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Abstract Cluster ensemble aims at producing high quality data partitions by com-
bining a set of different partitions produced from the same data. Diversity and quality
are claimed to be critical for the selection of the partitions to be combined. To enhance
these characteristics, methods can be applied to evaluate and select a subset of the par-
titions that provide ensemble results similar or better than those based on the full set of
partitions. Previous studies have shown that this selection can significantly improve
the quality of the final partitions. For such, an appropriate evaluation of the candidate
partitions to be combined must be performed. In this work, several methods to evaluate
and select partitions are investigated, most of them based on relative clustering validity
indexes. These indexes select the partitions with the highest quality to participate in
the ensemble. However, each relative index can be more suitable for particular data
conformations. Thus, distinct relative indexes are combined to create a final evaluation
that tends to be robust to changes in the application scenario, as the majority of the
combined indexes may compensate the poor performance of some individual indexes.
We also investigate the impact of the diversity among partitions used for the ensemble.
A comparative evaluation of results obtained from an extensive collection of experi-
ments involving state-of-the-art methods and statistical tests is presented. Based on the
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obtained results, a practical design approach is proposed to support cluster ensemble
selection. This approach was successfully applied to real public domain data sets.

Keywords Cluster ensemble selection · Combination · Relative validity indexes ·
Evaluation · Diversity

1 Introduction

Data clustering is a fundamental conceptual problem in data mining. Clustering algo-
rithms aim at partitioning a data set by looking for a finite collection of clusters
according to similarities between its objects. Such clusters are supposed to describe
the underlying structure (if any) of the data. There are several clustering algorithms
reported in the literature. It is well known that different clustering algorithms, or the
same algorithm configured with different parameter values, may produce different par-
titions. However, a single consensus partition is expected in many applications. Cluster
ensembles can combine different partitions into a single consensus one. By doing so,
they can improve the quality of the final clusters obtained, being robust to distinct sce-
narios of application, including those involving noise and outliers (Strehl and Ghosh
2002; Topchy et al. 2004; Fred and Jain 2005; Ayad and Kamel 2008). They have also
been frequently employed in applications that require the use of existing knowledge
about the data set (Bollacker and Ghosh 1998) and in distributed clustering as well
(Tumer and Agogino 2008).

A typical cluster ensemble technique initially produces a large set of base cluster-
ing solutions and then combines these solutions into a consensus clustering solution.
Most of the ensemble techniques combine clustering solutions resulting from exclusive
partitional clustering algorithms, i.e., exclusive (so-called non-overlapping) partitions
(Jain and Dubes 1988). In order to formally define exclusive partitions, consider a data
set X = {x1, x2, . . . , xn}, composed of n input vectors x j , each of which is described
by a attributes or features. An exclusive partition is a collection π = {C1, C2, . . . , Ck}
of k clusters or subsets Ci in which C1∪C2∪ . . .∪Ck = X , Ci �= ∅, and Ci ∩Cl = ∅
for i �= l. Partitions generated for the sole purpose of being combined are named
base partitions and the methods used to combine them into an ensemble are known as
consensus functions. There are many consensus functions in the clustering literature.
Some of them are based on co-association among base partitions (Greene et al. 2004;
Fred and Jain 2005), whereas others employ graph partitioners (Strehl and Ghosh
2002; Fern and Brodley 2004) or cumulative voting (Tumer and Agogino 2008; Ayad
and Kamel 2008).

According to many authors (e.g. Greene et al. 2004; Kuncheva and Hadjitodorov
2004; Hadjitodorov et al. 2006; Handl and Knowles 2007; Fern and Lin 2008), the
diversity and the quality of the set of base partitions are critical characteristics for a
successful ensemble. Different approaches have been adopted to produce base parti-
tions with these characteristics. In (Strehl and Ghosh 2002; Weingessel et al. 2003),
each base partition is obtained by running one out of a set of different clustering algo-
rithms on the same data set. These ensembles are named heterogeneous ensembles.
Another approach, named homogeneous ensemble, uses different runs of the same
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clustering algorithm, but from distinct initializations and parameter values (Topchy
et al. 2004; Kasturi and Acharya 2004; Fred and Jain 2005; Hadjitodorov et al. 2006).
The production of different base partitions using data sampling (Monti et al. 2003;
Dudoit and Fridlyand 2003), distinct subsets of attributes (Strehl and Ghosh 2002),
and noise addition (Dimitriadou et al. 1999) have also been reported.

Although diversity between base partitions is considered to be a relevant issue in
cluster ensemble, only a few works have investigated the impact of diversity on the
quality of the consensus partition (Kuncheva and Hadjitodorov 2004; Hadjitodorov
et al. 2006; Hadjitodorov and Kuncheva 2007). Fewer works have shed some light on
how the quality of the base partitions affects the consensus partition (Fern and Lin
2008). Recently, new techniques have been developed to improve clustering ensembles
by selecting a subset of the base partitions using diversity and quality (Fern and Lin
2008; Azimi and Fern 2009). These techniques are known as cluster ensemble selec-
tion (CES) and their main purpose is to form an ensemble with a subset of the base
partitions, here named selected set, which performs equally to or better than ensembles
of the full set of base partitions, also known as full ensembles. Recent results show
that CES may achieve significant performance improvements when compared to full
ensembles (Fern and Lin 2008; Azimi and Fern 2009). Although these results seem
promising, CES has so far been investigated with respect to no more than a couple
of consensus functions, which may not be enough to represent the variety of consen-
sus functions proposed in the literature (Strehl and Ghosh 2002; Fred and Jain 2005;
Kuncheva et al. 2006; Tumer and Agogino 2008). Moreover, these works investigated
fewer than a dozen data sets, which may be insufficient to access the full potential of
this approach.

Relative clustering validity (or validation) indexes have been successfully used dur-
ing decades to evaluate the relative quality of partitions (Milligan and Cooper 1985;
Halkidi et al. 2001; Vendramin et al. 2009, 2010). We believe that such indexes can
be used to evaluate base partitions in the CES process, which, to the best of our
knowledge, has not been tried before. Once the evaluations have been performed, it
is possible to select the most appropriate base partitions to construct the ensemble.
However, validation indexes are each endowed with particular features that may cause
an index to outperform others in specific classes of problems (Milligan and Cooper
1985; Vendramin et al. 2009, 2010). Therefore, it may be difficult for the user to
choose a specific index among a large variety of possibilities. One possible solution
is to combine the evaluations resulting from a set of relative validation indexes into a
single evaluation. The main rationale behind the combination of relative indexes (CRI)
is to obtain an evaluation robust to changes in the application scenario, as the major-
ity of the combined indexes may counterbalance the poor performance of individual
indexes. In the context of CES, CRI has an additional important property: it may lead
to more diverse selected partitions.

In this paper, we investigate the use of relative validation indexes in CES, applying
them to five well known consensus functions: the evidence accumulation algorithms
EAC-SL and EAC-AL by Fred and Jain (2005), and the graph-based algorithms CSPA,
HGPA, and MCLA by Strehl and Ghosh (2002). A collection of relative validation
indexes is used to evaluate the clustering results for 491 data sets (484 artificial and
7 real). The evaluations obtained from all indexes are combined using 3 different

123



262 M. C. Naldi et al.

combination methods. We show that relative validation indexes can be successfully
used in CES, either combined or individually, through a comparative evaluation of
results involving a well known CES algorithm, an extensive collection of experiments,
and statistical tests. Additionally, a method to measure diversity in the selected set is
used to investigate the impact of diversity on the ensemble. Based on these results, it
is possible to indicate in which scenarios the use of CES is more effective than the
full ensemble and in which scenarios it is not. Moreover, for cases in which no pre-
vious information about the application scenario is available, we propose a practical
method to compare and select ensemble partitions using relative validation indexes.
This method is successfully applied to real public domain data sets.

This paper is organized as follows. In Sect. 2, we describe previous works using
CES methods found in the literature. In Sect. 3, we review the relative clustering valid-
ity indexes that will be used in the proposed CES methods. Section 4 presents the CES
methods and a methodology for practical applications proposed in this paper. In Sect. 5,
the CES methods are experimentally investigated. Finally, the main conclusions are
summarized in Sect. 6.

2 Related work

Several works in the clustering literature suggest that diversity and quality of the base
partitions are crucial for a successful cluster ensemble (Kuncheva and Hadjitodorov
2004; Hadjitodorov et al. 2006; Fern and Lin 2008; Azimi and Fern 2009). Kuncheva
and Hadjitodorov (2004) proposed the overproduction of clusters in base partitions
as a method to enhance diversity in ensembles. Based on experimental results, the
authors observed that diverse ensembles tend to be more accurate than non-diverse
ones. Later, Hadjitodorov et al. (2006) observed that the quality of the ensemble did
not seem to grow monotonically by increasing the diversity among base partitions and,
based on this observation, they suggested the use of ensembles involving a set of base
partitions with moderate diversity.

In the supervised learning paradigm, it has been shown that the selection of a subset
of classifiers based on their quality and diversity may result in a performance similar to
or better than that obtained when the whole set of classifiers is used (Margineantu and
Dietterich 1997; Caruana et al. 2006). Inspired by those results, Fern and Lin (2008)
proposed the combination of partition quality and diversity for CES, using the Sum of
the Normalized Mutual Information (SNMI) measure introduced in (Strehl and Ghosh
2002). In particular, given a set Π of r partitions denoted by Π = {π1, π2, . . . , πr },
the SNMI measure between a partition π and the set Π is denoted as:

SN M I (π,Π) =
r∑

i=1

N M I (π, πi ) (1)

where N M I (π, πi ) is the Normalized Mutual Information (NMI) between partition π

and the i th partition in the set Π , which is computed by considering partitions π and
πi as two random variables and the corresponding cluster labels for the data objects
as observed values of these variables (Strehl and Ghosh 2002). Intuitively, a partition
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π maximizing SNMI maximizes the information it shares with all the partitions in Π

and can be considered to capture its general trend.
Fern and Lin (2008) suggested that the quality of a base partition is proportional

to its SNMI with respect to the set of base partitions and that the diversity of the
selected set is inversely proportional to the SNMI between each of its members and
the other members of this set. The most successful method proposed by Fern and Lin
(2008) is named Cluster And Select (CAS), which combines quality and diversity by
first grouping base partitions according to their similarities and then selecting for the
ensemble the partitions with the highest SNMI within each cluster obtained. Results
obtained with CAS indicate that explicitly considering both quality and diversity in
CES may result in statistically significant SNMI improvements over full ensembles.

Recently, Azimi and Fern (2009) investigated the use of CES to avoid consensus
partitions excessively different from the base partitions they result from. According to
the authors, such consensus partitions represent unstable solutions, which can, how-
ever, be improved by means of a proper selection of base partitions. Particularly, Azimi
and Fern proposed to first select the base partitions most similar to the consensus par-
tition obtained from the full ensemble and, then, generate a new consensus partition
from the selected set. They showed that this procedure can result in partitions with
enhanced SNMI.

It is worth noticing that the use of SNMI to measure quality in CES needs caution.
SNMI reflects the amount of information a consensus partition captures from a given
set of base partitions (Strehl and Ghosh 2002). Therefore, the more similar the base
partitions are to the consensus partition, the higher is the SNMI value. Thus, maxi-
mum SNMI value is reached when the base partitions and the consensus partition are
identical. As a result, a CES method that maximizes SNMI may exhibit a tendency
to build selected sets with similar or identical base partitions, which is not a desir-
able characteristic for cluster ensembles, as there is no point in combing such base
partitions.1 Moreover, desirable characteristics for partitions, such as clusters external
isolation and internal cohesion (i.e., compaction and separation) (Halkidi et al. 2001),
are not considered by the SNMI measure.

Finally, it is also worth noticing that, although the above-mentioned works did pro-
vide important contributions to the understanding of CES, their experimental results
involved fewer than a dozen data sets and no more than a couple of consensus functions,
which represent a small fraction of the consensus functions reported in the literature
(Strehl and Ghosh 2002; Dimitriadou 2003; Kuncheva et al. 2006; Tumer and Agogino
2008).

3 Review of relative validity indexes

Many different relative clustering validity measures are very useful in practice as quan-
titative criteria for evaluating the quality of data partitions (Vendramin et al. 2010).
This evaluation is based on desirable cluster properties, such as external isolation and

1 A need to counterbalance this tendency is the reason Fern and Lin (2008) also use diversity among base
partitions as an additional selection criterion.
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internal cohesion (Halkidi et al. 2001). In contrast to external validity indexes, which
measure the level of agreement between a pair of partitions (Jain and Dubes 1988),
relative validity indexes are able to compare the quality of two or more partitions
of a given data set in a relative way, using solely the data themselves.2 Revising the
rich literature on relative validation indexes is out of the scope of this paper. Instead,
we chose six relative validation indexes to evaluate the quality of base partitions and
enable the selection of the most promising ones for an ensemble. These indexes have
linear asymptotic computational complexity in relation to the number of objects of
the evaluated partition (O(n)), having minor impact on the overall computational cost
of CES. Furthermore, they have shown to be capable of discriminating between high
and low quality partitions in hundreds of experiments and data sets (Vendramin et al.
2009, 2010). In this section, these indexes are briefly described. For detailed reviews
of these and others relative validation indexes, the reader may refer to (Milligan and
Cooper 1985; Halkidi et al. 2001; Vendramin et al. 2009, 2010) and references therein.

3.1 Simplified Silhouette (SS)

A well-known index that is based on geometrical considerations about compactness
and separation of clusters is the Silhouette Width Criterion (Rousseeuw 1987). How-
ever, the original index depends on the computation of distances between all objects.
This computation can be simplified by using distances between objects and cluster
centroids, originating the index called Simplified Silhouette (Hruschka et al. 2004a).
In order to define this index, let us consider that the j th object of the data set, x j ,
belongs to a given cluster C p ∈ {C1, · · · , Ck}, where k is the number of clusters in
a given partition. Next, let the dissimilarity between the j th object and the centroid
of its cluster C p be denoted by ap, j . Also, let bp, j be the dissimilarity between the
j th object and the centroid of its closest neighboring cluster. Then, the simplified
silhouette of the individual object x j is defined as3:

sx j =
bp, j − ap, j

max{ap, j , bp, j } (2)

where the denominator is just a normalization term. The higher sx j , the better the
assignment of x j to cluster C p. If C p is a singleton, i.e., if it is constituted uniquely by
x j , then it is assumed by convention that sx j = 0 (Kaufman and Rousseeuw 1990).
This prevents the SS index, defined as the average of sx j over j = 1, 2, · · · , n, i.e.

SS = 1

n

n∑

j=1

sx j (3)

2 Notice, therefore, that relative index here refers to internal validation measures which are also relative
(Jain and Dubes 1988).
3 Since the Simplified Silhouette is based on cluster centroids, in principle it can be applied to data sets
described by numerical attributes only. For data sets with categorical attributes, either centroids must be
replaced with medoids (cluster representatives) or the original Silhouette Width Criterion must be used.
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to elect the trivial solution k = n (with each object of the data set forming a cluster
on its own) as the best one. Clearly, the best partition is expected to be selected when
SS is maximized, which implies minimizing the intra-group distance (ap, j ) while
maximizing the inter-group distance (bp, j ).

3.2 Alternative Simplified Silhouette (ASS)

A variant of the simplified silhouette criterion can be obtained by replacing Eq. (2) with
the following alternative definition of the silhouette of an individual object (Hruschka
et al. 2004b):

sx j =
bp, j

ap, j + ε
(4)

where ε is a small constant (e.g. 10−6 for normalized data) used to avoid division by
zero when ap, j = 0. Note that the rationale behind Eq. (4) is the same as that of (2), in
the sense that both favor larger values of bp, j and lower values of ap, j . The difference
lies in how they favor, linearly in (2) and non-linearly in (4).

3.3 Calinski–Harabasz (VRC)

The Variance Ratio Criterion (Calinski and Harabasz 1974) evaluates the quality of a
data partition as:

VRC = trace(B)

trace(W)
× n − k

k − 1
(5)

where W and B are the a × a within-group and between-group dispersion matrices4,
respectively, defined as:

W =
k∑

l=1

Wl (6)

Wl =
∑

xi∈Cl

(xi − xl)(xi − xl)
T (7)

B =
k∑

l=1

nl(xl − x)(xl − x)T (8)

where nl is the number of objects assigned to the lth cluster (Cl ), xl is the a-dimensional
vector of sample means within that cluster (cluster centroid) and x is the a-dimensional
vector of overall sample means (data centroid or grand mean of the data). As such, the
within-group and between-group dispersion matrices sum up to the scatter matrix of
the data set, i.e., T =W+ B, where T =∑n

i=1(xi − x)(xi − x)T . The trace of matrix

4 Recall that a is the number of attributes that describe the data objects.
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W is the sum of the within-cluster variances (its diagonal elements). Analogously, the
trace of B is the sum of the between-cluster variances. As a consequence, compact
and separated clusters are expected to have small trace(W) values and large trace(B)

values. Hence, the better the data partition the greater the value of the ratio between
trace(B) and trace(W). The normalization term (n − k)/(k − 1) prevents this ratio to
increase monotonically with the number of clusters, thus making VRC an optimization
(maximization) criterion with respect to k.

3.4 PBM

Another criterion, named PBM (Pakhira et al. 2004), is also based on the within-group
and between-group distances:

PBM =
(

1

k

E1

EK
DK

)2

(9)

where E1 is a constant that denotes the sum of distances between the objects and the
grand mean of the data, i.e. E1 = ∑n

i=1 ||xi − x||, EK = ∑k
l=1

∑
xi∈Cl
||xi − xl ||

represents the sum of within-group distances, and DK = max
l,m=1,··· ,k ||xl − xm || is the

maximum distance between group centroids. According to this equation, the best par-
tition should be indicated when PBM is maximized, which implies maximizing DK

while minimizing EK .

3.5 Davies–Bouldin (DB)

The Davies–Bouldin index (Davies and Bouldin 1979) is somewhat related to VRC,
since it is also based on a ratio involving within-group and between-group distances.
Specifically, the index evaluates the quality of a given data partition as follows:

DB = 1

k

k∑

l=1

Dl (10)

where Dl = maxl �=m{Dl,m}. Term Dl,m is the within-to-between cluster spread for
the lth and mth clusters, given by Dl,m = (dl + dm)/dl,m , where dl and dm are
the average within-group distances for the lth and the mth clusters, respectively, and
dl,m is the inter-group distance between these clusters. These distances are defined
as dl = (1/nl)

∑
xi∈Cl
||xi − xl || and dl,m = ||xl − xm ||, where ‖·‖ is a norm (e.g.

Euclidean).
Term Dl represents the worst case within-to-between cluster spread involving the

lth cluster. Minimizing Dl for all clusters clearly minimizes the Davies–Bouldin index.
Hence, good partitions, composed of compact and separated clusters, are distinguished
by small values of DB in (10).
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3.6 Dunn

The Dunn index (Dunn 1974) is another validity criterion based on geometrical mea-
sures of cluster compactness and separation. It is defined as:

DN = min
p, q ∈ {1, . . . , k}

p �= q

⎧
⎨

⎩
δC p,Cq

max
l ∈ {1,...,k}ΔCl

⎫
⎬

⎭ (11)

where ΔCl is the diameter of the lth cluster and δC p,Cq is the set distance between
clusters C p and Cq . The original definitions of diameter and set distance in (11) were
generalized in (Bezdek and Pal 1998), giving rise to 17 variants of the original Dunn
index. One of theses variants is used here in this paper, in which the set distance across
clusters C p and Cq is defined as δC p,Cq = ||xp − xq ||, whereas the diameter ΔCl of a
given cluster l is calculated by ΔCl = 2

nl

∑
xi∈Cl
||xi − xl ||. Note that the definitions

of ΔCl and δC p,Cq are directly related to the concepts of within-group and between-
group distances, respectively. Bearing this in mind, it is easy to verify that partitions
composed of compact and separated clusters are distinguished by large values of DN
in (11).

4 Cluster Ensemble Selection (CES)

In this work, we investigate the use of validation indexes in CES. More specifically,
the six relative validation indexes presented in Sect. 3 were chosen to evaluate the
quality of the obtained base partitions and to enable the selection of the finest base
partitions for the ensemble.

4.1 Single index selection (SIS)

This method is named Single Index Selection (SIS) and is described by Algorithm 1,
where Πb is the original (full) collection of candidate base partitions, s is the number
of base partitions to be selected for the ensemble, index is the chosen relative validation
index, Πs is the resulting selected set, and | · | stands for cardinality.

Algorithm 1 Single Index Selection (SIS)
Require: A collection of candidate base partitions, Πb , the number of base partitions to be selected, s

(s < |Πb|), and a relative validation index, index;
1: repeat
2: t ← arg max

m∈{1,...,|Πb |}
f (m) = index(πm );

3: insert πt into Πs ;
4: remove πt from Πb;
5: until |Πs | = s;
6: return Πs ;
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If the relative validation index distinguishes better partitions by smaller values (e.g.
Davies–Bouldin), i.e., if it is a minimization (rather than a maximization) index, then
the max operator (Step 2 of Algorithm 1) should be replaced by min.

Provided that index demands O(I ) time to be computed, the asymptotic com-
plexity of Algorithm 1 is O(|Πb| (I + s)), but it can also be implemented to run in
O(|Πb| (I + log |Πb|)) time by using a sorting procedure.

The single index selection will be experimentally evaluated in Sect. 5 for each rela-
tive validation index reviewed in Sect. 3. In Sects. 4.2 and 4.4, we propose to combine
these indexes to evaluate and select partitions.

4.2 Combination of relative indexes (CRI)

Each validation index has its own peculiarities, being more (or less) adequate for
specific data conformations. The choice of a particular index from the large variety
of existing indexes is not an easy task, especially because, in most practical cases,
there is no information about their expected performances in the application scenario
in hand. In fact, a few papers have assessed the performance of relative validation
indexes and these studies have involved a particular class of data sets (Milligan and
Cooper 1985; Vendramin et al. 2009, 2010). Moreover, evaluations based on a single
validation index in CES may reduce the diversity of the ensemble members, since the
best evaluated partitions are likely to have similar characteristics. A possible alterna-
tive to overcome these drawbacks is to average the individual evaluations provided
by a committee of relative validation indexes (CRI, as defined in Sect. 1), expecting
that a good performance of most indexes will compensate the weak performance of
some. In this context, it is expected that the evaluations made by a CRI tend to be
more robust to variations in the application scenarios than the use of a single index.
Furthermore, when adopted in CES, the CRI strategy may result in selected partitions
with higher diversity than those obtained by using a single validation index, as each
member of the CRI evaluates the partitions in a different way.

In order to define the CRI methods proposed in this paper, let us consider a func-
tion rank that returns the rank of partition πm among the base partitions in the set Πb

when evaluated by the uth index of the combination, referred to here as indexu . For
example, if πm is a base partition from Πb and it is the best partition according to the
uth index, then rank(indexu, πm,Πb) = 1. If πm is the second best partition, then
rank(indexu, πm,Πb) = 2 and so on. Moreover, let us consider a function diversi t y,
which returns the mean pairwise dissimilarity between a partition πi and a set of
partitions Π , calculated as follows:

diversi t y(πi ,Π) = 1−
∑

π j∈Π, j �=i

s(πi , π j )

|Π | − 1
(12)

where | · | stands for set cardinality and s(πi , π j ) is a given measure of similarity
between partitions πi and π j . In this work, the Jaccard external index (Jaccard 1908)
is used to calculate the similarity between partitions. This very simple and intuitive
index compares two partitions (πi and π j ) of the same data set as:
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s(πi , π j ) = a

a + b + c
(13)

where

– a: Number of pairs of data objects belonging to the same cluster in πi and to the
same cluster in π j .

– b: Number of pairs of data objects belonging to the same cluster in πi and to
different clusters in π j .

– c: Number of pairs of data objects belonging to different clusters in πi and to the
same cluster in π j .

The Jaccard index has been chosen for being well-known and for resulting in sim-
ilarities with values in the interval [0, 1], which makes it easier their interpretation
and conversion to dissimilarities. However, other external indexes—e.g. the Adjusted
Rand (Hubert and Arabie 1985) or NMI indexes (Strehl and Ghosh 2002)—can also
be used in Eq. (12). It is important to note that, although the Jaccard index is usually
associated with external information about the data set (so-called “ground truth” or
“ideal partition”), no information external to the data set and the set of base partitions
is used by any method proposed in this paper.

We propose three CRI methods for CES. The first one, named Sum of Ranks (SR),
builds a ranking for each validation index based on the evaluation of all base parti-
tions. The sum of the individual rankings is then calculated for each base partition
(over the different indexes) and the base partitions with the lowest sums are selected
for the ensemble. Algorithm 2 summarizes the SR method, where s is the number of
base partitions to be selected for the ensemble, v is the number of validation indexes
combined, Πs is the resulting selected set, and | · | stands for cardinality.

Algorithm 2 Sum of Ranks (SR)
Require: A collection of candidate base partitions, Πb , the number of base partitions to be selected, s

(s < |Πb|), and a collection of relative validation indexes, indexi (i = 1, . . . , v);
1: repeat

2: t ← arg min
m∈{1,...,|Πb |}

f (m) =
v∑

i=1
rank(indexi , πm , Πb);

3: insert πt into Πs ;
4: remove πt from Πb;
5: until |Πs | = s;
6: return Πs ;

Provided that the most computationally demanding index runs in O(Imax ) time and
that the rankings of the base partitions with respect to the different indexes are pre-
computed, Algorithm 2 can be implemented to run in O(v (|Πb|Imax + |Πb| log |Πb|))
time based on multiple sorting procedures.

Like the SR method, the second method builds a ranking of the base partitions
for each validation index. However, the rankings are not summed. Instead, the best
ranked partitions, according to each index, are selected. This method is named Best
Rank Position (BRP) and is presented in Algorithm 3. Its complexity is the same as
that of Algorithm 2, i.e., O(v (|Πb|Imax + |Πb| log |Πb|)).
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Algorithm 3 Best Rank Position (BRP)
Require: A collection of candidate base partitions, Πb , the number of base partitions to be selected, s

(s < |Πb|), and a collection of relative validation indexes, indexi (i = 1, . . . , v);
1: i ← 0;
2: repeat
3: i ← i + 1;
4: t ← arg min

m∈{1,...,|Πb |}
f (m) = rank(indexi , πm , Πb);

5: insert πt into Πs ;
6: remove πt from Πb;
7: i ← i mod v;
8: until |Πs | = s;
9: return Πs ;

The third method is named Sum of Ranks with Diversity (SRD). Although the eval-
uation of partitions and their rankings are calculated precisely as in the SR method,
the sum of ranks for each partition is weighted by the diversity between the partition
and the set of base partitions (computed according to Eq. (12)). Next, partitions are
selected for the ensemble in ascending order of weighted rank sums. The objective of
this CRI is to enhance the diversity of the ensemble, in comparison to the SR method.
The method is summarized in Algorithm 4.5

Algorithm 4 Sum of Ranks with Diversity (SRD)
Require: A collection of candidate base partitions, Πb , the number of base partitions to be selected, s

(s < |Πb|), and a collection of relative validation indexes, indexi (i = 1, . . . , v);
1: repeat

2: t ← arg min
m∈{1,...,|Πb |}

f (m) = (1− diversi t y(πm ,Πb)) ∗
v∑

i=1
rank(indexi , πm , Πb);

3: insert πt into Πs ;
4: remove πt from Πb;
5: until |Πs | = s;
6: return Πs ;

In terms of complexity, the difference with respect to SR in Algorithm 2 is that
SRD in Algorithm 4 needs to compute diversity for every partition. Provided that the
external index used by function diversity runs in O(E) time (for a single pair of parti-
tions) and given that computing diversity for all base partitions according to Eq. (12)
demands the external index to be computed for all pairs of partitions, the complexity
of Algorithm 4 can be written as O(v (|Πb|Imax + |Πb| log |Πb|)+ E |Πb|2). In this
paper we have used the Jaccard index in (13), for which E is O(n2). If computing
time is a concern, however, a linear time external index (e.g. NMI) is recommended.

As a summary of the proposed CES methods, it follows that the rationale behind
both SR and SRD (Algorithms 2 and 4) is to select those partitions with the best aver-
age ranks computed according to multiple validity criteria; the difference is that the

5 Notice that smaller weight values are assigned to more diverse partitions because lower ranks are asso-
ciated with better quality partitions and, accordingly, the selected partitions should be those that minimize
the weighted sum of ranks.
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latter uses an weighted average that favors more diverse partitions. Differently, BRP
(Algorithm 3) does not take averages into account. Instead, it selects those partitions
that are top ranked according to each criterion individually.

4.3 Diversity selection

Based on the methods proposed in (Hadjitodorov et al. 2006; Fern and Lin 2008;
Azimi and Fern 2009), we also investigate the explicit use of diversity in CES. In
(Hadjitodorov et al. 2006), the diversity of a set of partitions is given by the mean
pairwise dissimilarity between them, calculated using the Adjusted Rand (AR) index.
A similar methodology is adopted in (Fern and Lin 2008; Azimi and Fern 2009) using
the SNMI measure. In the present work, the Jaccard external index is adopted for the
reasons already explained in Sect. 4.2.

In order to evaluate the explicit use of diversity in CES, a method is proposed
here that begins by selecting the base partition with the highest diversity with respect
to the original set of partitions, measured according to Eq. (12). Next, it iteratively
selects the base partition with the highest diversity regarding the set of base partitions
selected in previous iterations (selected set), until the desired number of partitions is
obtained. This CES method will be referred to here as Diversity and is summarized in
Algorithm 5.

Algorithm 5 Diversity
Require: A collection of candidate base partitions, Πb , and the number of base partitions to be selected, s

(s < |Πb|);
1: t ← arg max

m∈{1,...,|Πb |}
f (m) = diversi t y(πm ,Πb);

2: insert πt into Πs ;
3: remove πt from Πb;
4: repeat
5: t ← arg max

m∈{1,...,|Πb |}
f (m) = diversi t y(πm , Πs );

6: insert πt into Πs ;
7: remove πt from Πb;
8: until |Πs | = s;
9: return Πs ;

Algorithm 5 can be implemented in O(E (|Πb|2 + sΠb)), where E is the complex-
ity of the external index used by function diversity. For the experiments in this paper
we have used the Jaccard index given by (13), for which E is O(n2), but if computing
time is a concern, then the NMI or some other linear time external index should be
used instead.

4.4 The Best Validated Consensus Partition (BVCP) method

The experiments to be reported in Sect. 5.4 reveal a large variety of results obtained
by different CES methods, data sets, and consensus functions. An important question
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Fig. 1 Main steps of the BVCP
method

arises: “How can good ensemble results be achieved in practical applications, where
little or no information is available about the underlying clustering structure contained
in the data (if any) or about the performance of the different methods (partition selec-
tion and consensus functions) when applied to such a sort of data?”. It is not trivial
(if possible) to design a methodology capable of producing the best results given such
a variety of alternatives. However, we believe that it is possible to develop a method
that is likely to produce good solutions.

We propose here the use of both the full ensemble and the (multiple) CES methods
to generate candidate consensus partitions when there is no information to guide the
choice of a particular method (like the performance of the CES methods when applied
to the different consensus functions for the particular kind of data in hand). In this
case, the final partition can be selected among the set of candidate consensus partitions
through an evaluation carried out using a relative validation index or a combination
of indexes (CRI). This method, named Best Validated Consensus Partition (BVCP),
is composed of four main steps, illustrated in Fig. 1 and detailed in the following.

1. Generation of base partitions: generates base partitions by using one of the sev-
eral methods presented in the literature (Kuncheva et al. 2006; Hadjitodorov et al.
2006) (see Sect. 5.2 for an example).

2. CES application: applies different CES methods, resulting in different selected
subsets of base partitions. Since in most practical cases there is no information
about the expected performance of a single relative validation index for the data
in hand, the use of a CRI method (Sect. 4.2) may be recommended.

3. Generation of consensus partitions: combines the subset of base partitions result-
ing from each CES method into a candidate consensus partition, using a given
consensus function. An additional consensus partition is derived from the full
ensemble.
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4. Validation and selection: validates each consensus partition produced in the previ-
ous step using relative validation index(es). As in practical clustering applications,
the expected performance of the validation indexes is usually unknown for the data
set in hand, so the use of a CRI may also be recommended in this step. The partition
with the best (combined or individual) validation value, according to the index(es)
adopted, is selected and considered as the BVCP final partition.

5 Experimental evaluation

In order to assess the performance of the proposed CES methods, experiments were
carried out with artificial and real data sets. These data sets are described in Sect. 5.1.
The generation of the base partitions is addressed in Sect. 5.2 and the consensus func-
tions considered in this study are discussed in Sect. 5.3. In Sect. 5.4, we investigate
the use of diversity and relative validation indexes—both individually (SIS) and com-
bined (CRI)—in CES, when applied to collections of artificial data sets. The results
of the different methods are compared against themselves and against those provided
by the method CAS, proposed by Fern and Lin (2008). Experiments involving real
data sets and the meta-ensemble method BVCP described in Sect. 4.4 are presented
in Sect. 5.5.

5.1 Data sets

Initially, the methods proposed in this paper are experimentally investigated using three
major collections of artificial data sets selected from the literature, each of which con-
tains tens of artificially generated data sets. The first major artificial collection was
generated by Vendramin et al. (2010), closely following the artificial data generator
used in the classic study by Milligan and Cooper (1985). The spatial dispositions of the
objects within clusters follow (mildly truncated) multivariate normal distributions, in
such a way that the resulting structure could be considered to consist of natural clusters
that exhibit the properties of external isolation and internal cohesion. Other features
of these data sets are:

– Each data set has n = 500 objects;
– Overlap of cluster boundaries is permitted in all but the first dimension of the

attributes space.
– Varied numbers of clusters, k, where k ∈ {2, 4, 6, 12, 14, 16};
– Different numbers of attributes, a, where a ∈ {2, 3, 4, 22, 23, 24};
– Three methods for distributing objects among clusters:

– All objects are distributed as equally as possible among the clusters;
– One cluster must contain 10 % of the data objects and the remaining objects

are equally distributed among the other clusters;
– If k ∈ {2, 4, 6}, one of the clusters must contain 60 % of the objects. Otherwise,

one cluster must contain 20 % of the objects. The remaining objects are equally
distributed among the other clusters;
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– For each combination of k, a, and cluster balance, three sampling replications were
generated, thus producing a total of 324 data sets.

For additional details about these data sets, please refer to (Vendramin et al. 2010).
From now on, this collection will be referred as Artificial1.

Two major collections of artificial data sets analyzed in (Handl and Knowles 2007)
are also used. The first one, named here Artificial2, contains clusters generated from
multivariate normal distributions with variances higher than those in the collection
Artificial1. The second one, referred to here as Artificial3, is composed of data sets
generated by a high dimensional ellipsoidal cluster generator developed by Handl
and Knowles (2007). The main features of the data sets collections Artificial2 and
Artificial3 are:

– Both have overlapped clusters;
– Varied numbers of clusters, k, where k ∈ {4, 10, 20, 40};
– The number of objects in each cluster is randomly drawn from the interval [50, 500]

for data sets where k ∈ {4, 10}. For data sets where k ∈ {20, 40}, this number is
drawn uniformly from the interval [10, 100].

– Data objects in Artificial2 are described by either a = 2 or a = 10 attributes, while
objects in Artificial3 are described by either a = 50 or a = 100 attributes;

– Ten sampling replications were generated for each combination of k and a, pro-
ducing a total of 80 data sets variations for each data collection.

In addition to the characteristics previously described, the three major artificial data
collections exhibit different clustering complexity levels. The level of complexity can
be estimated by the similarities between the obtained partitions and the known clus-
ters (ground truth). The higher these similarities, the simpler is the clustering problem
for the corresponding data set. To assess the complexity of the artificial data sets,
the similarities among the base partitions (obtained as described in Sect. 5.2) and
the known clusters were calculated by the Jaccard index. The mean Jaccard index
values calculated for the best base partitions are 0.96, 0.83, and 0.44 for the data
collections Artificial1, Artificial2, and Artificial3, respectively. As the Jaccard index
returns values in the interval [0, 1], the obtained results suggest that Artificial1 is
the simplest data collection for clustering, whereas Artificial3 is the most complex
collection.

Experiments involving real data sets will be reported in Sect. 5.5. Most of these
sets have been used in related works (Hadjitodorov et al. 2006; Fern and Lin 2008;
Azimi and Fern 2009) and, for this reason, they were also considered in the experi-
ments presented here. Four out of the seven real data sets were obtained from the UC
Irvine (Asuncion and Newman 2007) repository: Iris (Fisher 1936), Wine (Aeberhard
et al. 1992), Breast Cancer Wisconsin (without the 16 objects with missing attributes)
(Mangasarian and Wolberg 1990), and Synthetic Control Chart Time Series (Alcock
and Manolopoulos 1999). The fifth data set is composed of yeast gene-expression
data, obtained from (Yeung et al. 2003), and will be named Yeast here. The last two
are documents (text) data sets, formed with collections of articles from international
journals. The first collection, named Articles, is formed by 253 articles related to pol-
itics, DNA research, weather, food and mobile computing (Naldi et al. 2011). The
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Table 1 Main features of the real data sets used in the experiments

Name #Objects (n) #Attributes (a) #Classes (k) Minor class Major class

Iris 150 4 3 50 50

Wine 178 13 3 48 71

Breast 683 9 2 239 444

Chart 600 60 6 100 100

Yeast 205 20 4 14 93

Articles 253 4636 5 42 62

cbrilpirivson 945 1431 5 101 276

second collection is composed solely of articles from computing related journals,
being less heterogeneous and more difficult to cluster than the first collection. This
collection is called cbrilpirivson (Paulovich et al. 2008), as their article subjects are
case-based reasoning, inductive logic programming, information retrieval, informa-
tion visualization and sonification. Table 1 displays the main features of these real
data sets.

The true classes in the real data sets are not always an ideal goal for clustering
algorithms, as they may not be compact and well separated. The Iris data set, for
instance, has two classes with a high degree of overlapping (virginica, versicolor),
while the third class is well separated from the others. However, as we have no knowl-
edge about the level of correspondence between the labeled classes and the natural
clusters in these data sets, the true classes will be considered as the ground truth for
the experiments presented in this study.

5.2 Generation of base partitions

The base partitions were generated from the artificial collections and the real data sets
described in Sect. 5.1. Several sets of base partitions were produced by repeatedly
running the k-means algorithm with different parameter values, a method frequently
used in the cluster ensemble literature (Fred and Jain 2005; Kuncheva et al. 2006;
Hadjitodorov et al. 2006; Fern and Lin 2008; Azimi and Fern 2009). For each data
set, p runs of k-means were performed, with k ranging from 2 to

√
n, where n is the

number of objects. This strategy was adopted to provide, for each data set, a number
of base partitions proportional to the number of objects.

It is important to select the value of p with caution. While low values of p may not
generate the diversity required for some types of ensembles, high values may require
too much memory for the storage of the base partitions. In this paper, we selected
values so as to create large sets of base partitions without exceeding the amount of
memory available. Specifically, we selected p = 10 for the experiments with the Arti-
ficial1 collection and real data sets and p = 5 for the experiments with the Artificial2
and Artificial3 data sets.

123



276 M. C. Naldi et al.

The proposed CES methods were used to select the best partitions for the ensem-
bles. Each of these methods was applied to select subsets containing 10, 25, 50, and
75 % of all base partitions produced by k-means for each data set.

5.3 Consensus functions

Once selected, the base partitions are combined into consensus partitions with k clus-
ters using different consensus functions, where k is the known number of clusters
or classes in the corresponding data set. Two types of consensus functions stand out
among the best known and will be used in our experiments: the evidence accumula-
tion based consensus functions (Fred and Jain 2005) and the graph based consensus
functions (Strehl and Ghosh 2002). The first type constructs an n × n matrix formed
by the similarities between each pair of objects, similarities being computed based on
the number of clusters these objects share in the base partitions (Kuncheva 2004). This
procedure is known as evidence accumulation (Fred and Jain 2005). Next, a clustering
algorithm generates the consensus partition using the co-association similarities pre-
viously computed. Hierarchical clustering algorithms are frequently used for this task,
specially the average-link and single-link algorithms (Jain and Dubes 1988). These
consensus functions are named Evidence Accumulation Clustering with Average-Link
(EAC-AL) and Evidence Accumulation Clustering with Single-Link (EAC-SL) (Fred
and Jain 2005). Both will be used in our experiments. These functions have asymp-
totic computational complexity of O(n2 (log n+|Π |)), where n is the number of data
objects and |Π | is the cardinality of the set of base partitions used for the ensemble.
If a full ensemble is constructed, then |Π | is the number of available base partitions
(|Π | = |Πb|). Instead, if a CES method precedes the consensus function, then |Π | is
the cardinality of the selected set (|Π | = |Πs | < |Πb|).

The second type of consensus functions considered here represents the data set
objects and the clusters contained in the base partitions as nodes in a graph, in which
their relationships correspond to edges/hyper-edges (Strehl and Ghosh 2002). The con-
sensus partition is obtained by using a graph/hyper-graph partition technique (Karypis
and Kumar 1999). The Cluster-based Similarity Partitioning Algorithm (CSPA), the
Hyper-Graph Partitioning Algorithm (HGPA), and the Meta-CLustering Algorithm
(MCLA) are graph based consensus functions proposed in (Strehl and Ghosh 2002)
and frequently used in the literature (Kuncheva et al. 2006; Fern and Lin 2008). For this
reason, they will be used in our experiments. Their asymptotic computational com-
plexities are estimated as O(n2 k |Π |), O(n k2 |Π |2), and O(n k |Π |2), respectively,
where n is the number of data objects, k is the number of clusters in the consensus
partition, and |Π | is the cardinality of the set of base partitions used for the ensemble
(i.e., |Π | = |Πs | if CES is performed or |Π | = |Πb| in case of a full ensemble).

It is important to note that the CES methods Diversity (Sect. 4.3) and SRD (Sect. 4.2)
are based on pairwise comparisons of partitions, which in turn are based on external
validity indexes. This may cause the asymptotic computational complexities of these
methods to be equivalent or exceed the complexities of the consensus functions consid-
ered in the present study, especially if an external index based on pairwise comparisons
of data objects is adopted. The CAS method for CES (Fern and Lin 2008), which will

123



Relative validity indexes 277

Table 2 CES methods
evaluated in the experiments

SIS methods
Simplified Silhouette (SS)
Alternative Simplified Silhouette (ASS)
Variance Ratio Criterion (VRC)
PBM
Davies–Bouldin (DB)
Dunn (DN)

CRI methods
Sum of Ranks (SR)
Best Rank Position (BRP)
Sum of Ranks with Diversity (SRD)

Other methods
Davies–Bouldin (DB)
Diversity
CAS

also be considered in our experiments, is highly computationally demanding as well,
especially for large sets of base partitions.6 Therefore, in order to justify the adoption
of Diversity, SRD, and CAS, the quality of their results should be superior to that
obtained by the full ensemble (i.e., when using all available base partitions, without
any selection). In contrast, the other CES methods based on relative indexes (SIS,
SR, and BRP) have complexities that are nearly linear with respect to |Πb| and linear
with respect to n (if indexes such as those reviewed in Sect. 3 are used). Hence, their
complexities are lower than those of the consensus functions considered in this study,
possibly justifying their application even if their results are equivalent to those pro-
vided by the full ensemble (as they reduce the size of the collection of base partitions
to be combined and, therefore, the computational burden of the consensus function).

5.4 Experiments with artificial data sets

In this study, the six relative validation indexes presented in Sect. 3 were employed for
the evaluation of base partitions, individually (SIS methods—Sect. 4.1) and combined
(CRI methods—Sect. 4.2). Additionally, the Diversity method, described in Sect. 4.3,
and the CAS method, proposed by Fern and Lin (2008), were also employed and
assessed. In summary, the CES methods investigated here are listed in Table 2.

For a feasible comparison of the quality of the CES methods investigated, the simi-
larity between the resulting consensus partitions and the known clusters (ground truth)
is measured using the Jaccard index. The mean values of the Jaccard index computed
over the data sets of each major collection are presented as curves in Figs. 2, 3, 4, 5,
and 6, where the ordinate axis represents the Jaccard values and the abscissa axis rep-
resents the proportion of selected base partitions7. Three sub-figures are presented in

6 CAS has asymptotic computational complexity estimated as O(n k2
max |Πb|2 + |Πb|3), considering the

NMI calculations and the use of spectral clustering (Ng et al. 2002), where kmax is the maximum number
of clusters in the base partitions.
7 Proportion equal to unit means the full ensemble (no selection).
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each figure, one for each major artificial collection of data sets (Artificial1, Artificial2,
and Artificial3). In order to make the analysis of the results easier, only the best and
the mean Jaccard index values resulting from the different CES methods based on
single relative validation indexes (SIS) are presented in these figures. A more detailed
comparison focusing on these particular methods is provided in Sect. 5.4.6. The first
line on top of the legends indicates the average (over the data sets) of the best Jaccard
index value obtained among all the CES methods based on a single relative validation
index (first column of Table 2), referred to here as Best of the Relative Indexes (BRI)8.
The second line of the legends indicates the average (over the data sets) of the mean
Jaccard index value computed with respect to all the CES methods based on a single
relative index (first column of Table 2), referred to here as Mean of Relative Indexes
(MRI). The three subsequent lines of the legends refer to the CES methods based on
the proposed combinations of relative indexes (CRI): SR, BRP, and SRD described
in Sect. 4.2. The last two lines refer to the Diversity (Sect. 4.3) and the CAS methods
(Fern and Lin 2008), respectively.

Once the Jaccard index values were calculated for all consensus partitions, two
hypothesis tests were applied to the areas under the curve (AUCs) computed from
these values. The first test is the well known ANalysis Of VAriance (ANOVA) (Walpole
et al. 2006), frequently adopted to compare samples from multiple origins. However,
ANOVA assumes that the compared samples are drawn from populations with nor-
mal distributions and similar variances (Demšar 2006). As these requirements are
not ensured here, we also applied the (non-parametric) Friedman test (Hollander and
Wolfe 1999). When the null hypothesis was rejected for both tests, indicating that
there is statistical evidence to support that the compared means are different, a post-
hoc multiple comparison procedure (Hochberg and Tamhane 1987) was applied using

Matlab
®

to find which differences did exhibit statistical significance. To maintain the
actual level of statistical confidence in 95 %, a Bonferroni adjustment (Dunn 1961)
was applied to the critical values from the t distribution before applying the procedure,
to compensate for multiple comparisons. In the legends of Figs. 2, 3, 4, 5, and 6, the
CES method with the highest mean AUC value is followed by the symbol (•) and
the methods for which the mean AUC exhibits no statistically significant differences
with respect to this highest value are followed by the symbol (◦). Next, we present the
experimental results for the different consensus functions.

5.4.1 Results for the EAC-AL consensus function

This section presents the experimental results for the EAC-AL consensus function.
Figure 2a shows that the use of CES based on relative validation indexes improved
the results obtained by the EAC-AL (Evidence Accumulation Clustering with
Average-Link) consensus function (Fred and Jain 2005) for the Artificial1 data sets.
As the base partitions of these data sets resemble the known clusters, the valida-
tion indexes were able to efficiently select partitions with good quality among those

8 It is worth remarking that BRI is only used here as a basis for comparison. Actually, this method is not
realizable in practice because, in real application scenarios, we do not have the ground truth (known ideal
partition) to determine the best single relative index for a given data set.
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obtained by the clustering procedure. The CRI methods seem to be a good choice for
these data sets, as SR, BRP, and SRD provided mean values statistically equivalent to
the best result obtained by using validation indexes individually (BRI). These methods
also presented better results than Diversity and CAS. However, the same cannot be
said with respect to the Artificial2 and Artificial3 collections, probably because the
base partitions generated from these data sets do not match very closely the known
clusters, i.e., they convey little evidence of the expected structures. In these cases, a
larger number of such (lower quality) base partitions may be required to enhance the
quality of the ensemble through evidence accumulation (Fred and Jain 2005). This can
be observed for most CES in Fig. 2b, c. These figures also suggest that enhancing the
diversity among base partitions, which is achieved by the methods Diversity and CAS,
is more effective when the overall quality of the base partitions is lower (more clearly
for the Artificial3 collection, when these methods outperformed the full ensemble).

5.4.2 Results for the EAC-SL consensus function

For the Artificial1 data sets, the EAC-SL (Evidence Accumulation Clustering with
Single-Link) consensus function (Fred and Jain 2005) stands out in comparison to the
other consensus functions investigated in this study, resulting in the known clusters
(unitary Jaccard index value) for most experiments. The same performance was not
observed for the other (more complex) data sets, as illustrated in Fig. 3b, c.

Regarding the CES methods, Fig. 3 suggests that, when the overall quality of the
base partitions is lower (which happens mostly for the Artificial2 and Artificial3 col-
lections), larger amounts of base partitions tend to improve the ensemble. In addition,
when a limited proportion of base partitions is selected, the diversity of the selected
subset (explicitly considered by the methods Diversity and CAS) becomes important.

5.4.3 Results for the CSPA consensus function

According to Fig. 4a, b, results generated with CSPA (Cluster-based Similarity
Partitioning Algorithm) consensus function (Strehl and Ghosh 2002) show differences
smaller than 0.04 in the Jaccard values for the different CES methods when applied to
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Fig. 2 Mean Jaccard index values for the EAC-AL consensus function
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Fig. 3 Mean Jaccard index values for the EAC-SL consensus function
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Fig. 4 Mean Jaccard index values for the CSPA consensus function

the Artificial1 and Artificial2 collections. In such cases, SR and the methods based on
relative indexes individually are advantageous for having lower computational com-
plexities than Diversity, SRD, CAS, and the full ensemble (as discussed in Sect. 5.3).
Moreover, they achieved results statistically equivalent to the best ones obtained for
these collections of data sets, according to the statistical tests performed. For the Arti-
ficial3 dataset, the Diversity method achieved the best results. The behavior of the
CES methods when applied to this collection of data sets is similar to that showed in
Fig. 2c for the EAC-AL consensus function.

5.4.4 Results for the HGPA consensus function

According to Fig. 5, the mean quality of the consensus partitions using the HGPA
(Hyper-Graph Partitioning Algorithm) consensus function (Strehl and Ghosh 2002)
becomes stable after a monotonic increase, no matter the collection of data sets consid-
ered, which suggests that this consensus function exhibits low sensitivity to the mean
quality of the selected partitions (which decreases with the complexity of the data set
collections, being higher for Artificial1 and lower for Artificial3). This behavior also
evidences the superiority of the full ensemble when used with this consensus function.
When a limited proportion of base partitions is selected for the ensemble, however,
the results in Fig. 5 suggest that diversity is important to reduce the loss of accuracy.
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Fig. 5 Mean Jaccard index values for the HGPA consensus function

5.4.5 Results for the MCLA consensus function

Among all consensus functions investigated in this work, the MCLA (Meta-CLuster-
ing Algorithm) consensus function (Strehl and Ghosh 2002) was the most improved
by the CES methods. This is illustrated by the descending curves in Fig. 6a, b. Even
for the Artificial3 collection, some CES methods based on single or combined relative
validation indexes produced consensus partitions not statistically different from the
full ensemble when at least 25 % of the base partitions were selected. Furthermore,
the results from the SR selection method were very close to the best result based on
single relative validation indexes (BRI)9.

When used with MCLA, the CAS and Diversity methods produced results with
quality inferior or similar to those obtained by the full ensemble for most data sets
and proportions of partitions selected. For this reason, and due to the high compu-
tational cost of these methods, their use in conjunction with the MCLA consensus
function may not be recommended. Additionally, the MCLA consensus function was
more affected by the quality of the selected base partitions than by their diversity.
The sensitivity to the quality of the base partitions becomes clear by comparing the
range of Jaccard values in Fig. 6a–c.

5.4.6 Comparison of relative indexes

Figures 2, 3, 4, 5, and 6 allow the comparison of CES methods based on CRI, Diversity,
and the best and average results from CES methods based on a single validation index
(BRI and MRI, respectively). One should notice, however, that the values of BRI and
MRI do not reveal by themselves the individual performances of the CES methods
based on a single index. Table 3 shows such individual performances by presenting
the mean and standard deviation of the AUCs computed over the 484 artificial data
sets from the three major collections Artificial1, Artificial2, and Artificial3. The previ-
ously adopted hypothesis tests were also applied to these results. For each consensus

9 Recall that BRI is not realizable in practice, as the best relative index is unknown when the ground truth
is not available.
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Fig. 6 Mean Jaccard index values for the MCLA consensus function

Table 3 Mean and standard deviation of the AUCs of Jaccard index values for each CES based on a single
relative validation index (Single Index Selection (SIS)—Algorithm 1)

SS ASS VRC PBM DN DB

EAC-AL 0.764 (0.22) 0.766 (0.22) 0.772 (0.21) 0.752 (0.23) 0.7558 (0.22) 0.761 (0.22)

EAC-SL 0.777 (0.24) 0.776 (0.24) 0.783 (0.24) 0.754 (0.25) 0.7541 (0.24) 0.772 (0.24)

CSPA 0.569 (0.21) 0.570 (0.21) 0.571 (0.21) 0.567 (0.22) 0.5615 (0.21) 0.568 (0.21)

HGPA 0.620 (0.19) 0.625 (0.20) 0.628 (0.19) 0.590 (0.22) 0.5591 (0.18) 0.603 (0.18)

MCLA 0.683 (0.22) 0.688 (0.21) 0.673 (0.22) 0.6516 (0.24) 0.590 (0.22) 0.674 (0.22)

function, the best values and the values without significant statistical difference with
respect to the best value are highlighted in bold.

The values in Table 3 evidence that the SS, ASS, and VRC indexes provided the
best mean AUCs for the artificial data sets. As these data sets are mainly composed
by clusters with multivariate normal distributions, such results suggest that SS, ASS,
and VRC are suitable for this class of data. However, it is not always possible to know
in advance the performance of a validation index of interest for specific data sets. For
these cases, the use of CRI methods can be advantageous, as their results were superior
to the mean results based on a single relative index (MRI) in most of the experiments.
In particular, the SR method obtained results similar, sometimes without statistically
significant difference, to the best results based on a single relative index (BRI), as it
can be observed in Figs. 2, 3, 4, 5, and 6.

5.4.7 Summary of the results with artificial data sets

The results presented in Sect. 5.4 endorse the idea that CES methods based on rel-
ative validation indexes can obtain consensus partitions with quality higher than or
equivalent to that of the full ensemble if the set of selected base partitions have alto-
gether enough evidence to characterize the underlying structure of the data set. On the
one hand, when base partitions are close to this structure, such as for the Artificial1
data sets, subsets of base partitions selected by means of CES methods according to
partition quality (measured by relative validation indexes) showed some tendency to
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produce ensembles better than or comparable to the full ensemble. The reduction of
the number of base partitions to be processed by the consensus functions (from |Πb| to
|Πs |) can also lead to computational savings. In these cases, the evaluation with CRI
seems to be advantageous if there is no prior knowledge about the performance of the
validation indexes of interest in the application scenario in hand, as the CRI methods
showed to be more robust to variations in the application scenarios than the method
based on individual indexes (SIS). Which method performed best depends on the con-
sensus function and the data collection used. In general, the SR method stands out
among the CRI, for the quality of its consensus partitions and for having nearly linear
computational complexity in relation to the number of base partitions and number of
objects. On the other hand, in cases where base partitions have little resemblance to
the structure of interest, such as the Artificial3 data sets, the full ensemble accumulates
more evidence about the data. As a result, it tends to provide better solutions. In these
cases, the CES methods based on diversity (Diversity and CAS) also achieved good
results, possibly better than the full ensemble, since they incorporate complementary
information about the data set in the consensus functions. However, these methods
are based on comparisons between objects or clusters for all base partitions, result-
ing in a high computational cost. This cost may be similar or exceed the cost of the
investigated consensus functions (presented in Sect. 5), favoring the use of the full
ensemble.

Some consensus functions seem to be more sensitive to the selection of higher
quality base partitions than others. For example, the MCLA function obtained better
results when associated with CES methods based on relative validation indexes than
the other functions investigated. In contrast, the results obtained with the HGPA func-
tion seem to be much more sensitive to the number (rather than the quality or diversity)
of base partitions selected, since the quality of the resulting consensus partitions seems
to grow monotonically as a function of this quantity. As a consequence, the HGPA
function achieved the best results when using the full ensemble.

5.5 Experiments with real data sets

For the seven real data sets described in Sect. 5.1, experiments with the proposed CES
methods, the full ensemble, and the BVCP method (Sect. 4.4) were performed. In this
case, however, it is not possible to compare AUCs, as the full ensemble produces a
single Jaccard value. Instead, the Jaccard index value calculated for the full ensemble
is compared with the Jaccard index values of the CES and BVCP consensus partitions
obtained from selected subsets composed of 10 % of the base partitions available.
This percentage was chosen in order to significantly reduce the number of base par-
titions selected for the ensemble, thus emphasizing the effects of the CES approach
when compared to the full ensemble. Moreover, for the sake of simplicity, we reduced
the number of CES methods compared, which are: single index selection (SIS) with
the simplified silhouette (SS); the CRI method SR; Diversity, and CAS. These meth-
ods were chosen for being among the most successful in the previous experiments
(Sect. 5.4).
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Table 4 Mean and standard deviation of Jaccard index values for EAC-AL ensembles

Full ensemble CAS Diversity SIS (SS) CRI (SR) BVCP

Iris 0.6511 (0.02) 0.6415 (0.03) 0.6620 (0.07) 0.6455 (0.05) 0.5877 (0.00) 0.6707 (0.02)

Wine 0.8854 (0.03) 0.8751 (0.05) 0.7348 (0.13) 0.7972 (0.07) 0.7975 (0.03) 0.8156 (0.03)

Breast 0.8526 (0.02) 0.8661 (0.03) 0.8470 (0.02) 0.8719 (0.00) 0.8720 (0.00) 0.8716 (0.00)

Chart 0.5691 (0.03) 0.5466 (0.02) 0.5698 (0.03) 0.5472 (0.05) 0.5385 (0.04) 0.5354 (0.04)

Yeast 0.9737 (0.00) 0.9737 (0.00) 0.9577 (0.06) 0.8564 (0.00) 0.8561 (0.00) 0.9725 (0.00)

Articles 0.9826 (0.00) 0.9815 (0.00) 0.9752 (0.01) 0.9775 (0.01) 0.9803 (0.01) 0.9826 (0.00)

cbrilpirivson 0.7145 (0.06) 0.6938 (0.07) 0.6616 (0.08) 0.7471 (0.05) 0.7446 (0.05) 0.7697 (0.05)

As discussed in Sect. 4.4, the BVCP method evaluates the consensus partitions pro-
duced by the full ensemble and the CES methods using relative validity indexes and,
then, it selects the partition with the best validation value. We decided to use the SR
method (Algorithm 2 with s = 1) during the fourth step of the algorithm (see Fig. 1).
This choice was motivated by the following reasons: (i) unknown performance of the
individual validation indexes for the data sets; (ii) better solutions obtained among
the CRI methods for most experiments in Sect. 5.4; and (iii) linear computational
complexity with respect to the number of objects (if indexes such as those reviewed
in Sect. 3 are used) and nearly linear complexity with respect to the number of base
partitions. Therefore, the BVCP final partition will be the consensus partition with the
best sum of ranks resulting from the relative validation indexes adopted.

The mean and standard deviation of the Jaccard index values for the consensus par-
titions obtained with the full ensemble and CES methods are presented in tables 4-8
for the different consensus functions considered in this study. The same hypothesis
tests used in Sect. 5.4 were adopted here. The best mean values and the values without
statistically significant difference with respect to the best values are highlighted in
bold.

The results from Table 4 indicate that the BVCP achieved results with no statistical
difference to the best obtained with the EAC-AL consensus functions in 6 out of 7
data sets. For the Wine data set, although the consensus partitions produced by the
BVCP method have mean Jaccard index values inferior to those obtained with the full
ensemble and CAS, they are superior to those obtained by the CES methods based on
single (SIS) or combined (CRI) relative validation indexes (SS and SR, respectively).

In general, the consensus partitions produced by the CES methods SIS (SS) and
CRI (SR) were better than those obtained by the full ensemble, CAS, and Diversity
when using with the EAC-SL consensus function. This superiority is more evident for
the Wine and Breast data sets, as illustrated in Table 5. Notice that, regardless of the
data set, the results of BVCP method exhibited no statistically significant differences
with respect to the best results. This suggests that it is indeed possible to select high
quality consensus partitions among those obtained by different CES methods and by
the full ensemble, which is the basic idea behind BVCP.

As shown in Table 6, the full ensemble and the Diversity method achieved results
equivalent to the best results obtained for most data sets (at least 5 out of 7), by using
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Table 5 Mean and standard deviation of Jaccard index values for EAC-SL ensembles

Full ensemble CAS Diversity SIS (SS) CRI (SR) BVCP

Iris 0.6679 (0.13) 0.5806 (0.10) 0.5686 (0.06) 0.6392 (0.05) 0.5883 (0.00) 0.6463 (0.08)

Wine 0.5087 (0.12) 0.5900 (0.14) 0.4339 (0.12) 0.7279 (0.13) 0.7340 (0.13) 0.6612 (0.13)

Breast 0.5431 (0.00) 0.5933 (0.14) 0.5418 (0.00) 0.8569 (0.08) 0.8725 (0.00) 0.8722 (0.00)

Chart 0.5590 (0.00) 0.5463 (0.02) 0.5633 (0.01) 0.5425 (0.05) 0.5567 (0.05) 0.5449 (0.01)

Yeast 0.9737 (0.00) 0.9737 (0.00) 0.9354 (0.07) 0.8564 (0.00) 0.8561 (0.00) 0.9729 (0.00)

Articles 0.9826 (0.00) 0.9815 (0.00) 0.9475 (0.09) 0.9658 (0.06) 0.9703 (0.06) 0.9820 (0.00)

cbrilpirivson 0.2320 (0.00) 0.2751 (0.07) 0.2357 (0.02) 0.3366 (0.10) 0.2869 (0.09) 0.3451 (0.10)

Table 6 Mean and standard deviation of Jaccard index values for CSPA ensembles

Full ensemble CAS Diversity SIS (SS) CRI (SR) BVCP

Iris 0.8159 (0.02) 0.8365 (0.04) 0.8003 (0.06) 0.6391 (0.01) 0.6167 (0.03) 0.8056 (0.06)

Wine 0.7554 (0.01) 0.7504 (0.01) 0.7517 (0.03) 0.7465 (0.01) 0.7479 (0.01) 0.7499 (0.01)

Breast 0.6029 (0.00) 0.5948 (0.01) 0.6044 (0.00) 0.6048 (0.00) 0.6051 (0.00) 0.6046 (0.00)

Chart 0.6184 (0.01) 0.6044 (0.01) 0.6280 (0.03) 0.5153 (0.03) 0.5255 (0.03) 0.6280 (0.03)

Yeast 0.4510 (0.00) 0.4508 (0.00) 0.4325 (0.01) 0.4508 (0.01) 0.4432 (0.00) 0.4498 (0.01)

Articles 0.7258 (0.06) 0.7381 (0.04) 0.7629 (0.06) 0.7386 (0.05) 0.7781 (0.04) 0.7880 (0.04)

cbrilpirivson 0.4891 (0.02) 0.4695 (0.03) 0.4738 (0.03) 0.4594 (0.03) 0.4515 (0.03) 0.4866 (0.02)

Table 7 Mean and standard deviation of Jaccard index values for HGPA ensembles

Full ensemble CAS Diversity SIS (SS) CRI (SR) BVCP

Iris 0.8349 (0.05) 0.7007 (0.12) 0.8010 (0.08) 0.2793 (0.06) 0.3017 (0.11) 0.8042 (0.08)

Wine 0.8962 (0.02) 0.8263 (0.06) 0.8503 (0.04) 0.2863 (0.06) 0.2933 (0.06) 0.8260 (0.05)

Breast 0.6693 (0.05) 0.6287 (0.05) 0.6299 (0.07) 0.3536 (0.01) 0.3532 (0.00) 0.6847 (0.03)

Chart 0.6185 (0.01) 0.6190 (0.03) 0.6274 (0.02) 0.2763 (0.07) 0.2815 (0.08) 0.6191 (0.02)

Yeast 0.4718 (0.01) 0.4573 (0.01) 0.4657 (0.01) 0.1728 (0.00) 0.1703 (0.00) 0.4674 (0.01)

Articles 0.9826 (0.00) 0.8851 (0.11) 0.9728 (0.02) 0.2786 (0.19) 0.5148 (0.21) 0.9820 (0.00)

cbrilpirivson 0.4219 (0.05) 0.3547 (0.07) 0.4797 (0.03) 0.2756 (0.07) 0.2968 (0.07) 0.4780 (0.03)

the CSPA consensus function. Once again, the performance of the BVCP method
exhibited no statistically significant differences in relation to the best results obtained
for all data sets, which suggests that BVCP is a good method for applications in which
no information about the data or about the expected behavior of the consensus function
is available.

According to Table 7, the full ensemble is the best method for HGPA. In fact, in
all experiments performed with the HGPA function for this study (artificial and real
data), the best results were obtained using the full ensemble. It is worth mentioning
that BVCP also produced results equivalent to the best results for 6 out of 7 data sets.
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Table 8 Mean and standard deviation of Jaccard index values for MCLA ensembles

Full ensemble CAS Diversity SIS (SS) CRI (SR) BVCP

Iris 0.8725 (0.02) 0.8198 (0.08) 0.7962 (0.11) 0.6833 (0.00) 0.6701 (0.02) 0.6838 (0.00)

Wine 0.8150 (0.02) 0.8287 (0.05) 0.7949 (0.04) 0.8042 (0.02) 0.8001 (0.02) 0.8140 (0.02)

Breast 0.6196 (0.05) 0.6190 (0.05) 0.6083 (0.05) 0.8786 (0.01) 0.8760 (0.00) 0.8749 (0.00)

Chart 0.5969 (0.01) 0.5874 (0.03) 0.6266 (0.03) 0.4218 (0.05) 0.4028 (0.05) 0.6205 (0.04)

Yeast 0.5479 (0.07) 0.5836 (0.11) 0.4710 (0.04) 0.8488 (0.04) 0.8402 (0.06) 0.8571 (0.01)

Articles 0.9826 (0.00) 0.9803 (0.01) 0.9750 (0.02) 0.9787 (0.01) 0.9804 (0.01) 0.9820 (0.00)

cbrilpirivson 0.6842 (0.05) 0.6613 (0.09) 0.6002 (0.07) 0.7230 (0.09) 0.7355 (0.06) 0.7718 (0.03)

The Jaccard values in Table 8 show that the relative performances of the different
methods varied significantly across the different data sets when using the MCLA con-
sensus function. However, the BVCP method provided results equivalent to the best
results in 6 out of 7 data sets, thus reinforcing the hypothesis that this method is a
viable, possibly more robust choice in practical applications, where the ground truth is
not available and the performance of the different methods cannot be compared with
respect to the “right” solution.

6 Conclusions

This work proposed and compared the use of different relative clustering valida-
tion indexes in Clustering Ensemble Selection (CES), both individually (Single Index
Selection—SIS) and combined (Combination of Relative Indexes—CRI). In particu-
lar, the CRI approach showed promising results for CES, as it produced results better
than the average result obtained by the indexes individually in most data sets investi-
gated.

Additionally, the analysis of the results obtained using 484 artificial and 7 real data
sets indicated different behaviors of the consensus functions investigated, regarding
the use of CES. The HGPA improved its results when the number of base partitions
was increased, which disfavors the adoption of CES methods and favors the adoption
of the full ensemble. Regarding the EAC-AL, EAC-SL, CSPA, and MCLA consensus
functions, CES methods may result in consensus partitions equivalent to or better than
the full ensemble if the selected partitions altogether have enough evidence of the
underlying structure contained in the data set. This depends on the quality, diversity
and number of selected base partitions. In particular, the MCLA consensus function
seems to be favored by the quality and not by the cardinality or diversity of the selected
set. If there is uncertainty regarding the quality and diversity of the base partitions or
regarding the behavior of the consensus function, candidate consensus partitions pro-
duced by different CES methods and by the full ensemble as well can be evaluated
and compared by means of relative validation indexes. For this scenario, we propose
the BVCP method, which consists in selecting the best evaluated candidate consensus
partition as the final partition. When applied to the 7 real data sets, the BVCP method
generated results statistically equivalent to the best results obtained for, at least, 6
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data sets, no matter the consensus function adopted. Such performance encourages
the use of the BVCP method in practical applications, where the best method cannot
be determined (and then selected), because a ground truth (known clustering solution)
is not available.
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