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Abstract Most of the existing analysis methods for tensors (or multi-way arrays)
only assume that tensors to be completed are of low rank. However, for example, when
they are applied to tensor completion problems, their prediction accuracy tends to be
significantly worse when only a limited number of entries are observed. In this paper,
we propose to use relationships among data as auxiliary information in addition to the
low-rank assumption to improve the quality of tensor decomposition. We introduce
two regularization approaches using graph Laplacians induced from the relationships,
one for moderately sparse cases and the other for extremely sparse cases. We also give
present two kinds of iterative algorithms for approximate solutions: one based on an
EM-like algorithms which is stable but not so scalable, and the other based on gradient-
based optimization which is applicable to large scale datasets. Numerical experiments
on tensor completion using synthetic and benchmark datasets show that the use of
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auxiliary information improves completion accuracy over the existing methods based
only on the low-rank assumption, especially when observations are sparse.

Keywords Tensors ·Multi-way arrays ·CP-decomposition ·Tucker decomposition ·
Side information

1 Introduction

In real data analysis applications, we often have to face handling multi-object relation-
ships. For example, in on-line marketing scenarios, we analyze relationships among
customers, items, and time to capture temporal dynamics of customers’ interests
and utilize them for recommendation. In social network analysis, interactions among
people and the types of interaction are the focus of interest. Similar situations arise
in bio- and chemo-informatics as protein-protein interactions and drug-target inter-
actions under various conditions. Tensors (or multi-way arrays) (Kolda and Bader
2009) are highly suitable representation for such multi-object relationships (Fig. 1).
Tensor analysis methods, especially, models and efficient algorithms for low-rank
tensor decompositions have been extensively studied and applied to many real-world
problems. The CANDECOMP/PARAFAC(CP) decomposition and Tucker decompo-
sition are two widely used low-rank decomposition methods for tensors (Fig. 2).

Tensor completion is one of important applications of tensor analysis methods.
Given a tensor with some elements missing, the task is to impute the missing values.
In the context of the previous on-line marketing scenarios, given the observations
for some (customer, item, time)-tuples, we can make recommendations by imputing
unobserved combinations of them. Tensor completion is also used for link predic-
tion (Dunlavy et al. 2011; Kashima et al. 2009) and tag recommendation (Rendle and
Thieme 2010). Similar to the other tensor analysis methods, low-rank assumption of
tensors is often used for imputing missing values. However, when observations are
sparse, that is, when the fraction of unobserved elements is high, predictive accuracy of

Fig. 1 A third-order tensor (or, a three-way array) X of size I × J × K represents relationships among
three sets of objects, S1, S2 and S3, each of which size is I , J , and K , respectively

CP decomposition. Tucker decomposition.(a) (b)

Fig. 2 Two widely used low-rank tensor decompositions: CP-decomposition and Tucker decomposition
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Fig. 3 The tensor completion performance by CP-decomposition for the ‘Flow injection’ dataset. Predic-
tion accuracy severely degenerates when observations are sparse

tensor completion methods only with the low-rank assumption tends to be worse. For
example, Fig. 3 shows the prediction errors by CP-decomposition against the fraction
of unobserved elements for a particular dataset. (The experimental setting is the same
as that for Fig. 4c, which will be described in detail in the experimental section.) We
can see the accuracy of tensor completion severely degrades when observations are
sparse. This fact implies that the low-rank assumption by itself is not sufficient and
we need other assumptions to introduce more prior knowledge of subjects.

In many cases, we have not only relational information among objects, but also
information on the objects themselves. For example, in the on-line marketing sce-
narios, each customer has his or her demographic information, and each item has its
product information. We consider exploiting these auxiliary information for improving
the prediction accuracy of tensor decomposition, especially in sparse cases. Inspired
by the work by Li and Yeung (2009) which incorporates object similarity into matrix
factorization, we exploit the auxiliary information given as similarity matrices in a reg-
ularization framework for tensor factorization. We propose two specific regularization
methods, one of which we call “within-mode regularization” is a natural extension of
the method proposed by Li et al. for matrix factorization. It uses the graph Laplacians
induced by the similarity matrices to force two similar objects in each mode to behave
similarly, in other words, to have similar factors. The second method we call “cross-
mode regularization” exploits the similarity information more aggressively to address
extremely sparse cases. We apply the two proposed regularization methods to each of
CP-decomposition and Tucker decomposition. To best of our knowledge, our work is
the first to incorporates auxiliary information into tensor decomposition.

To obtain tensor decompositions using the two regularization methods, we first
give approximate iterative decomposition algorithms for fully-observed tensors.
In each iteration of the algorithms, we solve a particular Sylvester equation for
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CP-decomposition, or an eigen-problem for the Tucker decomposition. Next, to handle
partially observed tensors, we give two tensor completion algorithms, one based on an
EM-like algorithm and the other based on gradient-based optimization. In the former,
unobserved elements are imputed with estimates by current decomposition, and we
decompose the filled tensors with the decomposition algorithms for fully observed
tensors. The EM-like algorithm is not a proper EM algorithm, but we also give its
justification as a constrained optimization problem. The EM-like algorithm is stable,
but not so efficient for large tensors because they work on completely filled tensors,
therefore we devise a gradient-based optimization algorithm which decomposes ten-
sors only with their observed parts. Decompositions are optimized by using L-BFGS
updates for both of CP-decomposition and Tucker decomposition.

Finally, we show experimental results on missing value imputation using both syn-
thetic and real benchmark datasets. We test two kinds of assumptions on missing
elements. The first one is element-wise missing where each element is missing inde-
pendently. The second one is slice-wise missing (in other words, object-wise missing),
where missing values occur in a more bursty manner, and all of the elements related
to some objects are completely missing. The experimental results demonstrate that
the use of auxiliary information improves imputation accuracy in both cases when
observations are sparse.

The rest of the paper is organized as follows. Section 2 reviews the existing low-
rank tensor decomposition methods, and introduces the tensor completion problem
with auxiliary information that we focus on in this paper. In Sect. 3, we propose
two regularization strategies, within-mode regularization and cross-mode regulari-
zation, for incorporating auxiliary information in tensor decomposition. Section 4
gives approximation algorithms to obtain decompositions for fully observed tensors.
Section 5 discusses decomposition algorithms for partially-observed tensors. We first
give an EM-like approach to apply the decomposition algorithms proposed in Sect. 4 to
partially-observed tensors, and its justification as a constrained optimization problem.
We also introduce another family of algorithms using gradient-based optimization to
address scalability issue in the EM-like approach. Section 6 shows the experimen-
tal results using several datasets to demonstrate the proposed methods work well
especially when observations are sparse. Section 7 reviews related work, and Sect. 8
concludes this paper.

2 Tensor completion problem with auxiliary information

We first review the existing low-rank tensor decomposition methods, and then formu-
late the tensor completion problem with auxiliary information.

2.1 Tensor analysis using low-rank decomposition

Let X be third-order tensor (i.e. a three-way array) with I × J × K real-valued ele-
ments.1 The third-order tensor X models relationships among objects from three sets

1 For simplicity, we focus on third-order tensors in this paper. However, the discussion can be directly
applied to higher-order tensors.
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S1, S2, and S3. For example, in the context of on-line marketing, S1, S2, and S3 rep-
resent sets of customers, items, and time stamps, respectively. The (i, j, k)th element
[X ]i, j,k indicates the i th user’s rating of the j th item at time k.

We often assume that the tensor is of “low-rank” when we analyze tensor-repre-
sented data. In contrast to matrices (that are special cases of tensors), definitions of the
“low-rank” tensor are not unique. The CANDECOMP/PARAFAC(CP) decomposition
and the Tucker decomposition are often used as definitions of low-rank tensors.

The CP-decomposition is a natural extension of the matrix rank, and it approxi-
mates a tensor by the sum of P rank-1 tensors. The CP-decomposition X̂ of X is
defined as

X̂ ≡
P∑

p=1

up ◦ vp ◦ wp,

where ◦ indicates the outer product operation. Alternatively, it can also be represented
by using mode-i multiplications as

X̂ = J ×1 U×2 V×3 W, (1)

where J ∈ R
P×P×P is a unit tensor with all superdiagonal elements having the value

1 and the other elements having the value 0. U ∈ R
I×P , V ∈ R

J×P , W ∈ R
K×P are

factor matrices, and ×i is the mode-i multiplication (Kolda and Bader 2009). When
the left-hand side is equal to the right-hand side in the above relation, we say X is of
rank P .

The Tucker decomposition approximates a tensor with a small “core tensor” and
factor matrices, which is defined as

X̂ ≡ G ×1 U×2 V×3 W, (2)

where G is a (P, Q, R)-tensor and U ∈ R
I×P , V ∈ R

J×Q , W ∈ R
K×R are factor

matrices. In this case, we say X is of rank (P, Q, R).
For most of realistic case, observations are perturbed by noise, and the strict low-

rank decompositions do not hold even when the “true” X is actually of low-rank.
Therefore, we try to find a decomposition X̂ that best approximates the original ten-
sor X in terms of the squared loss by the following optimization problem,

minimizeX̂
1

2
‖X − X̂‖2F , (3)

where ‖ · ‖F indicates the tensor Frobenius norm (Kolda and Bader 2009), and X̂
is defined by Eq. (1) for CP-decomposition, or by Eq. (2) for Tucker decomposition.
It is generally hard to obtain the optimal solution, so we use approximation methods
which optimize U, V, and W alternately.
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2.2 Tensor completion with auxiliary information

Among various tensor-related problems, the tensor completion problem is one of the
important problems, where the task is to impute the missing values of a given tensor
with missing values. The low-rank assumption is usually used as a heuristic for infer-
ring the missing parts. Since not all of the elements are observed in the optimization
problem (3) in this case, EM-like algorithms are often applied to this purpose (Srebro
2004; Walczak 2001). First, we fill in the missing values with some initial estimates
(such as the average of the observed elements), and apply tensor decomposition to
the filled tensor. We then obtain new estimates by assembling the decomposed tensor.
We continue the decomposition step and the reconstruction step until convergence to
obtain final estimates.

Since the EM-like algorithm uses unobserved elements for its computation, it is
not efficient enough for large-scale data. Therefore, another approach modifies the
objective function (3) to focus only on observed parts (Acar et al. 2010). In this paper,
we give two kinds of algorithms based on the above two approaches.

The low-rank assumption of tensors makes it possible to impute missing values.
However, when observations are sparse, that is the fraction of unobserved elements
is high, predictive accuracy of tensor completion methods only with the low-rank
assumption severely degrades. (See Fig. 3 showing the predictive errors against the
fraction of unobserved elements for a dataset.) Therefore, the low-rank assumption
by itself is not sufficient, and we need other assumptions for obtaining a satisfactory
prediction accuracy.

In many realistic cases, we have not only relational information represented as ten-
sors, but also information on the objects forming the relationships. For example, in the
(customer, item, time)-relationships, each customer has his/her demographic informa-
tion, and each item has its product information. We also know that time is continuous
and can assume temporal smoothness. Therefore, we assume that we have similarity
measures for S1, S2, and S3, each of which corresponds to the sets of objects for each
of the three modes. We define a non-negative symmetric matrix A1 for representing
the similarity between two arbitrary objects in S1. A2 and A3 are defined similarly.2

We consider exploiting these auxiliary information for improving the prediction
accuracy by tensor decomposition, especially for sparse observations. The tensor com-
pletion problem that we focus on in this paper is summarized as follows.

Problem: (Third-order) tensor completion with auxiliary information
– INPUT:

- A third-order tensor X ∈ R
I×J×K with some elements having been observed

and the others remaining unobserved.
- Three non-negative symmetric similarity matrices A1 ∈ R

+ I×I , A2 ∈ R
+ J×J ,

and A3 ∈ R
+K×K , each corresponding to one of the three modes of X .

2 An alternative way to represent auxiliary information is to use object-attribute matrices. We use the
similarity matrices since we sometimes want to use non-linear similarities created from the object-attribute
matrices such as the Gaussian kernel, and since sometimes side information is readily represented as object
networks (which are used as the similarity matrices under the assumption that two adjacent objects behave
similarly.)
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– OUTPUT: A decomposition X̂ defined by either Eq. (1) for CP-decomposition or
Eq. (2) for Tucker decomposition, which is used to fill in the unobserved parts of
X .

3 Proposed methods: within-mode and cross-mode regularization

In this section, we propose two regularization methods for incorporating auxiliary
information into tensor factorization. Both of the CP-decomposition and the Tucker
decomposition are generalized with the regularization framework.

3.1 Regularization using auxiliary similarity matrices

Given three object similarity matrices A1, A2 and A3 besides X , how can we use
them for improving tensor decompositions? Probably, one of natural assumptions we
can make is that “two similar objects behave similarly”. We implement this idea as
regularization terms for the optimization problem (3). Namely, instead of the objective
function in Eq. (3), we minimize the following regularized objective function with a
regularization term R(X̂ ;A1, A2, A3).

f (X̂ ) ≡ 1

2
‖X − X̂‖2F +

α

2
R(X̂ ;A1, A2, A3). (4)

In Eq. (4), α is a positive regularization constant.
We propose two specific choices of the regularization term R(X̂ ;A1, A2, A3). The

first method we call “within-mode regularization” is a natural extension of the method
proposed by Li and Yeung (2009) for matrix factorization. It uses the graph Laplacians
induced by the three similarity matrices to force two similar objects in each mode to
behave similarly, in other words, to have similar factors. The second method we call
“cross-mode regularization” exploits the similarity information more aggressively to
address extremely sparse cases. It uses the graph Laplacian induced by the Kronecker
product of the three similarity matrices to regularize factors for all the modes at the
same time, while also taking interactions across different modes into account.

3.2 Method 1: Within-mode regularization

The first regularization term we propose regularizes factor matrices for each mode
using the similarity matrices. The “within-mode” regularization term is defined as

R(X̂ ;A1, A2, A3) ≡ tr
(

U�L1U+ V�L2V+W�L3W
)

, (5)

where L1 is the Laplacian matrix induced from the similarity matrix A1 for the object
set S1. The Laplacian matrix is defined as

L1 ≡ D1 − A1,
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where D1 is the diagonal matrix whose i th diagonal element is the sum of all of the ele-
ments in the i th row of A1. The Laplacian matrices for the other two sets, L2 ≡ D2−A2
and L3 ≡ D3 − A3, are defined similarly.

To interpret the regularization term, we note tr(U�L1U) can be rewritten as

tr(U�L1U) =
I∑

i, j=1

[A1]i, j

P∑

p=1

([U]i,p − [U] j,p
)2

, (6)

where [·]i, j denotes the (i, j)th element of a matrix. This term implies that, if two
objects (say, si , s j ∈ S1) are similar to each other (that is, [A1]i, j is large), the corre-
sponding factor vectors ([U]i∗ and [U] j∗) should be similar to each other.

3.3 Proposed method 2: Cross-mode regularization

The within-mode regularization scheme regularizes only the elements inside each
factor matrix, because each element of U interacts only with at most I − 1 elements
within U. This fact sometimes limits the effect of the regularization when we have bur-
sty missing values, for example, slice-level missing situations where no observations
are given for some objects often occurs in the context of recommender systems as the
“cold-start” problem. In such cases, the within-mode regularization can sometimes be
too conservative.

The second regularization function we propose exploits the given auxiliary infor-
mation more aggressively. It combines the given similarity matrices to co-regularize
combinations of elements across different modes as

R(X̂ ;A1, A2, A3) ≡ tr
(
(W⊗ V⊗ U)� L (W⊗ V⊗ U)

)
, (7)

where the I J K × I J K -Laplacian matrix L is defined as

L ≡ D3 ⊗ D2 ⊗ D1 − A3 ⊗ A2 ⊗ A1.

The regularization term Eq. (7) is rewritten with the matrix elements as

R(X̂ ;A1, A2, A3) =
I,J,K∑

i, j,k=1

I,J,K∑

�,m,n=1

[A1]i,�[A2] j,m[A3]k,n

P,Q,R∑

p,q,r=1

([U]i,p[V] j,q [W]k,r − [U]�,p[V]m,q [W]n,r
)2

,

which regularizes the combinations of elements from three different factors unlike the
within-mode regularization (6) considering each mode independently.

The cross-mode regularization (7) can be seen as a natural variant of the within-
mode regularization (5). Because, if we use the Kronecker sum ⊕ instead of the
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Kronecker product ⊗ in Eq. (7), it is reduced to Eq. (5) under the orthonormality
constraints. The intuition behind the cross-mode regularization is “two similar object
triplets behave similarly”, which eventually induces more dense similarity among
tensor elements to address “cold-start” situations.

4 Algorithms for fully observed tensors

We propose algorithms for minimizing the objective function (4) with the within-mode
or cross-mode regularization for fully observed X . The algorithms are not directly
applicable to the tensor completion problem, and their modification for application to
partially observed tenors will be discussed in Sect. 5.

4.1 Algorithms for within-mode regularization

4.1.1 CP-decomposition

The objective function for CP-decomposition with the within-mode regularization is
written as

f (J , U, V, W) ≡1

2
‖X −J ×1 U×2 V×3 W‖2F
+ α

2
tr

(
U�L1U+ V�L2V+W�L3W

)
. (8)

Equation (8) is not a convex function for (U, V, W), but is convex for each of U, V,
and W. Therefore, we optimize one of U, V, and W with fixing the others to the current
values, and alternately update them by changing the factor matrix to optimize.

Suppose we want to optimize U by fixing V and W. Unfolding Eq. (8) by the first
mode (i.e. making the mode-1 matricization), we obtain

f (J , U, V, W) =1

2
‖X(1) − U (W
 V)� ‖2F
+ α

2
tr

(
U�L1U+ V�L2V+W�L3W

)

=1

2
tr

((
X(1) − U(W
 V)�

)� (
X(1) − U(W
 V)�

))

+ α

2
tr

(
U�L1U+ V�L2V+W�L3W

)
,

where X(n) denotes the mode-n matricization of X , and 
 denotes the Khatri-Rao
product (Kolda and Bader 2009). Differentiating this with respect to U, and setting it
to be zero gives the Sylvester equation,

U(W
 V)�(W
 V)+ αL1U = U
(

V�V ∗W�W
)
+ αL1U = X(1)(W
 V),
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where ∗ denotes the Hadamard product (i.e. element-wise product). The Sylvester
equation can be solved by several numerical approaches such as the one implemented
as the dlyap function in MATLAB®.

4.1.2 Tucker decomposition

In the case of the Tucker decomposition, the objective function becomes

f (G, U, V, W) ≡ 1

2
‖X − G ×1 U×2 V×3 W‖2F
+α

2

(
tr

(
U�L1U

)
+ tr

(
V�L2V

)
+ tr

(
W�L3W

) )
. (9)

We minimize this objective function (9) under the orthonormality constraints, U�U =
I, V�V = I, and W�W = I. Noting the core tensor G is obtained as the closed form
solution,

G = X ×1 U� ×2 V� ×3 W�,

the first term of Eq. (9) can be rewritten as

1

2
‖X − G ×1 U×2 V×3 W‖2F =

1

2

(
‖X‖2F − ‖G‖2F

)

=1

2

(
‖X‖2F − ‖X ×1 U� ×2 V� ×3 W�‖2F

)
.

When we optimize Eq. (9) with respect to U, by ignoring the terms unrelated to U, we
obtain an equivalent maximization problem,

f̃ (U) ≡ ‖X ×1 U� ×2 V� ×3 W�‖2F − α tr
(

U�L1U
)

. (10)

Unfolding Eq. (10) by the first mode, we have

f̃ (U) = ‖U�X(1) (W⊗ V) ‖2F − α tr
(

U�L1U
)

.

Setting S ≡ X(1) (W⊗ V) = (X ×2 V×3 W)(1), f̃ (U) is further rewritten as

f̃ (U) = ‖U�S‖2F − α tr
(

U�L1U
)
= tr

(
U�

(
SS� − αL1

)
U

)
. (11)

The maximizer of Eq. (11) satisfying the orthonormality constraint U�U = I is
obtained as the P leading eigenvectors of SS� − αL1.
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4.2 Algorithms for cross-mode regularization

4.2.1 CP-decomposition

The objective function for the cross-mode regularized CP-decomposition is defined
as

f (U, V, W) ≡1

2
‖X −J ×1 U×2 V×3 W‖2F
+ α

2
tr

(
(W⊗ V⊗ U)� L (W⊗ V⊗ U)

)
.

Noting that Eq. (7) is simplified as

R(X̂ ;A1, A2, A3) =tr
(

W�D3W
)

tr
(

V�D2V
)

tr
(

U�D1U
)

− tr
(

W�A3W
)

tr
(

V�A2V
)

tr
(

U�A1U
)

,

similar to the within-mode regularization, we obtain the Sylvester equation for U as

U(W
 V)�(W
 V)+ (DV W D1 − AV W A1) U = X(1)(W
 V),

where DV W and AV W are defined as follows:

DV W ≡ tr
(

W�D3W
)

tr
(

V�D2V
)

(12)

AV W ≡ tr
(

W�A3W
)

tr
(

V�A2V
)

(13)

4.2.2 Tucker decomposition

The objective function for the cross-mode regularized Tucker decomposition is defined
as

f (G, U, V, W) ≡1

2
‖X − G ×1 U×2 V×3 W‖2F
+ α

2
tr

(
(W⊗ V⊗ U)� L (W⊗ V⊗ U)

)
.

Again, we alternately minimize the objective function with respect to one of U, V, and
W. By a derivation similar to that for the within-mode regularization, the optimal U
with V and W fixed is obtained as the P leading eigenvectors of

SS� − α (DV W D1 − AV W A1) .
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Table 1 Comparison of time complexities for various decompositions

Decomposition type Regularization type Time complexity

CP decomposition – I 2 P + I P2 + P3 + I J K P
Within-mode N1 I P2 + I 2 P3 + I J K P
Cross-mode N1 I P2 + I 2 P3 + I J K P

Tucker decomposition – I P2 + I 2 Q R + I J K P
Within-mode I P2 + I 2 Q R + I J K P
Cross-mode I P2 + I 2 Q R + I J K P

4.3 Computational complexity

We analyze the impact of using auxiliary information in tensor decomposition on the
computational complexity. Let the number of non-zero entries in the i th similarity
matrix Ai be Ni . The time complexities for obtaining the optimal U given V and W
are summarized in Table 1. (The time complexities for updating V or W are obtained
similarly.)

In the case of the CP-decomposition with auxiliary information, we use the conju-
gate gradient method to solve the Sylvester equations. The time complexity is the same
for both of the within-mode regularization and the cross-mode regularization, which is
slightly larger than that for the plain CP-decomposition using the LU decomposition.

In the Tucker decomposition, we need to solve the top-R eigen-decomposition prob-
lem (of size N ), which can be done in O(RN 2) by using the Lanczos method. The
time complexity is the same for all approaches with and without auxiliary information.

As for the space complexity, the our methods require O(I J K + I P+ J Q+ K R+
N1+N2+N3) space, which is slightly larger than that for the ordinary decomposition.

5 Tensor completion algorithms for partially observed tensors

The algorithms proposed in the previous section are not directly applicable to the ten-
sor completion problem where some parts of the target tensor X are missing. In this
section, we first modify the previous algorithms by applying an EM-like procedure in
which the decomposition algorithms are repeatedly called, so that they can be used to
solve the completion problem.

Since the EM-like algorithm is not efficient for large tensors, we also give more
efficient algorithms based on gradient-based optimization that which scales linearly
with the number of observed elements.

5.1 An EM-like approach

The algorithms proposed in Sect. 4 assume fully-observed tensors, and hence are not
directly applicable to the tensor completion problem where some parts of X are miss-
ing. Therefore, EM-like algorithms are often applied to this purpose (Srebro 2004;
Walczak 2001).
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To apply the algorithms for fully-observed tensors, we first prepare a new tensor
Z as a proxy target, which is a modified tensor of X by filling its missing parts with
some initial estimate ε. For example, ε can be the average of all observed elements.
We apply a tensor decomposition algorithm to the completely filled tensor Z , and
obtain a new decomposition, which is then re-assembled to obtain X̂ . The X̂ is used
to fill in the missing parts of X again, which results in an updated Z . We continue
this procedure until convergence.

The algorithm is summarized in Algorithm 1, where a binary tensor O indicates
indices of the observed elements in X . The (i, j, k)th element [O]i, j,k represents if
the (i, j, k)th element in X is observed (1) or not (0), namely,

[O]i, j,k =
{

1 (if [X ]i, j,k is observed),
0 (otherwise).

Algorithm 1 An EM-like tensor completion

Initialize [Z]i, j,k ←
{
[X]i, j,k (if [O]i, j,k = 1)

ε (if [O]i, j,k = 0)
for ∀(i, j, k)

while convergence do
X̂ ← Decompose(Z)

[Z]i, j,k ←
{
[X]i, j,k (if [O]i, j,k = 1)

[X̂]i, j,k (if [O]i, j,k = 0)
for ∀(i, j, k)

end while

Strictly speaking, this EM-like algorithm is not a proper EM-algorithm. Here we
give a justification of the algorithm as a block coordinate descent algorithm for a par-
ticular constrained optimization problem. Let us consider the following optimization
problem with two tensor parameters Z and X̂ .

minimizeZ,X̂
1

2
‖Z − X̂‖2F +

α

2
R(X̂ ;A1, A2, A3)

s.t. O ∗ (Z −X ) = 0 (14)

The constraint (14) forces the observed parts of X to be equal to the corresponding
parts of Z . This optimization problem can be approximately solved by using the block
coordinate descent. Once Z is fixed, the optimization problem with respect to X̂ is
unconstrained, and we can apply the tensor decomposition algorithms to Z . On the
other hand, with fixed X̂ , the solution for the optimization problem with respect to Z
is simply given as

[Z]i, j,k =
{
[X ]i, j,k (if [O]i, j,k = 1)

[X̂ ]i, j,k (if [O]i, j,k = 0)
for all (i, j, k).

This alternative optimization of Z and X̂ with some initial estimate of Z is exactly
what Algorithm 1 does.
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5.2 Gradient-based optimization approach

The EM-like algorithm is not efficient for large tensors because of two reasons. One is
that it works on dense tensors whose missing elements have been imputed with current
estimates, and the other is that we need to call tensor decomposition algorithms many
times until convergence. To cope with this scalability issue, we give more efficient
algorithms that work only on observed parts by following Acar et al. (2010).

5.2.1 CP decomposition

Focusing only on the observed part, we have a new objective function,

f (X̂ ) ≡ 1

2
‖O ∗

(
X − X̂

)
‖2F +

α

2
R(X̂ ;A1, A2, A3), (15)

instead of the objective function (4) for fully observed cases. Note that ∗ indicates the
Hadamard product (that is, element-wise product).

If we assume the CP-decomposition, the objective function (15) is rewritten as

f (X̂ ) = 1

2
‖O ∗ (X −J ×1 U×2 V×3 W) ‖2F +

α

2
R(X̂ ;A1, A2, A3)

= 1

2

I,J,K∑

i, j,k=1

⎛

⎝[X ]i jk −
P∑

p=1

[O]i, j,k[U]i,p[V] j,p[W]k,p

⎞

⎠
2

+ α

2
R(X̂ ;A1, A2, A3).

Similar to the fully observed cases, this objective function is not jointly convex for
U, V and W, while it is convex function with respect to each of them. Thus, we iterate
optimization with respect to one of them with the others fixed. Let us assume that
we want to optimize this with respect to U. We employ gradient-based optimization
approaches such as L-BFGS. Taking the gradient of the objective function, we obtain

∂ f

∂[U]i,p
= −

J,K∑

j,k=1

(
[O]i, j,k

(
[X ]i, j,k − [X̂ ]i, j,k

)
[V] j,p[W]k,p

)

+α

2

∂

∂[U]i,p
R(X̂ ;A1, A2, A3),

or

∂ f

∂U
= −

(
O(1) ∗

(
X(1) − X̂(1)

))
(W
 V)+ α

2

∂

∂U
R(X̂ ;A1, A2, A3) (16)

in a more concise form using matrices. The key to scalability is the computation of the
first term of the gradient (16). Unlike previous methods, we can perform the update
only with the observed parts by skipping the unobserved elements in the summation.
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5.2.2 Tucker decomposition

When we assume the Tucker-decomposition, the objective function (15) becomes

f (X̂ ) =1

2
‖O ∗ (X − G ×1 U×2 V×3 W) ‖2F +

α

2
R(X̂ ;A1, A2, A3)

=1

2

I,J,K∑

i, j,k=1

[O]i, j,k

⎛

⎝[X ]i, j,k −
P,Q,R∑

p,q,r=1

[G]p,q,r [U]i,p[V] j,q [W]k,r

⎞

⎠
2

+ α

2
R(X̂ ;A1, A2, A3).

Unlike the case of Tucker-type decompositions for fully-observed tensors, we do
not assume orthonormality of U, V, and W that Tucker-type decompositions usually
assume. Actually, there are several learning methods that can appropriately handle the
orthonormality assumption by using Stiefel and Grassman manifolds (Nishimori and
Akaho year; Plumbley 2005). However, we do not employ them because it is simpler
to implement without the orthonormality assumption.

To solve the optimization problem, we again resort to the gradient-based
approaches. The gradient of the objective function with respect to U is given as

∂ f

∂[U]i p
= −

J,K∑

j,k=1

⎛

⎝[O]i, j,k

(
[X ]i, j,k − [X̂ ]i, j,k

) Q,R∑

q,r=1

[G]p,q,r [V] j,q [W]k,r

⎞

⎠

+α

2

∂

∂[U]i,p
R(X̂ ;A1, A2, A3),

or in the matrix form

∂ f

∂U
= −

(
O(1) ∗

(
X(1) − X̂(1)

))
(W⊗ V) G�(1) +

α

2

∂

∂U
R(X̂ ;A1, A2, A3). (17)

Because we do not assume the orthonormality, the optimal solution for the core tensor
G is not given in a closed form. Therefore, we also need the gradient with respect to
G, which is given as

∂ f

∂[G]p,q,r
= −

I,J,K∑

i, j,k=1

(
[O]i, j,k

(
[X ]i, j,k − [X̂ ]i, j,k

)
[U]i,p[V] j,q [W]k,r

)
,

or concisely,

∂ f

∂G = −
(
O ∗

(
X − X̂

))
×1 U×2 V×3 W. (18)
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Table 2 Comparison of time complexities of computing a gradient for gradient-based optimization

Decomposition type Regularization type Time complexity

CP decomposition – M R

Within-mode M R + N1 P

Cross-mode M R + (N1 + I )P

Tucker decomposition – M P Q R

Within-mode M P Q R + N1 P

Cross-mode M P Q R + (N1 + I )P

5.2.3 Regularization terms

In the gradients of the objective functions for CP-decomposition (16) and Tucker
decomposition (17), we need the gradient of the regularizer R(X̂ ;A1, A2, A3). When
we use the within-mode regularization (5), the gradient of R(X̂ ;A1, A2, A3) with
respect to U is given as

∂ R(X̂ ;A1, A2, A3)

∂U
= L1U.

If we use the cross-mode regularization (7), the gradient is given as

∂ R(X̂ ;A1, A2, A3)

∂U
= (DV W D1 − AV W A1) U,

where DV W and AV W are defined in Eqs. (12) and (13), respectively. The gradients
with respect to V and W can be obtained similarly, and now we can calculate the
gradients (16) and (17) to use gradient-based updates. In our experiments in Sect. 6,
we employ the L-BFGS method.

5.2.4 Computational complexity

Table 2 summarizes the time complexities of computing the gradients with respect to
U for gradient-based optimization. The gradients for V and W are obtained similarly,
and we need O(M P Q R) for computing the gradient for G in the Tucker decomposi-
tion. The important observation is that the time complexity of evaluating the gradients
is linear with the number of observed elements M , which is a major advantage over
the EM-like approach. The use of auxiliary information slightly increases the compu-
tational cost linearly depending on the numbers of non-zero elements in the similarity
matrices. The Tucker decomposition requires more computational cost, but it still
remains linear with respect to the numbers of the objects.
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6 Experiments

We show the results of our numerical experiments of third-order tensor completion
problems using synthetic and real benchmark datasets, and demonstrate that introduc-
ing auxiliary information improves predictive accuracy especially when observations
are sparse.

6.1 Datasets

6.1.1 Synthetic dataset

The first dataset consists of synthetic tensors with correlated objects. We generate
CP-decomposed tensors with U ∈ R

I×R, V ∈ R
J×R and W ∈ R

K×R with the rank
R ≡ 2 and I ≡ J ≡ K ≡ 30 by using the linear formulae,

[U]ir ≡ iεr + ε′r (1 ≤ i ≤ I, 1 ≤ r ≤ R)

[V] jr ≡ jζr + ζ ′r (1 ≤ j ≤ J, 1 ≤ r ≤ R)

[W]kr ≡ kηr + η′r (1 ≤ k ≤ K , 1 ≤ r ≤ R),

where {εr , ε
′
r , ζr , ζ

′
r , ηr , η

′
r }Rr=1 are constants generated by using the standard Gauss-

ian distribution. A synthetic tensor X ∈ R
I×J×K is defined as

X ≡ J ×1 U×2 V×3 W.

Since the columns of each factor matrix are generated by linear functions, the consec-
utive rows are similar to each other. Therefore, the similarity matrix for the i th mode
is naturally defined as the tri-diagonal matrix.

Ai ≡

⎡

⎢⎢⎢⎣

0 1 0 · · ·
1 0 1 · · ·
0 1 0 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎦

6.1.2 Benchmark dataset 1: flow injection

As a real benchmark dataset with auxiliary information, we used the ‘Rank-defi-
cient spectral FIA dataset’,3 which consists of results of flow injection analysis on
12 different chemical substances. The results are represented as a tensor of size 12
(substances)×100 (wavelengths)×89 (reaction times).

We constructed three similarity matrices for the three modes as follows. Since 12
chemical substances differ with regard to the content of three structural isomers of

3 The datasets are available from http://www.models.life.ku.dk/datasets.
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a certain chemical compound, each substance can be represented as a three-dimen-
sional feature vector. We defined the similarity between two substances as the inverse
of Euclidean distance between their feature vectors. Also, since wavelength and reac-
tion time have continuous real values, we simply set the similarity of two consecutive
wavelength values (or reaction time values) to one since they are equally-spaced.

Actually, the design of the similarity matrix directly affects the quality of decompo-
sitions. The main reason for our choice of the similarity matrices for wavelength and
reaction time is that we want to make them sparse, since the density of the similarity
matrices directly affects the computational time of matrix multiplications. As for the
similarity matrix for the chemical substances, we use the dense matrix without any
sparsification since it is small.

6.1.3 Benchmark dataset 2: licorice

Another benchmark dataset we use is the ‘Three-way electronic nose dataset’,2 which
consists of measurements of an odor sensing system applied to licorices for check-
ing their quality, and is represented as a third-order tensor of size 18 (samples)×241
(reaction times)×12 (sensors).

Since each of 18 samples is labeled with one of the three quality labels, {‘BAD’,
‘FBAD’,‘GOOD’}, we set the similarity between two samples sharing an identi-
cal label to one. The similarity for reaction time is defined in the same way as
for the flow injection dataset. Eventually, we obtain two similarity matrices for this
dataset.

6.1.4 Benchmark dataset 3: delicious

The third dataset ‘hetrec2011-delicious-2k’ is a relatively large dataset provided at
the Hetrec 2011 workshop.4 This dataset is a collection of social bookmarks obtained
from Delicious social bookmarking system.5 We used a third-order binary tensor rep-
resenting (user, URL, tag)-relationships. Its original size is 108, 035 × 107, 253 ×
52, 995; however, we eliminate slices with no observed elements and obtain a third-
order tensor of size 1, 867×69, 223×40, 897 with 437, 593 observed elements. Note
that, unlike the other datasets whose elements are completely filled, this dataset is
originally sparse.

We constructed two similarity matrices, one for URLs, and the other is for tags.
We defined the URL similarities as the identity of domains. The tag similarities were
defined as similarities in tag names, specifically, the number of common prefix char-
acters.

Note that the EM-like approach is not scalable enough to run on this dataset, and
we used this dataset only for the gradient-based approach.

4 The dataset is available from http://www.grouplens.org/node/462.
5 http://www.delicious.com.

123

http://www.grouplens.org/node/462
http://www.delicious.com


316 A. Narita et al.

6.2 Experimental settings

6.2.1 Comparison methods

We compared the following 3 (regularization methods)×2 (decomposition models)
×2 (algorithms) = 12 methods.

1. Ordinary {CP, Tucker}-decomposition using the {EM-like, gradient-based} opti-
mization,

2. Within-mode regularized {CP, Tucker}-decomposition using the {EM-like, gra-
dient-based} optimization,

3. Cross-mode regularized {CP, Tucker}-decomposition using the {EM-like, gradi-
ent-based} optimization.

In the EM-like algorithms, we updated the missing value estimates every time one
of the factor matrices is updated (Walczak 2001), since it converged faster. We set
the initial estimates for the unobserved elements of X to the average of the observed
elements. In all of the methods, we initialized U, V, and W as the leading eigenvectors
of X(1), X(2), and X(3), respectively.

On the basis of the results of preliminary experiments, we set the model ranks as
P ≡ Q ≡ R ≡ 2 for the synthetic dataset, P ≡ Q ≡ R ≡ 4 for the flow injection
dataset, and P ≡ Q ≡ R ≡ 3 for the licorice dataset. For the Delicious dataset, we
set P ≡ 4 for the CP-decomposition, and P ≡ Q ≡ R ≡ 2 for the Tucker decom-
position. The hyper-parameter α was selected from

{
10−5, 10−4, 10−3, 10−2, 10−1

}

by using cross-validation. For the gradient-based methods, we also used small regu-
larization terms for factors, namely, β‖U‖2F with β ≡ 10−11 for U (and for V and W,
similarly).

6.2.2 Element-wise missing versus slice-wise missing

We test two kinds of assumptions on missing elements, that are, element-wise miss-
ing and slice-wise missing. In the element-wise missing setting, individual elements
[X ]i, j,k are missing. On the other hand, in the slice-wise missing setting, missing
values occur at object level, and therefore all of the elements related to some objects
are totally missing. In other words, slices such as {[X ]i, j,k} j,k for some i , {[X ]i, j,k}i,k
for some j , and {[X i, j,k]}i, j for some k are missing, which means that missing values
occurring in a more bursty manner.

We varied the fraction of unobserved elements among {0.75, 0.9, 0.95, 0.99} for
the element-wise missing setting, and among {0.5, 0.75, 0.9, 0.95} for the slice-wise
missing setting. We randomly selected elements or objects to be used as the unob-
served parts, and evaluated the mean squared errors between true values and predicted
values. We continued the evaluation ten times, and recorded the averaged errors and
their standard errors.
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6.3 Results

6.3.1 Accuracy

Figure 4 shows the accuracy of tensor completion when the EM-like optimization was
used for the six methods ({‘Ordinary’, ‘Within-mode’, ‘Cross-mode’}×{CP-decom-
position, Tucker-decomposition})in the element-wise missing setting. Figure 5 shows
those for the gradient-based optimization. Figures 6 and 7 show the results for the
slice-wise missing setting.

Overall, incorporating auxiliary information improves the predictive accuracy,
which implies that the use of auxiliary information is effective in mitigating the perfor-
mance degration resulting from observation sparsity. The EM-like methods are more
accurate and stable than the gradient-based methods. Therefore, generally, our recom-
mendation is to use the EM-like method in sparse cases if computational resources
allow. However, for large-scale datasets, it is not realistic to use the EM-like meth-
ods, and the gradient-based methods are the exclusive option. We guess the difference
of stability of the two approaches as follows; in sparse cases, the degree of freedom
of the model is too large against the number of available observations, which leads
to the instability of results. The EM-based method mitigates the instability by giv-
ing the initial estimates for the unobserved elements as the average of the observed
elements.

In the element-wise missing setting, the difference between the within-mode and
the cross-mode regularizations is not significant in moderately sparse cases. However,
in extremely sparse cases (where 99 % of the data tensor are missing), the cross-mode
regularization performs well because it induces dense similarities among tensor ele-
ments. This is more significant in the “cold-start” situation such as slice-wise missing
cases. In particular, the cross-mode regularization seems compatible with the EM-like
methods.

6.3.2 Computation time

Figure 8 shows a comparison between the total computation times in the EM-like
approach and those in the gradient-based approach. The computation times were eval-
uated as the average of five runs by using the flow injection dataset with 99 % missing
values in the element-wise missing setting. Even with this small-sized dataset, we can
see the advantage of the gradient-based updates over the EM-based ones.

It is interesting to see the use of auxiliary information does not increase the overall
computation time. In particular, the computation time even decreases with the EM-like
methods. Actually, the additional information surely increases the computational time
for each step in the EM-like method. Nevertheless, the number of iterations needed
for convergence decreases with the within- or cross-mode regularization, which even-
tually results in the lower total computational time of the EM-like methods. Similarly,
the increase of the cost of computing gradients is cancelled by the decrease of the
number of iterations. They are probably because adding the additional regularization
terms makes the landscape of the objective function smoother.
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Fig. 4 Accuracy of tensor completion for three datasets in the element-wise missing setting by the EM-like
algorithm. The proposed methods perform well when observations are sparse

Although we employed the L-BFGS method by following Acar et al. (2010) in
our experiments, the gradients we derived in Sect. 5.2 can also be used in stochastic
gradient descent-type updates, which will further accelerate the computation with less
memory requirements.

123



Tensor Factorization Using Auxiliary Information 319

Fig. 5 Accuracy of tensor completion for four datasets in the element-wise missing setting by the gradi-
ent-based optimization. The proposed methods perform well when observations are sparse
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Fig. 6 Accuracy of tensor completion for three datasets in the slice-wise missing setting by the EM-like
algorithm. The cross-mode regularization method performs especially well when observations are sparse

7 Related work

Tensor factorization methods have recently been studied extensively, and widely
applied in the data mining communities. The CANDECOMP/PARAFAC(CP) decom-
position (Harshman 1970) is a tensor factorization method that can be seen as a special
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Fig. 7 Accuracy of tensor completion for four datasets in the slice-wise missing setting by the gradient-
based optimization. The cross-mode regularization method performs especially well when observations are
sparse
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case of the Tucker decomposition (Tucker 1966) in which the core tensor is superdiag-
onal. The CP-decomposition has been applied to various problems including chemo-
informatics (Kolda and Bader 2009). Its variant called pair-wise interaction tensor
factorization (Rendle and Thieme 2010) accelerates its computation by using the sto-
chastic gradient descent, and is applied to a large-scale tag recommendation problem.

There also exist probabilistic extensions of tensor factorization methods. Shashua
and Hazan (2005) studied the PARAFAC model under the non-negativity constraint
with latent variables. Chu and Ghahramani (2009) proposed a probabilistic extension
of the Tucker method, known as pTucker.

Although we focus on the squared loss function (3) in this paper, changing the loss
function corresponds to non-Gaussian probabilistic models of tensor factorization. In
several matrix and tensor factorization studies, non-Gaussian observations have been
dealt with. Collins et al. (2002) generalized the likelihood of the probabilistic PCA to
the exponential family, which was further extended to tensors by Hayashi et al. (2010).

Recently, convex formulations of matrix factorization using the trace norm con-
straint instead of the low-rank constraint have been extensively studied (e.g. Srebro
et al. 2005; Candes and Tao 2010; Cai et al. 2010). Such formulations have also
been extended to tensor cases (e.g. Tomioka et al. 2012; Gandy et al. 2010). Convex
programming formulations are another promising approach for mitigating the perfor-
mance degradation resulting from data sparseness. The use of auxiliary information
in tensor decomposition is rather independent of the choice of representation of the
low-rank constraint, and combining them is an interesting future direction.

There are several studies to incorporate auxiliary information into matrix factor-
ization. Li and Yeung (2009) introduced a regularizer for one of factor matrices by
using a graph Laplacian based on geometry of data distribution. A similar approach
is proposed by Cai et al. (2010). Lu et al. (2009) proposed incorporated both spatial

Fig. 8 Comparison of total computation times for the flow injection dataset

123



Tensor Factorization Using Auxiliary Information 323

and temporal information by using graph Laplacian and Kalman filter. Adams et al.
(2010) extended the probabilistic matrix factorization (Salakhutdinov and Mnih 2008)
to incorporate side information. In their work, Gaussian process priors are introduced
to enforce smoothness to factors. Some work use auxiliary information not in regular-
ization terms but as bias variables added to model parameters (Yu et al. 2009; Porteous
et al. 2010). Although not aiming to decomposition or completion of tensors, Banerjee
et al. (2007) addresses clustering on multiple relation data from various information
sources. To best of our knowledge, our work is the first attempt to incorporate auxiliary
information into tensor factorization.

8 Conclusion

In this paper, we proposed the use of relationships among data as auxiliary information
in addition to the low-rank assumption to improve the accuracy of tensor factorization.
We introduced two regularization approaches using graph Laplacians induced from
the relationships, and designed approximate solutions for the optimization problems.
Numerical experiments using synthetic and real datasets showed that the use of auxil-
iary information improved completion accuracy over the existing methods based only
on the low-rank assumption, especially when observations were sparse.
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