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Abstract In this article we show that there is a strong connection between
decision tree learning and local pattern mining. This connection allows us to solve
the computationally hard problem of finding optimal decision trees in a wide range
of applications by post-processing a set of patterns: we use local patterns to construct
a global model. We exploit the connection between constraints in pattern mining and
constraints in decision tree induction to develop a framework for categorizing deci-
sion tree mining constraints. This framework allows us to determine which model
constraints can be pushed deeply into the pattern mining process, and allows us to
improve the state-of-the-art of optimal decision tree induction.

Keywords Decision tree learning · Formal concepts · Frequent itemset mining ·
Constraint based mining

1 Introduction

Decision trees are among the most popular predictive models and have been studied
from many perspectives. However, no general framework exists to constrain the
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10 S. Nijssen, E. Fromont

induction of decision trees and guarantee an exact result with respect to the given
constraints. On the other hand, the topic of exhaustively (i.e. exactly) determining all
patterns satisfying certain constraints has been studied extensively in the area of local
pattern mining (Agrawal et al. 1996; Zaki et al. 1997a; Han et al. 2000). A natural
question is hence if we can exploit the experience in local pattern mining for the
discovery of decision trees under constraints. This question will be addressed in this
article.

Our main starting point is that many decision tree learning problems can be formu-
lated as queries of the following canonical form:

argmin
T

f (T ) subject to ϕ(T ), (Canonical Decision Tree Learning Query)

i.e, we are interested in finding the best tree(s) according to a function f (T ), among
all trees which fulfill the constraints specified in the formula ϕ(T ).

For instance, the following questions could be of interest for a decision tree user:

– Which tree has the smallest error? In this case f (T ) is an error function that we
wish to minimize.

– Which is the smallest tree with sufficiently high accuracy? In this case the (rank-
ing) function f (T ) should prefer smaller trees among sets of sufficiently accurate
trees. Alternatively, we can reformulate the problem in a Bayesian setting (Buntine
1992; Chipman et al. 1998).

– Which tree is least sensitive to noise in the class labels? This could require that
every leaf of a decision tree has at least a significant majority class. The latter can
be seen as a constraint ϕ(T ) on the trees of interest.

– Which tree preserves privacy best by being well-balanced? This would impose a
constraint ϕ(T ) on the trees of interest (Friedman et al. 2006; Machanavajjhala
et al. 2007).

– Which tree incurs the smallest amount of classification costs? For example, it can
be desirable that the expected costs for classifying examples do not exceed a certain
predefined threshold value (Turney 1995).

– Which tree is most justifiable from an expert’s perspective, by satisfying prede-
fined constraints on the predictions that can be made by the tree? For instance, one
could wish to enforce that certain examples are never misclassified, or certain tests
are always executed in a given order.

Observe that some of these problem settings are conventional, in the sense that they
are formalizations of the problem of finding models of good predictive accuracy. Other
problems are less conventional, the main focus being on the syntax of the predictive
model.

Many algorithms have been proposed to address these learning problems. Most
common are the algorithms that rely on the principle of top-down induction through
heuristics (for example C4.5 (Quinlan 1993) and cart (Breiman et al. 1984)). These
algorithms do not explicitly minimize a global optimization criterion, but rely on the
development of a good heuristic to obtain reasonable solutions. In practice, for each
new problem setting that was studied, a new heuristic was proposed in the literature.
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Optimal constraint-based decision tree induction 11

To the best of our knowledge, no framework has been proposed which encapsulates
the large number of decision tree learning problems listed above and no general algo-
rithm is known for answering the canonical decision tree query exactly. The question
that we study in this paper is how pattern mining techniques can contribute to the
development of a framework and an algorithm for this task. As such, our work takes
the LeGo approach (Knobbe et al. 2008; Bringmann et al. 2009), in that it studies how
local pattern mining techniques can be used to build global models.

The benefit of an exact algorithm is that we do not need to develop new heuristics
to deal with many types of learning problems and constraints. We are sure that its
result is the best that one can hope to achieve according to the predefined optimization
criterion and constraints; no fine-tuning of heuristics is necessary. Hence, the results
of an exact algorithm can also be used to determine how well an existing heuristic
decision tree learner approximates a global optimization criterion.

The development of an exact algorithm for learning decision trees has seldom
been considered because many decision tree learning problems are known to be NP-
complete (Hyafil and Rivest 1976). Therefore an efficient algorithm for the general
case most likely does not exist. This theoretical result however does not imply that
the problem is intractable in all cases. Many frequent itemset mining algorithms have
been applied successfully despite the exponential nature of the itemset mining prob-
lem. This is an indication that, on some datasets, exact decision tree induction may
still be feasible if we can do this by using itemset mining results. We will provide
evidence that for a reasonable number of datasets, exact decision tree induction is
indeed practically feasible by taking this approach. An important technical contribu-
tion is that we show that decision trees can also be learned from the condensed itemset
representation of closed itemsets (Pasquier et al. 1999). This observation allows us to
obtain better practical performance.

The article is organized as follows. In Sect. 2, we introduce basic notions on deci-
sion trees and itemsets and we focus on their relationships. In Sect. 3, we discuss
related work on both exact decision tree learning and itemset mining. In Sect. 4, we
propose a framework for constraining decision trees and show how the framework
can be used in practice. In Sect. 5 we introduce the DL8 algorithm which uses local
patterns to construct our global model. Section 5 also gives some optimizations for
DL8. In Sect. 6, we evaluate the performance and the effect of different constraints
handled in our algorithm. We conclude in Sect. 7.

2 Itemsets, decision trees, and their relationships

Let us first introduce some terminology concerning frequent itemsets and decision
trees before studying the relationships between these domains.

2.1 Itemsets

Let I = {i1, i2, . . . , im} be a set of items and let D = {t1, t2, . . . , tn} be a bag of
transactions, where each transaction tk is an itemset such that tk ⊆ I. A transaction
tk contains a set of items I ⊆ I iff I ⊆ tk . The transaction identifier set (TID-set)

123



12 S. Nijssen, E. Fromont

Fig. 1 The Hasse diagram of a part of an itemset lattice for items {A,¬A, B,¬B, C,¬C}; binary decision
tree A(B(1,C(l,l)),C(l,l)) is marked in this diagram

tid(I ) ⊆ {1, 2, . . . n} of an itemset I ⊆ I is the set of identifiers of all transactions
that contain itemset I . The frequency of an itemset I ⊆ I is defined to be the num-
ber of transactions that contain the itemset, i.e., freq(I ) = |tid(I )|; the support of an
itemset is support(I ) = freq(I )/|D|. An itemset I is said to be frequent if its support
is higher than a given threshold minsup; this is written as support(I ) ≥ minsup (or,
equivalently, freq(I ) ≥ minfreq).

A useful property of itemsets is that they constitute a lattice.

Definition 1 A complete lattice is a partially ordered set in which any two elements
have a unique least upper bound and a unique greatest lower bound.

In this case the partial order is defined by the subset relationship ⊆ on the elements
in the set 2I . The least upper bound of two sets is computed by the intersection (∩)
operator, the greatest lower bound by the union (∪) operator. The lower bound ⊥ of
this lattice is ∅; the higher bound � is the set I.

Part of a lattice is depicted in Fig. 1 in a Hasse diagram, where we assume I =
{A,¬A, B,¬B, C,¬C}; we only depict itemsets in which an item i and its negation
¬i do not occur together. Edges denote a subset relation between sets; sets are depicted
as nodes. On top of the lattice is the lower bound which corresponds to the empty set
∅ (level 0); the higher bound {A,¬A, B,¬B, C,¬C} is not depicted as it includes
items as well as their negations. There is an edge between a node in a given level and a
node in the next level if the set of the former is strictly included in the set of the latter
and if the size of the two sets only differs by one item.

2.2 Decision trees

An example of a decision tree is given in Fig. 2. A decision tree aims at classifying
a set of examples by sorting them down the tree. The leaves of the tree provide the
classifications of examples (Quinlan 1993). Each node of the tree specifies a test on
one attribute of an example and each branch of a node corresponds to one of the pos-
sible outcomes of the test. We assume that all tests are Boolean; non-binary attributes
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Optimal constraint-based decision tree induction 13

Fig. 2 An example tree

are transformed into Boolean attributes by mapping each possible value to a separate
attribute. Numerical attributes are discretized and binarized beforehand (they will then
be called features). The input of a decision tree learner is hence a binary matrix B,
where Bi j contains the value of feature j of example i .

A common way to represent a decision tree is as a set of rules (Quinlan 1993).
Each leaf of the tree corresponds to a rule. Our example tree can be represented in the
following way:

if A = 1 and B = 1 then predict 1
if A = 1 and B = 0 and C = 1 then predict 1
if A = 1 and B = 0 and C = 0 then predict 0
if A = 0 and C = 1 then predict 0
if A = 0 and C = 0 then predict 1

Hence we can see decision tree learning as finding a set of rules with certain properties
that allow the set to be represented as a tree.

2.3 The link between decision trees and itemsets

A main observation in the LeGo framework (Knobbe et al. 2008) is that there is a link
between rules in predictive models and patterns in pattern mining. Assume that we
are given an attribute-value table B in which all features are binary. We can transform
table B into a transactional form D such that t j = {i | Bi j = 1} ∪ {¬i | Bi j = 0}.
Thus, every feature value is mapped to a positive i or a negative item ¬i . The head of
a rule, for instance,

A = 1 and B = 0 and C = 1

can now be transformed into an itemset {A,¬B, C}. Transactions in which the head
of the rule is true correspond to transactions in which the itemset is contained. Hence
the decision tree of Fig. 2 can equivalently be represented by a set of class association
rules:

{A, B} → 1
{A,¬B, C} → 1
{A,¬B,¬C} → 0
{¬A, C} → 0
{¬A,¬C} → 1
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14 S. Nijssen, E. Fromont

A class association rule I → c (Liu et al. 1998) consists of an itemset I and a class
value c.

The problem of learning a decision tree is now a problem of finding a set of class
association rules. As we are usually interested in finding accurate trees, we can reduce
this further to a problem of finding itemsets, that is, class association rules without
heads: assume we compute the frequency freqc(I ) of an itemset I for each class c
separately, we can associate to each itemset the class label for which its frequency is
highest,

c(I ) = argmax
c′∈C

freqc′(I ),

as this will minimize the prediction error for the examples in the leaf. Given a decision
tree T , we denote the set of itemsets corresponding to leaves by leaves(T ); in our
example,

leaves(T ) = {{A, B}, {A,¬B, C}, {A,¬B,¬C}, {¬A, C}, {¬A,¬C}};

itemsets corresponding to internal nodes are denoted by internal(T ), in our example,

internal(T ) = {∅, {A}, {A,¬B}};

Finally, all itemsets that correspond to paths in the tree are denoted with paths(T ) =
internal(T ) ∪ leaves(T ).

The problem of finding a decision tree can now alternatively also be formulated as
follows. We are interested in finding a set of itemsets P ⊆ 2I such that

∃T : paths(T ) = P and T = argmin
T

f (T ) subject to ϕ(T ).

Note that we can easily characterize which sets of itemsets represent decision trees.

Lemma 1 Given a set of itemsets P ⊆ 2I , then ∃T : paths(T ) = P if and only if for
every itemset I ∈ P either:

(1) there is no I ′ ∈ P such that I ⊂ I ′ (in this case I ∈ leaves(T ));
(2) there is exactly one item i ∈ I such that I ∪ {i}, I ∪ {¬i} ∈ P (in this case

I ∈ internal(T )).

Proof “⇒” is straightforward. For “⇐” we can observe the following. Every itemset
I in P can be converted into a node in a decision tree, as follows. Itemsets fulfilling
condition (1) we turn into leaves. Itemsets I fulfilling condition (2) are converted into
internal nodes which are connected to the nodes representing itemsets I ∪ {i} and
I ∪ {¬i}. ��
Hence, the problems of finding decision trees T and sets of itemsets P fulfilling the
conditions of Lemma 1 are equivalent. Indeed, the reader can check in our example that
a set P fulfilling these conditions corresponds to a decision tree with paths(T ) = P .
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Optimal constraint-based decision tree induction 15

An important observation that we will exploit is that a lattice of itemsets can be
thought of as a compact representation of a set of decision trees. This is illustrated in
Fig. 1, where we have highlighted the decision tree of Fig. 2; in principle any decision
tree over binary features {A, B, C} consists of a similar set of paths in this lattice.
Note that we assume that trees never have an item and its negation in one path and
that we hence do not need to consider the part of the lattice containing such itemsets.

The most basic problem one could be interested in is that of finding an accurate deci-
sion tree. The accuracy of a decision tree is derived from the number of misclassified
examples in the leaves:

accuracy(T ) = |D| − error(T )

|D| where error(T ) =
∑

I∈leaves(T )

error(I )

and error(I ) is the number of examples ending up in leaf I not labeled with the
majority class of the examples in I :

error(I ) = freq(I )− freqc(I )(I )

For the size of a tree we take the size of the set paths(T ).
An example of a decision tree learning problem is to find the tree

argmin
T

(error(T ), size(T )),

that minimizes error in the first place and cuts ties between trees of equal error using
the size function. The exploration of other learning problems will be deferred to a later
section.

3 Related work

The results in this article are built on the foundations of two different research areas:
decision tree induction and pattern mining. This section provides an overview of the
relevant results which have been obtained in these areas.

3.1 Exact decision tree induction

The search for exact decision trees with respect to a given optimization criterion dates
back to the 1970s, when several algorithms for building such trees were proposed.
Their applicability was however limited and the development of heuristic tree learn-
ers, such as cart (Breiman et al. 1984) and C4.5 (Quinlan 1993) became most popular.
Only recently new attempts have been made to develop more complete tree learners.
We will first discuss the early results using modern terminology for clarification.

Garey (1972) proposed an algorithm for constructing an optimal binary identifica-
tion procedure. In this setting, a binary database is given in which every example has
a different class label. Furthermore, every example has a weight and every attribute
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has a cost. The aim is to build a decision tree in which there is exactly one leaf for
every example; the expected cost for classifying examples should be minimal.

Meisel and Michalopoulos (1973) studied a setting which is more common today,
in which multiple examples can have the same class label, and numerical attributes
are allowed. To tackle the problem of discretization, an overfitting decision tree is
greedily constructed first. Its tests are collected. Using these tests, the task is then to
find a 100% accurate decision tree with lowest expected cost, where every test has unit
cost and examples are distributed according to a previously determined distribution.
In 1977, it was shown by Payne and Meisel (1977) that Meisel’s algorithm can also
be applied for finding optimal decision trees under many other types of optimization
criteria, for instance, for finding trees of minimal height or minimal numbers of nodes.

A parallel line of research was explored by Schumacher and Sevcik (1976) and Lew
(1978), who studied the problem of converting decision tables into decision trees. A
decision table is a table which contains (1) a row for every possible example in the
feature space (including a class attribute) and (2) a probability for every example.
The aim is to compress the decision table into a compact representation that allows to
retrieve the class of an example as quickly as possible. An extension was studied by
Lew (1978), in which it is possible to specify the input decision table in a condensed
form, for instance, by using wild cards as attributes.

All these problems were solved by dynamic programming algorithms which bot-
tom-up consider all subsets of attribute-values of the examples. These algorithms are
very similar to the algorithm we will propose (see Sect. 5). The main difference is that
we build a lattice of tests under different types of constraints, point out the connection
to itemset mining, and employ modern techniques such as closed itemset mining.

More recently, pruning strategies of decision trees have been studied by Garofalakis
et al. (2003). Garofalakis et al.’s algorithm can be seen as an application of the bot-
tom-up algorithm on a greedily constructed tree instead of a lattice of itemsets.

Related is also the work of Moore and Lee on the ADtree data structure (Moore
and Lee 1998). Both ADtrees and itemset lattices can be used for speeding up the
lookup of itemset frequencies during the construction of decision trees, where AD-
trees have the benefit that they are computed without frequency constraint. However,
this is achieved by not storing specializations of itemsets that are already relatively
infrequent; for these itemsets subsets of the data are stored instead. In our bottom-up
procedure it is necessary that all itemsets that fulfill the given constraints are stored
with associated information. This is not straightforwardly achieved in ADtrees.

Recently the problem of learning optimal decision trees has gained interest again.
Esmeir and Markovitch (2007a,b) proposed an any-time algorithm, which essentially
performs a brute-force enumeration of trees as long as the algorithm is not interrupted
by the user. The algorithm attempts to enumerate more promising regions earlier,
and prunes unpromising regions of the search space. However, the algorithm does not
exploit dynamic programming strategies. It was applied both on conventional learning
problems as problems with cost constraints.

Blanchard et al. (2007) proposed an algorithm for mining optimal dyadic deci-
sion trees. This algorithm operates on numerical data. It makes specific choices with
respect to the discretization of the data and the optimization criterion used. The opti-
mization criterion includes a regularization parameter which weighs decision tree size
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Optimal constraint-based decision tree induction 17

and decision tree accuracy. It is shown that the generalization error of an optimal tree
is bounded by this parameter, while also in practice the resulting trees are sometimes
better than trees found by traditional tree learners. A dynamic programming algorithm
is used to induce the tree. In Sect. 4.2.2 we show that this algorithm can be seen as one
instance of our algorithm, but that the specific choice of constraints makes it impossi-
ble to apply certain optimizations which are available within our framework, the most
important one being that closed itemsets cannot be used when inducing dyadic trees.

Other approaches that aim at more completely traversing the space of decision trees
are those that apply variations of genetic algorithms (Turney 1995), and Markov chain
Monte Carlo sampling approaches (Chipman et al. 1998).

In Murphy and Pazzani (1997) an exhaustive enumeration of decision trees on small
datasets was performed in order to determine the validity of the principles of Occam’s
razor and oversearch for decision tree learning. In these experiments it was found
that slightly larger trees can be found using complete search methods and that these
trees can sometimes perform better than smaller trees found using heuristic trees. Our
algorithm allows to perform similar experiments on a larger scale.

3.2 Pattern mining

The best-known pattern mining algorithm is the Apriori algorithm (Mannila et al.
1994; Agrawal and Srikant 1994; Agrawal et al. 1996), whose aim is to find frequent
itemsets. Subsequently, a wide variety of algorithms has been proposed to find this set
more efficiently in dense datasets, i.e., binary datasets in which the number of ones is
large. Among these algorithms are Eclat (Zaki et al. 1997b), FPGrowth (Han et al.
2000) and LCM (Uno et al. 2004).1

In many datasets it was found that the number of frequent itemsets is impractically
large, and methods were investigate to find condensed representations. Condensed
representations consist of smaller sets of itemsets sufficient to reproduce the full set of
itemsets, or allow to approximate the full set. Well-known exact condensed represen-
tations are the closed itemsets (Pasquier et al. 1999) and free itemsets (Boulicaut et al.
2000). Among the approximative representations are the δ-free itemsets (Boulicaut
et al. 2003).

In this article, we investigate the use of both frequent itemsets and condensed
representations during the construction of decision trees. The use of condensed repre-
sentations could allow us to search for trees more efficiently. Among others, we show
that in many cases we can limit ourselves to closed itemsets; in other cases, it can be
shown that the itemsets that are needed during tree construction are also δ−free.

The frequent itemset mining problem was extended towards other types of con-
straints than support; several categories of constraints were identified, among which
monotonic, anti-monotonic, and convertible constraints, and algorithms were intro-
duced to mine itemsets under these constraints (Pei et al. 2001; Bucila et al. 2003;
Bonchi and Lucchese 2007). We can show that these categories can also be applied in

1 A repository of implementations is available here: http://fimi.cs.helsinki.fi/.
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18 S. Nijssen, E. Fromont

decision tree induction, and that algorithms for mining patterns under these constraints
can be used in corresponding settings in decision tree induction.

The use of itemsets in predictive models is a topic that has been studied extensively.
Well-known algorithms include CBA (Liu et al. 1998), CMAR (Li et al. 2001) and
CAEP (Dong et al. 1999); more general overviews can be found in (Knobbe et al. 2008;
Bringmann et al. 2009). In these algorithms an initial set of patterns is mined first.
Subsequently, a set of patterns is selected with corresponding weights. Classification
is based on a vote of the selected patterns. The approach that we will propose is similar
in the sense that our algorithm can also be applied to select a subset of patterns from
an initial set of patterns, which are subsequently interpreted as rules for classification.
The main difference is that the model that we induce takes the particular shape of a
tree, is optimal under well-defined conditions, and that we can push model constraints
in the pattern mining process or even combine these two.

An alternative approach to exploit patterns in classification is to construct features
from patterns. The selection of patterns can in this case be seen as feature selection,
where desirable properties are that a set of patterns is chosen that is diverse, covers
the data sufficiently, and correlates with the class attribute. Approaches of this kind
are discussed in (Yan et al. 2005; Knobbe and Ho 2006; De Raedt and Zimmermann
2007). Even though our approach also selects a subset of patterns satisfying similar
constraints, we will however use the patterns directly in classification models.

4 Constraints on decision trees

As stated in the introduction, we are interested in expressing decision tree learning
problems as queries of the form

argmin
T

f (T ) subject to ϕ(T ),

which corresponds to finding the best tree(s) according to the function f (T ) among
all trees which fulfill the constraints specified in the formula ϕ(T ).

In this section we specialize this formula. We argue that in most applications the
constraints in ϕ(T ) and the criteria in f (T ) have properties that can be exploited. The
main contributions in this section are:

1. We propose a categorization of constraints and criteria that can be used in the above
formula. The aim of this categorization is to introduce the types of constraints that
will be exploited in the pattern-based algorithm introduced in the next section. In
this discussion, we will discuss desirable properties of optimization criteria f (T ),
as well as properties of constraints ϕ(T ).

2. We show that constraints and criteria with useful properties are commonly used
in a wide range of applications and hence our algorithm can be used in many
applications. The applications were chosen such that it is possible to compare our
algorithm to already existing (and most of the time, heuristic) algorithms in the
literature.
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Optimal constraint-based decision tree induction 19

In the following, the functions I1 = child1(I, T ) and I2 = child2(I, T ) return the
itemsets representing respectively the left-hand and right-hand child node of the inter-
nal node I in binary tree T .

4.1 Properties of constraints and criteria

4.1.1 Optimisation criteria

When an optimization criterion f (T ) is specified, this criterion may have properties
that we will refer to as additivity and structure independence.

Additivity An additive optimization criterion is a function f (T ) over a tree T which
can be rewritten as follows:

f (T ) =
∑

I∈leaves(T )

fleaf (I )+
∑

I∈internal(T )

finternal(I, child1(I, T ), child2(I, T )),

where function fleaf (I ) ≥ 0 is a leaf criterion and function finternal(I, I1, I2) ≥ 0
is an internal criterion. An example of an additive optimization criterion is size, in
which fleaf (I ) = 1 and finternal(I, I1, I2) = 1.

Structure independence An additive optimization criterion f (T ) is structure
independent if we can rewrite the leaf criteria and internal criteria as follows:
finternal(I, I1, I2) = f ′internal(tid(I ), tid(I1), tid(I2)) and fleaf (I ) = f ′leaf (tid(I )),
for functions f ′internal and fleaf

′ over sets of transactions. Hence, the evaluation
depends only on the transactions covered by the nodes, not on the structure of the
tree. Please note that size is also a structure independent criterion according to our
definition; the reasoning is that the size of a tree is only determined by the number of
partitions induced by the tree in the set of transactions; otherwise the structure of the
tree is unimportant.

In the next section we will show that many common optimization criteria are addi-
tive and that a restriction to such criteria is not very restrictive.

4.1.2 Path constraints

For constraints we can formulate similar properties as for criteria. In most cases, the
constraint ϕ(T ) is a conjunction of a number of independent constraints, which can
have the following properties.

Conjunctivity over Paths A conjunctive path constraint is a formula over a tree which
can be written as:

ϕconjunctive(T ) =
∧

I∈leaves(T )

ϕleaf (I ) ∧
∧

I∈internal(T )

ϕinternal(I, child1(I, T ), child2(I, T )),
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20 S. Nijssen, E. Fromont

where formula ϕleaf (I ) is a leaf constraint and formula ϕinternal(I, I1, I2) is an internal
constraint.

An example of an internal constraint is that internal nodes should not have pure
class distributions:

ϕinternal(I, I1, I2) = (|tid(I )| �= max
c∈C
|tidc(I )|). (1)

This internal constraint is special in the sense that it only takes I , not its children, into
account. An example of a leaf constraint is that the number of examples not belonging
to a majority class is small:

ϕleaf (I ) = (|tid(I )| −max
c∈C
|tidc(I )|) ≤ max f req). (2)

An example of an internal constraint in which the left-hand and right-hand child are
used, is:

ϕinternal(I, I1, I2) = (||tid(I1)| − |tid(I2)|| ≥ mindif ),

which states that an internal node splits examples in balanced proportions.

Structure independence A structure independent constraint ϕstructure_ind(T ) is a
conjunctive path constraint in which ϕinternal(I, I1, I2) = ϕ′internal(tid(I ), tid(I1),

tid(I2)) and ϕleaf (I ) = ϕ′leaf (tid(I )), for formulas ϕ′internal and ϕleaf
′ over sets of

transactions.
An example of a structure independent path constraint is minimum support, in which

ϕleaf (I ) = ϕinternal(I, I1, I2) = (|tid(I )| ≥ minfreq);

it is easy to see that this constraint is computed from tid(I ) only.

Anti-monotonicity An anti-monotonic constraint is a formula ϕantim(I ) over paths
which ignores the left-hand and right-hand children of internal nodes and satisfies:

∀I ⊆ I ′ : ϕantim(I )→ ϕantim(I ′).

Minimum support is an anti-monotonic constraint. The constraint in Eq. 2 is an exam-
ple of a constraint which is not anti-monotonic. If an anti-monotonic constraint is
used as leaf constraint, the internal nodes will also satisfy the constraint. Internal node
constraints can also be anti-monotonic if they only have one itemset as parameter;
for instance, the impurity constraint (see Eq. 1) is anti-monotonic; however, note that
this constraint will usually not be used as a leaf constraint. Hence, we can distin-
guish internal and leaf anti-monotonic constraints; the one type will be denoted with
ϕinternal,antim, the other with ϕleaf ,antim.

Constraints of these types can freely be combined. For instance, if we are searching
for trees in which leaves are frequent, internal nodes are not pure and leaves have
strong majority classes, we have a problem in which:
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Optimal constraint-based decision tree induction 21

ϕ(T ) =
∧

I∈internal(T )

(|tid(I )| �= max
c∈C
|tidc(I )|)

∧

I∈leaves(T )

(((|tid(I )| −max
c∈C
|tidc(I )|) ≤ maxfreq) ∧ (|tid(I )| ≥ minfreq)).

We can categorize these constraints as follows according to their properties:

ϕinternal(I, I1, I2) = (|tid(I )| �= max
c∈C
|tidc(I )|),

ϕleaf (I ) = ((|tid(I )| −max
c∈C
|tidc(I )|) ≤ maxfreq) ∧ (|tid(I )| ≥ minfreq),

ϕleaf ,antim(I ) = (|tid(I )| ≥ minfreq).

Note that some constraints (for example |tid(I )| ≥ minfreq) may belong to multiple
categories.

4.1.3 Optimization constraints

If a constraint can be written as

ϕ(T ) = (g(T ) ≤ θ),

where g(T ) is an integer optimization criterion and θ is a threshold value, the con-
straint is called an optimization constraint. Properties of optimization criteria, such as
additivity and structure independence, extend to optimization constraints. In particu-
lar, if g(T ) returns a vector of values, θ can also be a vector of thresholds, each of
which should be satisfied.

4.2 Showcases

In this section we list several existing decision tree learning problems. Our aim is to
explain how such problems can be solved exactly and generally in our framework. We
distinguish two classes of mining problems.

1. Traditional learning settings in which the focus is primarily on finding highly pre-
dictive trees; these settings differ in the criteria used to measure the predictive
value of a tree and achieve generalization. We take as examples the tree-pruning
algorithms, the Bayesian learning setting, and dyadic decision tree construction.

2. A learning setting in which the focus is less on accuracy, and the primary focus
is on finding trees that also satisfy other desirable criteria. We take as examples
cost-based tree learning and privacy-preserving tree induction.

By showing such a diverse list and by combining different settings, we hope to con-
vince the reader that our categorization of constraints is very general and that the scope
of our exact algorithm is not limited to the applications presented here.
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4.2.1 Error-based pruning

In general we are interested in predictors that perform well on unseen data. The idea
behind error-based pruning, which was developed as a pruning measure in the C4.5
algorithm (Quinlan 1993), is to estimate the true error rate of a leaf given the empirical
error. An internal node is then turned into a leaf if this reduces the error estimate for
the node.

The true error is estimated by assuming that the class labels of the examples are
the result of sampling with the unknown true error rate. Consequently, the observed
errors are binomially distributed, and a worst-case estimate on the true error can be
computed from the observed error. It can be shown that the number of errors estimated
by this procedure in a leaf is at least 0.5 higher than the empirical error count. Hence a
tree with many leaves is penalized when compared to a tree with few leaves; implicitly,
one can think of the error-based pruning criterion as the sum of error and a penalty
term for the size of the tree, where the penalty term per leaf is dependent on the class
distribution in the leaf.

In our framework, we can see the pruning measure as an optimization criterion. Let
us denote the estimated error of a leaf I with ee(I ), then we are minimizing

f p(T ) =
∑

I∈leaves(T )

ee(I ).

Consequently we can categorize C4.5 error-based pruning as applying an additive,
structure independent optimization criterion.

In C4.5, pruning is often only applied to an existing tree. Usually, this is done in
a heuristic fashion: for instance, for each internal node in the tree it is tested in some
order whether it is beneficial to replace the node by a leaf; additionally, lifting a sub-
tree is sometimes also considered, in which case an internal node may be replaced by
the subtree of one of its children if this improves the score. It is not always clear in
which order these operations need to be performed. Within our framework, we can
also formulate this problem of pruning an existing tree, which allows us to solve it
in a non-heuristic way. Given a predefined tree T , we are only interested in finding
a tree T ′ which minimizes f p(T ′) under the constraint that every leaf I ′ in T ′ is a
subset of a path I in T . This constraint is path conjunctive, structure dependent and
anti-monotonic. The benefit of starting from an existing tree is that the search-space
of decision trees is significantly restricted in this way.

4.2.2 Optimal dyadic decision trees

Similarly to what we aim for in this article, Blanchard et al. (2007) studied how to
learn optimal dyadic decision trees. Dyadic trees are trees on numerical data in which
the discretization is limited to equi-width binning with a number of bins that always
is a power of 2. Tests are hence always of the kind a ≥ i(r − l)/2� + l, where [l, r ]
is the range of the attribute a and 0 ≤ i ≤ 2� and � ≥ 0 are integers; parameter �

is determined during the learning procedure. To limit the complexity of this learning
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problem, in (Blanchard et al. 2007) the problem of learning optimal dyadic decision
trees was constrained as follows:

– The optimization criterion is a function

error(T )+ λ · size(T )

where λ is a regularization parameter that is determined on validation data. Note
that this function is the sum of two additive optimization functions, and is hence
also additive; compared to error-based pruning large trees are punished directly in
this case.

– The first constraint imposes a threshold on the number of tests for each numer-
ical attribute. This is an anti-monotonic, structure dependent, conjunctive path
constraint:

ϕleaf (I ) = ϕinternal(I, I1, I2) =
∧

a

|I ∩ I (a)| ≤ k,

where I (a) is the set of items corresponding to tests on attribute a;
– The second constraint states that every path I which contains a split a ≥ v on

attribute a must also contain a split for value 2�(v− l)/2�+ l and 2�(v− l)/2�+ l,
except for values l or r of that attribute. We can model this as an internal node
constraint ϕinternal(I, I ∪ {i}, I ∪ {¬i}) which is true if i is a test that is allowed in
itemset I .

– It does not make sense to continue splitting for leaves that do not contain exam-
ples. Therefore, internal nodes are required to have non-zero support. However,
leaves with zero support are allowed, as they can be necessary to allow for more
fine-grained splits later on.

4.2.3 Bayesian probability estimation trees

By Buntine (1992), Chipman et al. (1998), and Angelopoulos and Cussens (2005)
a Bayesian approach was proposed for weighing decision tree size and decision tree
accuracy, hence providing an alternative strategy for finding trees which are both accu-
rate and small. It is assumed that a prior is given on the structure of the probability
estimation trees:

p(T |D) =
∏

I∈paths(T )

Pnode(I, T, D)

where

Pnode(I, T, D) =

⎧
⎪⎨

⎪⎩

1, if children(I ) = 0;
1− α(1+ |I |)−β, if I is a leaf in T and children(I ) �= 0;
α(1+|I |)−β

children(I ) , otherwise;
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Here children(I ) is the number of tests that can still be performed to split the examples
in tid(I ); D is the training data, excluding the class labels; α and β are parameters. In
(Buntine 1992; Chipman et al. 1998; Angelopoulos and Cussens 2005) the prior only
allows for paths that contain at least a minimum number of examples, which corre-
sponds to the anti-monotonic, structure independent minimum support constraint.

The distinguishing feature of density estimation trees is that they have class distri-
butions in the leaves instead of single class labels.

Given the Bayesian setting, in (Buntine 1992; Chipman et al. 1998; Angelopoulos
and Cussens 2005) a prior distribution over the parameters was defined, as well as
the probability of the training data given a tree structure and its parameters. After
rewriting, we can formulate this optimization criterion as follows:

fb(T ) = − log(p(c|T, D))− log(p(T |D)).

where

p(c|T, D) =
∏

I∈leaves(T )

(
	(

∑
c αc)∏

c 	(αc)

)(∏
c 	(freqc(I )+ αc)

	(freq(I )+∑
c αc)

)
;

here 	 is the standard gamma function that extends the factorial to real numbers; vec-
tor αc is a parameter of the optimization criterion. Vector c represents the class labels
of the training examples. The overall optimization criterion is additive and structure
dependent.

4.2.4 Cost-sensitive decision trees

A benefit of decision trees is that they are easily interpretable models that can be used
as questionnaires. For instance, in the medical domain, a decision tree can be inter-
preted by a doctor as a sequence of tests to diagnose a patient; an insurance company
can interpret it as a sequence of questions to determine if a person is a desirable cus-
tomer. In such cases, the application of a tree on an example incurs a certain cost: every
question might require a certain amount of money or time to be answered. Further-
more, if a person is classified incorrectly, this might induce additional costs, in terms
of expected missed revenue, or higher treatment costs. To induce trees under such cost
constraints, algorithms for decision tree induction under cost constraints have been
proposed (Turney 1995; Esmeir and Markovitch 2007a).

Formally, these algorithms assume that the following information is given:

– a c × c misclassification cost matrix Q where Qi, j is the cost of predicting that
an example belongs in class i , when it actually belongs in class j ;

– for every attribute i , a cost tqi for a test on this attribute;
– for every attribute i , a group gi that it is contained in;
– for every group g, an additional cost tqg for the first test on an attribute in this

group.
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The motivation for having both a cost per group and per attribute is that it is often
cheaper to ask related questions or perform related medical tests. Therefore later tests
in a group of related tests are usually cheaper.

For a path I ∈ leaves(T ) we can formally define the cost of classifying an example
in tid(I ) as follows:

tq(I ) =
∑

i∈I

tqi +
∑

g∈{gi |i∈I }
tqg.

The expected costs for performing the tests in a tree are therefore:

ftq(T ) =
∑

I∈leaves(T )

freq(I )

|D| tq(I ).

The expected misclassification costs are:

fmq(T ) = 1

|D|
∑

I∈leaves(T )

∑

c∈C

Qc,c(I ) f reqc(I ).

Combining these costs, the following criterion was proposed (Turney 1995; Esmeir
and Markovitch 2007a), which is additive and structure dependent:

fq(T ) = ftq(T )+ fmq(T ).

A possibility which has not been studied in the literature, is the use of costs in path
constraints. This may also be useful in practice. For instance, assume that the cost of
a test is expressed in terms of the time that is needed to perform the test, while the
misclassification cost is in terms of dollars. Combining these costs in a single measure
would require time to be expressed in monetary terms, which may be undesirable
and unpractical. An alternative could be to explicitly search for a tree that minimizes
fmq(T ), under the constraint that tq(I ) ≤ maxtime, for every itemset I ∈ leaves(T ).
This conjunctive, anti-monotonic constraint would allow us to find inexpensive trees
that have bounds on prediction times. One could evaluate such a query for multiple
values of maxtime to come to a well-motivated trade-off between classification time
and misclassification costs.

4.2.5 Privacy preservation

The main motivation behind privacy preserving decision tree learning, such as first
performed by Friedman et al. (2006), is as follows. Assume we have a credit card com-
pany with a database D in which good and bad clients are distinguished from each
other. The company learns a decision tree on this data, and uses this tree to accept
or reject customers. Then regulations may require that the company publishes this
tree. How can the company avoid that the tree provides information about individual
customers in its database?
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By Friedman et al. (2006) the following attack was studied. Assume that an attacker
has public information, such as the address and telephone number of a customer, and
wishes to know if this customer is a good customer. How can the company ensure
its customers that the prediction that an attacker obtains from the tree using public
information, is never based on less than k individuals, and hence, can never be traced
to one individual customer? This problem can be formalized as follows: we wish to
find a tree in which the following constraint is satisfied for every example t in the data:

∑

I ′∈leaves(T )
(I ′∩Ipublic)⊆(t∩Ipublic)

freq(I ′) ≥ k :

here, Ipublic represents attributes assumed to be publicly available; attributes in Iprivate

are not publicly available. The constraint expresses that a particular example t may
not end up in a set of leaves containing in total less than k examples, if we assume
that for private attributes we try both branches when we pass the example down the
tree. This constraint is an additive and structure dependent optimization constraint,
and needs to be applied for every customer. We will see that such a large number of
constraints is hard to deal with in our framework. However, if we do not wish to make
assumptions about which attributes are private, and all attributes except the target are
assumed public, the constraint reduces to a minimum support constraint.

It is known in the database community that the protection provided by this k−ano-
nymity is limited (Sweeney 2002; Samarati 2001; Machanavajjhala et al. 2007), in
particular when regulations require the class distribution of the decision tree also to be
provided. As solution to address this problem the �-diversity principle was proposed.
Using our framework, we can extend �-diversity to decision tree learning:

– under k-anonymity the prediction performed by a leaf may be 100% accurate if
there is no diversity in the class labels. To ensure customers that a tree never per-
forms a 100% accurate prediction—and hence, every customer could be one of the
exceptions to the prediction of the tree—we could require that the class distribution
in every leaf has sufficiently high entropy, i.e.,

∀I ∈ leaves(T ) : Hl(I ) = H

(
freq1(I )

freq(I )
,

freq2(I )

freq(I )
, . . . ,

freqc(I )

freq(I )

)
≥ �;

here, H(p1, . . . , pn) computes the entropy of a distribution,

H(p1, p2, . . . , pn) = −
n∑

i=1

pi log pi .

This constraint is a conjunctive, non-anti-monotonic, structure independent.
– in addition to a high diversity on class labels, we can also require a high diversity

for other attributes by imposing as constraint:

∀I ∈ internal(T ) : Hin(I ) = H

(
freq(child1(I, T ))

freq(I )
,

freq(child2(I, T ))

freq(I )

)
≥ �.
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This constraint avoids the following type of leak: in many cases the most accurate
decision trees are obtained when the supports in the leaves reach the frequency
threshold k. If an attacker knows this k, the attacker could derive how many exam-
ples are approximately in which part of the tree, and could gather an impression of
the values of attributes used in internal nodes. By requiring tests to be performed
on balanced attributes, some information is leaked; however, this information is
often least useful.

Observe that these constraints can be hard to optimize in combination with accuracy.
Indeed, �-diversity and accuracy are opposing requirements; traditional entropy-based
decision tree learners discourage high entropy in the leaves.

5 Building optimal decision trees from lattices

In this section we develop an algorithm for finding decision trees. Given our catego-
rization of the previous section, these are the requirements for this algorithm:

1. The optimization criterion must be additive.
2. The constraints must be either conjunctive over paths or based on an additive

optimization criterion.
3. There should be at least one anti-monotonic path constraint.

As seen in the previous section, we decompose a query in the following components,
some of which may be empty:

– the anti-monotonic leaf constraint ϕleaf ,antim(I );
– the leaf constraint ϕleaf (I ), which includes the anti-monotonic leaf constraint;
– the internal constraint ϕinternal(I, I1, I2);
– the leaf optimization criterion fleaf (I );
– the internal optimization criterion finternal(I, I1, I2);
– the leaf optimization constraint gleaf (I );
– the internal optimization constraint ginternal(I, I1, I2);
– the optimization constraint threshold(s) θ .

The algorithm, which we called DL8 (Decision Trees from Lattices), is based on the
link between itemset mining and decision tree learning. In this section, we first discuss
how to compute trees from itemset lattices. Next, we discuss how to compute these
lattices, where we consider two options:

1. Building the trees from pre-computed itemsets (the lattice is computed before
building the decision trees).

2. Integrating itemset mining into the decision tree construction (the lattice is com-
puted while building the decision trees).

Finally, we study how queries can be rewritten to improve the efficiency of their
evaluation in our algorithm.

5.1 Building decision trees from lattices

The algorithm for constructing decision trees from lattices is given in Algorithm 1. Its
main component is the DL8- Recursive procedure, which is called for an itemset and

123



28 S. Nijssen, E. Fromont

Algorithm 1 DL8(ϕleaf ,antim, ϕleaf , ϕinternal, fleaf , finternal, gleaf , ginternal, θ)

1: T ←DL8- Recursive(∅)
2: Compute argminT∈T T . f
3:
4: procedure DL8- Recursive((I ))
5: if DL8- Recursive(I ) was computed before then
6: return stored result
7: end if
8: initialize T to be an empty associative array with domain {0, . . . , θ}
9: if ϕleaf (I ) then
10: T .tree← leaf (c(I ))
11: T . f ← fleaf (I )
12: T .g← gleaf (I )
13: if T .g ≤ θ then
14: T [T .g] = T
15: end if
16: end if
17: for all i ∈ I do
18: if ϕinternal(I, I ∪ {i}, I ∪ {¬i}) and ϕleaf ,antim(I ∪ {i}) and ϕleaf ,antim(I ∪ {¬i}) then
19: T1 ← DL8- Recursive(I ∪ {i})
20: T2 ← DL8- Recursive(I ∪ {¬i})
21: for all T1 ∈ T1, T2 ∈ T2 do
22: T .tree← node(i, T1.tree, T2.tree)
23: T . f ← finternal(I, I ∪ {i}, I ∪ {¬i})+ T1. f + T2. f
24: T .g← ginternal(I, I ∪ {i}, I ∪ {¬i})+ T1.g + T2.g
25: if T .g ≤ θ and (T [T .g] is empty or T [T .g]. f > T . f ) then
26: T [T .g] = T
27: end if
28: end for
29: end if
30: end for
31: store T as the result for I and return T
32: end procedure

computes decision trees for that itemset. The main reasons why DL8 is more efficient
than naïve enumeration algorithms are:

– We optimize the left-hand and right-hand branch of a node in a tree independently
from each other, hence avoiding that we enumerate all possible combinations of
sub-trees for the left-hand and right-hand branch of a test.

– When we compute a tree for an itemset, we store the result, and reuse it later on,
hence avoiding that we compute the same result for other possible orders in which
the same tests can occur in a path.

– We do not recurse the search when the anti-monotone constraints are not satisfied.

The correctness of this approach follows from the following facts.

– We consider queries which are additive and conjunctive, and hence, we can eval-
uate optimization criteria and constraints for the left-hand and right-hand branch
of a node in a tree independently from each other.

– All constraints and optimization criteria are computed for itemsets, independent
of the order of the items in these sets.
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– If an anti-monotonic constraint is not satisfied for a path, any tree which contains
this path cannot be a solution to the query either.

If κ is the number of edges in a lattice, the complexity of the algorithm is �(κ), as we
consider every edge in this lattice exactly once.

In our algorithm, we use several data structures. The main data structure is the one
in which the lattice is stored. For every itemset I we have an associative data struc-
ture T which allows us to associate a tree and its attributes to a vector of integers. In
case no optimization constraints are specified, this structure T contains at most one
tree. Note that at the implementation level we do not need to store associated trees in
their entirety: it is sufficient to only store the roots of these trees, as the subtrees can
be recovered from the lattice recursively, by searching for the trees associated to the
left-hand and right-hand branch of an internal node.

In more detail, our algorithm works as follows:

Line 8: For each possible value that the optimization constraint can take we
will store one associated tree. Initially, this data structure is empty. Note
that we require an optimization criterion that is used as optimization
constraint to have an integer codomain.

Line 9–14: In case the itemset corresponds to a possible leaf, we initialize this leaf
and its statistics T . f and T .g.

Line 17–31: We iterate over all possible tests to split the examples further.
Line 19: For a possible test, we determine whether or not we create a tree in

which this test is a valid internal node; furthermore we determine if we
create two paths that can be part of a tree in which the anti-monotonic
constraints are satisfied.

Line 20–21: If we can satisfy the constraints, we determine the best trees for the
left-hand and right-hand branches, independently from each other; both
calls return sets of trees, each tree associated to a vector of integers,
each integer representing a possible value of one of the optimization
constraints for the tree (if we do not have an optimization constraint,
each set contains at most one tree).

Line 22–29: We consider all combinations of left-hand and right-hand trees.
Line 27: The optimization constraint of the generated tree is evaluated; if the best

known tree for this constraint value is improved, we store the new tree.
We only need to store intermediate trees for which the optimization con-
straint is not higher than the threshold value, as the additivity means that
other sub-trees cannot be part of the final tree.

5.2 Computing lattices beforehand

While DL8 is executing, it needs to evaluate constraints based on the data. In this
section we study the following question: assuming that we would like to use an item-
set mining algorithm beforehand to find the itemsets and their properties in the data,
which constraints should we use in this itemset miner? In other words, how do we
push the decision tree mining constraints in the itemset mining process?
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First, let us consider why we may be interested in separating the execution of DL8
from the itemset mining process. We believe there could be two reasons for this.

1. There are many optimized itemset mining algorithms; by using these, we exploit
these optimizations, and reduce implementation efforts.

2. We might consider decision tree construction as one part of an interactive data
analysis process, in which it could be of interest to know in which cases we can
reuse a set of itemsets to build multiple decision trees.

The main class of constraints used by itemset miners is the class of anti-monotonic
constraints. We can see that if we find all itemsets satisfying ϕleaf ,antim(I ), we find suf-
ficiently many itemsets to build decision trees for the case that ϕleaf ,antim(I ) is the leaf
constraint. A more interesting question is the reverse question: are all these itemsets
needed? The following example illustrates that this is not the case. Assume that {A} is
a frequent itemset, but {¬A} is not; then no tree will contain a test on feature A, as one
of the branches resulting from this test will lead to an infrequent leaf. Consequently,
itemset {A}, even though frequent, is redundant. The following explains how we can
characterize the itemsets relevant to decision trees induction.

If we consider the DL8 algorithm, an itemset I = {i1, . . . , in} is needed only if
there is an order [ik1 , ik2 , . . . , ikn ] of the items in I (which corresponds to an order
of recursive calls of DL8- Recursive) such that for none of the proper prefixes I ′ =
[ik1, ik2 , . . . , ikm ] (m < n) of this order:

1. the ϕinternal(I ′, I ′ ∪ {ikm+1}, I ′ ∪ {¬ikm+1}) predicate is false;
2. the conjunction ϕleaf ,antim(I ′ ∪ {ikm+1}) ∧ ϕleaf ,antim(I ′ ∪ {¬ikm+1}) is false.

Definition 2 Let ϕleaf ,antim be an anti-monotonic constraint and ϕinternal be an internal
constraint. Then the relevance of an itemset I , denoted by rel(I ), is defined by

rel(I ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕinternal(I ), if I = ∅ (Case 1)

true, if ∃i ∈ I such that
rel(I − i) ∧ ϕinternal(I − i, I, I − i ∪ {¬i})∧
ϕleaf ,antim(I ) ∧ ϕleaf ,antim(I − i ∪ ¬i) (Case 2)

false, otherwise (Case 3)

Theorem 1 Let L1 be the set of itemsets stored by DL8, and let L2 be the set of
itemsets {I ⊆ I|rel(I ) = true}. Then L1 = L2.

Proof We consider both directions.
“⇒”: if an itemset is stored by DL8, there must be an order of the items in which each
prefix satisfies the constraints. Then we can repeatedly pick the last item in this order
to find the items that satisfy the constraints in case 2 of the definition of rel(I ).
“⇐”: if an itemset is relevant, we can construct an order in which the items can be
added in the recursion without violating the constraints, as follows. For a relevant
itemset there must be an item i ∈ I such that case 2 holds. Let this be the last item in
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the order; then recursively consider the itemset I − i . As this itemset is also relevant,
we can again obtain an item i ′ ∈ I − i , and put this on the second last position in the
order, and so on. ��

If we assume that the internal constraint is also anti-monotonic, relevance can also
be used in itemset miners that exploit anti-monotonic constraints.

Theorem 2 If both the internal constraint and the leaf constraint are anti-monotonic,
itemset relevance is an anti-monotonic property.

Proof By induction. The base case is trivial: if the ∅ itemset is not relevant then none
of its supersets is relevant. Assume that for all itemsets X ′, X up to size |X | = n we
have shown that if X ′ ⊂ X : ¬rel(X ′) ⇒ ¬rel(X). Assume that Y = X ∪ i and that
X is not relevant. To prove that Y is not relevant, we need to consider every j ∈ Y ,
and consider whether case 2 of the definition is true for this j :

– If i = j . certainly Y − i = X is not relevant;
– If i �= j . We know that j ∈ X , and given that X is not relevant, either:

– rel(X − j) = false: in this case rel(Y − j) = rel(X − j ∪ i) = false (inductive
assumption);

– ϕleaf ,antim(X) = false: in this case ϕleaf ,antim(Y ) = false (anti-monotonicity of
ϕleaf ,antim);

– ϕleaf ,antim(X − j ∪ ¬ j) = false: in this case ϕleaf ,antim(Y − j ∪ ¬ j) =
ϕleaf ,antim(X − j ∪ ¬ j ∪ i) = false (anti-monotonicity of ϕleaf ,antim);

– ϕinternal,antim(X − j) = f alse: in this case ϕinternal,antim(Y − j) =
ϕinternal,antim(X − j ∪ i) = false (anti-monotonicity of ϕinternal,antim).

Consequently, rel(Y ) can only be false. ��
It is relatively easy to integrate the computation of relevance in both breadth-first

and depth-first frequent itemset mining algorithms, as long as the order of itemset gen-
eration is such that all subsets of an itemset I are enumerated before I is enumerated
itself.

We implemented two versions of DL8 in which the relevance constraints are pushed
in the frequent itemset mining process: DL8-Apriori, which is based on Apriori
(Agrawal et al. 1996), and DL8-Eclat, which is based on Eclat (Zaki et al. 1997a).

5.3 Computing lattices on the fly

The second option is to access the data while building decision trees. One reason for
doing this could be to avoid possible overhead caused by traversing the lattice multiple
times. Another, more important, reason involves the possibility to use closed itemsets
effectively.

The main observation that we exploit to this purpose is that if we are dealing with
a structure independent query we can restrict our attention to an even smaller set of
itemsets than the relevant itemsets.

The main reason for this is that if two itemsets I and I ′ cover the same set of
examples (i.e., tid(I ) = tid(I ′)), and the query is structure independent, the tree(s)
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we find for both itemsets must be the same. To reduce the number of itemsets that we
have to store, we should avoid storing such duplicate sets of results.

To ensure that results are re-used between itemsets covering exactly the same exam-
ples, we propose to compute for every itemset its closure. The closure of an itemset
I is the largest itemset that all transactions in tid(I ) have in common. More formally,
let items be the function which computes

items(tids) = ∩k∈tidstk

for a TID-set tids, then the closure of itemset I is the itemset items(tid(I )). An itemset
I is called closed iff I = items(tid(I )) (Pasquier et al. 1999). If tid(I1) = tid(I2) it is
easy to see that also items(tid(I1)) = items(tid(I2)).

We can use this observation by modifying DL8: instead of associating decision trees
to itemsets, we associate decision trees to closed itemsets. We change line 5 such that
it checks if a decision tree has already been computed for the closure of I ; in line 31,
we associate computed decision tree(s) to the closure of I instead of to I itself. We
refer to this algorithm as DL8- Closed.

In practice this means that we build a data structure of closed itemsets instead
of ordinary itemsets. Lattices of closed itemsets are also known as concept lattices;
closed itemsets are also known as formal concepts, and have been studied extensively
in the literature (Ganter and Wille 1999). In principle, one could also develop a step-
wise approach in which one first computes closed itemsets and subsequently mines
decision trees. However, in our algorithm we do not only need the closed itemsets;
we also need the relationships between them, i.e., if we add an item to an itemset we
need to know what the closure of the resulting itemset is. In other words, we do not
only need to know the formal concepts, we also need to know the edges in the Hasse
diagram of these itemsets. Storing these edges would not only increase the memory
requirements of our algorithm, determining them in a post processing step is also not
straightforward: a naïve algorithm for computing this diagram would take quadratic
time, while also less naïve recent algorithms (such as (Baixeries et al. 2009)) require
significant computation times. An approach in which itemsets are mined and decision
trees are built at the same time hence seems more promising. The remainder of this
section is devoted to an outline of the choices that we made in the integrated approach
that we used in our experiments. This approach builds on choices that are commonly
made in closed itemset mining algorithms.

The main idea is that during the search, we keep track of those items and transactions
that are ‘active’. As parameters to DL8- Recursive we add the following:

– the item i that was last added to I ;
– a set of active items, which includes item i , and represents all tests that can still

be added to the itemset I − i ;
– a set of active transaction identifiers representing tid(I − i);
– the set of all items C that are in the closure of I − i , but are not part of the set of

active items.

In the first call to DL8- Recursive, all items and transactions are active. At the start
of each recursive call (before line 5 of DL8- Recursive is executed) we scan each
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active transaction, and test if it contains the last added item i ; for each active trans-
action that contains item i , we determine which other active items it contains. We
use this scan to compute the frequency of the active items, and build the new set of
active transaction identifiers tid(I ). Those active items of which the frequency equals
that of I , are added to the closure C. If it turns out we have encountered this closure
before, we return the corresponding previously computed result. Otherwise, we now
build a new set of active items. For every item we determine if ϕleaf ,antim(I ∪ {i}),
ϕleaf ,antim(I ∪ {¬i}) and the internal constraint ϕinternal(I, I ∪ {i}, I ∪ {¬i}) are true;
if so, we add the item to the new set of active items. In line 17 we traverse the set
of active items. In line 19 and 20 the updated sets of active transactions and active
items are passed to the recursive calls. By computing the closure of every itemset, we
traverse the Hasse diagram of closed itemsets.

Our approach for maintaining sets of active transactions is akin to the idea of main-
taining projected databases that is implemented in Eclat (Zaki et al. 1997a) and
FP- Growth (Han et al. 2000). In contrast to these algorithms, we know in our case
that we have to maintain projections that contain both an item i and its negation ¬i .
As we know that |tid(I )| = |tid(I ∪ i)|+ |tid(I ∪¬i)|, it is less beneficial to maintain
TID-sets as in Eclat, and we prefer a solution in which we call DL8- Recursive
with the set of active transactions tid(I − i) instead of tid(I ). We project a trans-
action set by reordering the transactions in an array. Consequently, the memory use
of our algorithm is determined by the amount of memory that is needed to store the
database and the closed itemsets with associated information. Per closed itemset we
only store the associative array T for later retrieval; to reduce memory demands, we
do not store support values, edges of the Hasse diagram, or TID sets. A tree in the
associative array is only represented by its root node, as any subtrees can be recovered
recursively from information associated to other itemsets. The information that we
store for every itemset is hence only determined by the optimization criteria that are
used; if we assume the query given, the information stored per itemset is constant.
Consequently, the memory use is θ(|D|+ |S|), where |S| is the size of a data structure
storing all closed itemsets.

Even though we hence attempt to limit the memory required by our algorithm, it
should be repeated that the number of closed itemsets can be exponential in the size
of the database; in practice the complexity remains high.

5.4 Efficiency improvements

A common trick to improve the efficiency of constraint-based search is to rewrite
constraints or to add redundant constraints. For instance, both in research devoted to
constraint programming and to database systems it is common to rewrite queries to a
form which can be more efficiently evaluated. While some systems—database systems
for instance—attempt to optimize certain queries, in many cases such optimization is
still a manual effort that is undertaken by a programmer. A similar observation can also
be made for decision tree learning queries. The aim of this section is to suggest the use
of query rewriting to improve the overall efficiency of our algorithm. We illustrate this
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for two tasks that can be performed by our algorithm. We leave the topic of general
query optimization as future work.

Finding the smallest most accurate tree Let us consider the following query:

argmin
T∈T

(error(T ), size(T )) subject to ϕ(T ) = ∀I ∈ paths(T ) : freq(I ) ≥ minfreq

We can optimize this query further by the following simple observation: if a tree con-
tains an internal node which is pure, we can remove the tree below this internal node
to obtain a tree that is equally accurate but smaller. Hence, in the smallest most accu-
rate tree we will never have pure internal nodes. We can pose this as an additional,
redundant internal constraint, and push this in the mining process. In the following
theorem we show that this constraint on the global model can even be relaxed further
to prune additional itemsets during the local pattern mining step.

Definition 3 For a given itemset I , let us sort the frequencies in the classes in descend-
ing order, freq1 ≥ . . . ≥ freqn (hence freq1 is the frequency of the majority class).
Let minfreq be the minimum frequency used to build the lattice. An itemset I is
almost-pure if (minfreq −∑n

i=2 freqi (I )) > freq2(I ).

Theorem 3 If freq(I ) ≥ minfreq, almost − pure(I ) = true and class k is the majority
class in I , then for all I ′ ⊃ I such that freq(I ′) ≥ minfreq, class k is the majority
class of I ′.

Proof Let class 1 be the majority class in the examples t = t id(I ). Then freq(I ) ≥
minfreq⇔∑n

i=1 freqi (I ) ≥ minfreq⇔ f req1 ≥ (minfreq −∑n
i=2 freqi (I )). Since

I is almost-pure we know that (minfreq−∑n
i=2 freqi (I )) > freq2(I ) ≥ 0⇔ ∀i, 2 ≤

i ≤ n, f reqi < minfreq.
For class k (k �= 1) to be the majority class in I ′ with I ′ ⊃ I and freq(I ′) ≥

minfreq, the number of examples of class k in I ′ should be higher than the mini-
mum number of examples from class 1 that will still be in I ′. This number is at least
(minfreq −∑n

i=2 freqi (I )). So, for k (k �= 1) to be the new majority class in I ′, we
must have freqk ≥ (minfreq −∑n

i=2 freqi (I )) which contradicts the definition of
loose-purity for I ; therefore class 1 must be the majority class in I ′. ��

Intuitively, the previous theorem states that if the frequency of the examples belong-
ing to the second majority class is low enough, splitting the tree again will never
increase its global accuracy. Hence, if we are searching for accurate and small trees,
we can pose the (redundant) constraint that every internal node should not be almost-
pure to obtain the correct result.

Finding the smallest sufficiently accurate tree Assume we wish to answer the fol-
lowing query:

argmin
T∈T

size(T ) subject to ϕ(T )
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where

ϕ(T ) = error(T ) ≤ maxerror ∧ size(T ) ≤ maxsize ∧
(∀I ∈ paths(T ) : freq(I ) ≥ minfreq).

In principle we could maintain for every itemset a set of trees of size O(maxerror ×
maxsize), but such an approach demands the computation of a very large number of
trees for every itemset.

Assume now that we execute the following query:

argmin
T∈T

error(T ) subject to ϕ(T )

where

ϕ(T ) = size(T ) ≤ maxsize ∧ (∀I ∈ paths(T ) : freq(I ) ≥ minfreq).

Then we can observe that to answer this query, DL8 will find for every possible size
up to the maximum size, the most accurate tree of that size. We can easily modify DL8
in line 2 to answer our original query, as it suffices to find the smallest tree in this set
which satisfies the accuracy constraint.

6 Experiments

The aim of this section is to answer the following questions :

1. How does an exact tree learner, such as DL8, compare to a well-known heuristic
learner in terms of the compromise between size and accuracy?

2. What is the influence of DL8’s mandatory constraint (the minf req constraint) on
the accuracy of the trees it learns?

3. How well does DL8 perform on non-traditional tree learning problems, such as
learning decision trees under cost or size constraints?

With respect to efficiency, we aim to answer the following questions:

4. How much do the constraints on the trees help the local pattern mining phase?
5. How much does restricting the search to closed itemsets improve the overall

efficiency?

The experiments were performed on UCI datasets (Asuncion and Newman 2007).
Numerical datasets were discretized using Weka’s (Witten and Frank 2005) unsuper-
vised discretization method with an equal-frequency repartition and a number of bins
equal to 4 before applying the learning algorithms. We limited the number of bins in
order to limit the number of created features. Table 1 gives a brief description of the
datasets that we used in terms of the number of examples and the number of attri-
butes after binarization (features). All experiments were performed on Intel Pentium
4 machines with in between 1 GB and 4 GB of main memory, running Linux. DL8 and
the frequent itemset miners were implemented in C++.
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Table 1 Dataset description

Dataset #Ex #Features Dataset #Ex #Features

Anneal 812 36 Pendigits 7494 49

a-credit 653 56 p-tumor 336 18

Balance 625 13 Segment 2310 55

Breast-w 683 28 Soybean 630 45

Chess 3196 41 Splice 3190 3466

Diabetes 768 25 Thyroid 3247 36

g-credit 1000 77 Vehicle 846 55

Heart-c 296 35 Vote 435 49

Ionosphere 351 99 Vowel 990 48

Mushroom 8124 116 Yeast 1484 23

6.1 Quality evaluation

In this section we determine the performance of DL8 when mining trees under
constraints. Thus, we aim at answering Questions (1), (2), and (3). Note that no imple-
mentation of alternative exact decision tree learners is available. As a baseline to
evaluate our results, we decided to use J48, the Java implementation of the heuristic
decision tree learner C4.5 (Quinlan 1993) in Weka. Without guaranteeing an exact
solution, C4.5 supports some constraints, such as a minimum support on nodes after
a split, which corresponds to the anti-monotonic “frequency” constraint in our case.
C4.5 is known to generalize well and give good test accuracy results on many machine
learning problems.

To answer Question (1) and, in particular, to evaluate the accuracy of the trees
computed by DL8 on test data, we obviously cannot optimize the test set accuracy
directly (and thus we cannot guarantee better results on test data): we need to optimize
regularized measures on the training data if we wish to avoid overfitting. When using
the standard error function (error) for C4.5, we let C4.5 continue splitting as long as
the training set error is reduced and the frequency constraint is not violated. When
using the reduced-error function ( f p) the default pruning criterion in C4.5 is applied.

We used a stratified 10-fold cross-validation to compute the training and test accu-
racies of both systems and a corrected two-tailed t-test (Nadeau and Bengio 2003)
with a significance threshold of 5% to compare the test accuracies; 0 indicates that no
significant difference was observed,− indicates that J48 is significantly better,+ that
DL8 is significantly better.

As explained in Sect. 5, the bottleneck of our algorithm is the itemset mining phase
and the in-memory construction of the lattice which is part of this phase. Therefore,
the application of our algorithm is limited by the amount of memory available for the
construction of this lattice. In the following experiments, unless specified differently,
the minfreq threshold used for DL8 for each dataset is the lowest one we could use for
the given dataset without running out of memory.
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6.1.1 Heuristic versus exact decision tree learning

The main alternative for our approach is the heuristic approach. Results for the heuris-
tic approach can provide us a lower-bound on the accuracy that can be achieved on the
datasets that we use in this article. Similarly, in order to study the effects of constraints
that we will use later in our experiments, it is of interest to determine the accuracies
that DL8 is able to achieve when using the least restrictive constraint possible, which
we assume to be the minf req = 2 threshold used in J48. Results for this setting, when
applying the f p optimization criterion, are given in Table 2 for those datasets where
the use of this support threshold is feasible for DL8. We used this pruning criterion
as both DL8 and J48 overall achieve the best test-set accuracy for this criterion (not
shown here).

An important element of our approach is the discretization in binary attributes,
which is not needed in J48. To determine the influence of our discretization on the
resulting trees, we applied J48 both on the original, undiscretized data and the dis-
cretized data that was also used as input to DL8. The table shows that the optimal
trees computed by DL8 have a better training accuracy than the trees computed by J48
with the same discretization. When pruned trees are compared to unpruned ones (see
Table 3), the trees are on average 1.75 times smaller for J48 and 1.5 time smaller for
DL8. After pruning, DL8’s trees are still 1.5 times larger than J48’s pruned trees. In
one case (balance-scale), the tree computed by DL8 is significantly smaller on average
(65.4 nodes) than the one computed by J48 (72.4 nodes) for a similar test accuracy.
Furthermore, on the test data, there is almost no significant difference (expect for the
yeast dataset) between J48 and DL8.

This shows that the quality of the trees computed by DL8 remains competitive
with J48’s one. However, using a simpler heuristic decision tree learner is sufficient
to obtain good test-set accuracy and this might yield smaller trees.

Unfortunately, as can be seen in Table 3, the number of datasets for which a min-
imum support threshold of 2 is feasible in DL8 is limited. Using higher thresholds
could allow us to compare our algorithm on a larger number of datasets. The influence
of this constraint is hence studied in the next section.

Table 2 Comparison of J48 (with pruning, without constraints) and DL8 (with pruning, without
constraints)

Train acc. Test acc. Test significance Size

Datasets DL8 J48 DL8 J48 Disc. J48 No D. Disc. No D. J48 DL8

Anneal 0.87 0.86 0.82 0.82 0.88 0 – 44.4 45.6
Balance 0.89 0.89 0.80 0.80 0.79 0 0 72.4 65.4
Breast-w 0.98 0.97 0.96 0.96 0.95 0 0 15.6 18.0
Diabetes 0.92 0.84 0.71 0.74 0.73 0 0 69.0 135.2
Heart-c 0.97 0.90 0.77 0.78 0.80 0 0 31.6 50.2
p-tumor 0.67 0.60 0.40 0.40 0.40 0 0 81.2 105.2
Yeast 0.75 0.68 0.50 0.53 0.56 – – 186.0 307.2
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Table 3 Comparison of J48 (without pruning, with constraints) and DL8 (without pruning, with constraints)

Minfreq Train acc. Test acc. Size

Datasets # % J48 DL8 J48 DL8 Sign J48 DL8

Anneal 2 0.2 0.89 0.89 0.82 0.82 0 106.6 87.8

a-credit 40 6.1 0.87 0.89 0.85 0.88 + 6.4 11.0

Balance 2 0.3 0.90 0.90 0.82 0.81 0 99.0 114.4

Breast-w 2 0.3 0.98 1.00 0.95 0.94 0 31.6 48.0

Chess 200 6.2 0.91 0.91 0.91 0.91 0 9.0 8.6

Diabetes 2 0.2 0.90 0.99 0.68 0.66 0 200.2 288.4

g-credit 150 15.0 0.72 0.74 0.71 0.73 0 6.4 7.0

g-credit 100 10.0 0.73 0.75 0.70 0.70 0 6.4 11.6

Heart-c 2 0.6 0.94 1.00 0.76 0.74 0 67.6 74.4

Ionosphere 50 14.2 0.83 0.86 0.79 0.84 + 4.0 7.4

Ionosphere 40 11.3 0.89 0.89 0.88 0.88 0 5.0 6.8

Mushroom 600 7.4 0.92 0.98 0.92 0.98 + 5.0 13.8

Pendigits 470 6.3 0.68 0.75 0.67 0.75 + 21.0 21.0

p-tumor 2 0.5 0.63 0.71 0.40 0.36 0 116.4 152.2

Segment 150 6.5 0.77 0.86 0.76 0.85 + 15.6 16.8

Segment 120 5.2 0.84 0.87 0.84 0.87 + 19.8 25.8

Soybean 40 6.3 0.58 0.65 0.57 0.66 + 17.0 20.6

Splice 700 21.9 0.74 0.74 0.74 0.73 0 5.0 5.0

Thyroid 80 2.4 0.91 0.92 0.91 0.91 0 1.0 13.4

Thyroid 40 1.2 0.92 0.92 0.91 0.91 0 9.2 34.4

Vehicle 50 5.9 0.63 0.71 0.59 0.67 + 17.0 22.4

Vote 10 2.3 0.96 0.98 0.94 0.93 0 4.6 29.6

Vowel 65 6.6 0.40 0.47 0.35 0.43 + 19.2 22.6

yeast 2 0.1 0.74 0.82 0.49 0.48 0 501.2 724.2

In these experiments the error optimization criterion is used. The first two columns give the minf req thresh-
old in terms of absolute number and percentage of the examples that should be covered by each leaf. The
next columns give respectively the training accuracies, test accuracies, and size of the trees built by J48
and DL8 for the given minfreq threshold. A significance comparison of the test accuracies of both systems
(Sign) is also given

6.1.2 Frequency constraint

As the use of a frequency constraint is an important property of our approach, we
determine the influence of this constraint.

As a baseline, we first run both J48 and DL8 on all datasets, for the lowest value
for which the execution of DL8 is feasible. We used the training set error (error) as
optimization criterion. Table 3 shows that, when optimizing error, for both training
and test accuracies, DL8 is significantly better than J48 on 9 of the 20 datasets, and
not worse in the other cases. Hence, we can confirm that our results of the previous
section also apply for other values of the frequency constraint.
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Secondly, we evaluate how different values of this mandatory constraint influence
the accuracy of trees learned by our algorithm. To this aim, Table 3 includes runs of
DL8 for multiple minimum frequencies. We gradually decrease the frequency thresh-
olds both when using error and f p as optimisation criteria. As we lower the support
thresholds, we observe that the training accuracy increases, but the experiments on the
seven datasets for which we were able to reach a minf req of 2, indicate that for test
set accuracy, low thresholds are not always the best option. For example, Fig. 3 shows
the evolution of the training and test accuracies of both systems when optimizing
the reduced-error function f p and increasing the support. As expected, the training
accuracies always decrease when the support increases. However, this behavior is less
clear for test accuracies. For example, for the diabetes dataset, the test accuracies
clearly increase with the minimum support. The main explanation for this is proba-
bly that the support constraint acts as a regularization parameter and helps to avoid
overfitting.

These experiments show that when both algorithms try to optimize the same crite-
rion (here the training set error) using the same path constraint (support threshold),
the exact decision tree learner DL8 gives better results than the heuristic one. Further-
more, the mandatory constraint of DL8 is not necessarily a drawback when looking
for decision trees with high test accuracy.

Until now, the results confirm the intuition that high values for the frequency con-
straint can lead to worse accuracies. Indeed, when in Table 4 we compare the perfor-
mance of DL8 to J48 on datasets which were not included in Table 2, we observe that
the support threshold can have a strong negative influence on the accuracies achieved.
For example, for the pendigits dataset, the support threshold that we reach for DL8 is
470 (compared to 2 for J48) and the test accuracy drops from 0.95 for J48 to 0.75 for
DL8.

In such negative cases, the flexibility of DL8 can be particularly interesting. For
example, when the lowest minimum frequency threshold for which we could run our
algorithm is much higher than the number of examples in the smallest class of the data-
set, we can use a disjunction of minimum support constraints for each class instead
of the classical minf req to obtain more accurate trees. In this setting, every class is
given the same (relative) minimum support constraint. In this way, we allow that a leaf
covers a small number of examples if all examples belong to the same small class,
but we do not allow that a leaf contains a small number of examples if they belong
to many different classes, or to one big class. The results of these experiments on the
negative cases of Table 4 are shown in Table 5. We compare the training and test set
accuracies and the size of DL8 when optimizing the f p criterion and using the lowest
minimum support threshold that we can reach within the available memory. As we
can see, the accuracies of DL8 increase significantly in all cases, which shows the
interest of putting such constraints when the class distribution of the data is known
beforehand.

6.1.3 Untraditional tasks

This section aims at answering Question (3). By answering this question, we also aim
at answering another underlying question: when is it more interesting to use an exact
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Fig. 3 Evolution of the training and test accuracies of J48 (unpruned and pruned) and DL8 (error and f p
optimization functions) for various minimum frequency thresholds

algorithm potentially less efficient and not necessarily more accurate than a heuristic
one to learn decision trees?
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Table 4 Comparison of J48 (with pruning, without constraints) and DL8 (with pruning, with constraints)

Datasets Minfreq Test acc.

# % J48 DL8

a-credit 40 6.1 0.84 0.88

Chess 200 6.2 0.99 0.91

g-credit 150 15 0.71 0.73

Ionosphere 50 14.2 0.80 0.84

Mushroom 600 7.4 1.00 0.98

Pendigits 470 6.3 0.95 0.75

Segment 150 6.5 0.95 0.85

Soybean 40 6.3 0.82 0.66

Splice 700 21.9 0.94 0.73

Thyroid 80 2.4 0.91 0.91

Vehicle 50 5.9 0.70 0.67

Vote 10 2.3 0.96 0.93

Vowel 65 6.6 0.53 0.43

In these experiments a pruning criterion was used, a frequency threshold of 2 for J48 and higher values for
DL8

Table 5 Results of DL8 using a disjunction of frequency constraints

Datasets One frequency constraint Disjunction of frequency constraints

Minfreq Train acc. Test acc. Size Minfreq Train acc. Test acc. Size

% %

Pendigits 6.3 0.75 0.75 21.2 35.0 0.82 0.82 30.8

Segment 5.2 0.87 0.86 21.2 22.0 0.91 0.90 33.0

Soybean 6.3 0.65 0.66 20.6 35.0 0.80 0.78 38.0

Splice 21.9 0.74 0.73 5.0 32.0 0.78 0.79 7.2

Vowel 6.6 0.47 0.43 21.8 14.0 0.73 0.65 88.6

Yeast 0.1 0.75 0.50 307.2 2.0 0.67 0.52 136.4

In this experiment the f p optimization function was used with the lowest reachable frequency constraints
and a disjunction of class minimum frequency constraints

Learning under size constraints In (Murphy and Pazzani 1997), the authors found
that a brute-force enumeration of trees leads can lead to good results for slightly larger
trees. To explore this result in more detail, and again to show the flexibility of our
algorithm, we investigate how much accuracy is affected if we impose exact size con-
straints. We use DL8 to compute, for every possible size of a decision tree, the tree
with the smallest (pruned) error that can be achieved, and apply this tree on training
and test data under ten-fold cross validation. For two datasets, the results of such a
query are given in Fig. 4.
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Fig. 4 Errors of decision trees as function of tree size

On the training data, in general, if we increase the size of a decision tree, its accu-
racy improves quickly at first. Only small improvements can be obtained by further
increasing the size of the tree.

On the test data, the effects are less clear. Increasing the tree size can lead to either
better or worse results. On balance scale, increasing the size of the tree leads to both
better training and test results; the principle of Occam’s razor does not seem to apply
in this case. On the other hand, on heart-cleveland we observe that an increase in tree
size does not lead to significantly better trees on training data, but results in signifi-
cantly worse trees on test data. In this case, smaller trees would be preferable. Overall,
if results on the training data are not significantly different, it seems preferable to
choose a smaller tree. Furthermore, we can observe that the figures have a ‘tail’ in
which an increase in allowed tree size leads to increasingly less benefits on the test data.

Answering Question (3), figures such as Fig. 4 are of practical interest, as they
allow a user to trade-off the interpretability and the accuracy of a model. Furthermore,
when a weighted sum of accuracy and error is used as optimization criterion, as in
dyadic decision trees, points on this curve correspond to particular choices for these
weights, and can easily be computed by our algorithm.

The two last columns of Table 3 show that the trees computed by DL8, although
not less accurate, can be bigger than the trees computed by J48. To investigate the
relationship between accuracy and size in more detail for a larger number of datasets,
we decided to investigate whether a constraint on size would significantly worsen the
performance of DL8. In Table 6, we show results in which the average size of trees con-
structed by J48 is taken as a constraint on the maximal size of trees mined by DL8. The
results given by DL8 are neither significantly better nor significantly worse than those
given by J48, in terms of both size and test set accuracy. Furthermore, imposing the size
constraint does not significantly affect the accuracy in most cases. This is an indication
that for these datasets, we are in the tails that can be seen in Fig. 4, where it makes
sense to impose an explicit size constraint, even when a pruning measure is applied.

Learning under cost constraints The second case on which we explore the use of
exact decision tree learners is learning trees under cost constraints. We compare DL8
to ICET (Inexpensive Classification with Expensive Tests) (Turney 1995), introduced
in Sect. 4.2.4. The aim is to induce decision trees which minimize fq(T ) = ftq(T )+
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Table 6 Results of DL8 for different size constraints

Dataset Minfreq Max size
DL8

Test acc Size

J48 DL8 DL8 J48 DL8 DL8
w. size w/o size w. size w/o size

Diabetes 2 69 0.75 0.72 0.71 69.0 68.8 135.2

g-credit 100 7 0.70 0.72 0.71 6.7 7.0 6.8

Heart-c 10 14 0.80 0.80 0.81 14.0 13.0 22.2

Vote 15 4 0.95 0.96 0.95 3.4 3.0 9.2

Yeast 2 186 0.53 0.52 0.50 186.0 185.0 307.2

Shown are test accuracies for DL8 using the f p optimization criterion

fmq(T ); ICET uses a genetic algorithm for this purpose. The comparison is made
using the five well known datasets from the UCI repository (Asuncion and Newman
2007) for which test costs are provided (BUPA Liver Disorders, Heart Disease, Hep-
atitis Prognosis, Pima Indians Diabetes and Thyroid Disease). We binarized the input
data before using DL8 similarly as in the previous section. A comparison is given in
Fig. 5. The figure shows the average cost of classification given by the algorithms
as a percentage of the standard cost of classification for different misclassification
costs.

The average cost of classification is computed by dividing the total cost of applying
the learned decision tree on all test examples by the number of examples in the test
set. The total cost of using a given decision tree on an example occurring in a leaf I is
tq(I ) =∑

i∈I tqi +∑
g∈{gi |i∈I } tqg , i.e., the sum of all tests that are chosen and the

misclassification cost as specified in the misclassification matrix Qi, j . Let pc ∈ [0, 1]
be the frequency of class c in the given dataset, i.e, the fraction of the examples in
the dataset that belong in class c. Let T be the total cost of performing all possible
tests (counting only once the additional cost for the tests in the same group). The
standard cost is T + minc(1 − pc) maxi, j Qi, j . The second term is computed from
the frequency of the majority class in the dataset and the highest misclassification
cost that an algorithm can have if examples are incorrectly classified as the majority
class.

In the experiments, we vary the misclassification costs (as specified in the matrix
Qi, j ) from $10 to $10,000. For the sake of simplicity, we consider simple cost matrices
i.e, all misclassification costs are equal. The lowest frequency threshold we could use
for DL8 is 2 for the BUPA Liver Disorders dataset, 16 for the Heart Disease dataset,
5 for the Hepatitis Prognosis dataset, 15 for the Pima Indians Diabetes dataset and
55 for the Thyroid Disease dataset. Note that these supports can be higher than those
reported in Tables 2 and 3 because the syntax dependent optimization criterion means
we cannot use the smaller set of closed itemsets.

The results show a better performance for DL8 for four of the five datasets. How-
ever, for the ann-thyroid dataset, DL8’s results are worse for high misclassification
costs (> 103). Further investigations revealed that this behavior is the result of the
low number of bins that we used in our discretization, which resulted in an error
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Fig. 5 Comparison of the cost-sensitive decision trees ICET and DL8 with various frequency thresholds
(the lower curve, the better)

rate that was close to that of a majority classifier in this very unbalanced dataset
(three classes with distribution (93, 191, 3488)). Once the same discretization was
used, the error rates were more similar to each other, and the difference in behavior
disappeared.

6.2 Efficiency evaluation

We argued that we can construct decision trees both from itemset lattices as from sets
of closed itemsets; we can do so while mining itemsets, or by post-processing itemsets.
In this section we compare these different versions of DL8 in terms of efficiency.

The applicability of DL8 is limited by two factors: the amount of itemsets that need
to be stored, and the time that it takes to compute these itemsets. To answer Ques-
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tion (4) we evaluate experimentally how the run time of the pattern mining process is
influenced by the relevance constraint and the support constraint. To answer Question
(5) we perform this comparison for several alternative approaches for constructing
decision trees from patterns, one of which operates on concept lattices. A summary of
the algorithms can be found in Table 7. DL8- Closed implements the direct mining
algorithm of Sect. 5.3. DL8- Eclat extends the Eclat algorithm (Zaki et al. 1997a)
to search for itemsets and build a decision tree; DL8- Apriori extends Apriori with
relevance pruning and builds a tree on the resulting lattice. We also include unmodified
implementations of the frequent itemset miners Apriori (Agrawal et al. 1996), Eclat
(Zaki et al. 1997a) and LCM (Uno et al. 2004) in the comparison. These implemen-
tations were obtained from the FIMI website (Bayardo et al. 2004). The inclusion of
unmodified algorithms allows us to determine how much the search space is reduced
by the anti-monotonic relevance pruning, and allows us to determine the trade-off
between relevance pruning and trie construction. In Apriori- Freq+DL8 we first run
traditional Apriori to construct an itemset lattice without relevance pruning; we run
DL8 in a second phase on the constructed lattice.

Results for eight datasets are shown in Figs. 6 and 7. We chose datasets that cover
a broad range of dataset properties, including both datasets with large and small num-
bers of features and transactions. In these runs we computed the most accurate tree
given only a minimum frequency constraint. We aborted runs of algorithms that lasted
for longer than 1800s.

Answering Question (5), the results clearly show that in all cases the number of
closed relevant itemsets is the smallest, which shows the advantage of using closed
itemsets. DL8- Closed is usually faster than DL8- Apriori or DL8- Eclat. For the
datasets with larger number of features, such as ionosphere and splice, we found that
only DL8- Closed managed to run for support thresholds lower than 25%, but still was
unable to run for support thresholds lower than 10%. The differences between closed
relevant itemsets and non-closed relevant itemsets are smaller for higher minimum
support values; the overhead of DL8- Closed seems too large in this case.

With respect to Question (4), we can observe that the difference between the num-
ber of relevant itemsets and the total number of frequent itemsets becomes smaller
for lower minimum frequency values (for good examples, consider the zoo data and

Table 7 Properties of the algorithms used in the experiments

Algorithm Uses relevance Closed Builds tree

DL8- Closed X X X

DL8- Apriori X X

DL8- Eclat X X

Apriori- Freq

Apriori- Freq+DL8 X

Eclat- Freq

LCM- Freq

LCM- Closed X
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Fig. 6 Comparison of the different miners on 8 UCI datasets (1/2)
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the diabetes data). The number of frequent itemsets is so large in most cases, that it
is impossible to compute or store them within a reasonable amount of time or space.
In those datasets where we can use low minimum frequencies (15 or smaller), the
closed itemset miner LCM is usually the fastest; for low frequency values the number
of closed itemsets is almost the same as the number of relevant closed itemsets. Bear
in mind, however, that LCM does not output the itemsets in a form that can be used
efficiently by DL8.

In those cases where we can store the entire output of Apriori in memory, we see
that the additional runtime for storing results is significant. On the other hand, if we
perform relevance pruning, the resulting algorithm is usually faster than the original
itemset miner.

7 Conclusions

We presented DL8, an algorithm for finding decision trees that minimizes an optimi-
zation criterion exactly under a wide range of constraints. This algorithm is based on
the relationship between itemsets and decision trees and relies on the construction of
an itemset lattice through standard data mining techniques.

With its very general framework, DL8 allows a user to enforce constraints that
have never been combined before in a single algorithm. Experiments show that: (i)
these constraints can improve the resulting accuracy of a tree; (ii) an exact algorithm
can indeed give significantly better results than a heuristic learner if the optimisation
criterion is well-defined; (iii) exact results allow to study the behavior of the trees with
respect to constraints.

The investigation that we presented here may only be a starting point in this direc-
tion; it is an open question how efficient decision tree miners could become if they
were thoroughly integrated with algorithms such as LCM, FP-Growth, or algorithms
developed within the formal concept analysis community for processing (concept)
lattices. Our investigations showed that high runtimes are however not as much a
problem as the amount of memory required for storing huge amounts of itemsets.
A challenging question for future research is what kind of condensed representations
could be developed to represent the information that is used by DL8 more compactly;
an alternative could be to trade space and time complexity more carefully.

DL8 can be seen as a relatively cheap type of post-processing on a set of itemsets. In
particular, it does not require access to the training data when the model is constructed,
in contrast to other approaches that use patterns for classification. Hence DL8 suits
itself perfectly for interactive data mining on stored sets of patterns. This means that
DL8 might be a key component of inductive databases (Imielinski and Mannila 1996)
that contain both patterns and data.
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