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Abstract A matrix M is said to be k-anonymous if for each row r in M there are
at least k − 1 other rows in M which are identical to r . The NP-hard k-Anonymity
problem asks, given an n × m-matrix M over a fixed alphabet and an integer s > 0,
whether M can be made k-anonymous by suppressing (blanking out) at most s entries.
Complementing previous work, we introduce two new “data-driven” parameteriza-
tions for k-Anonymity—the number tin of different input rows and the number tout
of different output rows—both modeling aspects of data homogeneity. We show that
k-Anonymity is fixed-parameter tractable for the parameter tin, and that it is NP-
hard even for tout = 2 and alphabet size four. Notably, our fixed-parameter tracta-
bility result implies that k-Anonymity can be solved in linear time when tin is a
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constant. Our computational hardness results also extend to the related privacy prob-
lems p-Sensitivity and �-Diversity, while our fixed-parameter tractability results
extend to p-Sensitivity and the usage of domain generalization hierarchies, where
the entries are replaced by more general data instead of being completely suppressed.

Keywords k-Anonymity · p-Sensitivity · �-Diversity · Domain generalization
hierarchies ·Matrix modification problems · Parameterized algorithmics ·
Fixed-parameter tractability · NP-hardness

1 Introduction

Assume that data about n individuals are represented by length-m vectors consisting
of attribute values. In other words, assume that our input is an n × m data matrix
with entries from some (potentially large) alphabet �. If all vectors (that is, rows) are
identical, then we have full homogeneity and thus full anonymity of all individuals.
Relaxing full anonymity to k-anonymity (requiring that every vector occurs at least
k times), in this work we investigate how the degree of (in)homogeneity (measured by
the number of different vectors) both with respect to the input data matrix as well as
the corresponding anonymized output data matrix influences the computational com-
plexity of the NP-hard problem of making sets of individuals k-anonymous. Moreover,
we extend our investigations to further combinatorial data anonymization problems
including the concepts of p-sensitivity and �-diversity.

Samarati and Sweeney (1998), Samarati (2001), and Sweeney (2002b) devised the
notion of k-anonymity to better quantify the degree of anonymity in sanitized data.
This notion formalizes the intuition that entities who have identical sets of attributes
cannot be distinguished from one another. For a positive integer k we say that a matrix
M is k-anonymous if, for each row r in M , there are at least k − 1 other rows in M
which are identical to r . Thus k-anonymity provides a clear and simple combina-
torial model for sanitizing data: choose a value of k which would satisfy the rele-
vant privacy requirements, and then try to modify—“at minimum cost”—the matrix
in such a way that it becomes k-anonymous. The corresponding decision problem
k-Anonymity asks, additionally given an upper bound s for the number of suppres-
sions allowed, whether a matrix can be made k-anonymous by suppressing (blanking
out) at most s entries. While k-Anonymity is our central data anonymization problem,
our results also extend to several more restrictive anonymization problems,1 includ-
ing p-Sensitivity (Truta and Vinay 2006) and �-Diversity (Machanavajjhala et al.
2007).

Motivation. The increased use of technology brings with it various non-obvious
threats to personal privacy. For example, location data from tracking devices—such
as Global Positioning System (GPS) devices used in public transport systems—
or communication devices—such as mobile phones—can be used by an adversary
in space or time-correlated inference attacks to deduce private information about

1 See Sect. 2 for formal definitions.

123



Effect of homogeneity on the computational complexity 67

individuals. Another—seemingly unlikely—source of breach of privacy lies in the
search logs of web search engines, which are sometimes released as a valuable
aid for research on information retrieval. Yet other, perhaps more obvious, sources
of private information are medical data or the “relationship graphs” of social net-
works. The protection of privacy is widely recognized as a human right, and at
the same time there are large economic and scientific incentives for analyzing data
sets which could potentially reveal private information. To be able to do this with-
out harming privacy, k-Anonymity and its variants have been proposed as a possi-
ble approach to addressing privacy concerns arising in all these scenarios (Campan
and Truta 2009; Gedik and Liu 2008; Gkoulalas-Divanis et al. 2010; Gruteser and
Grunwald 2003; Monreale et al. 2010; Navarro-Arribas et al. 2012; Zhou and Pei
2011).2

We focus on a better understanding of the computational complexity and on tracta-
ble special cases of combinatorial data privacy problems; see Machanavajjhala et al.
(2007) and Sweeney (2002b) for discussions on the pros and cons of these models
in terms of privacy vs preservation of meaningful data. In particular, note that with
“differential privacy” (cleverly adding some random noise) a “statistical model” has
become very popular as well (Dwork 2011; Fung et al. 2010); we do not study this
here. However, k-Anonymity and its variants are very natural combinatorial prob-
lems (with potential applications beyond data privacy) that are easy to interpret with
respect to performed data modifications, and—for instance—in the case of “one-time
anonymization”, are obviously valuable for the sake of providing simple models that
do not introduce noise.

Important Variants of k-Anonymity. While the k-Anonymity problem is described
in terms of the operation of suppressing—blanking out—data entries, this level of
obfuscation is sometimes not required or desirable. Sweeney (2002a) introduced the
notion of domain generalization and domain generalization hierarchies (DGH) as
a generalization of—and an alternative to—suppression for achieving k-anonymous
datasets. The operation of generalization involves replacing a data entry with a less
specific element. For instance, the precise age of a person might be replaced with an
age range which includes the given age. The new value, while still being “correct” for
the person, is not as precise as the previous one was. This idea is extended to the notion
of domain generalization hierarchies, which can be thought of as increasingly more
general ranges of data. The operation of suppressing a data element is thus a special
case of generalization. The DGH-k-Anonymity problem asks for a minimal—under
a certain natural ordering—generalization of the input matrix which is k-anonymous.
Observe that the k-Anonymity problem is a special case of DGH-k-Anonymity
where the only generalization maps each data element to the “�”-symbol; thus DGH-
k-Anonymity is computationally at least as hard as k-Anonymity; we extend some
of our positive results for k-Anonymity to DGH-k-Anonymity.

2 While it is beyond the scope of this work to fully address all the potential weaknesses of k-Anonymity,
we mention for the sake of completeness that k-Anonymity is known to be vulnerable against the attack
models “attribute linkage”, “table linkage”, and “probabilistic attack” (Fung et al. 2010).
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The attributes used in the well-known linking attack method by Sweeney (2002b)
for re-identification were gender, ZIP code and birth date. She called such attributes
containing publicly available data quasi-identifiers. Published datasets, such as med-
ical data, consist of these quasi-identifiers and private information (e.g. disease). To
protect against a linking attack, it is sufficient to make the quasi-identifiers k-anon-
ymous. Hence, the input matrix M for k-Anonymity contains only quasi-identifi-
ers. This leads to a major drawback of k-Anonymity, namely the possibility that
the private information may end up being highly uniform in the output. For exam-
ple, an attacker cannot determine the row corresponding to one individual but using
the linking attack method of Sweeney (2000) he may identify k rows from which
exactly one corresponds to the individual. If the private information stored in these k
rows is equal, then the attacker does not know the row corresponding to the individ-
ual but the private information belonging to the individual is revealed. To prevent
this, different concepts were introduced, e.g. p-Sensitivity (Truta and Vinay 2006),
�-Diversity (Machanavajjhala et al. 2007), and t-Closeness (Li et al. 2007). We will
partially extend our findings for k-Anonymity to p-Sensitivity and �-Diversity.

p-Sensitivity is an enhancement to k-Anonymity in the sense that there is the
additional requirement that in the output matrix each maximal set of rows that are iden-
tical in the quasi-identifiers contains at least p different private values. �-Diversity
is an enhancement requiring that each such set of rows contains at least � “well rep-
resented” private values. The combinatorial realization of “well represented” that we
use is to require that in each such set of rows the relative frequency of each private
value is at most 1/� (Wong et al. 2006; Xiao and Tao 2006).

Computational Complexity. k-Anonymity and many related problems are NP-hard
(Meyerson and Williams 2004), even when the input matrix is highly restricted. Con-
cerning polynomial-time approximability, k-Anonymity is APX-hard when k = 3,
even when the alphabet size is just two (Bonizzoni et al. 2011a); it is MAX SNP-hard
when k = 7, even when the number of columns in the input dataset is just three (Chakar-
avarthy et al. 2010); and it is MAX SNP-hard when k = 3, even when the number of
columns in the input dataset is 27 (Blocki and Williams 2010). Moreover, it is APX-
hard when k = 3, even when the input matrix has only three columns (Bonizzoni
et al. 2011b). On the positive side, many polynomial-time approximation algorithms
have been developed for the problem and its variants. Meyerson and Williams (2004)
devised an approximation algorithm with the approximation ratio O(k ln k) which
runs in O(n2k) time, and another one which runs in time polynomial in both n and
k and has the ratio O(k ln n). Gionis and Tassa (2009) came up with an algorithm
which runs in O(n2k) time and has the approximation ratio O(ln k). This was later
improved upon by Park and Shim (2007) and by Kenig and Tassa (2012), who devised
approximation algorithms with the same ratio and the same worst-case running time,
but which run much faster on large classes of inputs.

Parameterized Complexity. Confronted with this computational hardness, we
study aspects of the parameterized (or multivariate) computational complexity of
k-Anonymity and its variants as initiated by Evans et al. (2009). The central question
here is how naturally occurring parameters influence computational complexity. For
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example, consider the following parameterization. Is k-Anonymity polynomial-time
solvable for constant values of k? While 2-Anonymity is polynomial-time solvable
(Blocki and Williams 2010), the general answer is no since already 3-Anonymity is
NP-hard (Meyerson and Williams 2004), even on binary data sets (Bonizzoni et al.
2011a). Thus, k alone does not yield a promising parameterization.

k-Anonymity has a number of meaningful parameterizations beyond k, including
the number of rows n, the alphabet size |�|, the number of columns m, and, in the
spirit of multivariate algorithmics (Fellows 2009; Niedermeier 2010), various combi-
nations of single parameters. Here the arity of the alphabet � may range from binary
(such as gender) to unbounded (such as net worth). For instance, answering an open
question of Evans et al. (2009), Bonizzoni et al. (2011b) showed that k-Anonymity is
fixed-parameter tractable with respect to the combined parameter (m, |�|), whereas
there is no hope for fixed-parameter tractability with respect to the single parameters m
and |�| (Evans et al. 2009). We emphasize that Bonizzoni et al. (2011b) made use
of the fact that the value |�|m is an upper bound on the number of different input
rows, thus implicitly exploiting a very rough upper bound on input homogeneity. In
this work, we refine this view by asking how the “degree of homogeneity” of the input
matrix influences the complexity of k-Anonymity. In other words, is k-Anonymity
fixed-parameter tractable for the parameter “number of different input rows”? In a sim-
ilar vein, we also study the effect of the degree of homogeneity of the output matrix on
the complexity of k-Anonymity. Table 1, which extends similar tables due to Evans
et al. (2009) and Bonizzoni et al. (2011b), summarizes known and new results for
k-Anonymity.

Our Contributions. We introduce the “homogeneity parameters” the number tin of
different input rows and the number tout of different output rows, for studying the
computational complexity of k-Anonymity and related problems. In many practi-
cal instances, we expect tin � n and tin � |�|m . The latter relation is “obvious”
since |�|m just refers to having all possible input rows over the alphabet �. The rela-
tion tin � n, however, may also be justified in natural settings. First, assume that
the data are already k′-anonymous and shall be made k-anonymous with k > k′.
This may be due stronger safety requirements. Then we have tin ≤ n/k′. Second,
the parameter tin can be viewed as a “distance from triviality-parameterization” in
the sense that if tin is small then the input is almost k-anonymous and hopefully
needs not many modifications to be made k-anonymous. This may be particularly
true when the matrix entries represent ranges (such as age range 40–50) and are not
too fine-grained (such as specifying the exact birth day). Third, we study the adult
data set (Frank and Asuncion 2010): Preparing it as described in Machanavajjhala
et al. (2007), it consists of n = 30162 rows and tin = 18755 input row types, that is,
tin ≈ 0.6 · n. Furthermore, the data set has at least one column with 72 different val-
ues, its alphabet size is |�| = 72, and it has eight columns. Hence, for this dataset we
have |�|m = 728 ≈ 7.2×1014, and so tin � |�|m . Indeed, tin is a “data-driven parame-
terization” in the sense that one can efficiently measure in advance the instance-specific
value of tin, whereas |�|m denotes the maximum possible degree of inhomogeneity.

As to parameterization by output homogeneity tout, we basically show that this
leads to computational intractability even when tout = 2 and the alphabet size
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Table 1 The parameterized complexity of k-Anonymity

– k s k, s

– NP-harda NP-harda W[1]-hardb W[1]-hardb

|�| NP-hardc NP-hardc ? ?

m NP-hardd NP-hardd FPTe FPTe

n FPTe FPTe FPTe FPTe

|�|, m FPTb FPTe FPTe FPTe

|�|, n FPTe FPTe FPTe FPTe

tin FPT FPT FPT FPT

tout NP-hard ? FPT FPT

|�|, tout NP-hard ? FPT FPT

Parameters

k Degree of anonymity

s Number of suppressions

|�| Alphabet size

m Number of columns

n Number of rows

tin Number of different input rows

tout Number of different output rows

FPT stands for “fixed-parameter tractability” and W[1]-hardness means presumable fixed-parameter intrac-
tability, see Sect. 2 for definitions. Results proved in this paper are in bold. The column and row entries
represent parameters. For instance, the entry in row “–” and column “s” refers to the (parameterized)
complexity for the single parameter s whereas the entry in row “m” and column “s” refers to the (param-
eterized) complexity for the combined parameter (m, s). An entry “NP-hard” means that k-Anonymity
remains NP-hard even if the parameter adopts constant values. In addition, “?” marks a currently unknown
parameterized complexity status
a Meyerson and Williams (2004)
b Bonizzoni et al. (2011b)
c Aggarwal et al. (2005)
d Bonizzoni et al. (2011a)
e Evans et al. (2009)

is tout + 2, irrespective of the variant of tout—being part of the input or not etc.—
which we consider. This holds for k-Anonymity as well as for the more restrictive
privacy concepts that lead to the problems p-Sensitivity (Truta and Vinay 2006) and
�-Diversity (Machanavajjhala et al. 2007).

On the positive side we show that parameterization by input homogeneity tin
yields several tractability results. For instance, we derive an algorithm that solves
k-Anonymity in O(nm + 2t2

in t2
in(m + tin log(tin))) time, which compares favorably

with the Bonizzoni et al. (2011b) algorithm which runs in O(2(|�|+1)m
kmn2) time. In

particular, when tin is a constant, our algorithm solves k-Anonymity in time linear in
the size of the input. Moreover, we prove that k-Anonymity becomes fixed-parameter
tractable for the parameter m when tout is a constant, and that k-Anonymity becomes
fixed-parameter tractable for the combined parameter (tout, s) where s denotes the
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number of allowed suppressions in the matrix. We also show that our positive results
for k-Anonymity parameterized by tin generalize to the problems p-Sensitivity,
DGH-k-Anonymity, and DGH- p-Sensitivity, with similar time bounds. In Table 1
we summarize our results on k-Anonymity and present them in the context of previous
results on the parameterized complexity of k-Anonymity.

Organization of the Paper. In the next section we introduce the notation and ter-
minology which we use in the paper. In Sect. 3 we consider the homogeneity of the
output matrix and demonstrate that achieving a very homogeneous output matrix (as
might seem desirable for privacy purposes) is computationally very hard. This applies
to all problems studied in our work. In Sect. 4, we show that for homogeneous input
matrices one can gain several fixed-parameter tractability results for most problems
considered in this article, leaving the case of �-Diversity as a major open question.
We conclude in Sect. 5 with a discussion of directions for future research.

2 Preliminaries

We briefly overview some relevant concepts from parameterized complexity which
we use later. We then describe the notation and terminology used in the discussion on
k-Anonymity, p-Sensitivity, and �-Diversity. The definitions specific to DGH-
k-Anonymity can be found in Sect. 4.4.

Parameterized Complexity. Our algorithmic results mostly rely on concepts of
parameterized algorithmics (Downey and Fellows 1999; Flum and Grohe 2006;
Niedermeier 2006). The fundamental idea herein is, given a computationally hard
problem X , to identify a parameter p (typically a positive integer or a tuple of pos-
itive integers) for X and to determine whether a size-n input instance of X can be
solved in f (p) · nO(1) time, where f is an arbitrary computable function. If this is
the case, then one says that X is fixed-parameter tractable for the parameter p. The
corresponding complexity class is called FPT. If X could only be solved in polynomial
running time where the degree of the polynomial depends on p (such as nO(p)), then,
for parameter p, problem X is said to lie in the—strictly larger—parameterized com-
plexity class XP. Finally, we also consider the parameterized complexity class W[1]
with FPT ⊆ W[1] ⊆ XP. It is widely believed that a problem which is W[1]-hard—
based on the so-called parameterized reductions (Downey and Fellows 1999)—does
not have FPT algorithms.

k-Anonymity. Our inputs are datasets in the form of n × m-matrices, where the n
rows refer to the individuals and the m columns correspond to attributes with entries
drawn from an alphabet �. Suppressing an entry M[i, j] of an n ×m-matrix M over
alphabet � with 1 ≤ i ≤ n and 1 ≤ j ≤ m means to simply replace M[i, j] ∈ � by
the new symbol “�” ending up with a matrix over the alphabet � �{�}.

Definition 1 A row type is a string from (� �{�})m .
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We say that a row in a matrix has a certain row type if it coincides in all its entries
with the row type. In what follows, synonymously, we sometimes also speak of a row
“lying in a row type”, and that the row type “contains” these rows.

Definition 2 (k-anonymity (Samarati 2001; Samarati and Sweeney 1998; Sweeney
2002b)) A matrix is k-anonymous if for every row in the matrix one can find at least k−1
other identical rows.

A natural objective when trying to achieve k-anonymity is to minimize the number of
suppressed matrix entries. For a row y (with some entries suppressed) in the output
matrix, we call a row x in the input matrix the preimage of y if y is obtained from x
by suppressing in x the �-entry positions of y. The basic problem of this work reads
as follows.

k-Anonymity

Input: An n × m-matrix M over a fixed alphabet � and nonnegative inte-
gers k, s.

Question: Can one suppress at most s elements of M to obtain a k-anonymous
matrix M ′?

We study two new parameterizations tin and tout, referring to the input and the output
homogeneity, respectively, where tin denotes the number of row types in the input
matrix and tout denotes the number of row types in the output k-anonymous matrix.
Note that—as we show later— tin can be determined efficiently. In Sect. 3, we discuss
several possibilities for a more fine-grained and mathematically precise definition
of tout.

p-Sensitivity and �-Diversity. For the problems p-Sensitivity and �-Diversity,
the input matrix M consists of a matrix where the last column is declared as private
and the other columns as quasi-identifiers.3 The row types are defined over the subm-
atrix restricted to the quasi-identifier columns (denoted by Mqi). That is, when two
rows are identical in their quasi-identifier entries—quasi-identifiers for short—then
they belong to the same row type, irrespective of whether they differ in their private
columns. This definition fits to the anonymization concepts: The more homogeneous
the quasi-identifiers are, the easier p-Sensitivity and �-Diversity will be to solve.
A similar argument does not hold for the private information: Homogeneous private
information does not make these two problems more efficiently solvable. Hence, row
types are defined over the quasi-identifiers only.

Definition 3 (p-sensitive (Truta and Vinay 2006)) A matrix is p-sensitive if for each
row type there are p different values in the private column.

p-Sensitivity

Input: An n × m-matrix M over a fixed alphabet � and nonnegative inte-
gers k, s, and p.

Question: Can one suppress at most s elements in Mqi to obtain a p-sensitive
matrix M ′ where M ′qi is k-anonymous?

3 Following an approach due to Xiao et al (2010) we consider the case with one private information column.
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Definition 4 (�-diverse (Wong et al. 2006; Xiao and Tao 2006)) A matrix is
�-diverse if for each row type the relative frequency of each value in the private
column is at most 1/�.

Note that Definition 4 implies that in an �-diverse matrix each row type is of size at
least �.

�-Diversity

Input: An n × m-matrix M over a fixed alphabet � and nonnegative inte-
gers � and s.

Question: Can one suppress at most s elements in Mqi to obtain an �-diverse
matrix M ′?

3 Hardness of achieving homogeneous outputs

In Sect. 3.1, we discuss some basic concepts of output homogeneity. In Sect. 3.2, we
demonstrate the computational intractability of achieving homogeneous outputs for
k-Anonymity, �-Diversity and p-Sensitivity.

3.1 Output homogeneity

There are two cases to consider when investigating the homogeneity of the output
matrix:

– The user specifies the required output homogeneity by providing the parameter tout
as part of the input.

– The output homogeneity is not specified by the user.

In the following, we briefly discuss both cases.

User-Specified Output Homogeneity. In this case, the user wants to specify the num-
ber of output row types. Here, we consider three variants:

– The minimum number of output row types is specified in the input.
– The maximum number of output row types is specified in the input.
– The exact number of output row types is specified in the input.

There is a close relationship between k-Anonymity and clustering problems where
one is also interested in grouping together similar objects. Such a relationship has
already been observed in related work (Aggarwal et al 2010; Bredereck et al. 2011; Fard
and Wang 2010). This clustering view on k-Anonymity makes the three described
problem variants very interesting because they allow the user to specified a minimum,
maximum, or exact number of clusters which is a useful feature for many applications.

Output Homogeneity not Specified by the User. If the output homogeneity is not
specified, then it is a property of the set of feasible solutions. Here, the two simplest
properties yield the following two parameters:

– The minimum number tmin
out of output row types among all feasible solutions.
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– The maximum number tmax
out of output row types among all feasible solutions.

The parameter tmax
out is the more interesting one from the point of view of anony-

mization. Given a fixed number s of allowed suppressions and a required degree k
of anonymity, in this case the user of the data is interested in output matrices with as
many output row types as possible. Due to the higher diversity more output row types
potentially provide more information to the end-user of the data.

The parameter tmin
out is more interesting than tmax

out from an algorithmic perspective.
Since tmin

out ≤ tmax
out , fixed-parameter algorithms with tmin

out as the parameter instead of
tmax
out are potentially more effective. It is not difficult to think of real-world examples

where tmin
out is much smaller than tmax

out .

3.2 Hardness results

It is a natural question whether k-Anonymity is fixed-parameter tractable with respect
to the number of output types, for each of the parameters discussed in Sect. 3.1. It is
easy to see that the problem becomes polynomial-time solvable when there is only
one output row type. Answering this question for more than one output row types in
the negative, we show that k-Anonymity is NP-hard even when there are only two
output types and the alphabet has size four, destroying any hope for fixed-parameter
tractability already for the combined parameter “number of output types and alphabet
size”. This intractability also transfers to all the three variants of user-specified output
homogeneity discussed above. The hardness proof uses a polynomial-time many-one
reduction from Balanced Complete Bipartite Subgraph:

Balanced Complete Bipartite Subgraph (BCBS)

Input: A bipartite graph G = (A � B, E) and an integer k ≥ 1.

Question: Is there a complete bipartite subgraph G ′ = (A′ � B ′, E ′) of G
with A′ ⊆ A and B ′ ⊆ B such that |A′| ≥ k and |B ′| ≥ k?

BCBS is NP-complete by a reduction from Clique (Johnson 1987). We provide a
polynomial-time many-one reduction from a special case of BCBS with a balanced
input graph, that is, a bipartite graph that can be partitioned into two independent sets
of the same size, and k = |V |/4. This special case is also NP-complete by a simple
reduction from the general BCBS problem: Let V := A � B with A and B being the
two vertex partition classes of the input graph. If the input graph is not balanced, that
is, if |A| − |B| 
= 0, then add ||A| − |B|| isolated vertices to the partition class of
smaller size. If k < |V |/4, then repeat the following until k = |V |/4:

– Add a new vertex a to A and a new vertex b to B.
– Make a adjacent to all vertices in B, and b adjacent to all vertices in A.
– Increment k by 1.

If k > |V |/4, then add 2k − |V |/2 isolated vertices to each of A and B.
We devise a reduction from BCBS with a balanced input graph and k = |V |/4

to show the NP-hardness of k-Anonymity. This reduction also introduces the basic
structure of the constructions used in all the hardness proofs in this work.
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Proposition 1 k-Anonymity is NP-complete for two output row types and alphabet
size four.

Proof We only have to prove NP-hardness, since containment in NP is clear. Let
(G, n/4) be a BCBS-instance where G = (V, E) is a balanced bipartite graph, and
where n := |V |. Let A = {a1, a2, . . . , an/2} and B = {b1, b2, . . . , bn/2} be the two
vertex partition classes of G. We construct an (n/4+ 1)-Anonymity-instance that is
a yes-instance if and only if (G, n/4) ∈ BCBS. To this end, the main idea is to use
a matrix expressing the adjacencies between A and B as the input matrix. Partition
class A corresponds to the rows and partition class B corresponds to the columns. The
salient points of our reduction are as follows.

1. By making a matrix with 2x rows x-anonymous we ensure that there are at most
two output types. One of the types, the solution type, corresponds to the solution
set of the original instance: Solution set vertices from A are represented by rows
that are preimages of rows in the solution type and solution set vertices from B
are represented by columns in the solution type that are not suppressed.

2. We add one row that contains the �-symbol in each entry. Since the �-symbol is
not used in any other row, this enforces the other output type to be fully suppressed,
that is, each column is suppressed.

3. Since the rows in the solution type have to agree on the columns that are not sup-
pressed, we have to ensure that they agree on adjacencies to model BCBS. This
is done by using two different types of 0-symbols representing non-adjacency.
The 1-symbol represents adjacency.

The matrix D is described in the following and illustrated in Fig. 1. There is one
row for each vertex in A and one column for each vertex in B. The value in the i th
column of the j th row is 1 if a j is adjacent to bi and, otherwise, 01 if4 j ≤ n/4
and 02 if j > n/4. Additionally, there are two further rows, one containing
only 1s and one containing only �-symbols. The number of allowed suppressions is
s := (n/4+ 1) · n/2+ (n/4+ 1) · n/4. This completes the construction.

It remains to show that (G, n/4) is a yes-instance of BCBS if and only if the con-
structed matrix can be transformed into an (n/4+1)-anonymous matrix by suppressing
at most s elements. We start with the easier direction:

“⇒”: Let A′ ⊂ A and B ′ ⊂ B be the vertex subsets forming a balanced complete
bipartite subgraph of G such that |A′| = |B ′| = n/4. The (n/4+1)-anonymous matrix
looks as follows: The first output type is fully suppressed and contains the all-� row,
and each row which corresponds to a vertex from A \ A′. The second output type
contains the remaining rows; in it each column corresponding to a vertex in B \ B ′
is suppressed. These rows clearly agree in each unsuppressed column, because each
vertex from A′ is adjacent to each vertex from B ′. Hence, each unsuppressed column
contains a 1. The fully suppressed output type needs (n/4+ 1) · n/2 suppressions and
the second output type needs at most (n/4 + 1) · n/4 suppressions. Thus, the total
number of suppressions is at most s.

“⇐”: The (n/4+1)-anonymous matrix consists of exactly two output types because
having only one type would cause (n/2+ 2) · n/2 > s suppressions (due to the all-�

4 We assume without loss of generality that n is divisible by four.
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Fig. 1 Typical structure of the matrix D of the k-Anonymity instance obtained by the reduction from
Balanced Complete Bipartite Subgraph for tout = 2

row everything would have to be suppressed) and an (n/4 + 1)-anonymous matrix
with n/2 + 2 rows cannot have more than two output types. One output type con-
tains n/4 + 1 fully suppressed rows because of the all-� row in the input. Since the
total number s of suppressions is (n/4 + 1) · n/2 + (n/4 + 1) · n/4 and for the first
type one already needs at least (n/4+1) ·n/2 suppressions, the other type contains at
most n/4 suppressed columns. Since no symbol other than 1 appears in more than n/4
rows (by construction), each unsuppressed column consists entirely of 1s. Now, con-
sider the vertex subset A′ ⊂ A corresponding to the rows of the second output type
and the vertex subset B ′ ⊆ B corresponding to the unsuppressed columns. Since at
most one row in the second output type does not correspond to a vertex from A (the
all-1 row), |A′| ≥ n/4. Furthermore, |B ′| ≥ n/4 because at most n/4 of the n/2
columns can be suppressed in the second output type. Since the second output type
only consists of �- and 1-entries, the subgraph induced by A′ and B ′ is a balanced
complete bipartite subgraph of G. ��

Observe that, for the matrix D constructed in the proof of Proposition 1, tmin
out =

tmax
out = 2: If the matrix D is a yes-instance, then by construction it must have exactly

two output types. It follows that k-Anonymity is NP-complete for the maximization
of the number of output row types, for its minimization, as well as when asking for an
exact number of output row types. In the following, we show that this hardness result
holds for all fixed constants greater than or equal to two.

Theorem 1 For any fixed constant tout ≥ 2, k-Anonymity is NP-complete, where
tout = tmin

out = tmax
out of output row types and the alphabet size is tout + 2, even if the

exact, minimum, or maximum number of output row types is additionally specified in
the input.

Proof We will show that the reduction from Proposition 1 can be extended such that
for any given constant tout ≥ 2, a solution must have exactly tout output row types. An
illustration of the reduction can be found in Fig. 2.

As before, the reduction is from BCBS. First, we construct a k-Anonymity instance
as described in Proposition 1. Then, we add n/2 dummy columns (d1, . . . , dn/2) filled
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Fig. 2 Structure of the matrix D of the k-Anonymity instance obtained by the extended reduction from
Balanced Complete Bipartite Subgraph for general tout . New parts of the reduction are in boldface

with 1-entries. Finally, for each integer 2 < i ≤ tout, we add n/4 + 1 dummy rows
filled with the new symbol i in each entry. As in the previous proof, the number of
allowed suppressions is s := (n/4 + 1) · n/2 + (n/4 + 1) · n/4, and the degree of
anonymity is k := (n/4+ 1).

“⇒”: Given a solution for BCBS, constructing the solution for the extended
k-Anonymity instance works exactly like before. Each dummy row occurs n/4 +
1 times in the reduced instance, and so none of their entries need be suppressed. The
resulting solution has exactly tout output types : two output types as in the previous
proof, and tout − 2 other output types each of which consists of all the dummy rows
which have the same symbol.

“⇐”: Consider a solution for the k-Anonymity instance. If a dummy row and a
row from another type have to be included in the same output type, then this requires
suppressing all the entries of both these rows, at a cost of (n/4+ 1) · n suppressions.
Since this is more than the allowed cost, it follows that in the output the dummy rows
are left as they are. So the dummy rows form tout − 2 output row types. By the same
argument as in the proof of Proposition 1, it follows that there is a solution for the
corresponding BCBS instance which is encoded in two further output row types.

Observe that the (n/4+1)-anonymous output matrix consists of exactly tout output
row types. Hence the theorem holds for tmin

out and tmax
out . This clearly transfers to the

cases where tout is specified in the input. ��
By allowing more symbols in the alphabet, the intractability result of Theorem 1

also extends to p-Sensitivity and �-Diversity.

Corollary 1 For any fixed constant tout ≥ 2,

1. p-Sensitivity is NP-complete, where tout = tmin
out = tmax

out and the alphabet size is
max(tout + 2, p), even if the exact, minimum, or maximum number of output row
types is additionally specified in the input.
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2. �-Diversity is NP-complete, where tout = tmin
out = tmax

out , even if the exact, min-
imum, or maximum number of output row types is additionally specified in the
input.

Proof To extend the reduction given for the proof of Theorem 1 to also work for
�-Diversity and p-Sensitivity, we define all original columns as quasi-identifiers,
and add one extra private column. To keep the argument simple, we only sketch the
proof for 2-Sensitivity. Cases with larger values of p can be handled in a similar
fashion, with an alphabet of size max(tout + 2, p).

1. For 2-Sensitivity, set the private entries for the all-1 row and the all-� row to
“1”. For each dummy row type, set half of the private entries to “0” and the rest to
“1”. Finally, set the private entries of the remaining rows to “0” and set p to “2”.

2. For �-Diversity, set the private entry for each row to a new unique symbol and
set � := k = (n/4+1). Now, for every row type containing at least (n/4+1) rows,
the relative frequency for each value is at most 1/(n/4+ 1). Thus, every �-diverse
matrix is also k-anonymous.

The rest of the proof works analogously to the proof of Theorem 1. ��

4 Tractability results

As we saw in the previous section, k-Anonymity and its variants—�-Diversity and
p-Sensitivity—are all NP-hard even when there are just two different row types in
the output. As such, unless P=NP, these problems cannot be solved in polynomial
time—where the degree of the polynomial is a constant independent of the input—
even when it is specified as part of the input that the output has to contain a bounded
number of row types. In this section we see that the situation changes for the better
when the number of row types in the input matrix is small. We show, for instance,
that when the number of row types in the input matrix is a constant, then we can
solve k-Anonymity in time linear in the input size (see Sect. 4.1). We then show
how to adjust the algorithm to achieve fixed-parameter tractability for the combined
parameter (tout, s) (where s denotes the allowed number of suppressions) and for the
parameter number m of columns when tout is a constant (see Sect. 4.2). We also derive
results for p-Sensitivity (see Sect. 4.3) and for anonymization using the so-called
domain generalization hierarchies (see Sect. 4.4).

The algorithms described in this section find solutions that have at most tout many
output row types. If tout is not part of the input, then by iteratively trying the val-
ues 1, . . . , tout the minimum value such that a solution exists can be determined. Thus,
if tout is not given, we have tout = tmin

out .

4.1 Parameter tin

In this subsection we show that k-Anonymity is fixed-parameter tractable with
respect to the parameter number tin of input row types. Since tin ≤ |�|m and tin ≤ n,
this result implies that k-Anonymity is also fixed-parameter tractable with respect
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Algorithm 1 Pseudo-code for solving k-Anonymity. The function solveRowAs-
signment solves Row Assignment in polynomial time, see Lemma 1.
1: procedure solveKAnonymity(M, k, s, tout)
2: Determine the row types R1, . . . , Rtin � Phase 1, Step 1
3: for each possible A : [0, 1]tin×tout do � Phase 1, Step 2
4: for j ← 1 to tout do � Phase 1, Step 3
5: if A[1, j] = A[2, j] = . . . = A[tin, j] = 0 then
6: delete empty output row type R′j
7: decrease tout by one
8: else
9: Determine all entries of R′j
10: if solveRowAssignment then � Phase 2
11: return ‘yes’
12: return ‘no’

to the combined parameter (m, |�|) and the single parameter n. Both these latter
results were known previously; Bonizzoni et al. (2011b) demonstrated fixed-param-
eter tractability for the parameter (m, |�|), and Evans et al. (2009) showed the same
for the parameter n. Besides achieving a fixed-parameter tractability result for a typi-
cally smaller parameter, we improve their results by giving a simpler algorithm with
a (usually) better running time.

Let (M, k, s) be an instance of k-Anonymity, and let M ′ be the (unknown)
k-anonymous solution matrix which we seek to obtain from M by suppressing at
most s elements. Our fixed-parameter algorithm works in two phases. In the first
phase, the algorithm guesses the entries of each row type R′j in M ′. In the second
phase, the algorithm computes an assignment of the rows of M to the row types R′j
in M ′—see Algorithm 1 for an outline.

We now explain the two phases in detail, beginning with Phase 1. To first determine
the row types Ri of M (line 2 in Algorithm 1), the algorithm constructs a trie (Fredkin
1960) on the rows of M . The leaves of the trie correspond to the row types of M . For
later use, the algorithm also keeps track of the numbers n1, n2, . . . , ntin of each type
of row that is present in M ; this can clearly be done by keeping a counter at each leaf
of the trie and incrementing it by one whenever a new row matches the path to a leaf.
All of this can be done in a single pass over M .

For implementing the guess in Step 2 of Phase 1, the algorithm goes over all binary
matrices of dimension tin × tout; such a matrix A is interpreted as follows: A row of
type Ri is mapped5 to a row of type R′j if and only if A[i, j] = 1 (see line 3). Note that
we allow in our guessing step that an output type may contain no row of any input row
type. These “empty” output row types are deleted. Hence, with our guessing in Step 2,
we guess not only output matrices M ′ with exactly tout types, but also matrices M ′
with at most tout types.

Now the algorithm computes the entries of each row type R′j , 1 ≤ j ≤ tout, of M ′
(Step 3 of Phase 1). Assume for ease of notation that R1, . . . , R� are the row types of M
which contribute (according to the guessing) at least one row to the (as yet unknown)

5 Note that not all rows of an input type need to be mapped to the same output type.
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output row type R′j . Now, for each 1 ≤ i ≤ m, if R1[i] = R2[i] = ... = R�[i], then
set R′j [i] := R1[i]; otherwise, set R′j [i] := �. This yields the entries of the output
type R′j , and the number ω j of suppressions required to convert any input row (if
possible) to the type R′j is the number of �-entries in R′j .

The guessing in Step 2 of Phase 1 takes time exponential in the parameter (tin, tout),
but Phase 2 can be done in polynomial time. To show this, we prove that Row Assign-
ment is polynomial-time solvable. We do this in the next lemma, after formally defin-
ing the Row Assignment problem. To this end, we use the two sets Tin = {1, . . . , tin}
and Tout = {1, . . . , tout}.
Row Assignment

Input: Nonnegative integers k, s, ω1, . . . , ωtout and n1, . . . , ntin with∑tin
i=1 ni = n, and a function a : Tin × Tout → {0, 1}.

Question: Is there a function g : Tin × Tout → {0, . . . , n} such that

a(i, j) · n ≥ g(i, j) ∀i ∈ Tin∀ j ∈ Tout (1)
tin∑

i=1

g(i, j) ≥ k ∀ j ∈ Tout (2)

tout∑

j=1

g(i, j) = ni ∀i ∈ Tin (3)

tin∑

i=1

tout∑

j=1

g(i, j) ·ω j ≤ s (4)

Row Assignment formally defines the remaining problem in Phase 2: At this stage
of the algorithm the input row types R1, . . . , Rtin and the number of rows n1, . . . , ntin
in these input row types are known. The algorithm has also computed the output row
types R′1, . . . , R′tout

and the number of suppressions ω1, . . . , ωtout in these output row
types. Now, the algorithm computes an assignment of the rows of the input row types
to output row types such that:

– The assignment of the rows respects the guessing in Step 2 of Phase 1. This is
secured by Inequality 1.

– M ′ is k-anonymous, that is, each output row type contains at least k rows. This is
secured by Inequality 2.

– All rows of each input row type are assigned. This is secured by Eq. 3.
– The total cost of the assignment is at most s. This is secured by Inequality 4.

Note that in the definition of Row Assignment no row type occurs and, hence,
the problem is independent of the specific entries of the input or output row types.

Lemma 1 Row Assignment can be solved in O((tin+tout) · log(tin+tout)(tin · tout+
(tin + tout) log(tin + tout))) time.
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Fig. 3 Example of the
constructed network
with tin = 5 and tout = 4. The
number on each arc denotes its
cost. The number next to each
node denotes its demand

Proof We reduce Row Assignment to the Uncapacitated Minimum Cost Flow
problem, which is defined as follows (Orlin 1988):

Uncapacitated Minimum Cost Flow

Input: A network (directed graph) D = (V, A) with demands d : V → Z on the
nodes and costs c : V × V → N.

Task: Find a function f which minimizes
∑

(u,v)∈A c(u, v) · f (u, v) and satis-
fies:

∑

{v|(u,v)∈A}
f (u, v)−

∑

{v|(v,u)∈A}
f (v, u) = d(u) ∀u ∈ V

f (u, v) ≥ 0 ∀(u, v) ∈ A

We first describe the construction of the network with demands and costs. For
each ni , 1 ≤ i ≤ tin, add a node vi with demand −ni (that is, a supply of ni ) and for
each ω j add a node u j with demand k. If a(i, j) = 1, then add an arc (vi , u j ) with
cost ω j . Finally, add a sink t with demand (

∑
ni )− k · tout and the arcs (u j , t) with

cost zero. See Fig. 3 for an example of the construction. Note that, although the arc
capacities are unbounded, the maximum flow over one arc is implicitly bounded by n
because the sum of all supplies is

∑tin
i=1 ni = n.

The Uncapacitated Minimum Cost Flow problem is solvable in O(|V | · log
(|V |)(|A| + |V | · log(|V |))) time in a network (directed graph) D = (V, A) (Orlin
1988). Since our constructed network has O(tin + tout) nodes and O(tin · tout) arcs,
we can solve our Uncapacitated Minimum Cost Flow-instance in O((tin +
tout) · log(tin + tout)(tin · tout + (tin + tout) log(tin + tout))) time.

It remains to prove that the Row Assignment-instance is a yes-instance if and
only if the constructed network has a minimum cost flow of cost at most s.

“⇒”: Assume that g is a function fulfilling constraints 1 to 4. Then define a flow f
as follows: For each 1 ≤ i ≤ tin, 1 ≤ j ≤ tout, set f (vi , u j ) = g(i, j) and f (u j , t) =
∑tin

i=1 g(i, j) − k. The flow f fulfills the demands on the nodes due to Eq. 3 and
Inequality 2. Since g fulfills Inequality 4 and the cost of each arc (u j , t), 1 ≤ j ≤ tout,
is zero, flow f has cost of at most s.

“⇐”: Assume that f is a flow with cost of at most s. All costs and demands are
integer valued, and hence, due to the Integrality Property of network flow problems,
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an optimal flow has also integer values. Then set g(i, j) = f (vi , u j ) for each 1 ≤ i ≤
tin, 1 ≤ j ≤ tout. Note that g fulfills Eq. 3 and Inequality 2 due to the demands on the
nodes of the network. Since ni ≤ n for all 1 ≤ i ≤ tin, also Inequality 1 is fulfilled.
Note that f has cost of at most s and, hence, g fulfills Inequality 4. ��

Putting all these together, we arrive at the following theorem:

Theorem 2 k-Anonymity can be solved in O(nm+2tintout (tintoutm+(tin+tout) · log
(tin + tout)(tin · tout + (tin + tout) log(tin + tout)))) time.

Proof The correctness of the described two-phase-algorithm (see Algorithm 1) fol-
lows from the fact that Phase 1 performs an exhaustive search, Lemma 1, and (as
discussed above) that Row Assignment is indeed the remaining problem.

As for the running time: As described above, Step 1 of Phase 1 (line 2 in Algorithm
1) can be done in one pass of the input matrix, that is, in O(nm) time. The loop start-
ing at line 3 iterates O(2tintout ) times. The loop starting at line 4 iterates at most tout
times; the condition inside this loop can be checked in O(tin) time, and the column
in A corresponding to an empty output row type can be marked as deleted in constant
time. The entries of each R′j can be computed in O(mtin) time, as described above.
As we saw in Lemma 1, the Row Assignment problem can be solved in O((tin +
tout) · log(tin+tout)(tin ·tout+(tin+tout) log(tin+tout))) time. Putting all these together,
the algorithm runs in O(nm + 2tintout (tintoutm + (tin + tout) · log(tin + tout)(tin · tout +
(tin + tout) log(tin + tout)))) time.

In case that tout is not given, the algorithm simple tries all possible values from 0
to tout. The running time is O(nm +∑tout

i=1 2tini (tinim + (tin + i) · log(tin + i)(tin · i +
(tin+i) log(tin+i)))) = O(nm+2tintout (tintoutm+(tin+tout) · log(tin+tout)(tin · tout+
(tin + tout) log(tin + tout)))). ��

We now show that the exponential dependence of the running time of the algorithm
of Theorem 2 on the number tout of output types can be done away with. To this end,
we exploit that the problem definition (see Sect. 2) does not impose any restriction on
tout. In particular, we are free to look for a solution which minimizes the number of
output types. We take advantage of this to show that, without loss of generality, one
may assume tout ≤ tin (remember that in this section we set tout := tmin

out ).

Lemma 2 Let (M, k, s) be a yes-instance of k-Anonymity. If M has tin row types,
then by suppressing at most s elements one can construct a k-anonymous matrix M ′.

Proof Let M ′ be a k-anonymous matrix obtained from M by suppressing at most s
elements. If M ′ has at most tin row types, then there is nothing to prove. So let M ′
have more than tin row types. We now describe an operation that reduces the number
of row types in M ′ without increasing the cost (in terms of the number of suppressed
elements) of obtaining M ′ from M .

Call a row type R in M ′ redistributable if, for each row r in R, there is a row
type Rr in M ′ such that (i) the preimage r ′ of r in M can be converted to the type
Rr by suppressing in r ′ the �-symbol positions of Rr , and (ii) Rr contains at most as
many �-symbols as R. Observe that if a row type in M ′ is redistributable, then we can
eliminate this row type from M ′ by “moving” each of its rows to a different, at most
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as expensive row type, while preserving the condition that there are at least k rows
per (output) row type. This operation reduces the number of row types in M ′ without
increasing the cost of obtaining M ′ from M . As long as there are redistributable row
types left in M ′, we repeatedly eliminate row types in this manner. If the number of
remaining row types is at most tin, then we are done. So let there be more than tin row
types left in M ′, none of which is redistributable.

Consider a row type R′ in M ′ that is not redistributable. Let r ′ be a row in R′ such
that the cost of suppressing the preimage r of r ′ to match any row type R′′ in M ′
with R′ 
= R′′ is more than the cost of suppressing r to match R′. Since R′ is not
redistributable such a row r ′ must exist. Let R be the row type of r in M . Then the
cost of suppressing any row in R to match any row type R′′ in M ′ with R′ 
= R′′ is
more than the cost of suppressing this row to match R′. set of positive integers has a
unique minimum, It follows that R′ is the only row type in M ′ having this property
with respect to R. Let f be a mapping that takes each row type R′ in M ′ to some
row type R for which R′ is the unique cheapest row type. From the above argument,
such an f exists and is one-to-one. It follows that M has more than tin row types, a
contradiction. ��

Combining Lemma 2 with Theorem 2 we get:

Theorem 3 k-Anonymity can be solved in O(nm + 2t2
in t2

in(m + tin log(tin))) time.

In the beginning of this section, we remarked that our algorithm implies the fixed-
parameter tractability of k-Anonymity with respect to the combined parameter
(|�|, m). This was previously shown by Bonizzoni et al. (2011b). They presented
an algorithm for k-Anonymity which runs in O(2(|�|+1)m

kmn2) time and works—
similarly to our algorithm—in two phases: First, their algorithm guesses all possible
output row types together with their entries in O(2(|�|+1)m

) time. In Phase 1 our algo-
rithm guesses the output row types producible from M within O(2tintout tintoutm+mn)

time using a different approach. Note that, in general, tin is much smaller than the
number |�|m of all possible different input types. Hence, in general the guessing step
of our algorithm is faster. For instances where |�|m ≤ tin · tout, one can exchange the
guessing step with the one from Bonizzoni et al. which runs in O(2(|�|+1)m

) time.
Next, we compare Phase 2 of our algorithm to the second step of Bonizzoni et al.’s

algorithm. In both algorithms, the same problem Row Assignment is solved. Bon-
izzoni et al. did this by finding a maximum matching on a bipartite graph with O(n)

nodes, while we do it using a flow network with O(tin) nodes. Consequently, the
running time of our approach depends only on tin, and its proof of correctness is—
arguably—simpler.

4.2 Combining parameters with tout

In this subsection we briefly discuss the NP-hardness proof for k-Anonymity from
Sect. 3 in the spirit of “deconstructing intractability” (Komusiewicz et al. 2011;
Niedermeier 2010). In our reduction the alphabet size |�| and the number tout of output
row types are constants whereas the number n of rows, the number m of attributes,
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number s of suppressions, and the anonymity quality k are unbounded. This suggests
a study of the computational complexity of those cases where at least one of these
quantities is bounded. Some of the corresponding parameterizations have already been
investigated, see Table 1 in Sect. 1. While for parameters (|�|, m), (|�|, n), and n,
k-Anonymity is fixed-parameter tractable, it is open whether combining tout with m, k,
or s helps to obtain fixed-parameter tractability. In particular, the parameterized com-
plexity for the combined parameter (|�|, s, k) is still open. In contrast, k-Anonymity
is W[1]-hard for (s, k) (Bonizzoni et al. 2011b), that is, it is presumably fixed-param-
eter intractable for this combined parameter.

Whereas k-Anonymity is NP-hard for constant m and unbounded tout, one can
easily construct a fixed-parameter algorithm with respect to the parameter m when
tout is a constant: In O(2m · tout ·m · tout) time guess the suppressed columns for all
output row types. Then, guess in nO(tout) time one prototype for each output row type,
that is, one input row that is a preimage of a row from the output row type. Now,
knowing the entries for each output row, one can simply apply the Row Assignment
algorithm from Sect. 4:

Proposition 2 k-Anonymity parameterized by the number m of columns is fixed-
parameter tractable when the number tout of output row types is a constant.

Next, we prove fixed-parameter tractability for k-Anonymity with respect to the com-
bined parameter (tout, s) by showing that the number tin of input types is at most (tout+
s). To this end, consider a feasible solution for an arbitrary k-Anonymity instance.
We distinguish between input row types that have rows which have at least one sup-
pressed entry in the solution (suppressed input row types in the following) and input
row types that do only have rows that remain unchanged in the solution (unsuppressed
input row types in the following). Clearly, every unsuppressed input row type needs
at least one unsuppressed output row type. Thus, the number of unsuppressed input
row type cannot exceed tout. Furthermore, the number of rows that have at least one
suppressed entry is at most s. Hence the number of suppressed input row types is at
most s. It follows that tin ≤ tout + s. Now, fixed-parameter tractability follows from
Theorem 2:

Proposition 3 k-Anonymity is fixed-parameter tractable with respect to the com-
bined parameter (tout, s).

To achieve a better running time one might want to develop a direct fixed-parameter
algorithm for (tout, s), remaining a task for future research.

Finally, we conjecture that an XP-algorithm for k-Anonymity with respect to the
combined parameter (tout, k) can be achieved.

4.3 p-Sensitivity

In this section we describe how our algorithm from Theorem 2 can be extended for
solving p-Sensitivity (Truta and Vinay 2006). We leave Phase 1 unchanged, and
add extra constraints to the Row Assignment problem to ensure that the output
matrix M ′ is p-sensitive. We first describe this modified Row Assignment problem.
We then model the extra requirements using a modified flow construction, and show
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that this modified version can also be solved in polynomial time. To this end, we for-
mally define the p-Row Assignment problem which enhances Row Assignment
to incorporate the p-sensitivity constraint.

p-Row Assignment

Input: Nonnegative integers p, k, s, ω1, . . . , ωtout and n1,σ1 , . . . , ntin,σ|�|
with

∑tin
i=1

∑
σ∈� ni,σ = n, and a function a : Tin × Tout → {0, 1}.

Question: Is there a function g : Tin ×� × Tout → {0, . . . , n} such that

a(i, j) · n ≥
∑

σ∈�
g(i, σ, j) ∀i ∈ Tin∀ j ∈ Tout (5)

tin∑

i=1

∑

σ∈�
g(i, σ, j) ≥ k ∀ j ∈ Tout (6)

tout∑

j=1

g(i, σ, j) = ni,σ ∀i ∈ Tin∀σ ∈ � (7)

tin∑

i=1

∑

σ∈�

tout∑

j=1

g(i, σ, j) ·ω j ≤ s (8)

∑

σ∈�
sgn

(
tin∑

i=1

g(i, σ, j)

)

≥ p ∀ j ∈ Tout (9)

Here sgn(·) denotes the sign (signum) function which maps positive numbers to 1,
negative numbers to −1, and zero to itself. The integer ni,σ denotes the number of
rows in the input row type Ri with entry σ in the private column. This refined dis-
tinction of the input row types is necessary, since two rows in one input row type may
differ in the private information column. Inequalities (5) to (8) form a refinement of
the Inequalities (1) to (4) used in the definition of Row Assignment. As before,
these adjusted Inequalities ensure that the guessing in Step 2 of Phase 1 is respected
(Inequality 5), the output is k-anonymous (Inequality 6), all input rows are assigned to
output row types (Eq. 7), and the cost bound is respected (Inequality 8). Additionally,
Inequality (9) ensures that the output matrix is p-sensitive.

Analogously to Lemma 1 we now show that p-Row Assignment can be solved
in polynomial time.

Lemma 3 p-Row Assignment can be solved in O((n+|�| · tin)4 log(n+|�| · tin))
time.

Proof We reduce p-Row Assignment to the Capacitated Minimum Cost Flow
problem, which is defined as follows (Orlin 1988):

Capacitated Minimum Cost Flow

Input: A network (directed graph) D = (V, A) with demands d : V → Z on the
nodes, capacities fmax : A→ Z, lower bounds on the flow fmin : A→ Z,
and costs c : A→ N.
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Task: Find a function f which minimizes
∑

(u,v)∈A c(u, v) · f (u, v) and satis-
fies:

∑

{v|(u,v)∈A}
f (u, v)−

∑

{v|(v,u)∈A}
f (v, u) = d(u) ∀u ∈ V

fmax(u, v) ≥ f (u, v) ≥ fmin(u, v) ∀(u, v) ∈ A

The construction of our reduction is a modification of the construction in the proof of
Lemma 1. For each ni,σ , 1 ≤ i ≤ tin, σ ∈ �, add a node vi,σ with demand−ni,σ (that
is, a supply of ni,σ ) and for each ω j add a node u j with demand k. For each node u j

add the |�|+1 nodes u j,σ1 , . . . , u j,σ|�| , and u p
j . Add for each 1 ≤ j ≤ tout and σ ∈ �

the arcs (u j,σ , u p
j ) with capacity fmax(u j,σ , u p

j ) = 1. Also add (u p
j , u j ) with capac-

ity and minimum flow fmax(u
p
j , u j ) = fmin(u

p
j , u j ) = p and with cost c(u p

j , u j ) =
ω j . If a(i, j) = 1, then add for all 1 ≤ i ≤ tin, 1 ≤ j ≤ tout, and σ ∈ � the
arcs (vi,σ , u j,σ ) with costs 0 and add the arc (vi,σ , u j ) with cost ω j . Finally, add a
sink t with demand n− k · tout and the arcs (u j , t). For all arcs where so far the cost c
or the minimum flow fmin is not specified the corresponding value is zero. Arcs where
the capacity fmax is not given have capacity of n. See Fig. 4 for an example of the
construction.

As for the running time: The Capacitated Minimum Cost Flow problem
is solvable in O(|A| · log(|V |)(|A| + |V | · log(|V |))) time in a network (directed
graph) D = (V, A) (Orlin 1988). Since our constructed network has O(n+ |�| · tout)

nodes and O((n + |�| · tout)
2) arcs, we can solve our Uncapacitated Minimum

Cost Flow-instance in O((n+|�| · tout)
2 · log(n+|�| · tout)((n+|�| · tout)

2+ (n+
|�| · tout) log(n + |�| · tout))), that is O((n + |�| · tout)

4 log(n + |�| · tout)) time. By
Lemma 2, this can be upper-bounded by O((n + |�| · tin)4 log(n + |�| · tin)).

It remains to prove that the p-Row Assignment-instance is a yes-instance if and
only if the constructed network has a minimum cost flow of cost at most s.

“⇒”: Assume that g is a function fulfilling constraints 5 to 9. Then define a flow f as
follows: For each 1 ≤ i ≤ tin, 1 ≤ j ≤ tout, temporarily set f (vi,σ , u j ) = g(i, σ, j)
and f (u j , t) =∑tin

i=1

∑
σ∈� g(i, σ, j)− k. To fulfill the minimum flow requirement

on the arcs (u p
j , u j ) adjust the flow as follows. Since g fulfills Inequality 9, there

are for each u j at least p pairwise distinct elements of the alphabet σ1, . . . , σp ∈ �

such that g(i1, σ1, j), . . . , g(i p, σp, j) are all greater than zero for some i1, . . . , i p ∈
{1, . . . , tin} (not necessarily pairwise distinct). For each 1 ≤ r ≤ p adjust the flow
as follows: Reduce f (vir ,σr , u j ) by one and increase f (vir ,σr , u j,σr ), f (u j,σr , u p

j ),

and f (u p
j , u j ) by one. Note that this adjustment does not violate the capacities on

the arcs (vir ,σr , u j,σr ), (u j,σr , u p
j ), and (u p

j , u j ), since the flow on each of these rows
is increased exactly once during the whole adjustment process. The flow f fulfills
the demands on the nodes due to Eq. 7 and Inequality 6. Since g fulfills Inequality 8
and the cost of each arc (u j , t), 1 ≤ j ≤ tout, is zero, flow f has cost of at most s.
Inequality 5 is fulfilled due to the construction: if a(i, j) = 0 then there exists no path
from vi,σ to u j for any σ ∈ �. Hence, in this case g(i, σ, j) = 0 for all σ ∈ �.
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Fig. 4 A small example of the construction referring to an input matrix with two row types, each containing
the three different entries “1”, “2”, and “3” in their respective private column. In the example two output
row types are in the solution with a(1, 1) = a(2, 1) = a(2, 2) = 1 and a(1, 2) = 0, meaning that no row
from the first input row type is assigned to the second output row type. The lower and upper bounds on
the flow over the edges are given in brackets on the arcs: [lower bound, upper bound]. Values not being in
brackets refer to the costs of the corresponding arc. If the cost is not pictured then the cost is zero. Missing
bounds on the flow indicate [0, n], that is lower bound zero and upper bound (capacity) n. Labels next to
nodes indicate the demands of the nodes

“⇐”: Assume that f is a flow with cost of at most s. All costs and demands are
integer valued, and hence, due to the Integrality Property of network flow problemsan
optimal flow has also integer values. Then set g(i, σ, j) = f (vi , σ, u j )+ f (vi , σ, u j,σ )

for each 1 ≤ i ≤ tin, 1 ≤ j ≤ tout, σ ∈ �. Note that g fulfills Eq. 7 and Inequality 6
due to the demands on the nodes of the network. Since ni,σ ≤ n for all 1 ≤ i ≤ tin,
also Inequality 5 is fulfilled. Note that f has cost of at most s and, hence, g fulfills
Inequality 8. Furthermore, for each 1 ≤ j ≤ tout it holds that fmin(u

p
j , u j ) = p and

fmax(u j,σ , u p
j ) = 1 for each σ ∈ �. Thus, Inequality 9 is fulfilled. ��

Putting all these together we arrive at the following.

Theorem 4 p-Sensitivity can be solved in O(nm+2t2
in (t2

inm+(n+|�| · tin)4 log(n+
|�| · tin))) time.

The question whether also �-Diversity is fixed-parameter tractable with respect to
the parameter tin remains open.

Note that we defined tin and tout as numbers of different rows in the matrix restricted
to the quasi-identifiers. From a theoretical point of view the number of different rows
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in the matrix (including the private column), denoted by t∗in and t∗out for the input matrix
and output matrix, respectively, is also interesting. Clearly, tin ≤ t∗in.

We remark that �-Diversity is fixed-parameter tractable with respect to the com-
bined parameter (t∗in, t∗out): Again take our Algorithm 1 and make some adjustments in
Phase 2. After the guessing step in Phase 1, again compute the output row types and the
costs. Then one can solve Phase 2 via a straightforward ILP formulation that is based
on the inequalities in the Row Assignment definition plus one constraint ensuring
that the solution is l-diverse. A similar ILP was already described by Dondi et al.
(2012) in order to show that �-Diversity is fixed-parameter tractable with respect to
the combined parameter (|�|, m).

4.4 Domain generalization hierarchies

In this section we describe how our algorithm for k-Anonymity from Theorem 2 can
be modified to find optimal domain generalization hierarchies.

The domain of a column in the input matrix M is the set of all values that may
appear in the column. The operation of domain generalization consists of replacing
each value v in a domain with a value v′ which is at least as general as v, for a suitable
definition of “general”. A meaningful domain generalization takes each value to a
“less specific, more general value which is faithful to the original” (Sweeney 2002a).

A domain generalization hierarchy (DGH) for a column of a matrix is a sequence
of generalizations. The domain of the first generalization in the sequence is the domain
of the column itself. The domain of each subsequent generalization is the co-domain
of its previous generalization. The range of the last generalization consists of a single
value, denoted �.

Observe that the notion of suppression can be thought of as a domain generalization
hierarchy which consists of exactly one generalization.

We say that M ′ is a minimal generalization of M with a property � if (i) M ′ is a
generalization of M , (ii) M ′ has the property �, and (iii) replacing any entry of M ′
with a more specific value will result in a matrix which does not satisfy the property
�. See Sweeney (2002a) for a formal definition.

The DGH-k-Anonymity problem is defined as follows:

DGH-k-Anonymity

Input: A matrix M, k ∈ N, and a DGH for each column of M .

Question: Find a minimal generalization of M which is k-anonymous.

This problem is motivated by the fact that we may assume that any meaningful gener-
alization loses information; it is thus of advantage to look for minimal k-anonymous
generalizations.

To see how to use our framework to deal with DGH-k-Anonymity, let us take a
closer look at the algorithm for k-Anonymity from Theorem 2. The algorithm com-
putes the entries of the output row types in Step 2 in Phase 1. To modify this step to
use generalization instead of suppression, we do the following: For each output row
type R′, set the value at position i to be the most specific value which generalizes the
values at position i of all the row types which assign at least one row to R′. Since our
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algorithm is based on exhaustive search, it can compute a minimal generalization such
that the output matrix is k-anonymous. Assuming that we can apply generalizations
and do comparisons in constant time, we get

Theorem 5 DGH-k-Anonymity can be solved in O(2t2
in t2

in(mn+ tin log(tin))+nm)

time.

Using domain generalization hierarchies to obtain p-sensitive matrices leads to the
following problem:

DGH- p-Sensitivity

Input: An n × m-matrix M over a fixed alphabet � and nonnegative inte-
gers k, s, and p.

Question: Find a minimal generalization of M such that Mqi is k-anonymous
and M is p-sensitive.

Similar to the modification in the algorithm of k-Anonymity to solve DGH-k-
Anonymity, the algorithm for p-Sensitivity can be modified to solve DGH- p-
Sensitivity. Thus we get:

Corollary 2 DGH- p-Sensitivity can be solved in O(nm + 2t2
in(t2

innm + (n +
|�| · tin)4

log(n + |�| · tin))) time.

5 Conclusion

In this paper we looked at the effect of input and output homogeneity on the complexity
of four combinatorial data anonymization problems, namely k-Anonymity, DGH-
k-Anonymity, p-Sensitivity, and �-Diversity. We took the number of row types
as the measure of homogeneity. We showed that while the problems remain NP-hard
even when the number of row types required in the output is a small constant, three
of the problems become tractable—in the parameterized sense—when the number of
input row types is small.

Our studies so far are purely theoretical. While our results contribute to a bet-
ter understanding of how structural properties of the data matrices may influence the
computational complexity of the—in general NP-hard—data anonymization problems
studied here, it remains unclear whether some of the proposed algorithms may turn
useful for practical purposes. It seems clear, however, that trying to further shrink
exponential factors such as 2t2

in is of key importance and remains a task for future
work.

There are several fundamental challenges concerning the investigation of the param-
eterized complexity of the considered combinatorial data anonymization problems. For
k-Anonymity, it remains open whether it is fixed-parameter tractable for the com-
bined parameter (k, tout). This question directly extends to DGH-k-Anonymity. For
�-Diversity it remains a major open question to determine its parameterized com-
plexity for the parameter tin. In more general terms, exploring the parameterized and
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multivariate complexity landscape (Fellows 2009; Niedermeier 2010) of combinato-
rial data anonymization problems seems a natural and fruitful course of action with
many natural challenges still left to be tackled.
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