
Data Min Knowl Disc (2012) 25:34–66
DOI 10.1007/s10618-011-0232-z

Mining closed strict episodes

Nikolaj Tatti · Boris Cule

Received: 7 December 2010 / Accepted: 3 August 2011 / Published online: 1 September 2011
© The Author(s) 2011

Abstract Discovering patterns in a sequence is an important aspect of data mining.
One popular choice of such patterns are episodes, patterns in sequential data describ-
ing events that often occur in the vicinity of each other. Episodes also enforce in
which order the events are allowed to occur. In this work we introduce a technique
for discovering closed episodes. Adopting existing approaches for discovering tradi-
tional patterns, such as closed itemsets, to episodes is not straightforward. First of
all, we cannot define a unique closure based on frequency because an episode may
have several closed superepisodes. Moreover, to define a closedness concept for epi-
sodes we need a subset relationship between episodes, which is not trivial to define.
We approach these problems by introducing strict episodes. We argue that this class is
general enough, and at the same time we are able to define a natural subset relationship
within it and use it efficiently. In order to mine closed episodes we define an auxiliary
closure operator. We show that this closure satisfies the needed properties so that we
can use the existing framework for mining closed patterns. Discovering the true closed
episodes can be done as a post-processing step. We combine these observations into
an efficient mining algorithm and demonstrate empirically its performance in practice.

Keywords Frequent episode mining · Closed episodes · Level-wise algorithm

Responsible editor: M. J. Zaki.

The research described in this paper builds upon and extends the work appearing in Proceedings of Tenth
IEEE International Conference on Data Mining (ICDM 2010), 2010 (Tatti and Cule 2010).

N. Tatti (B) · B. Cule
University of Antwerp, Antwerp, Belgium
e-mail: nikolaj.tatti@ua.ac.be

B. Cule
e-mail: boris.cule@ua.ac.be

123

Mining closed strict episodes 35

1 Introduction

Discovering frequent patterns in an event sequence is an important field in data min-
ing. Episodes, as defined in Mannila et al. (1997), represent a rich class of sequential
patterns, enabling us to discover events occurring in the vicinity of each other while
at the same time capturing complex interactions between the events.

More specifically, a frequent episode is traditionally considered to be a set of events
that reoccurs in the sequence within a window of a specified length. Gaps are allowed
between the events and the order in which the events are allowed to occur is specified
by the episode. Frequency, the number of windows in which the episode occurs, is
monotonically decreasing so we can use the well-known level-wise approach to mine
all frequent episodes.

The order restrictions of an episode are described by a directed acyclic graph
(DAG): the set of events in a sequence covers the episode if and only if each event
occurs only after all its parent events (with respect to the DAG) have occurred (see
the formal definition in Sect. 2). Usually, only two extreme cases are considered.
A parallel episode poses no restrictions on the order of events, and a window cov-
ers the episode if the events occur in the window, in any order. In such a case,
the DAG associated with the episode contains no edges. The other extreme case is
a serial episode. Such an episode requires that the events occur in one, and only
one, specific order in the sequence. Clearly, serial episodes are more restrictive than
parallel episodes. If a serial episode is frequent, then its parallel version is also
frequent.

The advantage of episodes based on DAGs is that they allow us to capture depen-
dencies between the events while not being too restrictive.

Example 1 As an example we will use text data, namely inaugural speeches by pres-
idents of the US (see Sect. 8 for more details). Protocol requires the presidents to
address the chief justice and the vice presidents in their speeches. Hence, a pattern

chief→ justic vice→ president

occurs in 10 disjoint windows. This pattern captures the phrases ‘chief justice’ and
‘vice president’ but because the address order varies from speech to speech, the pattern
does not impose any additional restrictions.

Episodes based on DAGs have, in practice, been over-shadowed by parallel and
serial episodes, despite being defined at the same time (Mannila et al. 1997). The
main reason for this is the pattern explosion demonstrated in the following example.

Example 2 To illustrate the pattern explosion we will again use inaugural speeches
by presidents of the US. By setting the window size to 15 and the frequency threshold
to 60 we discovered a serial episode with six symbols,

preserv→ protect→ defend→ constitut→ unit→ state.

123

36 N. Tatti, B. Cule

Table 1 Illustration of the pattern explosion

Pattern 1 2 3 4 5 6 7 8 9

Itemsets 1 3 7 15 31 63 127 255 511

Episodes 1 4 16 84 652 7,742 139,387 3,730,216 145,605,024

The first row is the number of frequent itemsets produced by a single frequent itemset with n items. The
second row is the number of episodes produced by a single frequent serial episode with n unique labels.
These numbers were obtained by a brute force enumeration

In total, we found another 4,823 subepisodes of size 6 of this episode. However, all
these episodes had only three distinct frequencies, indicating that the frequencies of
most of them could be derived from the frequencies of only three episodes, so the
output could be reduced by leaving out 4,821 episodes.

We illustrate the pattern explosion further in Table 1. We see from the table that
if the sequence has a frequent serial episode consisting of nine labels, then mining
frequent episodes will produce at least 100 million patterns.

Motivated by this example, we approach the problem of pattern explosion by using
a popular technique of closed patterns. A pattern is closed if there exists no superpat-
tern with the same frequency. Mining closed patterns has been shown to reduce the
output. Moreover, we can discover closed patterns efficiently. However, adopting the
concept of closedness to episodes is not without problems.
Subset relationship Establishing a proper subset relationship is needed for two rea-
sons. Firstly, to make the mining procedure more efficient by discovering all possible
subpatterns before testing the actual episode, and secondly, to define a proper closure
operator.

A naïve approach to define whether an episode G is a subepisode of an epi-
sode H is to compare their DAGs. This, however, leads to problems as the same
episode can be represented by multiple DAGs and a graph representing G is not
necessarily a subgraph of a graph representing H as demonstrated in the following
example.

Example 3 Consider episodes G1, G2, and G3 given in Fig. 1. Episode G1 states that
for a pattern to occur a must precede b and c. Meanwhile, G2 and G3 state that a
must be followed by b and then by c. Note that G2 and G3 represent essentially the
same pattern that is more restricted than the pattern represented by G1. However, G1
is a subgraph of G3 but not a subgraph of G2. This reveals a problem if we base our
definition of a subset relationship of episodes solely on the edge subset relationship.

Fig. 1 Toy episodes used in Example 3. a Episode G1, b Episode G2, c Episode G3, d Episode H1 and
e Episode H2

123

Mining closed strict episodes 37

We solve this particular case by considering transitive closures, graphs in which each
node must be connected to all its descendants by an edge, thus ignoring graphs of form
G2. We will not lose any generality since we are still going to discover episodes of
form G3. Using transitive closure does not solve all problems for episodes containing
multiple nodes with the same label. For example, episodes H1 and H2 in Fig. 1 are
the same even though their graphs are different.

Frequency closure Secondly, frequency does not satisfy the Galois connection.
In fact, given an episode G there can be several more specific closed episodes that
have the same frequency. So the closure operator cannot be defined as a mapping from
an episode to its frequency-closed version.

Example 4 Consider sequence s given in Fig. 2e and episode G1 given in Fig. 2a.
Assume that we use a sliding window of size 5. There are two windows that cover
episode G1, namely s[1, 5] and s[6, 10], illustrated in Fig. 2e. Hence, the frequency of
G1 is 2. There are two serial episodes that are more specific than G1 and have the same
frequency, namely, G2 and G3 given in Fig. 2. Moreover, there is no superepisode of
G2 and G3 that has frequency equal to 2. In other words, we cannot define a unique
closure for G1 based on frequency.

The contributions of our paper address these issues:

1. We introduce strict episodes, a new subclass of general episodes. We say that an
episode is strict if all nodes with the same label are connected. Thus all episodes
in Fig. 1 are strict, except H2. We will argue that this class is large, contains all
serial and parallel episodes, as well as episodes with unique labels, yet using only
strict episodes eases the computational burden.

2. We introduce a natural subset relationship between episodes based on the subset
relationship of sequences covering the episodes. We will prove that for strict epi-
sodes this relationship corresponds to the subset relationship between transitively
closed graphs. For strict episodes such a graph uniquely defines the episode.

3. We introduce milder versions of the closure concept, including the instance-
closure. We will show that these closures can be used efficiently, and that a

Fig. 2 Toy episodes used in Examples 4 and 5. Edges induced by transitive closure are omitted to avoid
clutter. a Episode G1, b Episode G2, c Episode G3, d Episode G4 and e Sequence s

123

38 N. Tatti, B. Cule

frequency-closed episode is always instance-closed.1 We demonstrate that com-
puting closure and frequency can be done in polynomial time.2

4. Finally, we present an algorithm that generates strict instance-closed episodes
with transitively closed graphs. Once these episodes are discovered we can fur-
ther prune the output by removing the episodes that are not frequency-closed.

2 Preliminaries and notation

We begin by presenting the preliminary concepts and notations that will be used
throughout the paper. In this section we introduce the notions of sequence and epi-
sodes.

A sequence s = s1 . . . sL is a string of symbols, or events, coming from an alphabet
�, so that for each i, si ∈ �. Given a strictly increasing mapping m : [1, N] → [1, L]
we will define sm to be a subsequence sm(1) . . . sm(N). Similarly, given two integers
1 ≤ a ≤ b ≤ L we define s[a, b] = sa . . . sb.

An episode G is represented by a DAG with labelled nodes, that is, G = (V, E, lab),
where V = (v1, . . . , vK) is the set of nodes, E is the set of directed edges, and lab is
the function lab : V → �, mapping each node vi to its label. We denote the set of
nodes of an episode G with V (G), and its set of edges with E(G).

Given a sequence s and an episode G we say that s covers G, or G occurs in s, if there
is an injective map f mapping each node vi to a valid index such that the node vi in G
and the corresponding sequence element s f (vi) have the same label, s f (vi) = lab(vi),
and that if there is an edge (vi , v j) in G, then we must have f (vi) < f (v j). In other
words, the parents of v j must occur in s before v j . For an example, see Fig. 3a. If
the mapping f is surjective, that is, all events in s are used, we will say that s is an
instance of G.

2.1 Frequency

In our search for frequent episodes, we will use and compare two conceptually different
definitions of frequency.

Traditionally, episode mining is based on searching for episodes that are covered
by windows of certain fixed size often enough. The frequency of a given episode is
then defined as the number of such windows that cover it.

Definition 1 The fixed-window frequency of an episode G in a sequence s, denoted
frf (G), is defined as the number of time windows of a given size ρ within s, in which
the episode G occurs. Formally,

frf (G) = |{ (a, b) | b = a + ρ − 1, a ≤ N , b ≥ 1, and s[a, b] covers G }|.

1 In Tatti and Cule (2010), the closure was based only on adding edges whereas in this version we are also
adding nodes.
2 This was not guaranteed in Tatti and Cule (2010).

123

Mining closed strict episodes 39

See Fig. 3b for example.
The frequency of an episode is sometimes expressed using the number of minimal

windows that contain it. To satisfy the downward-closed property, we say that these
windows must be non-overlapping.

Definition 2 The disjoint-window frequency of an episode G in a sequence s, denoted
frd(G), is defined as the maximal number of non-overlapping windows within s that
contain episode G. Formally,

frd(G) = max

{
|{(a1, b1), . . . , (aN , bN)}|

∣∣∣∣ s[ai , bi] covers G, bi − ai < ρ and
[ai , bi] ∩ [a j , b j]=∅ for 1≤i, j≤N

}
.

See Fig. 3c for example.
We now establish a connection between the disjoint-window frequency and actual

minimal windows.

Definition 3 Given a sequence s and an episode G, a window s[a, b] is called a min-
imal window of G in s, if s[a, b] covers G, and if no proper subwindow of s[a, b]
covers G. We will also refer to the interval [a, b] as a minimal window, if s is clear
from the context.

It is easy to see that the maximal number of non-overlapping windows within s that
contain G is equal to the maximal number of non-overlapping minimal windows within
s that contain G.

Whenever it does not matter whether we are dealing with the fixed-window
frequency or the disjoint-window frequency, we simply denote fr(G).

3 Strict episodes

In this section we will define our mining problem and give a rough outline of the
discovery algorithm.

Fig. 3 A toy example illustrating different support measures. a contains an example of a sequence covering
an episode. b shows all 5 sliding windows of length 5 containing the episode. c shows the maximal number,
2, of non-overlapping windows covering the episode

123

40 N. Tatti, B. Cule

Generally, a pattern is considered closed if there exists no more specific pattern
having the same frequency. In order to speak of more specific patterns, we must first
have a way to describe episodes in these terms.

Definition 4 Assume two transitively closed episodes G and H with the same number
of nodes. An episode G is called a subepisode of episode H , denoted G � H if the
set of all sequences that cover H is a subset of the set of all sequences that cover G.
If the set of all sequences that cover H is a proper subset of the set of all sequences
that cover G, we call G a proper subepisode of H , denoted G ≺ H .

For a more general case, assume that |V (G)| < |V (H)|. We say that G is a subep-
isode of H , denoted G � H , if there is a subgraph H ′ of H such that G � H ′.
Moreover, let α be a graph homomorphism from H ′ to H . If we wish to emphasize α,
we write G �α H .

If |V (G)| > |V (H)|, then G is automatically not a subepisode of H .

The problem with this definition is that we do not have the means to compute this
relationship for general episodes. To do this, one would have to enumerate all possible
sequences that cover H and compute whether they cover G. We approach this problem
by restricting ourselves to a class of episodes where this comparison can be performed
efficiently.

Definition 5 An episode G is called strict if for any two nodes v and w in G sharing
the same label, there exists a path either from v to w or from w to v.

We will show later that the subset relationship can be computed efficiently for strict
episodes. However, as can be seen in Fig. 4, there are episodes that are not strict. Our
algorithm will not discover these types of patterns.

Having defined a subset relationship, we can now define an f-closed episode.

Definition 6 An episode G is frequency-closed, or f-closed, if there exists no episode
H , such that G ≺ H and fr(G) = fr(H).

Problem 1 Given a sequence s, a frequency measure, either fixed-window or dis-
joint-window, and a threshold σ , find all f-closed strict episodes from s having the
frequency higher or equal than σ .

A traditional approach to discovering closed patterns is to discover generators, that
is, for each closed pattern P , discover minimal patterns whose closure is equal to
P (Pasquier et al. 1999). When patterns are itemsets, it holds that the collection of
frequent generators are downward closed. Hence, they can be mined efficiently using
a BFS-style approach.

We cannot directly apply this framework for two reasons: Firstly, unlike with item-
sets, we cannot define a closure based on frequency. We solve this by defining an

Fig. 4 An example of a
non-strict and a strict episode.
a non-strict and b strict

123

Mining closed strict episodes 41

instance-closure, a more conservative closure that guarantees that all f-closed epi-
sodes are discovered. Once instance-closed episodes are discovered, the f-closed
episodes are selected in a post-processing step. The second obstacle is the fact that
the collection of generator episodes is not necessarily downward-closed. We solve
this problem by additionally using some intermediate episodes that will guarantee the
correctness of the algorithm.

A sketch of the miner is given in Algorithm 1 (the details of the algorithm are
described in subsequent sections). The algorithm consists of two loops. In the outer
loop, Lines 3–15, we discover parallel episodes by adding nodes. In the inner loop,
Lines 5–12, we discover general episodes by adding edges. Each candidate episode is
tested, and if the candidate is frequent and a generator, then the episodes is added into
the collection. Finally, we discover the f-closed episodes as a last step.

Algorithm 1: Rough outline of the breath-first mining algorithm. The details of
each step are given in Sects. 4–7

input : sequence s, threshold σ , window size ρ

output : frequent f-closed episodes
1 C ← all frequent episodes with 1 node;
2 E ← ∅; N ← 1;
3 while C �= ∅ do
4 M ← 0;
5 while C �= ∅ do
6 foreach G ∈ C do
7 if G is a frequent generator w.r.t. i-closure then
8 add G to E ;
9 add intermediate episodes;

10 P ← episodes with N nodes and M edges from E ;
11 C ← candidates generated from P with N nodes and M + 1 edges;
12 M ← M + 1;

13 P ← parallel episodes with N nodes from E ;
14 C ← parallel candidates generated from P with N + 1 nodes;
15 N ← N + 1;

16 return f-closed episodes from the i-closures of episodes in E ;

To complete the algorithm we need to solve several subproblems:

1. computing the subset relationship efficiently (Sect. 4)
2. defining and computing instance-closure (Sect. 5)
3. generating candidate episodes, Line 11 (Sect. 6)
4. generating intermediate episodes and proving the correctness (Sect. 7)

4 Computing the subset relationship

In this section we will demonstrate that computing the subset relationship for strict
episodes can be done efficiently. This allows us to build an algorithm to efficiently
discover closed episodes.

123

42 N. Tatti, B. Cule

We now provide a canonical form for episodes, which will help us in further the-
orems and algorithms. We define an episode that has the maximal number of edges
using a fundamental notion familiar from graph theory.

Definition 7 The transitive closure of an episode G = (V, E, lab) is an episode
tcl(G), where G and tcl(G) have the same set of nodes V , the same lab function
mapping nodes to labels, and the set of edges in tcl(G) is equal to

E(tcl(G)) = E ∪ { (vi , v j) | a path exists in G from vi to v j }.

Note that, despite its name, the transitive closure has nothing to do with the concept
of closed episodes.

Definition 8 Let S be the space of all strict and transitively closed episodes.

In the remaining text, we consider episodes to be transitively closed and strict, unless
stated otherwise. An episode and its transitive closure will always have the same fre-
quency, hence by restricting ourselves to transitively closed episodes we will not lose
any episodes.

For notational simplicity, we now introduce the concept of two episodes having
identical nodes. Given an episode G ∈ S with nodes V (G) = {v1, . . . , vN }, we
assume from now on that the order of the nodes is always fixed such that for i < j
either lab(vi) < lab

(
v j

)
lexicographically, or lab(vi) = lab

(
v j

)
and vi is an ancestor

of v j with respect to E(G) (i.e. edge (vi , v j) ∈ E(G)). We say that two episodes G
and H , with V (G) = {v1, . . . , vN } and V (H) = {w1, . . . , wN } have identical nodes
if lab(vi) = lab(wi) for i = {1, . . . , N }. To simplify notation, we often identify vi

and wi . This convention allows us to write statements such as E(G)∪ E(H), if G and
H have identical nodes.

Our next step is to show how we can test the subset relationship for strict episodes.

Lemma 1 Let G, H ∈ S be episodes with identical nodes. Let s be a valid instance
of both G and H. Let g and h be the corresponding functions mapping nodes of G
and H to indices of s, respectively. Then g = h.

Proof Let v be a node. Function g maps v to the lth occurrence of lab(v) in s. Since
s is an instance, then there are l − 1 ancestors of v in G having the same label as v.
Since G and H have identical nodes, v also has l − 1 ancestors in H . Since s is an
instance of H, h must map v to lth occurrence of lab(v). This implies that g = h. ��

Lemma 1 implies that given an episode G and an instance s, there is only one
valid function f mapping nodes of G to indices of s. Let us denote this mapping by
map(G, s) = f . If G is a parallel episode with nodes V = V (G) we write map(V, s).

Crucially, we can easily compute the subset relationship between two episodes.

Theorem 1 For episodes G, H ∈ S with identical nodes, E(G) ⊆ E(H) if and only
if G � H.

123

Mining closed strict episodes 43

Proof To prove the “only if” direction assume that E(G)⊆E(H). Let s={s1, . . . , sN }
be an instance of H and let f = map(H, s) be the corresponding mapping. Then f is
also a valid mapping for G. Thus, G � H .

To prove the other direction, assume that E(G) � E(H). We therefore must have
an edge e = (x, y) ∈ E(G), such that e /∈ E(H). We build s by first visiting every
parent of y in H in a valid order with respect to H , then y itself, and then the rest of
the nodes, also in a valid order. Let h be the visiting order of G while constructing
s, that is, h(v) = 1, if we visited v first, h(v) = 2, if we visited v second. Note that
h(y) < h(x). Assume now that s covers G and let f = map(G, s) be the correspond-
ing mapping. But then Lemma 1 implies that g = h, thus g(y) < g(x), contradicting
the fact that (x, y) ∈ E(G). ��

Theorem 1 essentially shows that our subset relationship is in fact a graph subset
relationship which allows us to design an efficient mining algorithm.

We finish this section by defining what we exactly mean when we say that two
episodes are equivalent and demonstrate that the class of strict episodes contains all
parallel episodes.

Definition 9 Episodes G and H are said to be equivalent, denoted by G ∼ H , if each
sequence that covers G also covers H , and vice versa.

Corollary 1 (of Theorem 1) For episodes G, H ∈ S, G ∼ H if and only if E(G) =
E(H) and G and H have identical nodes.

Proof This follows from the fact that G ∼ H is equivalent to G � H and H � G,
and that E(G) = E(H) is equivalent to E(G) ⊆ E(H) and E(H) ⊆ E(G). ��

Note that by generating only transitively closed strict episodes, we have obtained
an efficient way of computing the subset relationship between two episodes. At first
glance, though, it may seem that we have completely omitted certain parallel episodes
from consideration—namely, all non-strict parallel episodes (i.e. those containing
multiple nodes with same labels). Note, however, that for each such episode G, there
exists a strict episode H , such that G ∼ H . To build such an episode H , we just
need to create edges that would strictly define the order among nodes with the same
labels. From now on, when we talk of parallel episodes, we actually refer to their strict
equivalents.

5 Closure

Having defined a subset relationship among episodes, we are now able to speak of an
episode being more specific than another episode. However, this is only the first step
towards defining the closure of an episode. We know that the closure must be more
specific, but it must also be unique and well-defined. We have already seen that basing
such a closure on the frequency fails, as there can be multiple more specific closed
episodes that could be considered as closures.

In this section we will establish three closure operators, based on the instances of
the episode found within the sequence. The first closure adds nodes, the second one

123

44 N. Tatti, B. Cule

adds edges, and the third is a combination of the first two. We also show that these
operators satisfy three important properties. We will use these properties to prove the
correctness of our mining algorithm. The needed properties for a closure operator h
are

1. Extension: G � h(G),
2. Idempotency: h(G) = h(h(G)),
3. Monotonicity: G1 � G2 ⇒ h(G1) � h(G2).

These properties are usually shown using the Galois connection but to avoid cum-
bersome notation we will prove them directly.

5.1 Node closure

In this section we will define a node closure and show that it satisfies the properties.
Assume that we are given a sequence s and a window size ρ.

Our first step is to define a function fN which maps an episode G ∈ S to a set of
intervals which contain all instances of G,

fN (G; s) = { [min m, max m] | sm covers G, max m −min m < ρ, m ∈ M },

where M contains all strictly increasing mappings to s.
Our next step is to define XG to be the set of all symbols occurring in each interval,

XG = { x ∈ � | x occurs in s[a, b] for all [a, b] ∈ fN (G) }.

Let W be the labels of the nodes of G. We define our first closure operator, iclN (G)

to be G augmented with nodes having the labels XG −W , that is, we add nodes to G
with labels that occur inside each window that contains G.

Theorem 2 iclN (G) is an idempotentic and monotonic extension operator.

Proof The extension property follows immediately because we are only adding new
nodes.

Assume now that G � H . Let [a, b] ∈ fN (H) be an interval. Then, there is an
interval [c, d] ∈ fN (G) such that a ≤ c ≤ d ≤ b. This means that any symbol
occurring in every interval in fN (G) will also occur in every interval in fN (H), that
is, XG ⊆ X H .

Let α be a graph homomorphism such that G �α H . Let x ∈ XG be a symbol not
occurring in G and let v be the new node in iclN (G) with this label. If x does not occur
in H , then x ∈ X H and thus a node with a label x is added into H . In any case, there is
a node w with a label x in iclN (H). We can extend α by setting α(v) = w. By doing
this for each new node we have proved monotonicity, i.e. that iclN (G) � iclN (H).

To prove idempotency, let us write H = iclN (G). Since any new node in H must
occur inside the instances of G, we have fN (G) ⊆ fN (H). This implies that X H ⊆ XG

and since we saw before that XG ⊆ X H , it implies that XG = X H . Since for every
label in X H there is a node in H with the same label, it holds that iclN (H) = H . ��

123

Mining closed strict episodes 45

Note that the node closure adds only events with unique labels. The reason for this
is that if we add node x to an episode containing node y such that lab(x) = lab(y),
then we would have to connect x and y. This may reduce the instances and invalidate
the proof. For the same reason, we only add a maximum of one new node with a
particular label. In other words, if each window containing episode G also contains
two occurrences of a, we will only add one node with label a to G (provided G does
not contain a node labelled a already).

5.2 Edge closure

We begin by introducing the concept of a maximal episode that is covered by a given
set of sequences.

Definition 10 Given a set of nodes V , and a set S of instances of V, interpreted as a
parallel episode, we define the maximal episode covered by set S as the episode H ,
where V (H) = V and

E(H) = { (x, y) ∈ V × V | f (x) < f (y), f = map(V, s) for all s ∈ S },

where map(V, s) refers to the mapping defined in Lemma 1 and V is interpreted as a
parallel episode.

To define a closure operator we first define a function mapping an episode G to all
of its valid instances in a sequence s,

fE (G; s) = { sm | sm covers G, max m −min m < ρ, m ∈ M },

where M contains all strictly increasing mappings to s. When the sequence is known
from the context, we denote simply fE (G)

We define iclE (G) to be the maximal episode covered by fE (G). If iclE (G) = G,
then we call G an e-closed episode.

Theorem 3 iclE (G) is an idempotentic and monotonic extension operator.

Proof To prove the extension property assume an edge (vi , v j) ∈ E(G). Let V be
the nodes in G. Let w ∈ fE (G) be an instance of G and let f = map(V, w) be
the corresponding mapping. Lemma 1 implies that map(V, w) = map(G, w). Hence
f (vi) < f (v j). Since this holds for every map, we have (vi , v j) ∈ E(iclE (G)).

To prove the idempotency, let H = iclE (G). The extension property implies that
G � H so by definition fE (H) ⊆ fE (G). But any instance in fE (G) also covers H .
Thus, fE (H) ⊆ fE (G) and so fE (H) = fE (G). This implies the idempotency.

Assume now that G � H . Let α be the graph homomorphism such that G �α H .
We will show that iclE (G) �α iclE (H). Let (x, y) ∈ E(iclE (G)). Let w be an
instance of H and let f = map(H, s) the corresponding mapping to w. Assume that
f (α(x)) ≥ f (α(y)). Let v be the subsequence of w containing only the indices in
the range of f ◦ α. Note that v is a valid instance of G and f ◦ α = map(V (G), v).
This contradicts the fact that (x, y) ∈ E(iclE (G)). Hence, f (α(x)) < f (α(y)). This
implies that (α(x), α(y)) ∈ E(iclE (H)) which completes the proof. ��

123

46 N. Tatti, B. Cule

Example 5 Consider sequence s given in Fig. 2e and episode G4 given in Fig. 2d
and assume that the window length is 5. There are four instances of G4 in s, namely
abcd, acdb, acbd and abcd. Therefore, fE (G4) = { abcd, acbd }. The serial epi-
sodes corresponding to these subsequences are G2 and G3 given in Fig. 2. By taking
the intersection of these two episodes we obtain G1 = iclE (G4) given in Fig. 2a.

5.3 Combining closures

We can combine the node closure and the edge closure into one operator.

Definition 11 Given an episode G ∈ S, we define iclEN (G) = iclE (iclN (G)).
To simplify the notation, we will refer to iclEN (G) as icl(G), the i-closure of G.
We will say that G is i-closed if G = icl(G).

Theorem 4 icl(G) is an idempotentic and monotonic extension operator.

Proof The extension and monotonicity properties follow directly from the fact that
both iclN (G) and iclE (G) are monotonic extension operators.

To prove idempotency let H = icl(G) and H ′ = iclN (G). Since any instance of
H = iclE

(
H ′

)
is also an instance of H ′, and, per definition, vice versa, we see that

fN (H) = fN (H ′), and consequently iclN (H) = H , and icl(H) = iclE (iclN (H)) =
iclE (H) = H . ��

The advantage of mining i-closed episodes instead of e-closed is prominent if the
sequence contains a long sequential pattern. More specifically, assume that the input
sequence contains a frequent subsequence of N symbols p1, . . . , pN , and no other
permutation of this pattern occurs in the sequence. The number of e-closed subpatterns
of this subsequence is 2N − 1, namely, all non-empty serial subepisodes. However,
the number of its i-closed subpatterns is N (N + 1)/2, namely, serial episodes of form
pi → · · · → p j for 1 ≤ i ≤ j ≤ N .

5.4 Computing closures

During the mining process, we need to compute the closure of an episode. The def-
inition of closures use fN (G) and fE (G) which are based on instances of G in s.
However, there can be an exponential number of such instances in s.

In the following discussion we will often use the following notations. Given an
episode G, we write G+ v to mean the episode G augmented with an additional node
v. Similarly, we will use the notations G + e and G + V , where e is an edge and V is
a set of nodes. We also use G − v, G − V , and G − e to mean episodes where either
nodes or edges are removed.

To avoid the problem of an exponential number of instances we make two observa-
tions: Firstly, a node with a new label l is added into the closure if and only if it occurs
in every minimal window of G. Secondly, an edge (x, y) is added into the closure if
and only if there is no minimal window for G + (y, x). Thus to compute the closure
we need an algorithm that finds all minimal windows of G in s. Note that, unlike with
instances of G, there can be only |s| minimal windows.

123

Mining closed strict episodes 47

Using strict episodes allows us to discover minimal windows in an efficient greedy
fashion.

Lemma 2 Given an episode G ∈ S and a sequence s = s1 . . . sL , let k be the smallest
index such that sk = lab(v), where v is a source node in G. Then s covers G if and
only if s[k + 1, L] covers G − v.

Proof Let f be a mapping from V (G) to s. If k is not already used by f , then we can
remap a source node v to k. As k is the smallest entry used by f , the remaining map
is a valid mapping for G − v in s[k + 1, L]. ��

Lemma 2 says that to test whether a sequence s covers G, it is sufficient to greedily
find entries from s corresponding to the sources of G, removing those sources as we
move along. Let us denote such a mapping by g(G; s). Note that if the episode is
not strict, then we can have two source nodes with the same label, in which case it
might be that Lemma 2 holds for one of the sources but not for the other. Since we
cannot know in advance which node to choose, this ambiguity would make the greedy
approach less efficient.

Lemma 3 Let G ∈ S be an episode and let s be a sequence covering G. Let m =
g(G; s) and let [a, b] be the first minimal window of G in s. Then max m = b.

Proof Since s[1, b] covers G, there is a mapping m′ = g(G; s[1, b]). Since [a, b] is
the first minimal window, we must have max m′ = b. Since m and m′ are constructed
in a greedy fashion, we must have m = m′. ��

Lemma 3 states that if we evaluate m = g(G; s[k, L]) for each k = 1, . . . , K , store
the intervals W = [min m, max m], and for each pair of windows [a1, b], [a2, b] ∈ W
remove [a2, b], then W will contain the minimal windows. Evaluating g(G; s) can be
done in polynomial time, so this approach takes polynomial time. The algorithm for
discovering minimal windows is given in Algorithm 2. To fully describe the algorithm
we need the following definition.

Definition 12 An edge (v,w) in an episode G ∈ S is called a skeleton edge if there
is no node u such that (v, u, w) is a path in G. If v and w have different labels, we
call the edge (v,w) a proper skeleton edge.

Theorem 5 Algorithm FindWindows discovers all minimal windows.

Proof We will prove the correctness of the algorithm in several steps. First, we will
show that the loop 8–16 guarantees that f is truly a valid mapping. To see this, note
that the loop upholds the following invariants: For every v /∈ Q, we have f (v) > b(v)

and for each skeleton edge (v,w), we have b(w) �= −∞. Also, for every non-source
node w, b(w) = max { f (v) | (v,w) is a skeleton edge } or b(w) = −∞.

Thus when we leave the loop, that is, Q = ∅, then f is a valid mapping for G.
Moreover, since we select the smallest f (v) during Line 11, we can show using recur-
sion that f = g(G; s[k + 1, L]), where k = min b(v), where the min ranges over
all source nodes. Once f is discovered, the next new mapping should be contained
in s[min f + 1, L]. This is exactly what is done on Line 22 by making b(v) equal to
f (v). ��

123

48 N. Tatti, B. Cule

Algorithm 2: FindWindows. An algorithm for finding minimal windows of G
from s. The parameter ρ is the maximal size of the window

input : an episode G ∈ S
input : set of minimal windows W

1 W ← ∅;
2 Q ← ∅;
3 foreach v ∈ V (G) do
4 f (v)← first i such that si = lab(v);
5 b(v)←−∞;
6 add v into Q;

7 while true do
{Make sure that f honors the edges in G}

8 while Q is not empty do
9 v← first element in Q;

10 remove v from Q;
11 f (v)← the smallest i > b(v) such that si = lab(v);
12 if f (v) = null then return W ;
13 foreach skeleton edge (v, w) ∈ E(G) do
14 b(w)← max(b(w), f (v));
15 if b(w) ≥ f (w) and w /∈ Q then
16 add w into Q;

17 if max f −min f < ρ then
18 if max f = b such that [a, b] is the last entry in W then
19 delete the last entry from W ;

20 add [min f, max f] to W ;

21 v← node with the smallest f (v);
22 b(v)← f (v);
23 add v to Q;

The advantage of this approach is that we can now optimize the search on Line 11
by starting the search from the previous index f (v) instead of starting from the start of
the sequence. The following lemma, implied directly by the greedy procedure, allows
this.

Lemma 4 Let G ∈ S be an episode and let s be a sequence covering G. Let k be
an index and assume that s[k, L] covers G. Set m1 = g(G; s) and m2 = g(G; s[k +
1, L]). Then m2(v) ≥ m1(v) for every v ∈ V (G).

Let us now analyze the complexity of FindWindows. Assume that the input epi-
sode G has N nodes and the input sequence s has L symbols. Let K be the maximal
number of nodes in G sharing the same label. Let D be the maximal number of out-
going skeleton edges in a single node. Note that each event in s is visited during
Line 11 K times, at maximum. Each visit may require D updates of b(w), at max-
imum. The only remaining non-trivial step is finding the minimal source (Line 21),
which can be done with a heap in O(log N) time. This brings the total evaluation time
to O((D + 1)K L + L log N). Note that for parallel episodes D = 0 and for serial
episodes D = 1, and for such episodes we can further optimize the algorithm such that
each event is visited only twice, thus making the running time to be in O(L log N) for

123

Mining closed strict episodes 49

parallel episodes and in O(L) for serial episodes. Since there can be only L minimal
windows, the additional space complexity for the algorithm is in O(L).

Given the set of minimal windows, we can now compute the node closure by test-
ing which nodes occur in all minimal windows. This can be done in O(L) time. To
compute the edge closure we need to perform N 2 calls of FindWindows. This can be
greatly optimized by sieving multiple edges simultaneously based on valid mappings
f discovered during FindWindows. In addition, we can compute both frequency
measures from minimal windows in O(L) time.

We will now turn to discovering f-closed episodes. Note that, unlike the i-closure,
we do not define an f-closure of an episode at all. As shown in Sect. 1, such an
f-closure would not necessarily be unique. However, the set of i-closed episodes will
contain all f-closed episodes.

Theorem 6 An f-closed episode is always i-closed.

Proof Let G ∈ S be an episode and define H = icl(G). Let W be a set of all minimal
windows of s that cover G and let V be the set of all minimal windows that cover
H . Let w = [a, b] ∈ W be a minimal window of G and let f be a valid mapping
from G to s[a, b]. Any new node added in H must occur in s[a, b] and f can be
extended to H such that it honours all edges in H . Hence s[a, b] covers H . It is also
a minimal window for H because otherwise it would violate the minimality for G.
Hence w ∈ V . Now assume that v = [a′, b′] ∈ V . Obviously, s[a′, b′] covers G, so
there must be a minimal window w = [a, b] ∈ W . Using the first argument we see
that w ∈ V . Since V contains only minimal windows we conclude that v = w. Hence
W = V . A sequence covers an episode if and only if the sequence contains a minimal
window of the episode. Thus, by definition, V = W implies that frf (G) = frf (H) and
frd(G) = frd(H).

Assume now that G is not i-closed, then G �= H , and since fr(G) = fr(H) , G is
not f-closed either. This completes the proof. ��

A naïve approach to extract f-closed episodes would be to compare each pair of
instance-closed episodes G and H and if fr(G) = fr(H) and G ≺ H , remove G from
the output. This approach can be considerably sped up by realising that we need only
to test episodes with identical nodes and episodes of form G−V , where V is a subset
of V (G). The pseudo-code is given in Algorithm 3. The algorithm can be further
sped up by exploiting the subset relationship between the episodes. Our experiments
demonstrate that this comparison is feasible in practice.

6 Generating transitively closed candidate episodes

In this section we define an algorithm, GenerateCandidate, which generates the
candidate episodes from the episodes discovered previously. The difficulty of the
algorithm is that we need to make sure that the candidates are transitively closed.

Let G ∈ S be an episode. It is easy to see that if we remove a proper skeleton edge
e from G, then the resulting episode G − e will be in S, that is, transitively closed
and strict. We can reverse this property in order to generate candidates: Let G ∈ S

123

50 N. Tatti, B. Cule

Algorithm 3: F-Closure. Postprocessing for computing f-closed episodes from
i-closures

input : all i-closed episodes G
output : all f-closed episodes

1 foreach G ∈ G do
2 foreach H ∈ G with V (G) = V (H), H �= G do
3 if G ≺ H and fr(G) = fr(H) then
4 Mark G;

5 if H ≺ G and fr(G) = fr(H) then
6 Mark H ;

7 foreach V ⊂ V (G) do
8 F ← G − V ;
9 foreach H ∈ G, with V (F) = V (H) do

10 if H � F and fr(G) = fr(H) then
11 Mark H ;

12 return all unmarked episodes from G;

be a previously discovered episode, add an edge e and verify that the new episode
is transitively closed. However, we can improve on this naïve approach with the fol-
lowing theorem describing the sufficient and necessary condition for an episode to be
transitively closed.

Theorem 7 Let G ∈ S be an episode and let e = (x, y) be an edge not in E(G). Let
H = G + e. Assume that H is a DAG. Then H ∈ S if and only if there is an edge in
G from x to every child of y and from every parent of x to y.

Proof The ‘only if’ part follows directly from the definition of transitive closure. To
prove the ‘if’ part, we will use induction. Let u be an ancestor node of v in H . Then
there is a path from u to v in H . If the path does not use edge e, then, since G is
transitively closed, (u, v) ∈ E(G) and hence (u, v) ∈ E(H). Assume now that the
path uses e. If v = y, then u must be a parent of y in G, since G is transitively closed,
so the condition implies that (u, v) ∈ E(G) ⊂ E(H). Assume that v is a proper
descendant of y in H . To prove the first step in the induction, assume that u = x ,
then again (u, v) ∈ E(G). To prove the induction step, let w be the next node along
the path from u to v in H . Assume inductively that (w, v) ∈ E(G). Then the path
(u, w, v) occurs in G, so (u, v) ∈ E(G), which completes the proof. ��

We now show when we can join two episodes to obtain a candidate episode. Since
our nodes are ordered, we can also order the edges using a lexicographical order. Given
an episode G we define last(G) to be the last proper skeleton edge in G. The next
theorem shows the necessary conditions for the existence of the candidate episode.

Theorem 8 Let H ∈ S be an episode with N + 1 edges. Then either there are two
episodes, G1, G2 ∈ S, with identical nodes to H, such that

– G1 and G2 share N − 1 edges,
– e1 = last(G1) /∈ E(G2),

123

Mining closed strict episodes 51

– e2 > e1 and H = G1 + e2, where e2 is the unique edge in E(G2) and not in
E(G1)

3

or last(G) is no longer a skeleton edge in H, where G ∈ S, G = H − last(H).

We will refer to the two cases as Case A and Case B, respectively.

Proof Let e2 = last(H) and define G1 = H − e2. If e1 is not a skeleton edge in
H , then by setting G = G1, the theorem holds. Assume that e1 is a skeleton edge
in H . Define G2 = H − e1. Note that G1 and G2 share N − 1 edges. Also note
that last(G1) = e1 /∈ E(G2), { e2 } = E(G2) − E(G1), and H = G1 + e2. Since
e2 = last(H) it must be that e2 > e1. ��

Theorem 8 gives us means to generate episodes. Let us first consider Case A in
Theorem 8. To generate H we simply find all pairs of episodes G1 and G2 such that
the conditions of Case A in Theorem 8 hold. When combining G1 and G2 we need to
test whether the resulting episode is transitively closed.

Theorem 9 Let G1, G2 ∈ S be two episodes with identical nodes and N edges.
Assume that G1 and G2 share N−1 mutual edges. Let e1 = (x1, y1) ∈ E(G1)−E(G2)

be the unique edge of G1 and let e2 = (x2, y2) ∈ E(G2)− E(G1) be the unique edge
of G2. Let H = G1 + e2. Assume that H has no cycles. Then H ∈ S if and only if
one of the following conditions is true:

1. x1 �= y2 and x2 �= y1.
2. x1 �= y2, x2 = y1, and (x1, y2) is an edge in G1.
3. x1 = y2, x2 �= y1, and (x2, y1) is an edge in G1.

Moreover, if H ∈ S, then e1 and e2 are both skeleton edges in H.

Proof We will first show that e1 is a skeleton edge in H if H ∈ S. If it is not, then
there is a path from x1 to y1 in H not using e1. The edges along this path also occur in
G2, thus forcing e1 to be an edge in G2, which is a contradiction. A similar argument
holds for e2.

The “only if” part is trivial so we only prove the “if” part using Theorem 7.
Let v be a child of y2 in G1 and f = (y2, v) an edge in G1.
If the first or second condition holds, then x1 �= y2, and consequently f �= e1,

so f ∈ G2. The path (x2, y2, v) connects x2 and v in G2 so there must be an edge
h = (x2, v) in G2. Since h �= e2, h must also occur in G1. If the third condition holds,
it may be the case that f = e1 (if not, then we can use the previous argument). But in
such a case v = y1 and edge h = (x2, y1) occurs in G1.

If now u is a parent of x2 in G1, we can make a similar argument that u and y2 are
connected, so Theorem 7 now implies that H is transitively closed. ��

Theorem 9 allows us to handle Case A of Theorem 8. To handle Case B, we simply
take an episode G and try to find all edges e2 such that last(G + e2) = e2 and last(G)

is no longer a skeleton edge in G + e2. The conditions for this are given in the next
theorem.

3 In Tatti and Cule (2010) we incorrectly stated that e2 = last(G2). Generally, this is not the case.

123

52 N. Tatti, B. Cule

Theorem 10 Let G ∈ S be an episode, let e1 = (x1, y1) be a skeleton edge of G,
and let e2 = (x2, y2) be an edge not occurring in G and define H = G + e2. Assume
H ∈ S and that e1 is not a skeleton edge in H. Then either y2 = y1 and (x1, x2) is a
skeleton edge in G or x1 = x2 and (y2, y1) is a skeleton edge in G.

Proof Assume that e1 is no longer a skeleton edge in H , then there is a path of skele-
ton edges going from x1 to y1 in H not using e1. The path must use e2, otherwise we
have a contradiction. The theorem will follow if we can show that the path must have
exactly two edges. Assume otherwise. Assume, for simplicity, that edge e2 does not
occur first in the path and let z be the node before x2 in the path. Then we can build
a new path by replacing edges (z, x2) and e2 with (z, y2). This path does not use e2,
hence it occurs in G. If z �= x1 or y1 �= y2, then the path makes e1 a non-skeleton
edge in G, which is a contradiction. If e2 is the first edge in the path, we can select the
next node after y2 and repeat the argument. ��
Example 6 Consider the episodes given in Fig. 5. Episodes G1 and G2 satisfy the sec-
ond condition in Theorem 9, hence the resulting episode H1, is transitively closed. On
the other hand, combining G1 and G3 leads to H ′1, an episode that is not transitively
closed since edge (a, d) is missing. Finally, G4 and (c, a) satisfy Theorem 10 and
generate H2.

We can now combine the preceding theorems into the GenerateCandidate algo-
rithm given in Algorithm 4. We will first generate candidates by combining episodes
from the previous rounds using Theorem 9. Secondly, we use Theorem 10 and for
each episode from the previous rounds we add edges such that the last proper skeleton
edge is no longer a skeleton edge in the candidate.

Note that Algorithm 4 will not generate duplicates. To see this, first note that if H
is generated using Case A, then the two episodes G1 and G2 generating H are unique.
That is, it must be that G1 = H − last(H) and G2 = H − last(G1). In other words,
G1 and G2 will produce a unique H . In Case B, the episode G1 is also unique, namely,
we must have G1 = H − last(H). Thus, each G1 will produce a unique H . Finally,
note that last(G1), according to Theorem 9 is always a skeleton edge in H in Case
A and we demand that last(G1) is not a skeleton edge in Case B. Hence, Case A and
Case B will never generate the same episode.

7 Algorithm for discovering closed episodes

In this section we will complete our mining algorithm for discovering closed episodes.
First, we present an algorithm for testing the episodes and a more detailed version of

(a) (b) (c) (d) (e) (f) (g)

Fig. 5 Toy episodes for Example 6. a G1, b G2, c H1, d G3, e H ′12, f G4 and g H2

123

Mining closed strict episodes 53

Algorithm 4: GenerateCandidate. Generates candidate episodes from the pre-
viously discovered episodes

input : a collection of previously discovered episodes G ⊂ S with N edges
output : P ⊂ S, a collection of candidate episodes with N + 1 edges

1 P ← ∅;
2 foreach G ∈ G, G has no proper edges do
3 foreach x, y ∈ V (G), lab(x) �= lab(y) do
4 add G + (x, y) to P ;

5 foreach G1 ∈ G, G1 has proper edges do
6 e1 = (x1, y1)← last(G1);

{Case where e1 remains a skeleton edge.}
7 H← { H ∈ G | V (G) = V (H), |E(H) ∩ E(G)| = N − 1, { e2 } = E(H)− E(G), e2 > e1 };
8 foreach G2 in H do
9 { e2 } ← E(H)− E(G);

10 if G1 and G2 satisfy Theorem 9 and e2 /∈ icl(G1) then
11 add G1 + e2 to P ;

{Case where e1 does not remain a skeleton edge.}
12 foreach f = (x1, x2) skeleton edge in G1 such that x2 �= y1 do
13 e2 ← (x2, y1);
14 if e2 /∈ icl(G1) then
15 H ← G1 + e2;
16 if e2 = last(H) and H is transitively closed (use Theorem 7) then
17 add H to P ;

18 foreach f = (y2, y1) skeleton edge in G1 such that y2 �= x1 do
19 e2 ← (x1, y2);
20 if e2 /∈ icl(G1) then
21 H ← G1 + e2;
22 if e2 = last(H) and H is transitively closed (use Theorem 7) then
23 add H to P ;

24 return P ;

Algorithm 1. Then we present an algorithm for adding the needed intermediate epi-
sodes and prove the correctness of the algorithm.

7.1 Detailed version of the algorithm

We begin by describing the test subroutine that is done for each candidate episode.
Following the level-wise discovery, before computing the frequency of the episode, we
need to test that all its subepisodes are discovered. It turns out that using transitively
closed episodes will guarantee the strongest conditions for an episode to pass to the
frequency computation stage.

Corollary 2 (of Theorem 1) Let G ∈ S be an episode. Let e be a proper skeleton edge
of G. If H is an episode obtained by removing e from G, then there exists no episode
H1 ∈ S, such that H ≺ H1 ≺ G.

123

54 N. Tatti, B. Cule

If e is a proper skeleton edge of an episode G ∈ S, then G − e ∈ S. Thus, for G
to be frequent, G − e had to be discovered previously. This is the first test in Test-
Candidate (given in Algorithm 5). In addition, following the level-wise approach
for mining closed patterns (Pasquier et al. 1999), we test that G is not a subepisode of
icl(G − e), and if it is, then we can discard G.

The second test involves testing whether G − v, where v is a node in G, has also
been discovered. Note that G−v has fewer nodes than G so, if G is frequent, we must
have discovered G − v. Not all nodes need to be tested. If a node v has an adjacent
proper skeleton edge, say e, then the episode G − e has a frequency lower than or
equal to that of G − v. Since we have already tested G − e we do not need to test
G − v. Consequently, we need to test only those nodes that have no proper skeleton
edges. This leads us to the second test in TestCandidate. Note that these nodes will
either have no edges, or will have edges to the nodes having the same label. If both
tests are passed we test the candidate episode for frequency.

Example 7 Consider the episodes given in Fig. 6. When testing the candidate episode
H , TestCandidate will test for the existence of three episodes. Episodes G1 and
G2 are tested when either edge is removed and G3 is tested when node labelled d is
removed.

Algorithm 5: TestCandidate. An algorithm that checks if an episode is a proper
candidate

input : an episode G ∈ S, already discovered episodes C ⊂ S
output : a boolean value, true only if all subepisodes of G are frequent

1 foreach proper skeleton edge e in G do
2 if G − e /∈ C or e ∈ E(icl(G − e)) then
3 return false;

4 foreach v in G not having a proper skeleton edge do
5 if G − v /∈ C then
6 return false;

7 if v has no edges and there is a node w ∈ V (icl(G − v)) s.t. lab(w) = lab(v) then
8 return false;

9 return true;

Finally we present a more detailed version of Algorithm 1, given in Algorithm 6.
The only missing part of the algorithm is the AddIntermediate subroutine which
we will give in the next section along with the proof of correctness.

Fig. 6 Toy episodes for
Example 7. a H , b G1,
c G2 and d G3

(a) (b) (c) (d)

123

Mining closed strict episodes 55

Algorithm 6: MineEpisodes. An algorithm discovering all frequent closed
episodes

input : a sequence s, a frequency threshold σ , a window size ρ

output : f-closed frequent strict episodes
1 C ← all frequent episodes with one node;
2 E ← ∅; N ← 1;
3 while there are episodes with N or more nodes in C ∪ E do
4 M ← 0;
5 while there are episodes with M or more edges in C ∪ E do
6 foreach G ∈ G do
7 if TestCandidate(G,E) and G is frequent then
8 add G to E ;
9 compute and store icl(G);

10 add AddIntermediate(G) to E ;

11 P ← {C ∈ E | |E(C)| = M, |V (C)| = N };
12 C←GenerateCandidate(P);
13 M ← M + 1;

14 P ← {C ∈ E | |V (G)| = N , G is a parallel episode };
15 C ← ∅;
16 foreach G ∈ P do
17 x ← last node of G;
18 H← { H ∈ G | |V (G) ∩ V (H)| = n − 1, lab(last node of H) > lab(x) };
19 foreach H ∈ H do
20 add G + last node of H to C;

{Check episode G augmented with a node carrying the label of the last node x}
21 y← a node with the same label as x ;
22 add G + y + (x, y) to C;

23 N ← N + 1;

24 return F-Closure({ icl(G) | G ∈ E });

7.2 Proof of correctness

In the original framework for mining itemsets, the algorithm discovers itemset gen-
erators, the smallest itemsets that produce the same closure. It can be shown that
generators form a downward closed collection, so they can be discovered efficiently.
This, however, is not true for episodes, as the following example demonstrates.

Example 8 Consider the episodes given in Fig. 7 and a sequence s = acbxxabcxxbac.
Assume that the window size is ρ = 3 and the frequency threshold is σ = 1.
The frequency of H is 1 and there is no subepisode that has the same frequency.
Hence to discover this episode all of its maximal subepisodes need to be discov-
ered. One of these subepisodes is icl(G). However, icl(G) is not added into E since
(a, c) ∈ icl(icl(G)− (a, c)) and TestCandidate returns false.

The core of the problem is that sometimes adding some particular edge is not
allowed until you have added another edge. For example, we cannot add (b, c) to G
(given in Fig. 7a) until we have added (a, c).

We solve this problem by adding some additional episodes between the discovered
episode G and its closure icl(G). Roughly speaking, given an episode G ∈ S we need

123

56 N. Tatti, B. Cule

to add the episodes containing edges/nodes from icl(G) such that these edges/nodes
can be “hidden” by a single edge or node.

The details are given in the AddIntermediate algorithm given in Algorithm 7,
and the justification for adding these episodes is given in the proof of Theorem 11.

Algorithm 7: AddIntermediate. An algorithm that given an episode adds some
additional episodes between the discovered episode and its closure. This is nec-
essary to guarantee the correctness of the algorithm

input : an episode G ∈ S
output : a subset of episodes between G and icl(G)

1 C ← ∅;
2 foreach x ∈ V (icl(G))− V (G) do
3 H ← G + x ;
4 add H to C;
5 foreach y ∈ V (G) and e = (x, y) /∈ icl(G) do
6 Z ← E(tcl(H + e))− E(H + e);
7 if Z �= ∅ and Z ⊂ E(icl(H)) then
8 add H + Z to C;

9 foreach y ∈ V (G) and e = (y, x) /∈ icl(G) do
10 Z ← E(tcl(H + e))− E(H + e);
11 if Z �= ∅ and Z ⊂ E(icl(H)) then
12 add H + Z to C;

13 foreach x, y ∈ V (icl(G))− V (G) and e = (x, y) /∈ icl(G) do
14 add G + x + y to C;

15 foreach x, y ∈ V (G) and e = (x, y) /∈ icl(G) do
16 Z ← E(tcl(G + e))− E(G + e);
17 if Z �= ∅ and Z ⊂ E(icl(G)) then
18 add G + Z to C;

19 return C;

We will now establish the correctness of the algorithm and justify Algorithm 7.

Definition 13 Let G ∈ S be an episode. We call a proper skeleton edge e in G
derivable if G � icl(G − e). We call a solitary node v derivable if G � icl(G − v).

We will need the following straightforward lemmae to prove our main result.

Lemma 5 Let G ∈ S be an episode. Let e be a non-derivable skeleton edge in G.
Then e is a non-derivable skeleton edge in G − f , where f �= e is a proper skeleton
edge in G. Similarly, e is a non-derivable skeleton edge in G−v, where v is a solitary
node.

Fig. 7 Toy episodes for
Example 8. a G, b icl(G), c H

(a) (b) (c)

123

Mining closed strict episodes 57

Proof Assume that e is derivable in G − f , then G − f � icl(G − f − e) �
icl(G − e). On the other hand, G − e � icl(G − e). Since the closure operator adds
nodes only with unique labels, the graph homomorphisms from G − e to icl(G − e)
and from G− f to icl(G − e) must be equal. This implies that G � icl(G − e) which
is a contradiction. A similar argument holds for G − v. ��
Lemma 6 Let G ∈ S be an episode. Let w be a non-derivable solitary node in G.
Then w is a non-derivable node in G − v, where v is a solitary node. Similarly, w is
a non-derivable node in G − e, where e is a proper skeleton edge in G.

Proof Similar to the proof of Lemma 5. ��
Lemma 7 Let G ∈ S be an episode with a derivable edge e. Then icl(G) = icl(G − e).
Let G ∈ S be an episode with a derivable node v. Then icl(G) = icl(G − v).

Proof The monotonicity and idempotency properties imply icl(G) � icl(icl(G−e))=
icl(G − e). Since icl(G − e) � icl(G), we have icl(G) = icl(G − e).

To prove the second case, note that icl(G) � icl(icl(G − v)) = icl(G − v) which
immediately implies that icl(G) = icl(G − v). ��
Theorem 11 Assume a frequent episode G ∈ S with no derivable edges or derivable
nodes. Then G is discovered.

Proof We will prove the theorem by induction. Obviously, the theorem holds for epi-
sodes with a single node. Assume now that the theorem is true for all subepisodes of G.
Episode G will be discovered if it passes the tests in TestCandidate. To pass these
tests, all episodes of form G − e, where e is a proper skeleton edge need to be discov-
ered. Assume that all these subepisodes are discovered but we have e ∈ E(icl(G − e)).
This means, by definition, that e is a derivable edge in G which is a contradiction. The
same argument holds for episodes of form G − v, where v is a node.

Now assume that one of the subepisodes, say, H is not discovered. The induction
assumption now implies that H has either derivable nodes or edges.

Lemma 8 There is a subepisode F ∈ S, F ≺ H with no derivable edges and nodes
such that H � icl(F). Any non-derivable skeleton edge in H will remain in F. Any
non-derivable solitary node in H will remain in F.

Proof Build a chain of episodes H = H1, H2, . . . , HN = F such that Hi+1 is obtained
from Hi by removing either a derivable node or a derivable edge and F has no deriv-
able edges or nodes. Note that this sequence always exists but may not necessarily be
unique. Lemma 7 implies that we have Hi � icl(Hi) = icl(Hi+1). Idempotency and
monotonicity imply that H � icl(F). Lemma 5 implies that if e is a non-derivable
skeleton edge in H , then e is also a non-derivable skeleton edge in each Hi . Similarly,
Lemma 6 implies that any non-derivable solitary node will remain in each Hi . ��

By the induction assumption F is discovered. We claim that H will be discovered by
AddIntermediate(F). Let us denote Z = E(H)− E(F) and W = V (H)− V (F).

The next three lemmae describe different properties of Z and W .

123

58 N. Tatti, B. Cule

Lemma 9 Assume that H = G − v. Then W = {w } such that lab(v) = lab(w) and
Z = ∅.

Proof Lemma 5 implies that all skeleton edges in H are non-derivable. Lemma 8
implies that Z = ∅. Removing v can turn only one node, say w, into a solitary node.
This happens when lab(v) = lab(w) and there are no other edges adjacent to w. ��

Lemma 10 Assume that H = G − (x, y). Then W ⊆ { x, y }. If W = { x, y }, then
Z = ∅.

Proof Let z be a node in G (and in H) such that z /∈ { x, y }. If z is a solitary node
in G, it also a solitary node in H . Lemma 8 now implies that z /∈ W . If z has an
adjacent skeleton edge in G, say f , then f �= (x, y). Lemma 5 implies that f is also
a non-derivable skeleton edge in H . Lemma 8 now implies that z /∈ W .

If W = { x, y }, then x (and y) cannot have any adjacent non-derivable skeleton
edges in H . Hence there are no edges, except for (x, y), adjacent to x or y in G.
Lemma 5 implies that all skeleton edges in H are non-derivable. Lemma 8 implies
that Z = ∅. ��

Lemma 11 Assume that H = G − e. Then Z = E(tcl(F +W + e))− E(F +W +
e) ⊂ E(icl(F +W)).

Note that F +W + e is not necessarily transitively closed.

Proof Write F ′ = F +W . First note that Z ⊂ E(H) ⊆ E(icl
(
F ′

)
). Lemmae 5 and 8

imply that all skeleton edges of G, except for e are in E(F) = E(F ′). Hence, we must
have E(tcl

(
F ′ + e

)
) = E(G).

Also note that Z ∪ E(F ′ + e) = E(H) + e = E(G). Since Z ∩ E(F ′ + e) = ∅,
we have Z = E(G)− E(F ′ + e) = E(tcl

(
F ′ + e

)
)− E(F ′ + e). ��

If H = G−v, then Lemma 9 implies that H = F+w and we discover H on Line 4
during AddIntermediate(F). Assume that H = G−e. Write (x, y) = e. Lemma 10
now implies that W ⊆ { x, y } and Lemma 11 implies that Z = E(tcl(F +W + e))−
E(F +W + e). We will show that there are 4 different possible cases:

1. W = { x, y }. Lemma 10 implies that Z = ∅. This implies that H = F + x + y
and we discover H on Line 14 during AddIntermediate(F).

2. W = {w }, where w is either x or y and Z = ∅. This implies that H = F + w

and we discover H on Line 4 during AddIntermediate(F).
3. W = ∅ and Z �= ∅. This implies that H = F + Z and we discover H on Line 18

during AddIntermediate(F).
4. W = {w }, where w is either x or y and Z �= ∅. This implies that H = F+w+ Z

and we discover H either on Line 8 or on Line 12 during AddIntermediate(F).

This completes the proof of the theorem. ��

123

Mining closed strict episodes 59

Table 2 Characteristics of the sequences and the threshold values used for mining candidate episodes

Sequence Size |�|

moby 105,719 10,277

abstract 67,828 6,718

address 62,066 5,295

The second column is the number of symbols in the sequence

Theorem 12 Every frequent i-closed episode will be outputted.

Proof TestEpisode will output icl(G) for each discovered episode G. Hence, we
need to show that for each i-closed episode H there is a discovered episode G such
that H = icl(G).

We will prove the theorem by induction. Let H and G be episodes such that H =
icl(G) and H is an i-closed frequent episode. If G contains only one node, then G
will be discovered. Assume that the theorem holds for any episode icl

(
G ′

)
, where

G ′ is a subepisode of G. If G has derivable nodes or edges, then by Lemma 7 there
exists an episode G ′ ≺ G such that H = icl(G) = icl

(
G ′

)
and so by the induction

assumption G ′ is discovered, and H is outputted. If G has no derivable edges or nodes,
then Theorem 11 implies that G is discovered. This completes the proof. ��

8 Experiments

We tested our algorithm4 on three text datasets, address, consisting of the inaugu-
ral addresses by the presidents of the US,5 merged to form a single long sequence,
moby, the novel Moby Dick by Herman Melville,6 and abstract, consisting of the
first 739 NSF award abstracts from 1990,7 also merged into one long sequence. We
processed all three sequences using the Porter Stemmer8 and removed the stop words.
The characteristics of datasets are given in Table 2.

In the implementation an episode graph was implemented using sparse notation:
the neighbourhood of a node was presented as a list of edges. To ensure efficient scan-
ning, the sequence was implemented as a set of linked lists, one for each symbol. The
experiments were conducted on a computer with an AMD Athlon 64 processor and
2GB memory. The code was compiled with G++ 4.3.4.

We used a window of size 15 for all our experiments and varied the frequency
threshold σ . The main goal of our experiments was to demonstrate how we tackle the
problem of pattern explosion. Tables 3 and 4 show how the total number of frequent
episodes compared with the identified i-closed, e-closed and f-closed episodes we

4 The C++ implementation is given at http://adrem.ua.ac.be/implementations/.
5 Taken from http://www.bartleby.com/124/pres68.
6 Taken from http://www.gutenberg.org/etext/15.
7 Taken from http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html.
8 http://tartarus.org/~martin/PorterStemmer/.

123

http://adrem.ua.ac.be/implementations/.
http://www.bartleby.com/124/pres68.
http://www.gutenberg.org/etext/15
http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
http://tartarus.org/~martin/PorterStemmer/

60 N. Tatti, B. Cule

Table 3 The number of frequent, i-closed, e-closed and f-closed episodes with varying fixed-window
frequency thresholds for the address, abstract and moby datasets, respectively

Dataset σ f-closed i-closed e-closed Frequent

address 200 1,983 1,989 1,989 1,992

100 6,774 6,817 6,820 6,880

50 25,732 26,078 26,212 34,917

30 70,820 72,570 73,328 119,326

20 166,737 192,544 207,153 Out of memory

abstract 500 893 914 916 933

400 1,374 1,436 1,440 1,499

300 2,448 2,802 2,903 4,080

200 6,074 7,374 8,080 98,350

100 26,140 43,020 95,811 Out of memory

moby 200 3,389 3,394 3,394 3,395

100 11,018 11,079 11,084 11,127

50 37,551 38,043 38,120 39,182

30 99,937 102,380 103,075 151,115

20 231,563 245,683 253,208 Out of memory

discovered in the three datasets, using the fixed-window frequency and the disjoint-
window frequency, respectively. The results show that while the reduction is relatively
small for large thresholds, its benefits are clearly visible as we lower the threshold.
The reason for this is that, because of the data characteristics, the major part of the
output consists of episodes with a small number of nodes. Such episodes tend to be
closed. When the threshold is lowered, episodes with a large number of nodes become
frequent which leads to a pattern explosion. In the extreme case, we ran out of memory
when discovering all frequent episodes for certain low thresholds while were able to
compute the f-closed episodes.

To get a more detailed picture we examined the ratio of the number of frequent
episodes and the number of f-closed episodes, the ratio of the number of i-closed
episodes and the number of f-closed episodes, and the ratio of the number of e-closed
episodes and the number of i-closed episodes, as a function of the number of nodes.
The results using the fixed-window frequency are shown in Fig. 8. We see that while
there is no improvement with small episodes, using closed episodes is essential if we
are interested in large episodes. In such a case we were able to reduce the output by
several orders of magnitude. For example, in the moby dataset, with a threshold of
30, there were 24, 131 frequent episodes of size 6, of which only 13 were f-closed.
Clearly, the number of discovered i-closed episodes remains greater than the num-
ber of f-closed episodes, but does not explode, guaranteeing the feasibility of our
algorithm. For example, in the abstract dataset, with a threshold of 200, there were
17, 587 frequent episodes of size 5, of which 878 were i-closed and 289 f-closed.
Furthermore, we can see that while using only the e-closure helps reduce the output
significantly, using the i-closure gives an even better reduction. For example, in the

123

Mining closed strict episodes 61

Table 4 The number of frequent, i-closed, e-closed and f-closed episodes with varying disjoint-window
frequency thresholds for the address, abstract and moby datasets, respectively

Dataset σ f-closed i-closed e-closed Frequent

address 20 2,264 2,282 2,282 2,291

10 9,984 10,213 10,219 10,396

5 46,902 50,634 50,920 65,139

4 77,853 87,935 89,076 268,675

3 149,851 187,091 195,379 Out of memory

abstract 100 195 195 195 195

50 932 1,000 1,002 1,020

40 1,677 2,053 2,122 2,585

30 3,542 5,482 5,798 20,314

20 9,933 22,945 61,513 Out of memory

moby 20 4,076 4,119 4,121 4,121

10 15,930 16,325 16,341 16,468

5 67,180 72,306 72,468 77,701

4 109,572 122,423 122,919 141,940

3 207,031 251,757 158,303 Out of memory

(a) (b) (c)

Fig. 8 Ratios of episodes as a function of the number of events. frf (G) was used as frequency with the
threshold σ = 30 for address and moby, and σ = 200 for abstract. Note that the y-axis of a is in log-scale.
a Frequent / f-closed, b i-closed / f-closed and c e-closed / i-closed

address dataset, with a threshold of 30, there were 259 e-closed episodes of size 5, of
which 178 were i-closed.

The same ratios using the disjoint-window frequency are shown in Fig. 9. Again,
we can clearly see the benefits of using i-closure, especially on large episodes.

The difference between the number of f-closed and i-closed episodes can be ex-
plained by the fact that the i-closure operator looks at all valid mappings of the episode
while the coverage requires only one valid mapping to exist. For example, consider the
episode given in Example 1. This episode is f-closed with respect to disjoint windows,
and occurs in 10 windows. A subepisode

chief→ justic vice president

123

62 N. Tatti, B. Cule

is i-closed but not f-closed. The reason for this is that several speeches contain a
line ‘vice president …chief justice …vice president’. Hence, we can construct a
valid mapping for the order: president, chief, justice, vice. Consequently, we can-
not add an edge from vice to president. However, for all such mappings we can
construct an alternative mapping satisfying the episode in Example 1. Thus the sup-
port of both episodes will be the same and we can delete the subepisode from the
output.

To complete our analysis, we present a comparison of the number of serial, paral-
lel and general episodes we found. We compare the number of f-closed episodes to
the overall number of frequent episodes, to illustrate how much the output has been
reduced by using closed episodes. The results are shown in Tables 5 and 6 for fixed-
window and disjoint-window frequency, respectively. To avoid double counting, we
consider singletons to be parallel episodes, while neither serial nor parallel episodes
are included in the general episodes total. As expected, the number of serial and paral-
lel episodes does not change much, as most of them are closed. For a serial episode not
to be closed, we would need to find an episode consisting of more nodes, yet having the
same frequency, which is not often the case. A parallel episode is not closed if a partial
order can be imposed on its nodes, without a decline in frequency—again, this is not
often the case. However, as has been pointed out in Fig. 1 in the introduction, a single
frequent serial episode results in an explosion of the number of discovered general
episodes. The results demonstrate that the output of general episodes has indeed been
greatly reduced. For example, using a fixed-window frequency threshold of 200 on
the abstract dataset, we discovered 93,813 frequent general episodes, of which only
2,247 were f-closed.

The runtimes of our experiments varied between a few seconds and 3 min for the
largest experiments. However, with low thresholds, our algorithm for finding closed
episodes ran faster than the algorithm for finding all frequent episodes, and at the
very lowest thresholds, our algorithm produced results, while the frequent-episodes
algorithm ran out of memory. This demonstrates the infeasibility of approaching the
problem by first generating all frequent episodes, and then pruning the non-closed
ones. The i-closed episodes are the necessary intermediate step.

(a) (b) (c)

Fig. 9 Ratios of episodes as a function of the number of events. frd (G) was used as frequency with the
threshold σ = 4 for address and Moby, and σ = 30 for abstract. Note that the y-axis of a is in log-scale.
a Frequent / f-closed, b i-closed / f-closed and c e-closed / i-closed

123

Mining closed strict episodes 63

Table 5 The number of f-closed and frequent serial, parallel and general episodes, with varying fixed-
window frequency thresholds for the address, abstract and moby datasets, respectively

Dataset σ Serial Serial Parallel Parallel General General
f-closed Frequent f-closed Frequent f-closed Frequent

address 200 293 293 1,670 1,674 20 25

100 1,739 1,742 4,846 4,878 189 260

50 8,436 8,494 15,526 16,068 1,770 10,355

30 24,620 24,973 36,593 41,055 9,607 53,298

20 61,254 N/A 67,658 N/A 37,825 N/A

abstract 500 116 116 667 669 110 148

400 206 208 939 942 229 349

300 433 448 1,435 1,471 580 2,161

200 1,124 1,353 2,703 3,184 2,247 93,813

100 4,597 N/A 7,854 N/A 13,689 N/A

moby 200 594 594 2,772 2,776 23 25

100 2,992 2,997 7,749 7,788 277 342

50 12,529 12,583 22,615 23,192 2,407 3,407

30 34,469 34,915 52,481 58,021 12,987 58,179

20 85,112 N/A 96,675 N/A 49,866 N/A

Singletons are classified as parallel episodes, and general episodes do not include the serial and parallel
episodes

Table 6 The number of f-closed and frequent serial, parallel and general episodes, with varying disjoint-
window frequency thresholds for the address, abstract and moby datasets, respectively

Dataset σ Serial Serial Parallel Parallel General General
f-closed Frequent f-closed Frequent f-closed Frequent

address 20 479 479 1,744 1,753 41 59

10 3,004 3,012 6,325 6,468 655 916

5 15,318 15,557 24,038 27,069 7,546 22,513

4 25,532 26,372 36,116 45,108 16,205 197,195

3 49,859 N/A 57,293 N/A 42,699 N/A

abstract 100 20 20 160 160 15 15

50 164 166 565 573 203 281

40 300 314 892 924 485 1,347

30 631 708 1,479 1,660 1,432 17,946

20 1,638 N/A 2,920 N/A 5,375 N/A

moby 20 1,010 1,014 2,983 3,004 83 103

10 5,075 5,099 9,853 10,035 1,002 1,334

5 22,016 22,304 34,070 37,920 11,094 17,477

4 35,950 36,807 50,545 61,704 23,077 43,429

3 69,048 N/A 79,944 N/A 58,039 N/A

Singletons are classified as parallel episodes, and general episodes do not include the serial and parallel
episodes

123

64 N. Tatti, B. Cule

9 Related work

Searching for frequent patterns in data is a very common data mining problem. The
first attempt at discovering sequential patterns was made by Wang et al. (1994). There,
the dataset consists of a number of sequences, and a pattern is considered interesting
if it is long enough and can be found in a sufficient number of sequences. The method
proposed in this paper, however, was not guaranteed to discover all interesting pat-
terns, but a complete solution to a more general problem (dropping the pattern length
constraint) was later provided by Agrawal and Srikant (1995) using an Apriori-style
algorithm (Agrawal and Srikant 1994).

It has been argued that not all discovered patterns are of interest to the user, and some
research has gone into outputting only closed sequential patterns, where a sequence is
considered closed if it is not properly contained in any other sequence which has the
same frequency. Yan et al. (2003), Tzvetkov et al. (2003), and Wang and Han (2004)
proposed methods for mining such closed patterns, while Casas-Garriga (2005) further
reduced the output by post-processing it and representing the patterns using partial
orders. Despite their name, the patterns discovered by Garriga are different from the
traditional episodes. A sequence covers an episode if every node of the DAG can be
mapped to a symbol such that the order is respected, whereas a partial order discovered
by Garriga is covered by a sequence if all paths in the DAG occur in the sequence;
however, a single event in a sequence can be mapped to multiple nodes.

In another attempt to trim the output, Garofalakis et al. (2002) proposed a family
of algorithms called Spirit which allow the user to define regular expressions that
specify the language that the discovered patterns must belong to.

Looking for frequent episodes in a single event sequence was first proposed by
Mannila et al. (1997). The Winepi algorithm finds all episodes that occur in a suf-
ficient number of windows of fixed length. The frequency of an episode is defined
as the fraction of all fixed-width sliding windows in which the episode occurs. The
user is required to choose the width of the window and a frequency threshold. Specific
algorithms are given for the case of parallel and serial episodes. However, no algorithm
for detecting general episodes (DAGs) is provided.

The same paper proposes the Minepi method, where the interestingness of an epi-
sode is measured by the number of minimal windows that contain it. As was shown
by Tatti (2009), Minepi fails due to an error in its definition. Zhou et al. (2010) pro-
posed mining closed serial episodes based on the Minepi method, without solving this
error. Laxman et al. (2007) introduced a monotonic measure as the maximal number
of non-overlapping occurrences of the episode.

Pei et al. (2006) considered a restricted version of our problem setup. In their setup,
items are allowed to occur only once in a window (string in their terminology). This
means that the discovered episodes can contain only one occurrence of each item. This
restriction allows them to easily construct closed episodes. Our setup is more general
since we do not restrict the number of occurrences of a symbol in the window and the
miner introduced by Pei cannot be adapted to our problem setting since the restriction
imposed by the authors plays a vital part in their algorithm.

Casas-Garriga (2003) pointed out that Winepi suffers from bias against longer epi-
sodes, and proposed solving this by increasing the window length proportionally to

123

Mining closed strict episodes 65

the episode length. However, as was pointed out by Méger and Rigotti (2004), the
algorithm given in this paper contained an error.

An attempt to define frequency without using any windows has been made by
Calders et al. (2007) where the authors define an interestingness measure of an item-
set in a stream to be the frequency starting from a point in time that maximizes it.
However, this method is defined only for itemsets, or parallel episodes, and not for
general episodes. Cule et al. (2009) proposed a method that uses neither a window of
fixed size, nor minimal occurrences, and an interestingness measure is defined as a
combination of the cohesion and the frequency of an episode—again, only for parallel
episodes. Tatti (2009) and Gwadera et al. (2005a,b) define an episode as interesting if
its occurrences deviate from expectations.

Finally, an extensive overview of temporal data mining has been made by Laxman
and Sastry (2006).

10 Conclusions

In this paper, we tackled the problem of pattern explosion when mining frequent epi-
sodes in an event sequence. In such a setting, much of the output is redundant, as many
episodes have the same frequency as some other, more specific, episodes. We there-
fore output only closed episodes, for which this is not the case. Further redundancy
is found in the fact that some episodes can be represented in more than one way. We
solve this problem by restricting ourselves to strict, transitively closed episodes.

Defining frequency-closed episodes created new problems, as, unlike in some other
settings, a non-closed frequent episode can have more than one closure. To solve this,
we defined a closure operator based on instances. This closure does not suffer from
the same problems that occur with the closure based on frequency. Unlike the closure
based on frequency, an episode will always have only one instance-closure.

We further proved that every f-closed episode must also be i-closed. Based on
this, we developed an algorithm that efficiently identifies i-closed episodes, as well
as f-closed episodes, in a post-processing step. Experiments have confirmed that the
reduction in output is considerable, and essential for large episodes, where we reduced
the output by several orders of magnitude. Moreover, thanks to introducing i-closed
episodes, we can now produce output for thresholds at which finding all frequent
episodes is infeasible.

Acknowledgments Nikolaj Tatti is supported by a Post-doctoral Fellowship of the Research Foundation
Flanders (fwo).

References

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th
international conference on very large data bases (VLDB 1994), pp 487–499

Agrawal R, Srikant R (1995) Mining sequential patterns. In: 11th international conference on data engi-
neering (ICDE 1995), pp 3–14

Calders T, Dexters N, Goethals B (2007) Mining frequent itemsets in a stream. In: Proceedings of the 7th
IEEE international conference on data mining (ICDM 2007), pp 83–92

123

66 N. Tatti, B. Cule

Casas-Garriga G (2003) Discovering unbounded episodes in sequential data. In: Knowledge discovery in
databases: PKDD 2003, 7th European conference on principles and practice of knowledge discovery
in databases, pp 83–94

Casas-Garriga G (2005) Summarizing sequential data with closed partial orders. In: Proceedings of the
SIAM international conference on data mining (SDM 2005), pp 380–391

Cule B, Goethals B, Robardet C (2009) A new constraint for mining sets in sequences. In: Proceedings of
the SIAM international conference on data mining (SDM 2009), pp 317–328

Garofalakis M, Rastogi R, Shim K (2002) Mining sequential patterns with regular expression constraints.
IEEE Trans Knowl Data Eng 14(3):530–552

Gwadera R, Atallah MJ, Szpankowski W (2005a) Markov models for identification of significant episodes.
In: Proceedings of the SIAM international conference on data mining (SDM 2005), pp 404–414

Gwadera R, Atallah MJ, Szpankowski W (2005) Reliable detection of episodes in event sequences. Knowl
Inf Syst 7(4):415–437

Laxman S, Sastry PS (2006) A survey of temporal data mining. SADHANA Acad Proc Eng Sci 31(2):
173–198

Laxman S, Sastry PS, Unnikrishnan KP (2007) A fast algorithm for finding frequent episodes in event
streams. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery
and data mining (KDD 2007), pp 410–419

Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent episodes in event sequences. Data Min
Knowl Discov 1(3):259–289

Méger N, Rigotti C (2004) Constraint-based mining of episode rules and optimal window sizes. In: Knowl-
edge discovery in databases: PKDD 2004, 8th European conference on principles and practice of
knowledge discovery in databases, pp 313–324

Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules.
In: ICDT ’99: proceedings of the 7th international conference on database theory, pp 398–416

Pei J, Wang H, Liu J, Wang K, Wang J, Yu PS (2006) Discovering frequent closed partial orders from
strings. IEEE Trans Knowl Data Eng 18(11):1467–1481

Tatti N (2009) Significance of episodes based on minimal windows. In: Proceedings of the 9th IEEE
international conference on data mining (ICDM 2009), pp 513–522

Tatti N, Cule B (2010) Mining closed strict episodes. In: Proceedings of the 10th IEEE international con-
ference on data mining (ICDM 2010)

Tzvetkov P, Yan X, Han J (2003) Tsp: mining top-k closed sequential patterns. In: Proceedings of the 3rd
IEEE international conference on data mining (ICDM 2003), pp 347–354

Wang J, Han J (2004) Bide: efficient mining of frequent closed sequences. In: 20th international conference
on data engineering (ICDE 2004), p 79

Wang JT-L, Chirn G-W, Marr TG, Shapiro B, Shasha D, Zhang K (1994) Combinatorial pattern discovery
for scientific data: some preliminary results. ACM SIGMOD Rec 23(2):115–125

Yan X, Han J, Afshar R (2003) Clospan: mining closed sequential patterns in large datasets. In: Proceedings
of the SIAM international conference on data mining (SDM 2003), pp 166–177

Zhou W, Liu H, Cheng H (2010) Mining closed episodes from event sequences efficiently. In: Proceedings
of the 14th Pacific-Asia conference on knowledge discovery and data mining, vol 1, pp 310–318

123

	Mining closed strict episodes
	Abstract
	1 Introduction
	2 Preliminaries and notation
	2.1 Frequency

	3 Strict episodes
	4 Computing the subset relationship
	5 Closure
	5.1 Node closure
	5.2 Edge closure
	5.3 Combining closures
	5.4 Computing closures

	6 Generating transitively closed candidate episodes
	7 Algorithm for discovering closed episodes
	7.1 Detailed version of the algorithm
	7.2 Proof of correctness

	8 Experiments
	9 Related work
	10 Conclusions
	Acknowledgments
	References

