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Abstract This paper addresses the anomaly detection problem in large-scale data
mining applications using residual subspace analysis. We are specifically concerned
with situations where the full data cannot be practically obtained due to physical
limitations such as low bandwidth, limited memory, storage, or computing power.
Motivated by the recent compressed sensing (CS) theory, we suggest a framework
wherein random projection can be used to obtained compressed data, addressing the
scalability challenge. Our theoretical contribution shows that the spectral property
of the CS data is approximately preserved under a such a projection and thus the
performance of spectral-based methods for anomaly detection is almost equivalent to
the case in which the raw data is completely available. Our second contribution is the
construction of the framework to use this result and detect anomalies in the compressed
data directly, thus circumventing the problems of data acquisition in large sensor
networks. We have conducted extensive experiments to detect anomalies in network
and surveillance applications on large datasets, including the benchmark PETS 2007
and 83 GB of real footage from three public train stations. Our results show that
our proposed method is scalable, and importantly, its performance is comparable to
conventional methods for anomaly detection when the complete data is available.
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1 Introduction

The problem of detecting anomalies in data streams captured by large-scale sensor
networks has received much interest (Aggarwal 2005; Chatzigiannakis et al. 2006;
Huang et al. 2007; Noto et al. 2011; Thottan and Ji 2003) over the past decade. As large-
scale networks become prevalent, there is an increasing need to develop approaches
that can address the challenges arising from large amounts of data. The problem
affects a wide range of applications as the data captured by sensor networks constitutes
multimedia content from the web, video from surveillance camera networks, satellite
imagery or typical network traffic.

Approaches to anomaly detection vary significantly in the scope of the detection,
the underlying statistical methods, as well as the assumption about the data. As there
are varying differences between the definition of anomalies in different settings, it is
usually difficult to directly compare the methods in the literature. Examples include
Bayesian methods (Janakiram et al. 2006; Jiang and Cooper 2010), SVM (Fujimaki
2008), example-based (Zhu et al. 2005) and spectral methods (Barnett and Lewis
1984), mixed-type data (Koufakou and Georgiopoulos 2010). A more complete survey
of anomaly detection is documented in (Chandola et al. 2009).

We restrict our attention to spectral methods for anomaly detection, in particular to
residual subspace analysis. This method was originally developed for control system
theory (Jackson and Mudholkar 1979; Jackson 1959, 1980). It decomposes data into
the principal subspace that characterizes the normal behavior of data, and the residual
subspace where anomalies are to be found. Under the null hypothesis that the data
is normal, the squared prediction error (SPE) which is the l2-norm of the residual
vector, follows a non-central Chi-square distribution. Hence, the rejection of the null
hypothesis can be based on whether the norm of the residual vector exceeds a certain
threshold corresponding to a desired false alarm rate. The threshold is computed based
on a statistical measure called Q-statistic (Jackson and Mudholkar 1979; Li et al. 2000;
Huang et al. 2007), which can be computed as a function of residual eigenvalues.
Recently, this method has found use in some network anomaly detection problems
(Lakhina et al. 2004).

Let xi ∈ R
N be a N -dimensional vector that represents the status of a data network

with N sensors at time i , and denote as X = [x1, . . . , xL ] the network data matrix.
We consider two cases:

Case 1: It is difficult to collect all rows of the data matrix X to a central monitor.
This could be because of limited bandwidth between the central node and the sensors
such that only M readings can be sent over the communications link, where typically
M � N . In other circumstances, many sensors of the network may be physically far
away from the central node and such direct communication with the central node may
be impossible. Furthermore, the central node may not have storage for all sensors due
to memory limitations. In this situation, it is desirable to summarize the status of the
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sensor network with an M-dimensional reading such that it meets both the bandwidth
and memory constraints.

Case 2: It is difficult to collect all columns of the data matrix X centrally. This
is equivalent to sub-sampling the temporal stream. This is useful in situations where
anomalies have to be found retrospectively. For example, the video data of a network
of surveillance cameras may be fully available at remote nodes, and when an incident
occurs, the authorities want to access the data centrally. It is however impossible to
transmit the entire temporal stream to a central location. In this case, the temporal
stream must be sub-sampled.

Inspired by the recent compressed sensing (CS) theory (Donoho 2006; Candes
and Tao 2006), we propose a new framework for the detection of anomalies in such
large-scale networks. The proposed framework consists of a strategy to handle large
data using CS/random projection and a traditional spectral-based anomaly detection
algorithm. We formalize the application of CS to effectively acquire the data in a com-
pressed way to conform to the physical constraints. This compressed data acquisition
permits either sub-sampling of the number of sensors, or the number of frames in a
temporal stream and is then used for anomaly detection. Though for detection purpose,
the acquisition part is essentially random projection (Vempala 2004), we note that the
CS theory certainly enables post anomaly detection tasks such as finding the origins
of detected anomalies. As the CS theory is more general, hereinafter we refer to the
compressed data using random projection as CS data.

To address the issues, we propose to obtain the compressed data and then perform
anomaly detection using residual subspace analysis on it. We show how such a linear
transformation can be implemented in some large-scale networks. Our theoretical
contributions are:

– First, we extend the theory of random projection/CS by establishing the relation
between the spectral properties of the original and compressed data. Specifically,
we show that the principal subspace is approximately preserved under the random
projection with high probability and we derive two-sided theoretical bounds. This
demonstrates that the intrinsic structure of the data is preserved under a random
projection, and yields the intuition that anomalies can be detected in the residual
subspace of the compressed data.

– Second, we derive the theoretical bounds on the false alarm rate with compressed
data relative to complete data. The result shows that the bound is directly related
to the dimension of random projection M .

We emphasize that the strategy using CS/random projection that we analyze in
this work is mostly suitable for spectral-based anomaly detection algorithms, which
mainly depend on the singular values of the data. However, this scalability strategy
might also be useful for other non-spectral anomaly detection algorithms. Such a study
to examine the possible benefit is certainly beyond the scope of current work.

We validate our method by considering both network and surveillance anomalies.
For the network data, we evaluate the proposed method on real traffic traces collected
from the Abilene network (http://www.abilene.iu.edu/) over four weeks and synthetic
network data. Our experiment verifies that on the real dataset, the proposed method
using compressed data achieves equivalent performance as with complete data at a

123

http://www.abilene.iu.edu/


148 D.-S. Pham et al.

detection rate of more than 94 %. For synthetic data, our experiments show that the
principal component analysis (PCA) technique performs even better in compressed
domain than original domain for high dimensional data. Importantly, the proposed
method requires less memory and storage and can be as much as 100 times faster than
the original spectral method using raw data.

For the surveillance data, we validate our method on both a benchmark dataset
(http://www.cvg.rdg.ac.uk/pets2007/data.html/) (64 MB) and real-world data col-
lected from multiple surveillance cameras from three train stations over a whole week,
resulting in over 83 GB of video. To the best of our knowledge, the latter is the largest
dataset mentioned in the video surveillance literature. It contains anomalous events
that were not artificially created and were ground-truthed in conjunction with the trans-
port authorities. The satisfactory performance of our method over different datasets
offers promise for deployment in real-world scenarios.1

The significance of our contributions is the demonstration that spectral-based meth-
ods can be applied to CS data, and that anomaly detection can be effectively performed
without an explicit reconstruction of the input signal. Thus, anomaly detection is equiv-
alent to the uncompressed case, but with the advantage of working with lower number
of measurements. Accordingly, the computational cost is also reduced.

In terms of novelty, the framework we present integrates anomaly detection and
random projection into a deployable paradigm to overcome the problem with partial
data, a reality in most real-world situations. Though it is intuitive from the approximate
geometry preservation of random projection that the eigenvalues should be “similar”,
establishing the precise bounds on eigenvalues and on the false alarm rates here is
new and significant. The closest theoretical work on the bounds of eigenvalues due
to random projection is given in Vempala (2004, Sect. 8.2). However, Lemma 8.4
in Vempala (2004) only provides the upper bound, whilst our result provides both
upper and lower bounds using the theory of invariant subspaces. Furthermore, their
result in Vempala (2004, Sect. 8.2) is not probabilistic, thus ignores the essence of
random projections. Some similar theoretical results to Vempala (2004) are presented
in Liu et al. (2006), but the application is concentrated on using random projection as a
privacy preserving mechanism rather than anomaly detection in large-scale data. This
work extends our preliminary investigation (Budhaditya et al. 2009) by theoretical
results with detailed proofs and a more extensive experimental evaluation to validate
our claims.

The paper is organized as follows. In Sec. 2 we discuss related prior work. Section
3 describes the problem in detail and provides some relevant background. Section
4 explains our proposed method and its analysis. Section 5 describes the data sets,
experimental setup and results while conclusions are presented in Sect. 6.

1 Though we only report these amounts of data in this paper, we note that the proposed method forms a
core of a more complex commercial system that has been successfully tested over thousand hours of video,
equivalent to hundred of Tetrabyes. For detail see http://www.icetana.com.au.
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2 Related work

There are mainly three major approaches to address scalability issues in large-scale
networks that are generally applicable to many problems.

The first approach is column sampling (Drineas et al. 2004, 2006), which is only
suitable for static database applications. In this approach, an empirical distribution
over the columns of X is constructed and a small number of columns of X are selected
based on sampling from the empirical distribution. Due to the nature of having the full
knowledge about the empirical distribution to do selective sampling, this approach
appears unsuitable for online applications.

The second approach is decentralization where nodes in the network actively make
decisions about communication and processing so as to reduce bandwidth consump-
tion. For example, Huang et al. (2007) propose a decentralization method for streaming
data in which the sensors only send information to the fusion point if the observed value
falls outside the normal range, which is a typically pre-defined window. If a sensor
does not send any data, the fusion point will assume a nominal value. The essence of
Huang et al. (2007) is an optimized trade-off between the pre-defined window length
(which implies the amount of reduction in communication overhead) and the changes
in the detection performance of the matching spectral method. However, there is still
a likelihood that the communication overhead exceeds the bandwidth and the fact that
the central node would need to store a data matrix of the same size as X.

The third approach is dimensionality reduction, where the data is transformed to
a (much) lower dimension. Within this approach, there are supervised methods that
require a complex optimization problem to be solved such as Yan et al. (2006). A
recent work (Giatrakos et al. 2010), which addresses a slightly different problem,
uses a local sensitive hashing scheme to reduce the dimensionality of wireless sensors
readings. Our proposed framework falls in the realm of unsupervised linear transfor-
mation, in particular that of random projection (Vempala 2004) (We note that from CS
theory, some deterministic linear transformation might work equivalently but such a
discussion is beyond the scope of this paper). This dimensionality reduction technique
exploits a special statistical property of high-dimensional data wherein the geometry
is approximately preserved under such transformation. Whilst the applications of ran-
dom projection, more generally CS, have been found in a wide range of domains, such
as preserving privacy (Liu et al. 2006) [see Vempala (2004) for a more comprehen-
sive list], to the best of our knowledge there is no work in its application to anomaly
detection, especially with residual subspace analysis.

3 Background

3.1 Residual subspace projection and anomaly detection

Let the information about a network be represented by a matrix X = [x1, x2, . . . , xL ]
where each data instance xi ∈ R

N . For notational simplicity, we assume the data matrix
has been centralized. If X is available, the residual method performs the eigenvalue
decomposition of the sample covariance matrix as:
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�x = (1/L)XXT = U�UT (1)

from which the K principal eigenvectors U corresponding to the largest K eigenvalues
can be found. The projection of any data instance x onto the residual subspace is given
as:

z = (I − UUT )x. (2)

In residual subspace analysis (Jackson and Mudholkar 1979), the error signal (z)
is assumed to be multivariate normally distributed and hence the SPE ‖z‖2

2 follows a
non-central Chi-square distribution under the null hypothesis that the data is normal.
Hence, rejection of the null hypothesis can be based on whether norm of the error
vector exceeds a certain threshold corresponding to a desired false alarm rate. The
threshold is called Q-statistic, and it is a function of non-principal eigenvalues in
residual subspace. For a significance level β, the Q-statistic is usually computed as:

Qβ = θ1

⎡
⎣cβ

√
2θ2h2

0

θ1
+ 1 + θ2h0(h0 − 1)

θ2
1

⎤
⎦

1
h0

, (3)

where h0 = 1− 2θ1θ3
3θ2

2
, θi = ∑N

j=K+1 λi
j for i = 1, 2, 3, cβ is the (1−β) percentile in

a standard normal distribution, and λ j , i = 1, . . . , M are the eigenvalues of �x. An
anomaly is detected when ‖z‖2

2 > Qβ . (see Fig. 1 for an illustration).
In practice, it is important to select a suitable value for K . Like most other spectral

methods, the general principle for selecting K is the smallest number of principal
components that capture most of the energy. For residual subspace methods, the selec-
tion of K is always a trade-off. Selecting small K makes the residual subspace large,
and hence can improve detection but may increase false positives. On the other hand,
selecting large K makes the residual subspace small, and hence reduces false positives
but may increase false negatives. In our work, we select K to capture about 90 % of
energy in the principal subspace.

3.2 From random projection to compressed sensing

It has been observed in the literature that though the dimension of the data may be
large, the intrinsic dimension which carries most information about the data is typically
much smaller. This has motivated a large number of works on dimensionality reduction.
They all aim at yielding compressed data that is easier to work with. In most cases,
this contains less noise than that with original data. A particular common class of
dimensionality reduction is linear transformation, wherein the compressed data y is
obtained through a linear transformation y = �x. Here � ∈ R

M×N effectively reduces
the dimension of the data from N to M and its columns are normalized to unit norm.
If the intrinsic dimension is K then obviously M ≥ K . In CS theory, suppose that x
is a K sparse vector, then a linear transformation � is characterized by a so-called
restricted isometry constant (RIC) δK , which satisfies
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Fig. 1 Anomaly detection with residual subspace analysis. Here the data samples x1 to x6 mostly align
with the principal subspace as their projection to the residual subspace, which is illustrated by a plane,
is small than a threshold. However, the projection of x7 onto the residual subspace is large, implying an
anomaly

(1 − δK )‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + δK )‖x‖2
2. (4)

These inequalities describe the approximate geometry preservation property of �.
Ideally, a good linear transformation corresponds to small δK . To achieve this, the
columns of � need to be as close to orthogonal as possible. Under CS theory, � does
not have to be a random matrix and in fact there are published works that construct �

deterministically. However, it is found that many classes of random matrices often have
small RIC and can be easily generated, such as Bernoulli random matrices, database
friendly random matrices, and Gaussian random matrices (Candes and Tao 2006;
Achlioptas 2001; Vempala 2004). It also follows from CS theory that the dimensions
of random projection is M = O(K log N ) � N for large N . This implies that by
using random projection, the compressed data could have a smaller dimension than
the original data without losing its geometrical property. Because of the non-adaptive
nature, such compression is suitable for large-scale problems [For further detail of
these random matrices, see Candes and Tao (2006), Achlioptas (2001), and Vempala
(2004)].
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Before proceeding, we note that the above geometry preserving projection holds
for data x that is sparse via some unitary transform, i.e. x = �α and that α is
K -sparse. In this case �� is effectively the linear projection. Because � is ran-
dom and � is unitary, the statistical property remains unchanged (this can be proved
easily). Secondly, though we only focus on anomaly detection in this work, the CS
theory states that the original data x can be reconstructed from the compressed data y
by solving the following optimization problem:

x̂ = arg min
x

‖y − �x‖2
2 + λ‖x‖1. (5)

Here λ is a regularization parameter, which controls the sparsity of the solution, and
is typically found by cross-validation techniques, the detail of which can be found
more in the CS literature. From an anomaly detection point of view, this implies that
post-processing tasks of anomaly detection, such as identification of anomalies might
be possible under CS theory. However, we leave this for future work. In what follows,
we focus on obtaining an equivalent random projection in large-scale networks by
borrowing some concepts from the CS literature.

4 Proposed framework

4.1 System setup

In the first step of the proposed framework, we obtain compressed data using random
projection. Mathematically speaking, we denote the complete data matrix as X ∈
R

N×L and the actual data matrix available for processing as Y ∈ R
N ′×L ′

after applying
random projection on a large network. The reduction in either N ′ or L ′ depends on
whether this linear compression is deployed for reducing the feature dimension or
time instances to meet the network constraints. We revisit the two cases considered
previously:

Case 1: Sensor sub-sampling: We seek a linear transformation on the data y = �x
where the random matrix � ∈ R

M×N has entries as random variables. There are some
known classes of random matrices suitable for large-scale networks. For example, in
the database friendly matrices (Achlioptas 2001) the entries can take values of either
0 with probability 2/3 or ±1 with probability 1/6. If all sensors have synchronized
clocks and the same random generator, a rule can be set up so that the sensors send
their pre-modulated reading with ±1 depending on the value of the random generator.
Alternatively, when the sensors cannot directly reach the central node, the random
gossip algorithm (Rabbat et al. 2006) can be applied to propagate the projection y
to the central node (see Fig. 2 for an illustration). The additional advantage over
the decentralization approach is that the central node can now perform the analysis
using the residual method on the compressed data y. We show both theoretically and
experimentally in subsequent sections that the performance of the detector is nearly
as optimal as if the whole data matrix X were available.

Case 2: Temporal stream frame sub-sampling: In this scheme, the operator can
request the server to generate random numbers having values ±1 and modulate the data
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Fig. 2 Sensor subsampling. Here the synchronized sensors effectively perform cross-network compressed
measurements via gossips, indicated by the red arrows. After a number of gossips, the final compressed
measurements will arrive at the center node (Color figure online)

with these random numbers, accumulating the values for L ′ different iterations where
L ′ � L (see Fig. 3 for an illustration). We show that by doing sub-sampling, limited
bandwidth and storage can be efficiently utilized to detect anomalies as successfully
as if the full data X is available.

In the second step, we perform anomaly detection using compressed data. Instead
of using X which is not available, we now apply the residual method on the compressed
data Y, i.e. compute its eigenvalues and hence obtain the Q-statistic to determine the
presence of an anomaly.

4.2 Theoretical analysis

With the following theoretical analysis, we aim at proving that doing anomaly detec-
tion with residual subspace analysis using compressed data obtained from random
projection is approximately equivalent to that using complete data. Our theoretical
analysis is based on relative performance to the complete data X. Even though this
complete data X is not practically available, a relative comparison can provide a guar-
antee on near optimal performance of any spectral-based detection method. To do
this, we first study the changes in the eigenvalues (spectral properties) reflected in the
compressed data as they constitute an important factor for detection as shown in (3).
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Fig. 3 Temporal subsampling. Here the data x1, . . . , x7 reside in a database. The data are ±1-randomly
modulated through a random generator, and the summation is taken over all data points to obtain temporally-
compressed data y1, . . .

The bounds on the eigenvalues of compressed data then allow us to study the bounds
on false alarm rates when the residual subspace method is applied to the compressed
data for anomaly detection.

4.2.1 Case 1: M readings from N sensors

Random projection is used to compress the columns of X from N to M and the its
relation with the compressed data is given by

yi = �xi , yi ∈ R
M , i = 1 . . . L (6)

Denote the eigenvalues of the complete data X as λ1, . . . , λN , the eigenvalues of
the compressed data Y as ξi , i = 1, . . . , M, K as the number of principal eigenvalues
in the complete data X, such that K < M � N . For simplicity, we assume that the
CS matrix is a random Gaussian matrix. Similar results can also be obtained for other
random matrices,
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Fig. 4 Illustration of Theorem 1. The top plot depicts the eigenvalue distribution of data in the original
domain, whilst the bottom one shows that of the compressed domain. Theorem 1 essentially quantifies the
variation of the distribution for the principal (largest) eigenvalues

Theorem 1 With a probability of at least 1 − δ, the changes in the eigenvalues are
bound by

|λi − ξi | ≤ 4
√

2λ1

⎛
⎝

√
K

M
+

√
2 ln 1

δ

M

⎞
⎠ (7)

for i = 1, . . . , K , where λ1 is the largest eigenvalue of �x.

The theorem is a direct consequence of the concentration property of Gaussian ensem-
bles and the proof is detailed in the Appendix.

Theorem 1 suggests that as the principal subspace spanned by X is approximately
preserved in the compressed domain with high probability, and the intrinsic structure
of the data in the original input domain is unchanged under random projection (see
Fig. 4 for an illustration).

We now discuss the implication of this result on anomaly detection in compressed
data. The detection of volume anomalies using the residual subspace method is entirely
based on the total power of the residuals, i.e. ‖z‖2, rather on the actual residual subspace
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itself as long as it remains noise-like, i.e. no salient spectral features. It can be easily
shown that when the random matrix � is normalized (each column to unit norm), the
total power is unchanged. Thus, a small variation in the principal subspace directly
translates to a small change in the total power of the residual subspace. It means
that as far as the statistic t = ‖z‖2 is concerned, its distribution will also experience
a small change when the compressed data is used. This intuitive argument can be
more formally stated by the following result, which forms the basis for our proposed
framework.

Theorem 2 If the residual method is applied to the compressed data, with a probability
of at least 1 − δ, the change in the false alarm rate is bounded by:

ΔF A ≤ O
(√

K

M
+

√
2 ln(1/δ)

M

)
. (8)

The proof is detailed in the Appendix.
We note that the result is based on a very rough estimate of the bound and its primary

goal is to justify the use of compressed data in anomaly detection in an asymptotic
sense. In other words, if we assume N → ∞ whilst K is kept fixed, then the deviation
in the false alarm should be small if K/M is small. The constant in (12) is shown in
(80) and for non-asymptotic values this might be large and thus the theoretical bound
might be loose for the non-asymptotic case. This is partly because the bound is derived
with minimal assumption on the distributional statistics of the data. It appears that if
we can make further assumptions on the distribution of the eigenvalues then a tighter
result might be obtained. This is discussed in the Appendix. However, as demonstrated
in Sect. 5, the actual deviation in many realistic numerical studies is much smaller.

4.2.2 Case 2: sub-sampling the number of data instances

In the previous case, we used random projection to reduce the number of readings in
data streams. Effectively, this reduces the number of rows in the data matrix X, which is
useful when N is large. In a similar manner, we now show that the proposed framework
can be applied to the case when the number of instances is large. Effectively, we use
random projection to compress each L-dimensional row of the complete data matrix
X to a M-dimensional row of the matrix Y using a random matrix � ∈ R

M×L , where
M < L . Mathematically, the relation between Y and X can be written as:

YT = �XT . (9)

In this case, N ′ = N and L ′ = M . We now show that the results for the previous case
are applicable in this case. To see this, we start from the basic result in linear algebra
that:

λi (XXT ) = λi (XT X), i = 1, . . . , min(N , L). (10)
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This implies that the changes in the principal eigenvalues of YYT relative to XXT is
the same as the changes in eigenvalues of YT Y relative to XT X and as YT and XT

are related in a similar manner as shown in (9), the previous result applies. The only
minor difference is that N should be replaced by L as the reduction is perform on the
rows of X. The changes in the principal eigenvalues are bounded by:

|λi − ξi | ≤ 4
√

2λ1

⎛
⎝

√
K

M
+

√
2 ln 1

δ

M

⎞
⎠ , (11)

whilst the changes in the false alarm rate is bounded by:

ΔF A ≤ O
(√

K

M
+

√
2 ln(1/δ)

M

)
. (12)

with probability of at least 1 − δ.

4.2.3 Complexity analysis

If the complete data X were available, the covariance matrix formation and eigenvalue
decomposition requires a computational power of O(N 3) and memory storage of
O(N 2) in the case of PCA. In a similar fashion, the complexity for SVD computation
is O(L N 2 + L2 N ). In contrast, the complexities for the proposed framework (both
computational and storage) are only O(M3) and O(M2) respectively, where M =
O(K log N ). As previously discussed, when the intrinsic dimension of the complete
data is small relative to its size, significant reduction in both storage and complexity
is achieved with the proposed method. We also note that if the data is sparse in the
original domain, then sparse-SVD or PCA may be directly applicable. However, it
is much more likely for the data to be sparse only through an (unknown) orthogonal
transformation. Since data is generally dense in the original domain, sparse SVD is
generally not applicable.

4.3 Justification of theoretical bounds

In what follows we examine whether the theoretical bounds derived previously are
tight enough so that they can be a general guidance for practical purposes. In other
words, are the bounds approximately at the order of the real deviation?

As the theoretical bound on the false alarm is naturally dependent on the bound of
the eigenvalues, we restrict the discussion to the bounds in Theorem 1. In this case, the
Theorem states that such a deviation of the eigenvalues should not exceed 4

√
2λ1Δ

where Δ is dependent on M−0.5 as

Δ =
√

K + √
2 ln(1/δ)√
M

. (13)
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For a 90 % confidence, the term
√

2 ln(1/δ) is 2.1460, which is small. Thus, the
dependence is approximately

√
K/M . This dependence provides the implications for

the application of CS/random projection

– The bounds only make sense if the intrinsic dimension K is sufficiently small
compared with the reduced dimension M

– Compression-error trade-off. For a fixed intrinsic dimension K , better compression
would be achieved with a smaller M , however it also results in a larger possible
deviation. On the contrary, error is made small when letting M/N → 1, but this
defeats the goal of compression. This mean in practice a value of M such that
K � M � N would provide a natural trade-off. In the CS theory, such a value
of M is typically chosen as M = O(K ln(N )), which appears to be suitable for
the CS recovery problem. In large-scale network problem, there are two possible
scenarios:

– The designer is given a maximum affordable M : in that case, the bounds serve
as a rough estimate of the possible deviation due to using compressed data

– The designer is given a tolerance on the deviation: in this case, the bounds serve
as a rough estimate of the compression required to attain accuracy within the
allowable tolerance.

The theoretical bounds are derived on the assumption of distinct principal components.
In other words, the principal K eigenvalues are assume sufficiently larger than the
residual eigenvalues. There are two practical issues that we emphasize:

– How do we determine K , especially since we are unable to work on the original
data if it is too large. The theoretical results indicates that for sufficiently large
M , one may determine K using the compressed data instead. It means that one
can start with the maximum affordable value of M and analyze the compressed
covariance matrix to determine K .

– In practice, the eigenvalues may follow a decay distribution in many cases. When
this happens, there is no clear choice of K . As with the well-known PCA in
statistics, one typically chooses a cut-off point at which at least, for example, 90 %
energy is retained. This is what we use in our work and works rather well.

We now turn the discussion to the tightness of the eigenvalue deviation bound. Upon
examining the proof, we found that the bounds are reasonably tight and it is difficult
to improve any further. Our bounds depend on the concentration result of Gaussian
random matrices which state that for a particular Gaussian random matrix �K of size
M × K where each entry follows N (0, 1/

√
M) the singular values are bounded by

1±Δ with a probability of at least 1− δ, where Δ is defined as (13). This implies that
the singular values of �T

K �K − I K are bounded by 1±2Δ. How tight is this theoretical
bound in the literature? To do so, we study the case where K = 5, N = 104, δ = 0.1
and vary M . The theoretical and actual values of ‖�T

K �K − I K ‖2 are shown in Fig. 5.
From this plot, we observe that the theoretical bound appears to be reasonable, though
it is slightly conservative. It is about twice the actual value on average. Thus, when
using this several times, we expect the bounds on the eigenvalues are also a few more
times larger than the actual values. To verify this, we consider the same setting and
create a covariance matrix whose five principal eigenvalues are 100. Then we directly
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Fig. 5 Theoretical and actual values of ‖�T
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compute the average eigenvalues of the compressed covariance matrix obtained from
random projection whilst M is varied.

Fig. 6 shows the maximum average deviation of the compressed eigenvalues, whilst
Fig. 7 shows the deviation of all principal eigenvalues at a particular M = N/2. The
plots indicate that the theoretical bounds are about 4–5 times larger than the actual one,
but this is as expected. Obviously, if the bound on spectral norm of Gaussian random
matrix is tighter, our theoretical bound will be also tighter. However, it is noted that
we have used the best bounds available for Gaussian random matrices in the literature
to date.

Whilst improving the bounds might be of future interest, the theoretical results
importantly give us a justification to the scalable framework that deals with large-
scale network data using random projection/CS via spectral methods. In Sect. 5, we
shall illustrate this more clearly.

4.4 Discussion

From the above cases, one may also apply sub-sampling in both dimensions if they
are both large. In this case, it is natural to assert that the bound of the change in the
false alarm is the sum of the bounds derived in the above theorems. Thus, the bound
is unavoidably increased for trade-off both in the feature and instances dimensions.
Nevertheless, it is only linear to the reductions.
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We note that our proposed method is rather general, and has not yet taken into
account the specific structure of a particular network. Without specialization, it is
more suited to the abnormality detection in general centralized networks. It is of
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interest to extend the general theory here to the case of particular network structure.
For example, in the case of sensor networks where the sensors are organized in clusters
or tree (Giatrakos et al. 2010), it might be more desirable to do in-network processing
to further reduce the bandwidth. We thus leave the specialization as future extension
of the developed theory.

Finally, even though it is intuitive that random projection approximately preserves
the geometry, and thus one should expect the eigenvalues to follow suit, our theoret-
ical results are the first in the literature to provide two-sided bounds on all principal
eigenvalues, and thus this is a significant contribution to the literature. In comparison,
we note the limitation of some previous work:

– The text-book result (Vempala 2004) only provides a non-probabilistic one-sided
bound for the eigenvalues. Here, the bound is expressed in terms of the ε deviation
due to random projection, but this value is too difficult to compute for a given
projection matrix.

– The early KDD paper (Bingham and Mannila 2001) only gives practical demon-
stration that PCA works with random projection, but no theoretical justification is
given as thoroughly as what we present here.

– The recent work in (Fowler 2009) studies only the first eigenvalue, but with a deter-
ministic orthogonal projection matrix. Here, we use random Gaussian matrices that
are only approximately orthogonal, and that we provide probabilistic bounds for
all principal eigenvalues.

Moreover, we also derive the bound on the deviation of the false alarm, which is
specifically tailored to the anomaly detection problem.

5 Experimental results

We evaluate our framework using both real-world and synthetic datasets experiments
from two application areas: network traffic analysis and video surveillance analysis.
We evaluate the performance of our framework for the sensor sub-sampling case with
network data while the temporal frame sub-sampling case performance is studied using
video data.

In all cases, we compare the proposed anomaly detection using the proposed strategy
(random projection) with the other relevant alternatives including the full data (Lakhina
et al. 2004) and the decentralization approach of Huang et al. (2007). We emphasize
the following:

– As this work is concentrated on scalability strategy rather than outlier detection
algorithms, we compare different strategies for the same outlier detection algo-
rithm using residual subspace analysis to verify the scalability solution analyzed in
this work. As mentioned earlier in the introduction, the analyzed random projection
strategy might also work with other non-spectral algorithms, but it is beyond the
scope of current work. Furthermore, some other non-spectral algorithms might
be application specific, which requires additional assumptions and settings and
comparing them directly is almost impossible. Thus, we restrict out attention to
residual subspace analysis as the outlier detection algorithm for consistency.
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– Our main goal is to demonstrate that in a wide range of circumstances in data min-
ing, the proposed framework is indeed useful. In other words, the trade-off between
compression and deviation can be satisfactorily achieved. Thus, the compression
parameter M does not mean as a tuning hyperparameter, but should be viewed
as a trade-off parameter in the context. Also, for consistency, we determine the
parameter K by using the 90 % principal energy as the guiding principle wherever
we do not know K a priori.

5.1 Sensor subsampling results

The anomaly detection capability of the proposed framework is evaluated on a real-
work benchmark data set Abilene (http://www.abilene.iu.edu/) and a synthetic dataset
specifically designed to simulate a large network.

5.1.1 Experiment on the Abilene data

Abilene dataset. The Abilene dataset (http://www.abilene.iu.edu/) is a well-known
dataset for network research, and captured from a real-work backbone network. Its
first use for volume anomaly detection is documented in Lakhina et al. (2004). Here,
we are primarily interested in anomalies resulting from abnormal changes of the net-
work traffic. The changes arise because of events such as abnormal DNS transac-
tion, network equipment failure, flash crowd occupancies, distributed denial-of-service
(DDoS) attacks (Lakhina et al. 2004). Importantly, these changes cannot be detected
from a simple thresholding due to the varying characteristics of normal traffic during
a day. In Figs. 17a and 8, we plot the total network traffic for a period with and without
volume anomalies (highlighted in red). As can be seen, volume anomalies are often
hidden under normal network traffic. The preliminary investigation in Lakhina et al.
(2004) reveals that the spectral approach is capable of detecting these anomalies. Our
purpose in this experiment is to extend (Lakhina et al. 2004) to the case where the data
is not complete and verify the proposed method.

Data collection. In the Abilene network, the traffic flow is the amount of traffic
flowing in between each pair of ingress and egress nodes in the network. It is also
known as an origin–destination (OD) flow, which is the traffic that enters the backbone
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Fig. 8 Typical network link data: Normal (left) and Abnormal (right). Horizontal axis denotes the aggre-
gated window index, vertical axis denotes the �1-norm of the vector of total traffic (Color figure online)
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at the origin point of presence (PoP) and exits at destination PoP (Lakhina et al. 2004).
The Abilene dataset consists of the readings collected from 41 network links over a
period of several months. The OD trace contains the measurement from each link for
each 10-s interval. We use a subset of the data which covers a period of 2 weeks (1,008
measurements per week). Most of the data reflects normal network conditions with
only six real anomalies (verified manually) in the original dataset. In addition, we inject
45 synthetic anomalies of different magnitudes following the procedure described in
Lakhina et al. (2004). We use the first week data for training and the second week data
for testing.

Improving random projection. As discussed earlier, the random projection is rep-
resented by a matrix � from which the compressed data is obtained via y = �x.
A good random projection matrix should have columns as close to orthogonal as pos-
sible (in other words small RIC) so that the geometry of data in high-dimensional
space is preserved better in the low-dimensional space. In other words, the mutual
coherence of the overcomplete system � = [φ1, . . . ,φN ], which is defined as:

μ(�) = max
i �= j

|〈φ j ,φk〉|, (14)

must be as small as possible. For a real-valued matrix �, the lower bound on the
mutual coherence is known as the Welch bound (Strohmer and Heath 2003):

μ(�) ≥ √
(N − M)/(M(N − 1)). (15)

For many classes of random matrices, the mutual coherence can be small with high
probability. In cases where the problem size is not very large, such as in this Abilen
dataset with N is only 41, a random Gaussian matrix might not have good approxi-
mate orthogonality property, which necessitates improvement in practice. To further
improve the random projection matrix, we start with a random Gaussian matrix and
then apply the recently proposed algorithm by Elad (2007). This algorithm exploits
the fact that the mutual coherence of �, with each column normalized to unit norm, is
the maximum magnitude of the off-diagonal elements of the Gram matrix G = �T �,
where the Gram matrix has rank M . Hence, by iteratively shrinking the entries of
the Gram matrix, forcing its rank to M , and taking its square root, a smaller mutual
coherence for � with a specified rank M is achieved. Though the algorithm could be
sensitive to the parameter setting and its convergence is yet to be studied, we found
that in practice this method improves the mutual coherence considerably. In practice,
the actual signal x might not be sparse in the basis I but in some �. In this case,
μ(��) needs to be small instead. If �o is the optimal sensing matrix for the basis
I, then the optimal matrix � for the basis � is found from � = �o�

−1, assuming
that � is invertible. For the Abilene network data, N = 41, M = 16, K = 6 and the
Welch bound of the sensing matrix is 0.1976. Using Elad’s algorithm (Elad 2007), we
achieve a mutual coherence of 0.36 from the initial coherence of 0.55.

Anomaly detection. Residual subspace analysis is applied using different strategies:
complete, compressed, and decentralized data. Figures 9 and 10 show the similarity
between the principal eigenvalues and the residual vectors using these strategies. We

123



164 D.-S. Pham et al.

100 200 300 400 500 600 700 800 900 1000

2

4

6

8

x 10
16 Test Data in Residual Subspace (using Complete Input Data)

100 200 300 400 500 600 700 800 900 1000

2

4

6

8
x 10

16 Test Data in Residual Subspace (using Compressed Data)

100 200 300 400 500 600 700 800 900 1000

2

4

6

8

x 10
16 Test Data in Residual Subspace (using Decentralized Input Data)

Fig. 9 Residual vector plots for Abilene data

then conduct experiments to obtain the receiver operating characteristics (ROC) curve
which is shown in Fig. 11. We notice that the performance is very similar with all
three strategies.

The performance on the compressed data is very close to that on the uncompressed
and decentralized strategies. To further quantify this, we also compare the ROC curves
using (i) the area under the ROC curve (AUC) and (ii) equal error rate (EER). An
effective classifier should achieve an AUC close to 1 and small ERR. From the ROC
curves, we determine that the AUC/EER values are 0.95/0.09, 0.96/0.11, and 0.95/0.10
for the original, compressed, and decentralized data respectively.

5.1.2 Experiment on synthetic network traffic data

Synthetic data generation. We generate synthetic network traffic data following the
procedure in Lakhina et al. (2004). In particular, we consider a network where the
number of local monitors N ranges from 500 to 2,000 and the number of time instances
L = 2,000. The network traffic signal is modeled as x as x = s + n where x ∈ R

N . It
consists of two parts: s characterizes the long-term structure in the data and n represents
the local temporal variation. For the long-term network traffic signal, s = �sαs . Here,
�s is the basis for the intrinsic network data. Due to its daily periodic characteristics,
we select the discrete cosine transform (DCT) matrix as the basis. The number of
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principal components is K = 4. We simply model the noise as zero-mean Gaussian
with variance σ 2 = 0.01. To simulate abnormal network conditions, we inject 70
anomalies of different magnitudes.

Anomaly detection. When specifying the dimension M for random projection, we
need to consider the trade-off between performance and error rates. Selecting a smaller
value of M reduces the computational complexity at the cost of a potentially lower
performance due to the increase in the mutual coherence of the random projection
matrix. In the CS literature, the value of O(K log N ) has been frequently suggested.
We set N = 2,000, vary M between 100 to 1,000 and measure the EER and compu-
tational time. The results are shown in Fig. 12a, b. Selecting M in the range 250–300
gives moderately low error rates at a large reduction in computational time. If M is too
low, the error rate becomes larger. If M is too large, the reduction in error rate is not
significant whilst the computational time increases somewhat quadratically. There-
fore, we determine that suitable values of M are 118, 280, and 450 when number
of nodes are 500, 1000 and 2000 respectively. The random projection matrices are
improved from random Gaussian with a final mutual coherence of 0.37, 0.35 and 0.20
respectively.

With the specified random projection matrix, we then examine the behavior of
the residual vectors using complete and compressed data. Figs. 13 and 14 demon-
strate the result. Once again, we observe that the patterns of the eigenvalue distri-
bution and the residual vectors are similar in both complete and compressed data
cases. We then explore the detection performance by comparing residual subspace
analysis using compressed data with that using complete data (Lakhina et al. 2004),
and the decentralized version presented in Huang et al. (2007). The ROC curves
for these three cases are shown in Fig. 15. In terms of AUC, the detection with the
compressed data is approximately equivalent (even slightly better than) to the other
cases.

Next, Fig. 16 compares these three strategies in terms of communication, computa-
tion and storage overhead. It shows that by using compressed data compared to other
two strategies we can reduce the communication bandwidth by 45–60 %, computa-
tional cost by 80–90 %, and storage requirement 45–70 % as compared with other two
strategies.
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Fig. 13 Residual vector plots for synthetic data
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Finally, we vary the size of the network from 100 to 2,000 and the result is shown
in Table 1. The AUC and EER indicators are as competitive as those using complete
data, with a better computational performance, it is from 6 to 1,000 times faster.

5.2 Temporal frame subsampling

5.2.1 Problem background and datasets

Next we evaluate the performance of our framework when dealing with temporal
sampling (Sect. 4.2.2) and determine the suitability of our work in addressing a
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Table 1 Anomaly detection performance on synthetic data

Metric N 100 500 1,000 2,000

Time (s) Complete 0.023 0.430 3.364 20.932

Compressed 0.004 0.023 0.097 0.203

Decentralized 0.021 0.425 3.360 20.90

AUC Complete 0.993 0.996 0.982 0.986

Compressed 0.997 0.991 0.984 0.979

Decentralized 0.995 0.994 0.981 0.98

EER Complete 0.060 0.080 0.090 0.090

Compressed 0.060 0.080 0.020 0.020

Decentralized 0.060 0.080 0.090 0.10

real-world surveillance problem faced of a local public transport authority. The local
train network monitoring system consists of over 3,000 cameras operating 24 h a day.
Constant human operator supervision of video is impossible. The problem of detecting
anomalies in the video is challenging because (1) most anomalous patterns occur in
the presence of normal patterns (a majority of people behave normally) and (2) there
is no predefined description of anomalous behavior—the anomaly changes with the
context of the scene (a person walking at normal pace on the rail tracks is considered
as anomalous whereas the same behavior would be normal if it occurs on the station
platform).

We use two video surveillance datasets: one provided by the local public transport
authority and the PETS 2007 benchmark dataset (http://www.cvg.rdg.ac.uk/pets2007/
data.html/). The PETS 2007 data was used to demonstrate the effectiveness of our work
on an established dataset as the video sequences are freely available from the PETS
archive (http://www.cvg.rdg.ac.uk/pets2007/data.html/). Both video datasets are pre-
processed to extract motion features. In both cases, the ground truth data is available.
Training is done offline and testing is performed on the incoming data streams.

5.2.2 Video data pre-processing and feature extraction

We use optical flow (Lucas and Kanade 1981) to define the motion in the scene. The
advantage of such low-features, collected in a grid superimposed on the images, is
that they provide good information about motion whilst alleviating the need for object
tracking (Adam et al. 2008). The limitation of this type of feature is that it is limited
to motion anomalies. In many practical situations, this is sufficient.

5.2.3 Motion-based representation

Each image is divided into grid-based regions and the motion statistics of each cell
in an image is computed over a pre-defined time bin. The motion distribution of each
cell is simply calculated as the number of optic flow vectors in that cell. Figure 17a, b
shows the amalgamated motion flows over 300 frames for 2 sequences from the data

123

http://www.cvg.rdg.ac.uk/pets2007/data.html/
http://www.cvg.rdg.ac.uk/pets2007/data.html/
http://www.cvg.rdg.ac.uk/pets2007/data.html/


170 D.-S. Pham et al.

0 50 100 150 200 250 300
−0.5

0

0.5

1

During a normal period

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

During a period with anomalies

(a)

(b)

Fig. 17 Amalgamated optical flows over 1 min interval. Horizontal axis denotes aggregated window index,
vertical axis denotes normalized �2-norm of the aggregated motion count vector (Color figure online)

collected from surveillance cameras in a train station. In Fig. 17a, we plot the volume
of the motion flows, which is the squared norm of the vector of motion statistics from
all cells. Each point shows the motion statistics amalgamated over 1 min. Generally,
the characteristics of the normal motion volume is “high” if there is a train in the
station, otherwise it remains “low” giving rise to periodic rise and fall.

The majority of past relevant work (Brand et al. 1997; Medioni et al. 2001; Phung
et al. 2005) has treated the whole scene as either “normal” or “abnormal”, but these
examples suggest that a framework which can detect abnormality in presence of the
normal behavior is needed. Our intuition is to capture the structure of the overall
normal pattern in the principal subspace. We now give some analytical arguments
to justify the proposed method. In the subway example, passengers would normally
follow the “walk” path to enter and exit. The normal activities induce a distribution
of motion vectors over the cells in the subway. Importantly, this distribution also
signifies the relationship between the cells. For example, some cells tend to be highly
correlated due to the average flow of the traffic through the cells. This dependence
gives us important information about the structural pattern of normal events. Thus,
if, for example, a person or a group crosses the subway tunnel in an unusual manner,
the observed motion distribution will carry totally new structural information. This
is the basis for our abnormality detection technique. Similarly, a loitering person is
likely to lead to the observation that the cells covering the loitering trajectory become
more correlated than normal. If this structural information is known, we can separate
the normal activity by projecting the observed motion pattern onto the space induced
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Fig. 18 Schematic description of the proposed method

by the structure, so that abnormal activities can be easily investigated in the residual
subspace.

Localized bag-of-visual-words: We are motivated by Niebles et al. (2008) to use
bag-of-visual words for representing the optic flow count in the cells. Niebles et al.
(2008) derive visual words from the human activity in the spatio-temporal domain.
Using a grid-based approach we extract optic flow counts for each cell. We consider
each cell similar to a term and motion statistics (i.e. number of motion flows) of
each cell as equivalent to word frequency. Hence, the number of terms is equal to
the number cells in the image. We construct the feature-frame matrix in an analogous
manner to the term-document matrix. Denote the number of cells as N and the motion
statistics of cell i at frame l as xi (l). The vector of motion statistics is defined as
xl = [x1(l), . . . , xN (l)]T . For a sequence of L frames, the feature-frame matrix is
defined as X = [x1, . . . , xL ]. In document analysis, the semantic variables (topics)
govern the probabilistic occurrence of the terms. Similarly in our case, the structural
variables of the normal behavior govern the distribution of motion vectors over cells.

For detection, we project the compressed data onto the compressed residual sub-
space and use the Q-statistic as described in Sect. 3.1. Figure 18 shows the schematic
description of the proposed method.

5.2.4 Results on the PETS2007 benchmark video data

The PETS2007 (http://www.cvg.rdg.ac.uk/pets2007/data.html/) dataset consists of
video footage obtained from a multiple camera surveillance system. For the PETS
datasets processing, the time granularity for aggregating the motion count was set to
100 frames. For training, we use the S0 sequences which consisted of 4,500 frames
captured at a resolution of 720 × 576. The sequences containing no unusual events
and no externally injected “actors”, and the crowd density typically (depending on the
camera) is medium.

The first PETS2007 test sequence used was S3 captured by camera 1. The sequence
consists of 2,970 frames and the anomaly was a theft event. It involved two actors
walking normally towards the middle of the scene where after a brief stop, they proceed
to pick a bag and leave the area. As this event takes place, there is a significant flow
of people in the top part of the scene. Hence, for our approach to produce the correct
results, it would need to detect the anomaly and correctly highlight the time interval
over which the anomalous event take place. As the sequence is short, PCA was applied
directly on the features extracted from the training sequence and the eigenvalues are
plotted in Fig. 19. We chose the largest three eigenvalues (i.e. K = 3) for the principal
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Fig. 19 The magnitude of the eigenvalues computed from matrix X for XTrain (sequence S0, camera 1)
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Fig. 20 Plots of the residual vectors over train data (subfigure i: sequence S0, camera 1) and test data
(subfigure ii: sequence S3, camera 1) from the PETS 2007 dataset. Horizontal axis denotes aggregated
window index, vertical axis denote squares of �2-norm

subspace, while the rest of the eigenvectors span the residual subspace. The threshold
Qβ was computed according to the 1 − β confidence level and we chose β = 0.005.
Figure 20i, ii shows the projection of each column of XTrain and XTest into the residual
subspace and the horizontal line denotes the threshold Qβ . The theft event is clearly
highlighted in the residual subspace as the threshold Qβ is exceeded. It should be noted
that the plot for the residual domain shows two peaks, which correspond to events
which are 50 frames apart and are thus considered to be part of the same anomalous
event. A number of corresponding frames within the area where the anomaly takes
place are shown in Fig. 21.

Similar results were obtained for sequences S6 from camera 1 (anomaly involves
more than three actors) and sequence S3 from camera 2. To test the robustness of
the approach in different environmental conditions, we use sequence S3 captured by
camera 3 as a test set (with the sequence S0 from camera 3 used for training). Figure 22
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Fig. 21 The detected “anomalous” activity in sequence 3 from camera 1 (PETS2007 dataset)
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Fig. 22 Plots of the residual vectors over train data (subfigure i: sequence S0, camera 3) and test data
(subfigure ii: sequence S3, camera 3) from the PETS 2007 dataset. Horizontal axis denotes aggregated
window index, vertical axis denote squares of �2-norm

show the residual vectors of the training and testing sets. Despite the different lighting
and camera angles, our approach detects the anomalous event successfully. The results
from the four sequences are summarized in the top four entries of Table 2.

5.2.5 Results on public transport authority dataset

The third set of experiments use video footage from four different train stations. The
combined set consists of surveillance video data collected over a week. Importantly,
it contains several types of anomalous events that were not artificially created and
were ground-truthed in conjunction with the transport authorities. In the previous
experiment on the PETS dataset, we have shown the effectiveness of volume anomaly
detection framework. Here, we demonstrate the scalability of our proposed approach
for this type of data.
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Table 2 Summary of anomaly detection results: temporal subsampling case

DataSets No. of frames
used for
training

No. of frames
used for
testing

Real
anomalies

Detected
anomalies

False
positives

False
negatives

PETS (CAM 1 SEQ 3) 4,500 2,971 1 1 0 0

PETS (CAM 1 SEQ 6) 4,500 2,735 1 1 0 0

PETS (CAM 2 SEQ 3) 4,500 2,971 1 1 1 0

PETS (CAM 3 SEQ 3) 4,500 2,972 1 1 0 0

PTA Dataset (tunnel) 90,000 90,000 3 2 0 1

PTA Dataset (stairs) 100,000 36,770 2 2 0 0

PTA Dataset—rail
track (Station1
Cam 1)

6,234 10,504 2 2 0 0

PTA Dataset—rail
track (Station1
Cam 2 (far view)

6,363 10,479 2 2 3 0

PTA Dataset—rail
track (Station2
Cam 1 (far view)

450,239 660,002 3 3 5 0

PTA
Dataset—soft
drink vending
machine

529,410 1,311,890 2 2 1 0

For the first evaluation, we used the video data captured from the corridors of the
train station in the peak hours of the day (7 a.m. to 11 a.m.) over a week. The 25 fps
video data at resolution 570 × 720 is collected by two different cameras at the entry
and exit points of the train station. For the training set XTrain we used video from five
consecutive days where each day has 4 h continuous video and day 6th (XTest1) and
7th (XTest2) are used for testing only. For training, the original number of aggregated
time bins is L = 7,200, the number of grid cells is N = 100, and the window length
is 10s.

As mentioned Sect. 4.2.2, we have sub-sampled the temporal stream data, so that
the number of snapshots is reduced to M when the length of the snapshots (L) is large
and M � L . The challenge was to select the value of M for an optimal performance.
Figure 23 shows the plots for the false positive rate (FPR) and the rate of anomaly
detection (both were normalized to 1), when M varies from 100 to 300 for the above
mentioned datasets. When M is in the range of 190–230, the FPR is at a minimum
and detection rate is maximized. Hence, we have used M = 220 for this experiment.

We first examine the behavior of the eigenvalue distribution and the residual vectors
using different strategies to verify the theoretical contributions. Figure 24 shows the
results for complete, compressed, and decentralized data. We select K = 4 to cover
90 % energy in the principal subspace respectively. The threshold Qβ was computed in
a similar way to the previous experiment with the desired false alarm being β = 0.005.
The residual plots are similar in all three cases (Fig. 25). We detect two real anomalies
out of three from the test data with the detected anomalies corresponding to (1) an adult
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Fig. 23 Plots for FPR and the rate of anomaly detection, when M varies from 100 to 300 for the above
mentioned full datasets
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Fig. 24 Eigenvalue distribution plot using PTA dataset with different strategies
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Fig. 25 Squared residual plot using PTA dataset with different strategies

rubbing a small child against the wall and (2) a group of people loitering (Fig. 26).
The missing anomaly was due to the fact that it take place far away from the camera
and the motion features are unreliable. We repeat the same experiment with the second
test set (XTest2) and detect the anomalous event “group loitering” (shown in Fig. 26)
which occurred during “off-peak” hours.

For the second evaluation, we use five video sequences captured from cameras
covering the stairs (one sequence), an automated vending machine (one sequence)
and the rail tracks from two different stations (three sequences). Both the stairs and
vending machine sequences are long (8 and 16 h respectively). In the case of the rail
tracks data, two of the train and test sequences are short, while the third sequence is
again very long (18 h). In all cases the video was captured at 25 frames per second
with a resolution of 570 × 720. For the training set XTrain2, we use a total of 27 h of
continuous video (without any anomaly) and 55 h of video for testing (XTest3—some
of the video which involve zoom action was removed as we restrict the evaluation to
static views).
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Fig. 26 Anomaly detection in public surveillance data: leaning on the wall (left), hanging out in groups
(center) and group loitering (right)

For XTrain2, the parameters were L = 36, 294 and N = 100 while the M value
is set to 220 for the long video sequences. For the two shorter video sequences, the
value of M is set to 50. For all five sequence, the threshold Qβ is computed in a
similar way to the previous experiment with β = 0.005. A total of 14 anomalies are
present in the video streams and our approach is able to identify 13 anomalies correctly
while producing one false negative and eight false positives. One false positive is due
to difficulty of differentiating between a person breaking into the vending machine
(who opened the machine with a cordless drill) and the maintenance person (who also
opened the vending machine with a drill). The false negative is due to the movement
in the camera far field.

6 Conclusions

We have presented a framework for detecting anomalies in data streams captured by
large-scale sensor networks. The work addresses a key problem of dealing with incom-
plete data because of the physical constraints imposed in large-scale networks. The
framework further establishes the usefulness of random projection/CS as an effective
solution for anomaly detection for both the case when the number of sensors or the
number of data instances exceeds the communication bandwidth in a sensor network.
The work exploits the fact that the intrinsic dimension of the data in typical sensor
network applications is generally small relative to the raw dimension and the fact
that CS is capable of capturing most information with few measurements. We have
shown that spectral methods used for anomaly detection can be directly applied to
the compressed data with guarantees on performance and we have demonstrated the
effectiveness of the framework using both real and synthetic datasets.

Proof of Theorem 1

First, we can assume without loss of generality that the covariance matrix in the original
domain �x is diagonal. Indeed, suppose that the its eigenvalue decomposition is

�x = ���T , (16)
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then the covariance matrix in the compressed domain is

�y = ��x�
T

= ����T �T

= (��) � (��)T . (17)

But as � is an unitary matrix due to the definition of the eigenvalue decomposition, it
follows that �� is also a random Gaussian matrix with the same statistical properties
as � due to Lemma 1. Thus, in the study of the eigenvalues in the compressed domain,
we can safely assume � = I to simplify the maths. This means we can express

�x =
[

�K 0
0 �R

]
(18)

where �K = diag(λ1, . . . , λK ) is the diagonal of K principal eigenvalues in the origi-
nal domain, where λ1 ≥ λ2 · · · ≥ λK , and �R is the diagonal sub-matrix of the residual
eigenvalues. Assume that the residual eigenvalues are sufficiently smaller compared
with the principal eigenvalues, and denote the first K columns of the projection matrix
� as �K , then the compressed covariance matrix can be written as

�y = �K �K �T
K . (19)

We now shall show that �y also has a matching principal subspace in a sense that
the K principal eigenvalues of �y, which we denote by ξ1, . . . , ξK are close to the K
principal eigenvalues of �x, or equivalently �K , while the rest is small. To do so we
define the intermediate covariance matrix

�z = �T
K �y�K

= �T
K �K �K �T

K �K . (20)

Denote as κ1, κ2, . . . , κK the eigenvalues of �z. Our strategy is first to show that
|ξi − κi |, i = 1, . . . , K are small, and |λi − κi |, i = 1, . . . , K are also small. Then we
deduce the bound on |ξi − λi |, i = 1, . . . , K .

The mathematical foundation of our proof consists of

– The concentration bound of the spectral norm of Gaussian random matrices [see
Geman (1980) and Candes et al. (2006) for example]. It follows from the theory
that for the Gaussian random matrix �K of size M × K where each entry follows
N (0, 1/

√
M), the extreme singular values satisfy for some t > 0:

Pr(σmax(�K )) < 1 + √
K/M + t) ≥ 1 − e−M t2

2 , (21)

Pr(σmin(�K )) > 1 − √
K/M − t) ≥ 1 − e−M t2

2 . (22)
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Let δ = e−N t2
2 or equivalently t = √

2 ln(1/δ)/N , then the following hold with a
probability of at least 1 − δ,

σmax(�K ) ≤ 1 + √
K/M + √

2 ln(1/δ)/M, (23)

σmin(�K ) ≥ 1 − √
K/M − √

2 ln(1/δ)/M . (24)

Denote as Δ = √
K/M + √

2 ln(1/δ)/M , then the concentration bound implies
that the Gaussian random matrix �K is approximately unitary in a sense that the
singular values are close to 1 when K � M , with a probability of at least 1 − δ

1 − Δ ≤ σmin(�K ) ≤ σmax(�K ) ≤ 1 + Δ. (25)

It is also useful to note that when K � M , the variation Δ is sufficiently small
and thus we can deduce

1 − 2Δ ≤ σmin(�
T
K �K ) ≤ σmax(�

T
K �K ) ≤ 1 + 2Δ. (26)

– The approximate invariant subspace Theorem 8.1.11 in Golub Loan (1996). This
theorem governs the bound on the singular values of a covariance matrix when
projected from high to low using an approximate unitary transformation. Suppose
�1 ∈ R

n×n is a symmetric matrix, and T ∈ R
n×k is an approximate unitary

transformation matrix. Then the k largest singular values of �2 = T T �1T are
close to those of �1 by the following

|σi (�2) − σi (�1)| ≤ √
2

(‖�1T − T�2‖2

σk(T )
+ ‖T T T − Ik‖2‖�1‖2

)
, (27)

where ‖ • ‖2 denotes the matrix norm.

With the above results, we are now ready to obtain the bounds as follows.
For � y and� z = �T

K � y�K :

|ξi − κi | ≤ √
2

(‖� y�K − �K � z‖2

σK (�K )
+ ‖�T

K �K − I K ‖2‖� y‖2

)
. (28)
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Using (25) and (25), we bound each term with a probability of at least 1− δ as follows

‖� y�K − �K � z‖2 = ‖�K �K �T
K �K − �K �T

K � y�K ‖2 (29)

= ‖�K �K �T
K �K − �K �T

K �K �K �T
K �K ‖2 (30)

= ‖�K (I K − �T
K �K )�K �T

K �K ‖2 (31)

≤ ‖�K ‖2‖(I K − �T
K �K )‖2‖�K ‖2‖�T

K �K ‖2 (32)

≤ (1 + Δ) × 2Δ × λ1 × (1 + 2Δ) ≈ 2Δλ1, (33)

‖�T
K �K − I K ‖2 ≤ 2 Δ, (34)

‖� y‖2 = ‖�K �K �T
K ‖2 (35)

≤ ‖�K ‖2‖�K ‖2‖�T
K ‖2 (36)

≤ (1 + Δ) × λ1 × (1 + Δ) ≈ (1 + 2Δ)λ1, (37)

‖σK (�K )‖2 ≥ 1 − Δ. (38)

Using these bounds, it follows that with a probability of at least 1 − δ

|ξi − κi | ≤ √
2

(
2Δλ1

1 − Δ
+ 2Δλ1

)
≈ 4

√
2Δλ1, i = 1, 2, . . . , K . (39)

For �x = �K and� z = �T
K �K �K �T

K �K : Let T = �T
K �K then

|λi − κi | ≤ √
2

(‖�K T − T� z‖2

σK (T )
+ ‖T T T − IK ‖2‖�K ‖2

)
. (40)

Again, we bound each term with a probability of at least 1 − δ as follows (note that
TT = T)

‖�K T − T� z‖2 = ‖�K T − T T�K T‖2 (41)

= ‖(IK − TT T)�K T‖2 (42)

≤ ‖(IK − TT T)‖2‖�K ‖2‖T‖2 (43)

≤ 4Δ × λ1 × (1 + 2Δ) ≈ 4Δλ1, (44)

‖σK (T )‖2 ≥ 1 − 2Δ, (45)

‖T T T − IK ‖2 ≤ 4Δ. (46)

Using these bounds, it follows that with a probability of at least 1 − δ

|λi − κi | ≤ √
2

(
4Δλ1

1 − 2Δ
+ 4Δλ1

)
≈ 8

√
2Δλ1, i = 1, 2, . . . , K . (47)

Thus, from (39) and (47) we can deduce the bound on |λi − ξi |, i = 1, . . . , K . We
note that a triangle inequality immediately gives

|λi − ξi | ≤ |λi − κi | + |ξi − κi |. (48)
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However, such bound can be still improved. This is because we note that if we take
�K as a reference, then the singular values of �y are also the singular values of

�T
K

[
�K 0
0 0

]
�K . Thus, every time we perform an approximate orthogonal projection

by �K , the singular values are moved further away from those of the original matrix.
Also, due to the construction of �z = �T

K �y�K = �T
K �K �K �T

K �K , we conclude
that the singular values of �z even move further away from those of �K . This can be
obviously seen with the largest singular values, where we have shown that

ξ1 ≤ (1 + 2Δ)λ1, (49)

κ1 ≤ (1 + 2Δ)ξ1 ≤ (1 + 4Δ)λ1. (50)

Thus, every time an approximate orthogonal transformation is applied, the bound on
the singular values becomes larger. This implies that the tightest bound on the singular
values of |λi − ξi | can be obtained by the difference between the bound on |λi − κi |
and |ξi − κi |. It follows that with a probability of at least 1 − δ

|λi − ξi | ≤ 4
√

2λ1

(√
K

M
+

√
2 ln(1/δ)

M

)
i = 1, 2, . . . , K . (51)

Proof of Theorem 2 (bound on false alarm rate)

The residual statistics has normal distribution and the false alarm rate depends strongly
on the tail. The previous proof has shown that the principal eigenvalues experience
a small change under a random projection. Next, we show that there is also a small
deviation in the false alarm rate. Our strategy is based on perturbation analysis of the
tail of the distribution of the decision statistic. Figure 27 illustrates the tail behavior in
the original and compressed domains. Here, Z X

β denotes the normalized statistic in the
original domain. The false alarm for original data is the area under the distribution curve
from zX

β to ∞. Due to compression, suppose that the normalized statistic associated

with the compressed data moves by zX
β ± δzX

β . Thus, the change in the false alarm can
be calculated as the change of the tail area, which gives

Δ Pr(F A) = N (zx
β)δzx

β. (52)

In what follows, we use the results of the previous proof to evaluate such changes in
the false alarm. We note in the above expression, N (zx

β) is the value of the normal
distribution at zx

β and is assumed known for a given desired false alarm β. For example,
with a desired false alarm of 1 %, this is approximately 0.0267. Then it remains to
compute the change δzx

β due to random projection to obtain compressed data.
We start with the result in Sect. 3 of Jackson and Mudholkar (1979), which states

that the residual statistics Q has a normal distribution as follows

(
Q

θ1

)h0

= Z ∼ N (μ, σ ) , (53)
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Fig. 27 Tail behavior for complete data and compressed data. The solid curve represents the tail of the
distribution of the normalized statistic when complete data is used. The two dashed curved represent two
possible tails of the distribution of the normalized statistic but when compressed data is used instead. The
shaded areas represent the change in the false alarm in the two cases

where

μ = 1 + θ2h0(h0 − 1)

θ2
1

, σ 2 = 2θ2h2
0

θ2
1

(54)

and θ1 = ∑N
i=K+1 λi , θ2 = ∑N

i=K+1 λ2
i , θ3 = ∑N

i=K+1 λ3
i , h0 = 1 − 2θ1θ3

3θ2
2

and K

being the number of principal components.
Denote as zx

β, μx , σx and zy
β, μy, σy the detection threshold, mean, and standard

deviation of the respected distributions in the original and compressed domain, and
Cβ as the 1 − β percentile of the normal distribution with an desired false alarm β.
Here,

μx = 1 + θ x
2 hx

0(hx
0 − 1)

(θ x
1 )2 , μy = 1 + θ

y
2 hy

0(hy
0 − 1)

(θ
y
1 )2

,

σx = 2θ x
2 (hx

0)2

(θ x
1 )2 , σy = 2θ

y
2 (hy

0)2

(θ
y
1 )2

(55)

Then it follows that

zx
β − μx

σx
= zy

β − μy

σy
= Cβ. (56)
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By writing Z x
β − Z y

β = (μx −μy)+Cβ(σx −σy) and applying the triangle inequality,
we obtain

δzx
β = |Z x

β − Z y
β | ≤ |(μx − μy)| + Cβ |(σx − σy)|. (57)

We next bound each term in (57). Once again, we use perturbation analysis by con-
sidering the functions

fμ(θ1, θ2, θ3) = 1 + θ2h0(h0 − 1)

θ2
1

= 1 − θ2

θ2
1

(
1 − 2θ1θ3

3θ2
2

)
2θ1θ3

3θ2
2

(58)

= 1 − 2θ3

3θ1θ2
+ 4θ2

3

9θ3
2

, (59)

fσ (θ1, θ2, θ3) =
√

2θ2h0

θ1
=

√
2θ2

θ1
− 2

√
2θ3

3θ
3/2
2

. (60)

These functions allow the computation of the changes in the mean and standard devi-
ation. For example,

|(μx − μy)| ≈
3∑

i=1

∣∣∣∣
∂ fμ(θ1, θ2, θ3)

∂θi

∣∣∣∣ |θ x
i − θ

y
i |. (61)

We note that the partial derivatives are straightforward, so it remains to derive |θ x
i −θ

y
i |.

To do so, we use the result in Jackson and Mudholkar (1979) that

θ x
i = tr(�x)

i −
K∑

j=1

(λx
j )

i i = 1, 2, 3. (62)

θ
y
i = tr(�y)

i −
K∑

j=1

(ξ
y
j )

i i = 1, 2, 3. (63)

From (62) and (63), we obtain

δ1 = θ x
1 − θ

y
1 = (tr(�x) − tr(�y)) +

K∑
j=1

((λx
j ) − (ξ

y
j )). (64)

We now attempt to bound each RHS term of (64). First, for the trace terms we recall
that

tr(�x) − tr(�y) = tr(�x) − tr(��x�
T ) (65)
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From the previous remark, we can assume �x is a diagonal matrix. �x =
diag(λ1, . . . , λN ). Let φi be the i th column of the matrix �T , then

tr(��x�
T) =

M∑
i=1

⎛
⎝

N∑
j=1

φ2
i jλ j

⎞
⎠ =

N∑
j=1

[
λ j

(
M∑

i=1

φ2
i j

)]
(66)

As each column of the matrix � is normalized to unity then,

tr(��x�
T) = tr(�x). (67)

Thus, the trace term in (64) is zero. Meanwhile, it follows from (51) with a probability
of at least 1 − δ that

|θ x
1 − θ

y
1 | ≤ K 4

√
2Δλ1, (68)

where Δ = √
K/M + √

2 ln(1/δ)/M is a small number. Similarly, for the second-
and third-order terms

|θ x
2 − θ

y
2 | ≤ K 4

√
2 × 2Δλ2

1 = 8
√

2Kλ2
1Δ, (69)

|θ x
3 − θ

y
3 | ≤ K 4

√
2 × 3Δλ3

1 = 12
√

2Kλ3
1Δ. (70)

Thus, we can bound the variation in the mean as follows

|μx − μy | ≤ 4
√

2Kλ1

(∣∣∣∣
∂ fμ
∂θ1

∣∣∣∣ + 2

∣∣∣∣
∂ fμ
∂θ2

∣∣∣∣ λ1 + 3

∣∣∣∣
∂ fμ
∂θ3

∣∣∣∣ λ2
1

)
Δ, (71)

where the partial derivatives are

∂ fμ
∂θ1

= 2θ3

3θ2
1 θ2

(72)

∂ fμ
∂θ2

= 2θ3

3θ1θ
2
2

− 4θ2
3

3θ4
2

(73)

∂ fμ
∂θ3

= 2

3θ1θ2
− 8θ3

9θ3
2

(74)

Similarly,

|σx − σy | ≤ 4
√

2Kλ1

(∣∣∣∣
∂ fσ
∂θ1

∣∣∣∣ + 2

∣∣∣∣
∂ fσ
∂θ2

∣∣∣∣ λ1 + 3

∣∣∣∣
∂ fσ
∂θ3

∣∣∣∣ λ2
1

)
Δ. (75)
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where the partial derivatives are

∂ fσ
∂θ1

= −
√

2θ2

θ2
1

(76)

∂ fσ
∂θ2

= 1

θ1
√

2θ2
+

√
2θ3

θ
5/2
2

(77)

∂ fσ
∂θ3

= −2
√

2

θ
3/2
2

. (78)

As θi , Cβ, K are constants when we study the bound on the change in the false alarm
as a function of M , all the derivatives are constant. The above results indicate that the
change in the false alarm depends linearly on Δ, which implies with a probability of
at least 1 − δ:

Δ Pr(F A) ≤ C

(√
K

M
+

√
2 ln(1/δ)

M

)
, (79)

where the constant C is

C = N (zx
β) × 4

√
2Kλ1

(∣∣∣∣
∂ fμ
∂θ1

∣∣∣∣ + 2

∣∣∣∣
∂ fμ
∂θ2

∣∣∣∣ λ1 + 3

∣∣∣∣
∂ fμ
∂θ3

∣∣∣∣ λ2
1

+Cβ

∣∣∣∣
∂ fσ
∂θ1

∣∣∣∣ + 2Cβ

∣∣∣∣
∂ fσ
∂θ2

∣∣∣∣ λ1 + 3Cβ

∣∣∣∣
∂ fσ
∂θ3

∣∣∣∣ λ2
1

)

= N (zx
β) × 4

√
2Kλ1

(
2θ3

3θ2
1 θ2

+ 2

∣∣∣∣∣
2θ3

3θ1θ
2
2

− 4θ2
3

3θ4
2

∣∣∣∣∣ λ1 + 3

∣∣∣∣∣
2

3θ1θ2
− 8θ3

9θ3
2

∣∣∣∣∣ λ
2
1

+Cβ

∣∣∣∣∣
√

2θ2

θ2
1

∣∣∣∣∣ + 2Cβ

∣∣∣∣∣
1

θ1
√

2θ2
+

√
2θ3

θ
5/2
2

∣∣∣∣∣ λ1 + 3Cβ

∣∣∣∣∣
2
√

2

θ
3/2
2

∣∣∣∣∣ λ
2
1

)
,

(80)

where the following quantities are as defined previously

– N (zx
β) is the value of the normal distribution at zx

β for a given desired false alarm
rate β.

– λ1, λ2, . . . , λN are the N eigenvalues of the data covariance matrix, and θi , i =
1, 2, 3 are defined as

θ1 =
N∑

i=K+1

λi , θ2 =
N∑

i=K+1

λ2
i , θ3 =

N∑
i=K+1

λ3
i . (81)

– Cβ is the 1 − β percentile of the normal distribution.
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We note that the bound derived might not be tight because the applications in (69)
and (70) are very rough. We show that tighter bounds can be obtained if we can make
the following assumptions

– All principal eigenvalues are the same and all residual eigenvalues are the same.
Furthermore, we assume that λ1 = λ2 = · · · = λK = 1 (because scaling the data
does not change the result) and λK+1 = · · · λN = σ 2

X .
– The energy is concentrated on the principal subspace such that Kλ1 = ρ(N −

K )σ 2. Here, ρ is the ratio of the principal energy to the residual energy. For
example, with 80 % energy in the principal subspace, we have ρ = 4. We assume
that ρ � 1.

Denote as σ 2
X the residual eigenvalue of the complete data, and σ 2

Y the residual eigen-
value of the compressed data. It follows by definition of ρ that K = ρ(N − K )σ 2

X .
Thus σ 2

X = K
Nρ

. We next obtain a bound on σ 2
Y . To do so, we rely on (68) which yields

|(N − K )σ 2
X − (M − K )σ 2

Y | ≤ K 4
√

2Δ, (82)

where Δ is as defined in the proof of Theorem 1. Under the assumption that K � M
and K � N , we can approximate this as |Nσ 2

X − Mσ 2
Y | ≤ K 4

√
2Δ, from which we

deduce the bound on σ 2
Y as

K

M
(1 − 4

√
2Δρ) ≤ σ 2

Y ≤ K

M
(1 + 4

√
2Δρ). (83)

This allows us to derive better bounds on |θ X
2 − θY

2 | and |θ X
3 − θY

3 |. In particular,

|θ X
2 − θY

2 | = |(N − K )σ 4
X − (M − K )σ 4

Y | (84)

≈ |Nσ 4
X − Mσ 4

Y | (85)

≤ max

{∣∣∣∣
K 2

Nρ2 − K 2

Mρ2 (1 ± 4
√

2Δρ)2
∣∣∣∣
}

, (86)

|θ X
3 − θY

3 | = |(N − K )σ 6
X − (M − K )σ 6

Y | (87)

≈ |Nσ 6
X − Mσ 6

Y | (88)

≤ max

{∣∣∣∣
K 3

N 2ρ3 − K 3

M2ρ3 (1 ± 4
√

2Δρ)3
∣∣∣∣
}

. (89)

This yields a better probabilistic bound as

Δ Pr(F A) ≤ N (zx
β)

((
2θ3

3θ2
1 θ2

+
√

2θ2

θ2
1

)
K 4

√
2Δ

+
(∣∣∣∣∣

2θ3

3θ1θ
2
2

− 4θ2
3

3θ4
2

∣∣∣∣∣ +
∣∣∣∣∣

1

θ1
√

2θ2
+

√
2θ3

θ
5/2
2

∣∣∣∣∣

)

× max

{∣∣∣∣
K 2

Nρ2 − K 2

Mρ2 (1 ± 4
√

2Δρ)2
∣∣∣∣
}
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Fig. 28 Theoretical vs actual false alarm rate deviation using compressed data

+
(∣∣∣∣∣

2

3θ1θ2
− 8θ3

9θ3
2

∣∣∣∣∣ +
∣∣∣∣∣
2
√

2

θ
3/2
2

∣∣∣∣∣

)
max

{∣∣∣∣
K 3

N 2ρ3 − K 3

M2ρ3 (1 ± 4
√

2Δρ)3
∣∣∣∣
})

.

(90)

Unfortunately, this expression is a rather complex function of M and it is not easy
to see its dependency on M as clear as the previous bound. However, we note that
it is actually decreasing. In Fig. 28 we plot the actual average deviation in the false
alarm rates over 10 runs for a synthetic case where ρ = 4 (80 % principal energy),
N = 2,000, and desired false alarm rate of 1 %. We note the following the dependency
of the theoretical bound gets tighter as M increases, and best if M ≈ N .

Preservation of Gaussianity under unitary transformation

The following lemma may appear in a standard statistical text. For completeness, the
result and its proof is given to support the claim in the main theorem.

Lemma 1 Suppose that � ∈ R
M×N is an iid random matrix whose entries follow

a zero-mean Gaussian distribution with variance σ 2. Let U ∈ R
N×N be a unitary

matrix. Then �′ = �U is also an iid Gaussian random matrix with the same variance
σ 2.

First we prove that E[φ′
i j ] = E[φi j ] = 0 and Var[φ′

i j ] = σ 2. We start from φ′
i j =∑n

k=1 φikuk j . Thus E[φ′
i j ] = ∑N

k=1 E[φik]ukj = 0, whilst due to iid assumption
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Var[φ′
i j ] =

N∑
k=1

Var[φik]ukj =
N∑

k=1

σ 2u2
k j = σ 2

n∑
k=1

u2
k j = σ 2. (91)

Next, we prove the iid in a similar way, i.e.

E[φ′
i jφmn] = E

[
N∑

k=1

φikuk j

N∑
k′=1

φmk′uk′n

]
(92)

=
N∑

k=1

N∑
k′=1

E[φmk′φik]uk′nuk j (93)

= 0. (94)
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