−1 and filtered out in Fk according
to their support. The algorithm stops when Fk is empty or k is the size of the longest
record, that is the maximum length of itemsets. Frequent itemsets are obtained by
merging collections F1, . . . , Fk . As levelwise algorithm, Apriori is based on down-
ward closure and anti-monotonicity property. The algorithm structure entails to pass
through the database at each step, thus affecting performances. Performance issues
regarding time and memory have been further addressed by Savasere et al. (1995) and
Brin et al. (1997).
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Pasquier et al. (1999) proposed Apriori-Close, an extension of Apriori which is
able to find closed frequent itemsets.3 In this solution, at step k all frequent itemsets
are marked as closed. At step k + 1, frequent itemsets in Fk+1 are compared to sub-
itemsets in Fk by support, in order to establish if the latter are really closed or not.
The algorithm ends-up with the enumeration of all frequent itemsets, some of them
keeping the label as closed.

Bastide et al. (2000) proposed an algorithm named Pascal, which makes use of a
strategy known as pattern counting inference. The authors introduce the notion of key
patterns (also called generators 4) and show that other frequent patterns can be inferred
from them without accessing the database. In particular, their algorithm is based on
the concept of equivalence class which collects itemsets appearing in the same subset
of transactions, thus having the same support. Therefore, using a level-wise traversal,
first the shortest frequent itemsets of an equivalence class are discovered. From those,
new candidates are generated and their support is computed. When a candidate belongs
to an already known class, support is assigned by the class avoiding to further access
the database. The algorithm is able to find both frequent and closed itemsets, resulting
to be faster than Apriori.

Szathmary et al. (2007) introduced Zart, as variant of Pascal. It is a levelwise
algorithm that first enumerates generators of an equivalence class, and after filters
frequent closed itemsets exploiting the pattern counting inference.

Zaki et al. (1997) presented Eclat, an algorithm designed to find frequent item-
sets by a depth-first strategy. It makes use of columnar database, i.e. with vertical
representation of data, counting the itemset’s support by co-occurence of transaction
IDs. An evolution of Eclat, called dEclat, is presented in Zaki and Gouda (2003). It
introduces the concept of diffset, that is the transaction subset, in which a k-itemset
does not appear, but its prefix (k − 1)-itemset does. Therefore, support is computed
by subtracting the cardinality of diffset from the support of its prefix.

Han et al. (2004) introduced FP-growth, a novel approach based on frequent pat-
tern tree (FP-tree), that is an extended prefix-tree structure for storing compressed
information about frequent itemsets. This solution allows to pack the representation
of database transactions, to avoid the generation of candidate itemsets and to employ
a partitioning-based method able to decompose the mining task into a set of smaller
subtasks. A variant of FP-growth, H-mine (Pei et al. 2001), makes use of array-based
and tree-based data structures to deal with sparse and dense datasets respectively.

Uno et al. (2003, 2004, 2005) proposed LCM, a series of algorithms for enumerating
frequent itemsets in linear time. LCM was proposed for enumerating closed itemsets
and then LCMfreq and LCMmax were presented for mining respectively all frequent
and maximal itemsets. LCM integrates accelerated techniques and belongs to the
category of backtracking algorithms, thus it inputs a frequent itemset I and then
generates new itemsets adding one of the unused itemsets to I . To avoid duplications
the algorithms adds items with indices larger than the tail of I .

3 An itemsets X is said to be closed iff it is the largest subset of items in common to transactions in which
X appears (Zaki et al. 1997).
4 A generator is a frequent itemset with none of its proper subsets having its same support.
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Song and Rajasekaran (2006) suggested to use a transaction mapping (TM) algo-
rithm. The basic idea is to map and compress transaction IDs of each itemset to
continuous transaction intervals in a different space. Thus, the count of itemsets is
performed by intersecting intervals in a depth-first order along the lexicographic tree.

4.2 Rare itemsets mining

Most algorithms designed for mining rare itemsets have been proposed as variant of
Apriori algorithm, and focused on the search for association rules. In particular, they
investigate the need of including those itemsets that, although infrequent, provide high
confidence rules.

In order to address this problem, Liu et al. (1999) proposed MSapriori. In their
approach, they use multiple minimum support thresholds, assigned to each item in the
database, and minimum support of a rule is expressed in terms of minimum support
(MIS) of the items that appear in the rule. This way, the user expresses different
support requirements for different rules. Let M I S(i) denote the MIS value of item i .
The minimum support of a rule is the lowest M I S value among the items in the rule.
So it is possible to change the support threshold of rules dynamically in order to use
higher thresholds for those rules that involve frequent items, and lower thresholds for
rules involving less frequent items. This change is driven by parameter β expressed
by the user making the algorithm sensitive to the user preferences.

A solution that attempts to avoid this issue is Relative Support and Apriori Algo-
rithm (RSAA), presented by Yun et al. (2003). This technique makes use of relative sup-
port defined as the ratio between the itemset’s support and the MIS of items belonging
to it. Therefore the support threshold for items having low frequency is automatically
increased, while the support threshold for items having high frequency is automati-
cally decreased. Similarly to Apriori and MSapriori, RSAA is exhaustive in generating
rules, focusing on those which are not spurious. If the minimum-allowable relative
support value is close to zero, then RSAA takes a similar amount of time to Apriori,
when generating low-support rules.

Both RSAA and MSapriori are direct adaption of Apriori algorithm to less frequent
itemsets, so that they search for itemsets whose support is over a given (adaptive)
threshold. Koh and Rountree (2005) proposed Apriori-Inverse, a levelwise bottom-
up variation of Apriori that makes use of the notion of maximum support instead
of MIS to generate candidate itemsets. In particular, it makes use of two thresholds:
max_supp, to find rare itemsets and min_supp, to discard those are considered to be
extremely rare. Apriori-Inverse first identifies rare 1-itemsets collecting them in in R1.
Similarly to Apriori, it generates longer itemsets which will be rare themselves and
new generators of the same length are added. The process is iterated until the maximum
length k is reached. The union of R1, . . . , Rk provides perfect rare itemsets, which
are itemsets that only consist of items below the maximum support threshold. Rules
are generated in the same way done by Apriori. However, Apriori-Inverse is not able
to capture all the candidate itemsets, but only the perfectly rare itemsets. There could
be itemsets that are still infrequent, but whose items are not rare by themselves. Slight
modifications have been proposed in order to extend the result provided by Apriori-
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Inverse. Koh et al. (2008) proposed MIISR, to find rules with a single-item consequent
below the max_supp. This condition ensures the whole itemset is below the given
threshold, but there are still rare itemsets that does not fall in this class.

Szathmary et al. (2007) proposed a solution called ARIMA which is based on a two-
step algorithm, able to search for all rare itemsets. The first step consists in traversing
the frequent zone in the lattice by levels in order to find minimal rare itemsets which
are those rare itemsets whose proper subsets are frequent; after that, the other rare
itemsets are generated as supersets. Indeed, in order to find rare itemsets it is sufficient
to identify the minimal rare generators and related supersets as they will be surely rare.
If rare zero itemsets are not of interest, the algorithm can prune the branch with a stop
when a minimal zero generator is found. The strategy aims at identifying the border
line which separates the frequent itemsets from the rare, starting from the bottom
of lattice and moving upwards in order to reach the limit. All itemsets above that
limit belong to the class of rare itemsets. The search for minimal rare itemsets can
be performed by two algorithms. The first is (Apriori-Rare), that is still a variant of
Apriori and consists in traversing the lattice, and collecting at each level the itemsets
usually discarded by the original algorithm. A better approach is provided by MRG-
Exp, which focuses exclusively on frequent generators and their downset in the lattice
filtering minimal rare generators at the same time.

Traversing the frequent itemsets can be improved. For instance, Haglin and Man-
ning (2007) proposed MINIT, an algorithm aimed at discovering minimal infrequent
itemsets, i.e. those itemsets whose proper subsets are frequent. The approach is based
on a recursive procedure which explores the lattice by fixing items in turn. At each
step, focus is restricted on transactions containing items fixed so far, and remaining
items are sorted by occurrence is such transactions, so that most frequent items come
first. A set of properties allows to cut the search when a minimal infrequent itemset is
found. Since minimal infrequent itemsets are the first rare itemsets met by traversing
the lattice bottom-up, they can be used as starting point to search the rare itemsets.

Recently, Tsang et al. (2011) proposed RP-Tree, an algorithm for mining a subset of
rare association rules based on a tree structure. The authors make difference between
three types of rare itremsets: those which consist of rare items only; those which
consist of both rare and frequent items; those which consist of only frequent items.
The first and second types are referred as rare-item itemsets, the third as non-rare-
item itemsets. The algorithm uses this classification to perform a mining strategy
similar to FP-growth. In particular it performs a preliminary database scan in order to
count items’ support, and a second scan in order to map a tree on the itemset lattice
pruning transactions without at least one rare item. Using this initial tree, the algorithm
constructs conditional pattern bases and conditional tree for each rare item. Finally
FP-growth is applied to each conditional tree in order to get a subset of rare itemsets, in
particular those in which at least one item (i.e. singleton) is rare, the so called rare-item
itemsets.

A different strategy consists in traversing the lattice top-down. Adda et al. (2007)
proposed an Apriori-like approach, called AfRIM, aimed at exploiting anti-monotone
property and exploring level-wise the lattice starting from the itemset composed of all
items in I , that is the top of the itemset lattice. If this approach assures the exploration
of the whole search space on one side, it is not suitable for larger datasets and search
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spaces, generally characterized by sparser distribution of items, on the other side.
Indeed, the strategy proposed by Adda et al. forces the exploration of zero itemsets.
Their experimentation is restricted to generated datasets with a limited number of
items (up to 10) and dense with transactions made of at most 8 items.

5 Algorithm

Except for AfRIM, algorithms presented above performs a traversal of itemset lattice
from bottom to top, thus exploring the frequent zone first. So that, the smaller is the
threshold tr , the wider is the zone to explore. Instead, it would be worth exploring
the lattice from top, where rare itemsets are placed. Rarity is a top-down breadth-
first level-wise algorithm which exploits this feature of the search space. It starts by
identifying the longest rare itemsets in the database, and moves downwards the power
set lattice discarding those itemsets which result frequent, and developing only those
that are confirmed to be rare. Indeed a frequent itemset entails sub-itemsets that are
necessarily frequent, whereas rare itemsets can provide sub-itemsets that are possibly
but not necessarily rare. Different from other approaches, e.g. ARIMA (Szathmary
et al. 2007) and AfRIM (Adda et al. 2007), starting from the longest record in the
database and not from the longest itemset of the search space, allows Rarity to avoid
the generation of rare zero-itemsets and the scan of the database in order to compute
the support of itemsets. This is a major advantage for sparse databases, especially
when the number of items largely exceed the length of transactions.

In order to implement its search strategy, Rarity requires three data structures: the
candidate list C , the veto list V , and the rare itemset list R.5 The candidate list collects
itemsets that are possibly rare. The veto list contains itemsets known to be frequent.
Both lists are organized by levels. Therefore C(l) and V (l) refer only to l-itemsets.
An additional list R contains rare itemsets resulting from processing. Algorithm 1
outlines the algorithm’s logic.

The algorithm initializes the candidate list C(l) with candidate rare l-itemsets by
passing through the database to count l-itemset’s support. Initially, V (the veto list)
is empty and the algorithm begins from the top of lattice by considering the longest
itemsets. More specifically, if lm = argmaxC(l)|C(l) �= ∅, Rarity starts by con-
sidering candidates in C(lm). After, for each l = lm ..1, the algorithm moves down
processing candidate itemsets is ∈ C(l). When supp(is) is greater than threshold
tr = min_supp, it is frequent and is moved to veto list V (l). Differently, itemset is is
rare and moved to the rare list R. In addition, its sub-itemsets long l − 1 are possibly
rare, then assigned to C(l − 1). The next step consists in scanning V (l) so that each
known frequent itemset f j ∈ V (l) is compared to shorter candidates gk ∈ C(h) with
h < l. Intersection e jk = f j ∩gk is used to find sub-itemsets in common. Indeed, since
e jk is known to be frequent as part of f j , it is moved (or added if never considered
so far) to the veto list V (l jk) where l jk = len(e jk). The ultimate level considered
by Rarity is l = 1 made of 1-itemsets. However, an early stop happens when there

5 They are actually sets, as they do not admit duplicates, but for the sake of simplicity, we refer to them as
lists.
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Algorithm 1 Rarity
Input: D - Dataset
Output: R - Rare itemset collection
1: lm = max len(t) ∀t ∈ D
2: for all record t ∈ D do
3: add t to C(len(t))
4: end for
5: for l = lm ..1 do
6: if C(l) �= ∅ then
7: for all is ∈ C(l) do
8: if supp(is) > min_supp then
9: remove is from C(l)
10: add is to V (l)
11: else
12: add is to R(l)
13: if len(is) > 1 then
14: for all sub ∈ subsets(is)|len(sub) = l − 1 do
15: if sub /∈ V then
16: add sub to C(len(sub))

17: vsub = vsub + vis
18: end if
19: end for
20: end if
21: end if
22: end for
23: for all is ∈ V (l) do
24: if len(is) > 1 then
25: for k = l − 1..1 do
26: for all c ∈ C(k) do
27: cis = c

⋂
is

28: remove cis from C(len(cis)), if cis ∈ C
29: add cis to V (len(cis))
30: end for
31: end for
32: end if
33: end for
34: end if
35: end for

is no more candidate to consider at lower levels, that is C(l) = ∅. Indeed if a level
contains only frequent itemset, it is not possible to further generate candidates and the
algorithm stops.

Rarity performs an efficient computation of support based on support vector vis ,
which provides contributions to support count of is arriving from supersets at different
levels. This vector is defined as

vis = v0
is +

∑

i∈P(is)

vi (2)

with P(is) being the collection of is’ parents, that are super-itemsets at one level over,
and v0

is being a vector expressing the number of times is occurs as record in D, that is
v0

is(h) = 0 for any entry h �= len(is). When a candidate is evaluated, all contributions
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to its support are available in v, and support count can be computed from vis as stated
by the following proposition

Proposition 1

supp(is) =
lm∑

h=lis

vis(h)

(h − lis)! (3)

where lis = len(is) provides the is’s length and lm the maximal itemset’s length.

Proof According to Eq. (2), vector vis takes into the account the contribution to is’s
support count provided by super-itemsets at different levels. Such a contribution arrives
to is by different paths on the lattice. In particular, vis(h), h = lis holds the number
of times is occur in D as record. Itemsets below lis are not of interest for is and over
lm do not stand in D. Therefore, computation expressed by Eq. (3) can be restricted
at levels h = lis ..lm .

Since vis is computed recursively, contributions from upper levels are summed up
more than once. The number of times a contribution is considered by Eq. (2) depends
on the difference between levels. This number is known in advance to be (h−lis)!, that
is the number of paths joining a super-itemset at level h to is, as depicted in Fig. 4.
�

Thanks to Proposition 1, the algorithm is able to pass through the database only once
at initialization time. This feature comes with other optimizations in order to improve
overall performances. For instance, if at level l the candidate list C(l) is empty, the
algorithm skips the whole step and no scan of the veto list V (l) is performed. Indeed,
if there is no candidate ci ∈ C(l), the itemsets in V (l) have been necessarily obtained
by intersection with candidates longer than l, thus attaining a previous level. This also
entails that only new itemsets determined to be frequent at current level are those able
to veto candidates subsets. This makes it possible to avoid intersections that would be
necessary required by elements already in the veto list. Finally itemsets are represented
through compressed bitmaps, in order to reduce memory requirements and to perform
fast binary operations such as intersection and union.

The algorithm execution on dataset D (see Fig. 1) with min_supp = 2 is illustrated
by Fig. 2. The algorithm first performs the database scan in order to set up its structures
(C , V , R). In particular C is filled with the itemsets stored in the dataset. After that,
Rarity starts by exploring each level l. Since there is no 5-itemset in the database, C(5)

is empty, and Rarity begins to analyze the level 4. It computes the support count of
the two largest itemsets ABC D and ABC E using Eq. (3) and since it is less than the
threshold min_supp the itemsets are moved to R and subsets are generated and added
to C . The same has place at level 3. The elements in C(3) are analyzed and two of
them (ABC and AC D) are moved to V . This leads Rarity to process the itemsets in
V (3) in order to inhibit forthcoming candidates. So, after the process of V , itemsets
AB, AD, BC , C D, AC , A, B, C and D (which are subsets of ABC and AC D) are
moved to V .

Figure 3 explains how the support vector vis is computed. This example is referred to
the value of vAC . At the initialization time vAC is v0

AC ≡ (0, 0, 1, 0, 0, 0), entailing that
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Fig. 2 Execution of Rarity

Fig. 3 Computation of vector
v and support count
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Fig. 4 An example of (indirect) contribution to support count

only one occurrence inD is contributing to AC (level 2) support count. At the same time
we have v0

ABC D ≡ (0, 0, 0, 0, 2, 0) and v0
ABC E ≡ (0, 0, 0, 0, 1, 0) that is the number

of time ABC D and ABC E respectively occur in D. Moving to level 3, this latter
contribution is given to both itemsets ABC and AC E . So that vABC ≡ (0, 0, 0, 0, 3, 0)

and vAC E ≡ (0, 0, 0, 0, 1, 0), in order to remember this contribution is provided by
an upper level. Also AC D occurs once in the dataset providing contribution to AC
support count. So contributions are given by different paths whose number depends
on the level difference between the longer (l) and the shorter itemset (h). Therefore,
contribution is divided by (l − h)! when support vector are summed up, according to
Eq. (2). This is depicted by Fig. 4, where itemsets at upper levels (ABC D and ABC E)
contribute to AC’s support count by different paths (dashed lines).

When the algorithm reaches level 2, itemsets in C(2) are all rare except B D, the
only moved to V . Scanning V (2) the algorithm inhibits singletons A, B, C , D. The
final step consists in analyzind C(1). E is the only itemset in C(1) and since its support
count is lower than min_supp it is moved to R.

Figure 5 provides details on level 3 processing. As the support of all itemsets in
C(3) is evaluated, frequent itemsets are moved to the veto list V (3), while the others
are moved to R. Next, the algorithm generates the candidate for level 2 which are
subsets of rare itemsets at level 3, the result of intersection between C(2) and V (3)

is the list of frequent itemsets, thus moved from C(2) to V (2). In our example these
itemsets are AE , B E , B D and C E .

6 Experimentation

We compared Rarity to ARIMA (Szathmary et al. 2007) and AfRIM (Adda et al. 2007),
as both algorithms are able to provide the full list of rare itemsets. In order to get a
fair comparison, Rarity have been implemented in Java as original implementation of
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Fig. 5 Algorithm processing at l = 3

ARIMA provided by authors. We also developed an implementation of AfRIM based
on the pseudo-code provided in Adda et al. (2007).

Codes have been instrumented in order to collect execution time and memory usage
besides the data loading, in order to avoid side effects in measurements.

Experimentation was performed on Intel Xeon 2.66 GHz, with 4 GB of RAM,
equipped with Windows Server 2003 Enterprise Edition Service Pack 2.

We performed a preliminary test on four different sparse datasets made of 10, 000
records respectively with 5, 10, 15 and 20 different items. From results outlined in
Table 1 we observed that AfRIM was not able to highlight a time-efficient computation
with respect to performances provided by Rarity and ARIMA except for datasets with a
very small number of different items. In particular, as the number of items |I | increases,
execution time exceeds the limit to perform a test in a reasonable time. In addition,
for larger datasets AfRIM was not able to complete the computation, so it will not be
further considered in our comparison.

As test cases, we randomly generated 200 datasets differing by the number of rows
and the maximum number of items in a transaction. In particular we generated datasets
with a number of rows ranging from 1,000 to 10,000 and with maximum transaction
length still of 5, 10, 15, and 20 items, each configuration considered 5 times. For
each of those databases we have at most 20 different items. This entails at most 220

itemsets to be analyzed. For the support count limit we assumed different values of
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Table 1 Preliminaries Experiments

Algorithm Support (%) Supp. count limit Rare itemsets Time (ms) Memory (MB)

Dataset 1–5 items
Rarity 10 1,000 6 15 520
AfRIM 10 1,000 6 106 12
ARIMA 10 1,000 6 188 530

Dataset 2–10 items
Rarity 20 2,000 968 46 510
AfRIM 20 2,000 968 596 13
ARIMA 20 2,000 968 1,018 531

Dataset 3–15 items
Rarity 15 1,500 32,551 875 515
AfRIM 15 1,500 32,551 20,406 16
ARIMA 15 1,500 32,551 10,312 512

Dataset 4–20 items
Rarity 20 2,000 954,694 35,532 93
AfRIM 20 2,000 954,694 10,113,320 115
ARIMA 20 2,000 954,694 752,619 500

ts = min_supp: specifically 0.1, 0.5, 1.0, 5.0, 10.0 % of the dataset size and 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 60, 70, 80 occurrences.

Figure 6 compares the execution time of ARIMA and Rarity. The comparison about
memory usage is outlined in Fig. 7. All figures highlight Rarity to be faster at cost of
higher memory demand, while ARIMA is slower with a smaller memory footprint.
This result becomes more evident by plotting time versus memory as depicted in
Fig. 8. Instead, Fig. 9 provides the speed ratio of Rarity versus ARIMA at varying the
number of rare itemsets. We notice that Rarity speedup decreases when the number
of rare itemsets increases, although it is constantly greater than 1. The same analysis
has been performed on extremely rare itemsets, selected as those with a support count
below 1, 5, 10 and 20 occurrences. Figures 10 and 11 respectively compare execution
time and memory usage. In this case, itemsets become extremely rare, and Rarity
performances become spreader in time, using more memory in general as depicted
in Fig. 12. This outcome is confirmed by Fig. 13 related to speed of Rarity versus
ARIMA.

One could argue that improving the search of border would lead to faster search.
To test this hypothesis we performed an additional experiment employing MINIT
(Haglin and Manning 2007), which shares with ARIMA (Szathmary et al. 2007) the
idea of traversing the lattice from the bottom. Since the goal of MINIT is to discover
minimal infrequent itemsets, this leads to reach the border. From the border we can
move further to discover the remaining rare itemsets. We developed an implementation
of MINIT based on the pseudo-code provided in Haglin and Manning (2007). For the
second step we implemented a mining strategy inspired to FP-growth (Han et al. 2004).
As test cases we considered sparse and dense datasets made of 10, 15 and 20 items,
respectively with records of 5, 10 and 15 records. In the case of dense datasets, records
have the same length; in the case of sparse datasets, record length is variable up to the
given length limit. Support threshold were chosen at 1 and 10 %. Results are collected
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Fig. 6 Execution time: ARIMA and Rarity (Troiano et al. 2009)

in Table 2. Although MINIT is very efficient in searching for minimal infrequent
itemsets, overall search completed in longer time when compared to Rarity. In one
cases, MINIT was not able to complete the search. Two considerations are interesting.
The first is that, even when the search is aimed only at testing non-zero rare itemsets,
MINIT performed worse than Rarity (see Dense Dataset 1, Support threshold at 1 %).
The second is that MINIT improves when the support threshold is lowered, since the
first step is moved forward. In any case Rarity performed better.

7 Enhancements

As shown in the previous section, Rarity lacks of memory usage. This depends on the
number of itemsets to explore and on their dimension, therefore on the generation of
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Fig. 7 Memory occupation: ARIMA and Rarity (Troiano et al. 2009)

Fig. 8 Memory versus time: RARITY versus ARIMA (Troiano et al. 2009)

candidates and on veto lists. Keeping all information in memory can be very demanding
for medium and large databases. Indeed, although lists have no duplicates and each
itemset is stored in only one of them at once, the quantity of information to store
and process can easily exceed memory capacity. This is mainly due to combinatorial
complexity of the search space.
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Fig. 9 Speed ratio: RARITY versus ARIMA (Troiano et al. 2009)

Fig. 10 Extremely rare itemsets. Execution time: RARITY versus ARIMA (Troiano et al. 2009)
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Fig. 11 Extremely rare itemsets. Memory occupation: RARITY versus ARIMA (Troiano et al. 2009)

Fig. 12 Extremely rare itemsets. Memory versus time. (Troiano et al. 2009)

Indeed only 20 items can lead the algorithm to explore a search space potentially
made of 220 = 1, 048, 576 itemsets, and since each of them requires about 50 bytes,
there is a need of 50 Mb to store them. If the number of items becomes 30, the memory
required to store the whole lattice becomes 50 Gb. The number of itemsets increases
exponentially, so the memory required. This means that larger databases would be very
memory demanding. For example if we use a database containing protein localization
sites, such as in ECOLI database (Nakai 1996a), we could fail our analysis.

In order to solve this problem we need to rely on mass memory for storing partial
results. The idea is to keep in memory only a part of itemsets, keeping the remaining
on files. For this, we set the maximum number of itemsets max_i temsets that can be
made available in memory, and use a file for each level of each list. When a list in
memory reaches that limit, it is cleared out and itemset details such as (i) the bitmap,
(ii) the length, (iii) the contribution vector v are stored to files, so that new itemsets can
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Fig. 13 Extremely rare itemsets. Speed ratio: RARITY versus ARIMA (Troiano et al. 2009)

Table 2 Rarity versus MINIT

Support (%) MINIT Rarity
Minimal itemsets Time (ms) Rare itemsets Time (ms) Rare itemsets Time (ms)

Dense dataset 1–10 items 5 column 10, 000 row
1 252 465 252 498 252 143
10 120 344 27,473 811 27,473 666

Dense dataset 2–15 items 10 column 10, 000 row
1 6,396 3,543 13,832 5,425 13,832 629
10 3,003 1,178 28,314 7,634 28,314 452

Dense dataset 3–20 items 15 column 10, 000 row
1 157,646 72,407 394,757 139,714 394,757 520
10 77,518 10,207 – – 964,924 5,975

Sparse dataset 1–10 items 5 column 10, 000 row
1 111 113 317 142 317 81
10 45 112 372 137 372 115

Sparse dataset 2–15 items 10 column 10, 000 row
1 2,988 1,681 18,373 3,040 18,373 471
10 455 316 20,208 707 20,208 309

Sparse dataset 3–20 items 15 column 10, 000 row
1 59,144 5,998 695,517 161,355 695,517 3,665
10 1,140 372 752,021 113,712 752,021 4,011

be hosted in memory. As we know in advance the record size representing an itemset,
we can set an optimal value of max_i temsets in order to avoid memory lackage. The
pseudo-code is outlined in Algorithm 2.

Implementation is based on groups of files FC containing candidate itemsets, FV

frequent itemsets and FR rare itemsets. As each file is assigned to a level, it contains
itemsets of the same length. The idea is to apply Rarity to blocks of itemsets. For
this purpose, we introduce functions load and store for reading and saving blocks of
itemsets. They accept two parameters: a list as first, and the itemset to store or the
level to read as second. In particular, store and load performs as cache proxies, so that
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when a block is full it is saved (store), or when all itemsets have been processed a
new block is loaded (load). This makes it possible to preserve the algorithm structure.
When itemsets are processed by blocks, it may happen that some of them are generated
in more blocks. Indeed an itemset could be generated as subset of itemsets belonging
to different blocks, or the generation of itemsets could lead the algorithm to exceed
the memory limit and to flush the block to the mass memory.

This means itemset duplicates are possible, entailing that larger files occur and the
contributions to support vector are split along different duplicates. The latter issue
might lead the algorithm to misclassify an itemset due to an underestimation of item-

Algorithm 2 Enhanced Rarity
Input: D - Dataset
Output: R - Rare itemset collection
1: lm = max len(t) ∀t ∈ D
2: mi = max_i temsets
3: for all record t ∈ D do
4: store(C, t)
5: end for
6: for l = lm ..1 do
7: if C(l) �= ∅ then
8: clearCandidates(l)
9: for all is ∈ load(C, l) do
10: if supp(is) > min_supp then
11: remove is from C(l)
12: store(V, is)
13: else
14: store(R, is)
15: if len(is) > 1 then
16: for all sub ∈ subsets(is) do
17: if sub /∈ V then
18: store(C, sub)

19: vsub = vsub + vis
20: end if
21: end for
22: end if
23: end if
24: end for
25: deleteDuplicates.V (l)
26: for lv = l..1 do
27: deleteDuplicates.C(lv)

28: end for
29: for all is ∈ load(V, l) do
30: if len(is) > 1 then
31: for k = l − 1..1 do
32: for all c ∈ C(k) do
33: cis = c

⋂
is

34: store(V, cis)
35: end for
36: end for
37: end if
38: end for
39: end if
40: end for
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set’s support count. Therefore, there is a need of removing duplications and summing
up the support provided by duplicates. This is done by functions deleteDuplicates and
clearCandidates. The first, deleteDuplicate, is responsible of removing duplications
in the candidate file FC or in the veto file FV at a given level, and to merge the support
vector of duplicates. The latter operation is not necessary for vetoed itemsets. For
this reason we provide two versions deleteDuplicates.C for candidate and deleteDu-
plicates.V for vetoed itemsets. After this operation, the actual support count of some
candidates could be over the limit, thus they are added to the veto list. However, some
duplicates could have been already identified as frequent by themselves and discarded.
So that a candidate could get a support count that does not take into account its clones
that have been vetoed. The function clearCandidates makes a double check, verifying
that remaining itemsets do not have duplicates in the corresponding veto file: they are
vetoed in that case. The support count of remaining itemsets is correct and if under
the limit, they can be added to R.

Although we make use of files, search and comparison in lists made difficult due
to the size of files, that does not allow to process them fully in memory. Indeed, the
size of files is increased by duplicates, whose number can be estimated in the worst
case. At each level l, the number of possible itemsets is at most equal to

N (l) =
(

m

l

)

= m!
(m − l)!l! (4)

where m = |I | is the number of items in D. Each of them can give birth to l subsets
long l −1, so that the overall number of possible subsets is l · (m

l

)
. Among these,

( m
l−1

)

are unique, so that the number of dublicates is

l ·
(

m

l

)

−
(

m

l − 1

)

= l(m − l)

m − l + 1

(
m

l

)

. (5)

Therefore, the overall number of possible duplicates becomes

m∑

l=2

l(m − l)

m − l + 1

(
m

l

)

(6)

since the last level, which lead to empty set, is not of interest.
The structure in blocks requires to use a cross-matrix approach, as depicted in

Fig. 14 and outlined in Algorithm 3 and Algorithm 4. By this approach, a faster cursor
(Q) is used within a slower cursor (P), so that each block is compared to the others in a
file. In particular, deletion of duplicates is performed by looking at previous blocks. If
the itemset has been already considered, that means the itemset in the current block is
a duplication, thus removed. This is performed by operation Clean in both Fig. 14-a,
b. In the case of candidates, there is also the need of updating the support vector,
by summing up contributions provided by the duplicates. This is done by looking
forward at duplicates in the following blocks. This is performed by operation Update
in Fig. 14-b. Those duplicates will be removed later on.
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(a) (b)

Fig. 14 Deleting duplicates in veto (a) and candidate (b) files

Algorithm 3 deleteDuplicate.V(l)
Input: V (l) - Veto list at level l
Output: V (l) cleaned up of duplicates
1: repeat
2: P = load(V (l))
3: repeat
4: Q = load(V (l))
5: for all itemset i ∈ Q do
6: if i ∈ P then
7: remove i from P
8: end if
9: end for
10: until block P is reached
11: save P in V (l)
12: until end of blocks

Algorithm 4 deleteDuplicate.C(l)
Input: C(l) - Candidate list at level l
Output: C(l) cleaned up of duplicates
1: repeat
2: P = load(C(l))
3: repeat
4: Q = load(C(l))
5: for all itemset i ∈ Q do
6: if i ∈ P then
7: if Q ≺ P then
8: remove i from P
9: else
10: updateVector(i)
11: end if
12: end if
13: end for
14: until end of blocks
15: save P in C(l)
16: until end of blocks

In some cases of practical interest, the analysis could be directed to mine rare
itemsets with a support count over, i.e. equal or greater than, a given minimum threshold
tm (assuming tm < tr ), in order to filter out spurious patterns. For example, this is
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the case of rare-but-not-unique itemsets (i.e. tm = 2). In this case, it would be worth
beginning the exploration of lattice from a list of candidates occurring at least tm times.
We call this candidate pre-filtering. Candidates with a support count over tm , can be
generated by assuming in sequence intersections made of tm transactions occurring
in the database. For example if D ≡ {T1, T2, T3, T4} and tm = 3, we will consider
intersections T1 ∩T2 ∩T3, T1 ∩T2 ∩T4, T1 ∩T3 ∩T4 and T2 ∩T3 ∩T4, all resulting into
itemsets whose support count is at least tm . Generation of those candidates requires to
consider

(|D|
tm

)
intersections, where |D| is the number of transactions in D. Therefore

time complexity is O(|D|tm ), that is polynomial w.r.t. tm . Since tm is generally small,
i.e. tm = 1..3, candidate pre-filtering is feasible and scalable. We can burst pre-filtering
removing from the dataset in advance all those items (singleton) which occurs lesser
than tm times. For larger values of tm , it would be better to stop pre-filtering at a given
small threshold, and to continue with the algorithm, discarding those itemsets that
are not reaching the minimal number of occurrences along the process (in-filtering)
and after the process (post-filtering). Implementation of both is not considered in the
remainder of this paper.

Convergence of Rarity under these circumstances is assured by the following propo-
sition:

Proposition 2 Let C1 be the initial candidate list made of itemsets X1 . . . X p s.t.
supp(Xi ) ≥ 1 obtained without pre-filtering, and Cm the list made of candidates
Z1 . . . Zq obtained by pre-filtering. It stands that ∀ Y ⊆ XY s.t. supp(Y ) ≥
tm∃ ZY s.t. Y ⊆ ZY

Proof Since supp(Xi ) ≥ 1 ∀Xi ∈ C1 we get that ∃ T ∈ D : Xi = T . On the
other side, since Cm is obtained by pre-filtering, ∀ Z j ∈ Cm we get by construction
supp(Z j ) ≥ tm and ∃ Xi ∈ C1s.t. Z j ⊆ Xi .

Ad absurdum let us assume that ∃Y ⊆ XY ∈ C1 : supp(Y ) ≥ tm such that ¬∃ZY ∈
Cm : Y ⊆ ZY . Since supp(Y ) ≥ tm we have ∃TY 1 . . . TY m ∈ D : Y ⊆ TY i , i = 1..m.
But by construction Y ⊆ ZY = T1 ∩ · · · ∩ Tm and ZY ∈ Cm . 
�

This assures that if a candidate X is below the minimum threshold tm , thus discarded
from the initial candidates, its subsets Y , occurring at least tm times, will be generated
by some other candidate Z ∈ Cm whose support count is not lesser than tm . Therefore
there is no risk to miss any itemset. In addition, since tr > tm , also non-rare itemsets
are considered and vetoed by the algorithm.

Pre-filtering as outlined above requires to consider the intersection of transaction in
D. This can be computationally demanding. Thus, in order to get a faster generation
of Cm , it is possible to obtain it by considering itemsets in C1, as they provide a more
compact representation of D. For the sake of simplicity we avoid to describe this
optimization in details.

We point out that the problem of listing non-zero rare itemsets, or over a given min-
imal threshold, is extremely hard to scale-up problem complexity due to the extremely
large number of solutions. Therefore the raw application of any technique to large item
collections will lead to a quantity of data that, despite of their theoretical interest, they
could become useless in practice. However, the application of a top-down strategy
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will lead to discover first those itemsets that are of more interest as generally rarer and
longer. Therefore a limit to level exploration can be set.

8 UCI dataset experimentation

Enhancements presented above are necessary in order to apply Rarity to datasets with
a large number of items and transactions. In this paper we will consider three known
datasets from UCI repository with different characteristics, namely ECOLI (Nakai
1996a), YEAST (Nakai 1996b) and WINE (Forina 1991).

Due to problem complexity the application of Rarity, ARIMA (Szathmary et al.
2007) and AfRIM (Adda et al. 2007), and any other similar algorithm, is not feasible
in the case of dataset such as Mushroom6 T20I6D100K7 and C20D10K8 as they have
respectively 119, 893 and 192 items.

8.1 Datasets

ECOLI contains data about the cellular localization sites of proteins. There are 100
different items, leading to a possible search space of at most 2100 itemsets. A similar
dataset is YEAST. It also related to data regarding the cellular localization sites of
proteins but it is larger and with 106 items. Finally WINE contains data from a chemical
analysis of wines grown in the same region in Italy but derived from different cultivars.
It is not very large but contains a high number of items: 809.

A comparison to ARIMA is not possible for these datasets as processing was not
able to complete with datasets with such characteristics, resulting in memory leakage
and program crashing.

8.2 Results

Experimental results are shown in Table 3, which reports the number of rare itemsets
found, the number of itemsets explored, execution time in milliseconds and memory
occupation, to run the algorithm at different support thresholds, expressed as percent-
age of available records.

These results bring to several important observations. First of all, the number of
evaluated itemsets is much lower than the lattice size and closer to the number of
rare itemsets. This entails that Rarity is able to accomplish the task efficiently and
effectively. Even though the WINE dataset has less instances than the others, it requires
higher computation time and memory, since the number of items is larger and the search
space sparser.

6 http://archive.ics.uci.edu/ml/datasets/Mushroom.
7 http://www.almaden.ibm.com/software/quest/Resources.
8 http://www.census.gov/.
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Table 3 Experimental results with UCI datasets

Supp. (%) Supp. count limit Rare itemsets Evaluated itemsets Time (ms) Memory (bytes)

EC O L I -100 items
0. 5 n/a n/a n/a n/a n/a
1 3 51,410 51,812 31,183 38,962,760
5 16 52,855 52,899 5,552 47,247,128
10 33 53,020 53,028 5,636 42,674,528

Y E AST -106 items
0. 5 7 361,242 363,076 62,372 22,807,232
1 15 364,957 365,651 58,445 38,734,176
5 74 366,788 366,856 50,045 58,641,336
10 148 366,937 366,955 47,723 52,647,576

W I N E-809 items
0. 5 n/a n/a n/a n/a n/a
1 2 1,386,138 1,386,403 5,528,117 42,640,856
5 10 1,386,438 1,386,451 5,508,962 162,977,184
10 20 1,386,451 1,386,451 5,512,530 133,005,904

9 An estimation of complexity

Giving an estimation of complexity when an exhaustive search for rare itemsets is
employed, we should consider that, given n records, with a maximum length of m
items, time and memory complexity would be O( 1

2 n(n − 1)(2m − 1)), as each record
would entail 2m−1 non-empty subsets, and this should be searched for in the remaining
n − 1 records. Coefficient 1/2 takes into consideration that only the records following
the current would be considered. This limit represent the upper bound for any search
strategy of rare itemsets.

Assessing the complexity of Rarity is too hard, since it depends on many variables
such as the support count limit, the number of records, the number of items, but mostly
from the sequence of decision points taken along the process. With the enhanced
version things become even more complicated, as the number of possible duplicates
has a relevant effect on processing time and memory.

9.1 Elementary operations

Therefore, renouncing to find a reasonable theoretical complexity estimation, we fol-
lowed an empirical approach by counting the number of elementary operations, i.e.
(i) add to list, (ii) remove from list, (iii) support evaluation and (iv) itemset intersec-
tion, and relating them to problem characteristics, i.e. support threshold, the number of
items, number of records, and to algorithm performances, measured by time. Remove is
the heaviest operation because it entails a search for the itemset in the list for deletion.

In this section we will refer to the basic version of Rarity. Elementary operations
occur in Algorithm 1 as follows: add at lines 3, 10, 12, 16 and 29; remove at lines 9
and 28; support evaluation at line 8; intersection at line 27. Experiments were carried
out using the same test cases mentioned in Sect. 5.
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Fig. 15 Support count limit versus operations

Fig. 16 Number of non-rare itemstes versus time

9.2 Results

Figure 15 outlines the relationship between the support count limit and the weighted
number of elementary operations, showing that the higher is the support limit the
lower is the number of required operations. Indeed, if the limit is high, the number
of rare itemsets becomes larger. Therefore, even though the number of support eval-
uation increases, since we do not have many non-rare itemsets, we avoid to perform
remove operations, the most computational expensive. The same explanation stands
for Fig. 16, which shows that when the number of frequent itemsets increases, the
execution time increases also. Fig. 17 shows that when the number of support eval-
uations increases, time decreases, as a high number of frequent itemsets leads to the
execution of additional two remove operations.

Figure 18 outlines the relationship between the number of support evaluations
and the support count limit, depicting that when the limit increases, the number of
evaluations increases too. This is apparently in contradiction with conclusions above.
However, Rarity entails a very small number of support evaluations with respect to the
other operations. Indeed for each database we had at most 9 · 105 support evaluations
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Fig. 17 Support evaluations versus time

Fig. 18 Maximum support versus support evaluations

within an overall number of about 1 · 1010 operations. The growth of the number
of support evaluations depends on the fact that the algorithm stops later, so that the
number of levels to evaluate and the number of candidates becomes larger than in the
case of a lower support threshold.

10 Parallelization

Application of Rarity to larger databases as of interest in many real world problems,
would require to take into consideration alternative versions of algorithms presented
above, with particular attention to parallelization. A possible further enhancement
could be thought with respect to representation of data. For instance, Viper (Shenoy
et al. 2000) and Mafia (Burdick et al. 2001), attempting to optimize the search for
frequent patterns, introduced a vertical database representation having compressed
bitmaps to represent the itemset transaction list. They proved that in many cases this
approach is better than a horizontal layout. We implemented a similar approach, but
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it did not improves performances. This brought us to study parallel solutions for our
algorithm.

Several parallel implementations have been proposed in literature for mining asso-
ciation rules. Most of them are variants of Apriori. For instance, Agrawal and Shafer
(1996) propose three different parallel versions of Apriori for distributed memory
environments. The first algorithm replicates the generation of the candidates and it
is a straigthforward parallelization of the original version. The other two algorithms
distribute the candidate itemsets among the processors. A similar approach is pre-
sented in Park et al. (1995), entailing the replication of candidate itemsets on all
processors.

In this section we do not provide a parallel implementation but we outline possible
solutions. The first consists in partitioning the initial dataset into smaller datasets and
distributing them among processors which execute Rarity and each returns a block
containing the rare itemsets found in lexicographic order. The merging of blocks is
performed by scanning the blocks, using a pointer to the current itemset for each them.
We choose the itemset that lexicographically comes first among the pointed ones in
each block. If more than one itemset is selected, the support count of them is summed.
If the current itemset is rare, we keep it, otherwise we discard it. We move forward
the pointer of selected blocks. If there is no more itemsets to consider for a block, that
block is dismissed. The procedure stops when there is no further itemset to consider,
thus all blocks have been dismissed.

The second solutions consists in executing the function deleteDuplicates used in
the Algorithm 2 upon different processors. In order to apply a load balance strategy,
files would be distributed taking into account their dimensions. A further enhance-
ment consists in executing the deleteDuplicates as soon as an itemset (frequent or
candidate) is generated. This would improve memory management, resulting in early
discard of duplications, although poses communication issues in distributed environ-
ments.

11 Solving the motivating examples

We provide a solution to problems posed in Sect. 2. The aim of this section is only
illustrative, as providing a definitive answer to these problems would be out of the
scope. Results are outlined in Table 4.

11.1 Spare parts

In this example, data refer to maintenance activity performed by BS, an industrial
machinery manufacturer based in Milan (Italy). Each record lists the spare parts used
in maintenance along a period of 6 months (from Feb 1st 2009 to Aug 1st 2009). Due to
no-disclosure agreement (NDA), parts have been made anonymous and identified by
numbers. The dataset is sparse and made of 1, 244 records, listing collections counting
from 4 to 20 spare parts chosen in a list of 28 items. An example of data is given in
Table 5. As an example of results we consider two long itemsets:
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Table 4 Overall results of examples

Level limit Supp. (%) Supp. count limit Rare itemsets Time (ms) Memory (bytes)

Spare
None 0.5 6 1,890,145 94,830 154,763,872
None 5 62 1,957,540 15,222 164,837,216

Unit
None 1 30 289,617 2,411 84,220,208
None 5 150 289,849 2,361 84,563,432

Text
ACQ

14 15 823 797,755 13,076 756,747,755
EARN

14 15 823 928,414 20,129 964,545,533

Table 5 An excerpt of spare and unit dataset

Spare Unit

1 11 13 14 17 19 2 20 21 23 24 25 3 4 6 7 000 036 120 058 041 097 072 091
0 1 12 13 14 16 18 20 4 7 9 024 023 108 072 046 090 059 097
1 10 11 18 19 21 23 25 5 6 001 015 121 066 033 094 059 114

1 11 13 15 17 2 25 26 5 7 9 012 029 121 077 051 100 058 095
11 15 17 18 2 20 21 24 25 7 9 014 019 119 078 033 093 062 097

10 11 13 16 19 22 6 7 8 013 020 101 070 044 098 054 113
0 1 10 15 2 26 4 6 8 9 004 019 106 076 042 087 057 096

1 11 12 15 19 20 22 23 24 3 4 9 007 036 116 071 047 100 074 101
1 13 15 19 21 3 5 6 8 005 035 098 076 050 086 073 100

11 12 15 16 21 4 5 001 028 123 076 047 080 072 096
0 1 10 11 13 18 19 009 043 119 072 031 096 045 096

1 12 14 15 18 20 22 24 26 3 6 7 9 003 019 113 064 055 091 065 092
1 10 13 14 15 16 17 18 21 22 25 6 8 004 025 104 082 035 075 068 109

0 1 14 18 19 21 23 24 5 8 008 027 104 081 033 084 061 117
10 13 14 15 17 18 2 24 7 8 019 028 120 072 055 097 051 104

1 2 4 5 7 8 9 11 12 15 16 21 22 23 24 26 27
2 3 4 5 7 8 9 10 11 16 17 18 19 20 21 27

We can note that they share items 2 4 5 7 8 9 that are related to parts of an
electromechanical group.

11.2 Unit test

This case deals with a unit used to process data collected by 8 accelerators. Inputs
are given as words of 7 bits to the function and there processed. Since unit could
fail when some inputs are given, we might be interested to those input combinations
that are rarely occurring. We consider a collection of 3, 000 records each made of
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8 integer values in 0..127. Equal values at different positions are treated as different
items. Larger rare itemsets are made of 8 values. For example:

024 042 113 083 032 103 070 112
016 039 105 075 035 077 046 096

More interesting are short groups of values. Examples of 2-itemsets are:

*** *** 106 080 *** *** *** ***
018 *** *** *** *** *** *** 113
*** *** *** 060 *** *** 073 ***

11.3 Text analysis

For testing our algorithm in text analysis problems, we chose Reuters-215789, R8
instance. We remember that this dataset refers to a collection of documents origi-
nally collected and labeled by Carnegie Group, Inc., and Reuters, Ltd., along the
development the CONSTRUE text categorization system. Each line is associated to a
document, each document is composed by its class and terms. Instance R8 considers
8 of the most frequent classes. Terms have been filtered by considering only words
(i.e. sequences of letters) made of at least 3 characters, removing 524 stop words and
stemmed by Porter’s method. In addition we filtered terms that are below 10 % (too
sporadic) and over 25 % (too common). The maximum support has been setup at 15 %
and level limit to 14. Examples of itemsets of words we mined for classes ACQ and
EARN are reported in Table 6.

12 Conclusions

In this paper we faced the problem of mining rare itemsets. Although, most of the
research focused on discovering frequent itemsets, the search for rare itemsets can
reveal valuable and unexpected knowledge. Most of the algorithms proposed in litera-
ture until now take inspiration from Apriori, the first and most noticeable algorithm for
searching for frequent itemsets. Because of this, most algorithms explore the lattice
of itemsets from singletons and/or limit the search to some specific classes of rare
itemests. However, rare itemsets are the largest, and placed on the top of the lattice
according to the convention followed by this paper.

We investigated the possibility of exploring the power set lattice from the top,
reaching the border of non-rare itemsets. This strategy has been employed in Rarity,

9 http://web.ist.utl.pt/~acardoso/datasets/
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a breadth-first level-wise lattice-traversal algorithm, which moves (top-down) from
larger to smaller itemsets and makes use of an effective way to compute itemset’s sup-
port count. Experimental results proved that this approach takes advantage of finding
all rare non-zero itemsets in less time than other solutions, at expenses of higher mem-
ory demand. This leads us to consider enhancements in order to apply the algorithm
to real datasets of practical interests.

In some circumstances it would be worth searching for itemsets that are rare but
occurring at least a minimal number of times. This is the case of rare-but-not-unique
itemsets. Pre-filtering has been suggested as means to filter out those itemsets below the
minimum threshold. This makes it possible to initialize the algorithm with a reduced
number of candidates. Other enhancements are aimed at over-coming memory limita-
tions by splitting the datasets in blocks. A parallel version has been outlined. However,
the number of rare itemsets can be extremely large, and this poses questions regarding
tractability of the problem of fully listing them for larger and sparser datasets.
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