
Data Min Knowl Disc (2010) 21:153–185
DOI 10.1007/s10618-010-0172-z

Hierarchical document clustering using local patterns

Hassan H. Malik · John R. Kender ·
Dmitriy Fradkin · Fabian Moerchen

Received: 21 March 2009 / Accepted: 6 March 2010 / Published online: 3 April 2010
The Author(s) 2010

Abstract The global pattern mining step in existing pattern-based hierarchical clus-
tering algorithms may result in an unpredictable number of patterns. In this paper, we
propose IDHC, a pattern-based hierarchical clustering algorithm that builds a cluster
hierarchy without mining for globally significant patterns. IDHC first discovers locally
promising patterns by allowing each instance to “vote” for its representative size-2
patterns in a way that ensures an effective balance between local pattern frequency and
pattern significance in the dataset. The cluster hierarchy (i.e., the global model) is then
directly constructed using these locally promising patterns as features. Each pattern
forms an initial (possibly overlapping) cluster, and the rest of the cluster hierarchy
is obtained by following a unique iterative cluster refinement process. By effectively
utilizing instance-to-cluster relationships, this process directly identifies clusters for
each level in the hierarchy, and efficiently prunes duplicate clusters. Furthermore,
IDHC produces cluster labels that are more descriptive (patterns are not artificially

Responsible editor: Johannes Fürnkranz and Arno Knobbe.

H. H. Malik (B)
Thomson Reuters, 195 Broadway, New York, NY 10007, USA
e-mail: hassan.malik@thomsonreuters.com; logicators@yahoo.com

J. R. Kender
Columbia University, 1214 Amsterdam, MC 0401, New York, NY 10027, USA
e-mail: jrk@cs.columbia.edu

D. Fradkin · F. Moerchen
Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540, USA

D. Fradkin
e-mail: dmitriy.fradkin@siemens.com

F. Moerchen
e-mail: fabian.moerchen@siemens.com

123

154 H. H. Malik et al.

restricted), and adapts a soft clustering scheme that allows instances to exist in suitable
nodes at various levels in the cluster hierarchy. We present results of experiments per-
formed on 16 standard text datasets, and show that IDHC outperforms state-of-the-art
hierarchical clustering algorithms in terms of average entropy and FScore measures.

Keywords Pattern based hierarchical clustering · Interestingness measures ·
Dimensionality reduction · Pattern selection · Global modeling using local patterns

1 Introduction and motivation

Clustering is the partitioning of a dataset into subsets (clusters), so that the data in
each subset (ideally) share some common trait. The quality of clustering achieved by
traditional flat clustering algorithms (e.g., k-means clustering) heavily relies on the
desired number of clusters (i.e., the value of k), which must be known in advance.
Unfortunately, finding the right number of clusters is a non-trivial problem and no
successful methods exist to automatically determine this value for a new, previously
unseen dataset. Therefore, these algorithms require the user to provide the appropriate
number of clusters. This approach, however, may be problematic because users with
different backgrounds and varying levels of domain expertise may provide different
values for k. Consequently, a clustering solution obtained by one user may not satisfy
the needs of other users.

Additionally, large clusters in a flat clustering solution may not provide further
insights about intra-cluster relationships, e.g., a large cluster containing instances
about animals may not provide additional information to distinguish land animals
from marine animals. Similarly, many small clusters may not provide further infor-
mation about inter-cluster relationships.

In an attempt to avoid these problems, hierarchical clustering is widely used as a
practical alternative to flat clustering. Nodes in a hierarchical clustering solution are
organized in a general to specific fashion, and users have the option to analyze data at
various levels of abstraction by expanding and collapsing these nodes. Most impor-
tantly, hierarchical clustering algorithms do not require the number of clusters to be
known in advance.

The most successful hierarchical clustering algorithms for documents include
agglomerative algorithms such as UPGMA and partitioning based algorithms such
as bisecting k-means (Zhao and Karypis 2005). These algorithms typically represent
documents with feature vectors that combine local and within-dataset frequencies of
words with weighting schemes such as TFIDF (Salton and Buckley 1988). Clusters
are typically represented with an appropriately normalized sum of the vector of the
documents assigned to the cluster. Recently, a number of pattern-based hierarchical
clustering algorithms have been proposed (Beil et al. 2002; Fung et al. 2003; Malik
and Kender 2006; Xiong et al. 2004; Yu et al. 2004). These algorithms come with an
added advantage of automatically identifying cluster labels, i.e., a set of words that
define the cluster. Many of them easily support overlapping clusters, a common use
case in document analysis where a single document might cover several distinct top-
ics. These features are not readily available in agglomerative and partitioning based

123

Hierarchical document clustering using local patterns 155

algorithms. We identified four major problems with the existing pattern-based hierar-
chical clustering algorithms that are discussed in Sects. 1.2–1.5.

1.1 Notations and definitions

Let D be a dataset, I = i1, i2, i3, . . . , in be the complete set of distinct items
(i.e., binary attributes) in D. An instance X is denoted as a pair < id, Y > such
that id is an identifier that uniquely identifies X , and Y ∈ I represents the set of items
in X . A pattern P = p1, p2, p3, . . . , pn is a subset of I . The set of data that contains
P is denoted as Dp = {(id, Y) ∈ D|P ⊂ Y }. The support of a pattern P is defined
as:

Support(P) = |Dp|
|D| (1)

P is called frequent if Support(p) ≥ min_sup, where min_sup is the minimum support
threshold. A frequent pattern F is called closed if there exists no proper superset T
with Support(T) = Support(F). The local frequency fi, j (also referred to as term
frequency in Information Retrieval) is the number of occurrences of the considered
item Ii in instance D j . The function ds(P, D, m) uses measure m to determine the sig-
nificance of pattern P in dataset D. Similarly, the function ls(P, X, m) uses measure
m to determine the local significance of pattern P in instance X .

1.2 Problem 1: sensitivity of pattern selection to thresholds

Most of the existing pattern-based hierarchical clustering algorithms (Beil et al. 2002;
Fung et al. 2003; Xiong et al. 2004; Yu et al. 2004; Malik and Kender 2006) follow a
similar framework. These algorithms first mine a set of globally significant patterns,
and then use these patterns to build a cluster hierarchy. The set of globally significant
patterns is obtained by first calculating global significance values of a set of candidate
patterns, and then selecting patterns with significance values that satisfy a user defined
threshold. Common measures used to calculate global significance values include sup-
port (Beil et al. 2002; Fung et al. 2003), support with closed itemset pruning (Yu et
al. 2004), h-confidence (Xiong et al. 2004), and a variety of interestingness measures
(Malik and Kender 2006). Each selected pattern defines a cluster and instances are
assigned to clusters if they contain the pattern. Various heuristics are applied to prune
clusters and reduce or avoid overlap among clusters.

Because of their inherent dependence on the user defined global significance thresh-
old, existing pattern-based hierarchical clustering algorithms face two potential prob-
lems. First, the set of selected globally significant patterns might not cover all instances
(i.e., some instances might not contain any globally significant pattern), especially on
datasets with a high degree of imbalance in topic distributions. Second, the number
of globally significant patterns found heavily depends on the threshold value used.
On high dimensional, highly correlated datasets with many shared patterns, the num-
ber of these patterns can be thousands of times higher than the number of instances

123

156 H. H. Malik et al.

in the dataset. As we shown in Sect. 7.8, this is not merely a matter of elegance;
the excessive number of patterns can even cause global pattern-based algorithms to
fail. In our previous work (Malik and Kender 2006), we replaced minimum support
with an interestingness threshold, which reduced the number of globally significant
patterns. Still, there was no way to set an upper bound on the number of patterns, and
the final set of global patterns sometimes did not cover all instances.

1.3 Problem 2: insensitivity to local term frequencies

Instances in real-life text and web datasets may contain a feature (i.e., an item) more
than once, and these locally frequent features may better represent the main topic of the
instance as compared to other, locally infrequent features. As an example, we consider
a recent news article on cnn.com about certain types of dinosaurs that are believed
to be good swimmers. The word “dinosaurs” occurs 19 times in the article whereas
the word “marine” occurs only once. Clearly, considering both of these words with
equal importance can be problematic. Unfortunately, existing pattern-based hierar-
chical clustering algorithms do not fully utilize these local feature frequencies. Some
approaches (Fung et al. 2003; Malik and Kender 2006) use these values in scoring
functions to select suitable hierarchy nodes for instances, or to select node parents.
However, none of the existing pattern-based hierarchical clustering algorithms utilize
a local pattern significance measure in the process of mining the initial set of patterns
used for clustering. Note that the idea of having a quantitative basis instead of a binary
one for pattern mining in general is not new. For example, the share measure (Carter et
al. 1997) captures the percentage of a numerical total that is contributed by the items
in an itemset.

1.4 Problem 3: unnecessary coupling of pattern size and hierarchy depth

Many existing pattern-based clustering algorithms (Fung et al. 2003; Yu et al. 2004;
Malik and Kender 2006) tightly couple the sizes of cluster labels with the node heights
in the initial cluster hierarchy. In these algorithms, the first level in the cluster hierarchy
contains all size-1 patterns, the second level contains all size-2 patterns, and so on.
This tight coupling is merely a consequence of the way global patterns are discovered
(i.e., by first discovering size-1 patterns, which are used to form size-2 candidates,
etc.), and does not necessarily reflect a real-life setting. Users would surely appreci-
ate more descriptive cluster labels (i.e., labels that reflect the cluster structure of the
dataset with all appropriate patterns, regardless of their corresponding node heights).
Some of these approaches (Fung et al. 2003) later merge some child nodes with their
parents if certain conditions are met, which does increase the label sizes. Still, a large
percentage of nodes may remain with labels that have this property.

1.5 Problem 4: artificial constraints on overlapping clustering

Instances in real datasets may contain multiple patterns in the corresponding cluster
hierarchy. As a consequence pattern-based hierarchical clustering algorithms easily

123

Hierarchical document clustering using local patterns 157

support overlapping clusters as opposed to partitional and agglomerative hierarchi-
cal clustering algorithms. The algorithms commonly require the user to provide a
parameter specifying the maximum number of clusters an instance can be assigned
to (Malik and Kender 2006; Yu et al. 2004) and assign this number of clusters to
each instance when possible. Different documents may, however, belong to a varying
number of topics and the same maximum number of topics may not be appropriate
for all documents. Additionally, instead of allowing instances to exist in the most
suitable clusters at any level in the hierarchy, some of these approaches first force all
instances to their most specific levels (i.e., called “inner termset removal” (Malik and
Kender 2006; Yu et al. 2004)), and then select the top-n (with user defined n) most
suitable clusters at that level. This restriction appears to be a matter of convenience
(i.e., a quick way of constraining instance duplication), and may not be useful for real-
life hierarchies. For example, we consider four retirement related nodes in the open
directory 1. Two of these nodes (i.e., Business→Investing→Retirement Planning, and
Home→Personal Finance→Retirement) are found at level 3, one of these nodes (i.e.,
Business→Human Resources→ Compensation and Benefits→401 k and Retirement)
is found at level 4 and the last node (i.e., Society→People→ Generations and Age
Groups→Seniors→Retirement) is found at level 5. The Open Directory is currently
maintained by a large group of human editors. But if one were to automate the hier-
archy generation process, the “inner termset removal” step in (Fung et al. 2003; Yu et
al. 2004) would assign a general retirement related instance only to the most specific
node at level 5, and eliminate this instance from nodes at levels 3 and 4, leading to
counter intuitive assignments.

1.6 IDHC: a more flexible instance-driven hierarchical clustering algorithm

Instance Driven Hierarchical Clustering (IDHC) (Malik and Kender 2008) proposed
here is a novel pattern-based hierarchical clustering algorithm. Instead of mining glob-
ally significant patterns and then using these patterns to construct the global model
(i.e., the cluster hierarchy), IDHC applies the LeGo approach (Knobbe et al. 2008) to
the hierarchical document clustering problem. IDHC first discovers locally promising
patterns by allowing each instance to “vote” for its representative size-2 patterns in a
way that ensures an effective balance between local pattern frequency and pattern sig-
nificance in the dataset, hence simultaneously discovering local patterns and selecting
the pattern set used for global modeling. The selected patterns serve as features for
clustering, and each pattern defines an initial coarse cluster, which possibly overlaps
with other clusters. These initial clusters are refined to obtain a cluster hierarchy with
an iterative instance-driven process that avoids combinatorial explosion. Our solution
has several desirable properties:

– A novel two-phased dimensionality reduction scheme ensures coverage of all
instances with features.

– No global threshold for pattern selection is needed.

1 http://www.dmoz.org/.

123

http://www.dmoz.org/

158 H. H. Malik et al.

– Both local pattern frequency and pattern significance in the dataset are used for
pattern selection.

– Initial clusters are formed using size-2 patterns that were directly selected by indi-
vidual instances. This eliminates the high computational costs associated with
mining longer patterns and also enables computing pattern significance in the
dataset using inexpensive contingency-table-based interestingness measures.

– The number of initial size-2 patterns is guaranteed to be linear in the total number
of instances in the dataset.

– The pattern length is not coupled to the hierarchy level.
– Instances can be assigned to clusters at multiple levels in the hierarchy.

We present results of experiments performed on 16 standard text datasets in Sect. 7,
specifically showing in Sect. 7.3 that IDHC outperforms state-of-the-art hierarchical
clustering algorithms both in terms of FScore and entropy measures (Zhao and Karypis
2005). Furthermore, we show that IDHC parameters are relatively easy to set and that
the same untuned parameter values achieve high clustering quality on all datasets used
in our experiments.

2 Related work

The history of pattern-based clustering goes back to the early years of data mining.
Han et al. (1997) proposed a pattern-based flat clustering framework that uses asso-
ciation rules to generate a hypergraph of patterns (i.e., with items used as vertices
and rules used to form hyperedges). An efficient hypergraph partitioning algorithm is
then applied to obtain pattern clusters, and instances are clustered by assigning each
instance to its best pattern cluster. This framework was later used in many applica-
tions, such as topic identification (Clifton et al. 2004). In another approach, Wang and
Karypis (2004) applied efficient search space pruning techniques to obtain a global
summary set that contains one of the longest frequent patterns for each transaction.
This set is later used to form clusters.

Based on globally frequent itemsets, Beil et al. (2002) proposed a pattern-based
hierarchical clustering framework. This framework was later enhanced by Fung et al.
(2003) and Yu et al. (2004), who improved various stages of the clustering process.
In a different approach, Xiong et al. (2004) first mine globally significant maximum
hyperclique (i.e., with high h-confidence) patterns, and then associate instances to all
applicable pattern clusters. These clusters are later merged by applying hierarchical
agglomerative clustering (i.e., UPGMA), which was also used by Fung et al. (2003)
and Yu et al. (2004) to merge top level nodes. Results in Xiong et al. (2004) show
that this approach results in clustering quality that is similar to UPGMA, with an
added advantage of automatically identifying cluster labels. In Li and Chung (2005),
frequent word sequences are found using Generalized Suffix Tree and are used to gen-
erate initial clusters consisting of documents supporting these sequences. The clusters
are merged based on sequence similarity and cluster overlap.

In our previous work Malik and Kender (2006), we improved the framework in Beil
et al. (2002), Fung et al. (2003), Yu et al. (2004) by using closed interesting itemsets
as globally significant patterns used for clustering, and by using an interestingness

123

Hierarchical document clustering using local patterns 159

measure to efficiently select hierarchical relationships. We showed that this approach
outperformed both existing pattern-based hierarchical clustering algorithms, and the
best known agglomerative (i.e., UPGMA; Zhao and Karypis 2005) and partitioning
based (i.e., bisecting k-means with I2 criterion function; Zhao and Karypis 2005) algo-
rithms on 9 commonly used datasets. All previous global pattern-based approaches,
including ours, suffer from many of the limitations discussed in Sect. 1.

Our work also relates to subspace clustering, “an extension of traditional clustering
that seeks to find clusters in different subspaces within a dataset. Subspace clus-
tering algorithms localize the search for relevant dimensions allowing them to find
clusters that exist in multiple, possibly overlapping subspaces” (Parsons et al. 2004).
These algorithms either follow a top-down, or a bottom-up search strategy. Top-down
algorithms find an initial clustering in the full set of dimensions and evaluate the sub-
spaces of each cluster, iteratively improving the results. On the other hand, bottom-up
algorithms find dense regions in low dimensional spaces and combine them to form
clusters.

3 Dimensionality reduction

Large real life document collections often suffer from high dimensionality, and this
dimensionality varies greatly. For example, the commonly used Reuters 21578 data-
set,2 which uses a restricted vocabulary, contains over 19 K unique features in less than
11 K news documents. More realistic news data from high frequency news streams
may contain more than 150 K features in less than 20 K documents (Moerchen et al.
2007). Therefore, reducing the dimensionality of the feature space can significantly
improve the performance of pattern-based clustering algorithms, as the number of
discovered patterns directly depends on the number of initial items. The availability
of a labeled training set in supervised problems like classification allows for applying
more sophisticated dimensionality reduction (i.e., feature selection) techniques, such
as Information Gain. In contrast, there is limited information (i.e., feature frequencies
in the dataset and in the individual documents) available in unsupervised problems
such as clustering.

Popular unsupervised feature selection methods that has successfully been applied
to text data include Document Frequency thresholding (DF) and Term Strength (TS)
(Yang and Pedersen 1997). Document Frequency thresholding is an efficient method
that selects features that occur in less than a user-defined number of documents. On the
other hand, Term Strength first computes pairwise similarities of all document pairs in
the corpus, keeping pairs with similarities above a user-defined threshold. The Term
Strength is then computed based on the conditional probability that a term occurs in
the second half of a pair of related documents given that it occurs in the first half. As
others have also noted (Yang and Pedersen 1997), TS is less practical for large scale
problems because of its time complexity that is quadratic in the number of instances.

Since both DF and TS use global thresholds, the set of features selected by these
methods is not guaranteed to cover all instances (i.e., some instances might not contain

2 http://kdd.ics.uci.edu/databases/reuters21578.

123

http://kdd.ics.uci.edu/databases/reuters21578

160 H. H. Malik et al.

any selected features) contributing to the problem discussed in Sect. 1.2, unless the
global thresholds are very low, in which case feature selection step is not very useful.
To address the need to reduce dimensionality in an efficient manner while attempting
to ensure coverage, we adapt a novel two-phased heuristic approach in this paper:

Step 1 (select initial features): Apply DF thresholding to select the globally most
useful features by selecting features that are neither
too frequent nor too infrequent. i.e., by eliminat-
ing features that occur in more than MaxS or less
than MinS documents. Experiments reported in this
paper selected features that existed in less than or
equal to 95% of the instances, and at least two of
them in the default setting.

Step 2 (ensure local coverage): For each instance i in the dataset, first sort all fea-
tures in i in the decreasing order of their local fre-
quencies. Next, select the top-n highest frequency
features and add them to the set of selected fea-
tures. All experiments reported in this paper used a
fixed value of n = 10, ensuring that each document
is represented by at least 10 locally most frequent
features, thereby resolving coverage and insensi-
tivity to local term frequency problems described
in Sects. 1.2 and 1.3. This value of n was selected
intuitively and replacing it with any other value is
expected to have very little effect on the results
in our default setting. (This is empirically demon-
strated in Sect. 7.6). This is because the upper bound
of 95% used in the previous step is rarely met, and
the lower bound of two documents leads to discard-
ing only features that exist in a single document.
Section 7.7 provides additional results that dem-
onstrate the benefit of ensuring coverage in non-
default settings.

4 Instance-driven hierarchical clustering

As discussed in Sect. 1.2, the threshold-based global pattern mining step in exist-
ing pattern-based hierarchical clustering algorithms may result in an unpredictable
number of patterns, with no coverage guarantees. The IDHC algorithm (Algorithm 1)
adapts a novel LeGo-based (Knobbe et al. 2008) approach to address these problems.
Before proceeding, we highlight how various stages in the IDHC algorithm fits within
the LeGo framework. LeGo has three main phases:

1. Local pattern discovery
2. Pattern set discovery
3. Global modeling

123

Hierarchical document clustering using local patterns 161

The local pattern discovery phase produces a (potentially large) set of candidate
local patterns. The pattern set discovery phase selects a subset of these patterns that
are informative and relevant and show little redundancy. Finally, the global modeling
phase turns these patterns into a well-balanced global model.

The first stage in IDHC (Sect. 4.1) selects significant patterns with respect to each
instance. All size-2 patterns in the instance are considered as candidates (LeGo phase
1). Local pattern frequency and pattern significance in the dataset are used to compute
a score for each candidate pattern. Some of the top scoring patterns are then selected
as initial features for global modeling (LeGo phase 2). The second stage in IDHC
(Sect. 4.2) further refines the pattern set by pruning redundant patterns (LeGo phase
2). Finally, the third stage in IDHC (Sect. 4.3) constructs the cluster hierarchy by first
forming an initial cluster for each pattern and then applying an iterative refinement
process to obtain the rest of the cluster hierarchy (LeGo phase 3). Computational time
required by this stage is reduced by maintaining a relationship between instances and
their selected local patterns.

We now explain the three major stages in the IDHC algorithm, the pseudocode for
which is given in Algorithm 1.

Algorithm 1: The IDHC algorithm
Input: dataset, patternSelectionScheme, minStdDev, k, measure
reduce dimensionality as explained in Sect. 31

top_level_clusters = ∅2

instance_cluster_pointers = ∅3

for transaction t ∈ dataset do4

list = ∅5

for size-2 pattern p ∈ t do6

sl = ls(p, t, LOCAL_FREQUENCY)7

sd = ds(p, dataset, measure)8

significance(p) = sl ∗ sd9

append(list, p)10

end11

sort list in decreasing order of significance values12

update_clusters(top_level_clusters, instance_cluster_pointers, t, list)13

end14

prune-duplicates(instance_cluster_pointers, top_level_clusters)15

clusters_to_refine = top_level_clusters16

while size(clusters_to_refine) > 0 do17

refined_clusters = refine-clusters(instance_cluster_ptrs, clusters_to_refine)18

regenerate instance_cluster_pointers using refined_clusters19

prune-duplicates(instance_cluster_pointers, refined_clusters)20

clusters_to_refine = refined_clusters21

end22

apply bisecting k-means to merge top_level_clusters23

123

162 H. H. Malik et al.

4.1 Stage 1: select significant patterns with respect to each instance

Existing pattern-based hierarchical clustering algorithms use frequent itemsets or their
variants as a basis for clustering (Sect. 1.2). Frequent itemset mining, closed frequent
itemset mining and even simpler problems associated with itemset mining (such as
deciding whether there is a frequent itemset of cardinality k in database D) has been
proven NP-Complete or NP-Hard (Angiulli et al. 2001; Gunopulos et al. 2003; Wu
2006). Therefore, itemset mining algorithms rely on heuristics that work well in the
common case, but may fail on highly correlated datasets (Sect. 7.8). Even in the com-
mon case, these heuristics may result in an excessive number of itemsets (Sect. 1.2).
Often, the number of candidate itemsets considered as well as the number of final
itemsets found may significantly increase with the itemset sizes.

Intuitively, a pattern-based hierarchical clustering algorithm should not need any
more than O(n) candidate patterns to cluster a dataset with n instances. However, as
a negative side effect of mining patterns without considering the actual task in hand
(i.e., clustering), existing algorithms are often forced to deal with hundreds or even
thousands of times more patterns than the number of instances in the target dataset.

IDHC adapts an instance-driven approach to avoid these problems. This approach
allows each instance to select its representative size-2 patterns and guarantees that the
total number of mined patterns is linear in the number of instances. A size-2 pattern is
essentially a pair of items (i.e., words) that co-occurs in a document. Size-2 patterns
resemble bigrams in Natural Language Processing, with a difference that they do not
need to be contiguous to each other. We restricted the initial pattern mining to size-2
patterns for three reasons:

– Efficiency: Size-2 patterns can be mined far more efficiently than longer patterns
because the number of size-2 pattern candidates is often orders of magnitude less
than the number of longer-sized pattern candidates. For a dataset with F features,
instances may have up to O(F2) size-2 pattern candidates. However, this theo-
retical upper bound is almost never met on document datasets because of their
inherent sparseness. Furthermore, real-life applications often restrict the number
of features considered in an instance to a small constant C : C ≪ F , i.e., by trun-
cating features that appear after the C th feature or by selecting top-C locally most
frequent features. With this restriction in place, size-2 patterns for all instances can
be mined in time that is linear in the number of instances.

– Computing Pattern Significance: Common statistical interestingness measures
(Geng and Hamilton 2006; Tan et al. 2002) use 2 × 2 contingency tables to com-
pute correlation or interdependence between two variables. This allows computing
the significance of size-2 patterns in constant time (assuming pattern frequencies
are readily available). Computing significance of longer patterns either requires
making heuristic assumptions (Malik and Kender 2006) or using substantially
more expensive measures such as log-linear analysis (Brijs et al. 2003) that uses
multi-way contingency tables.

– Since the primary task is clustering, there is no reason to generate a large number
of longer patterns because only a small percentage of these patterns are likely to
form meaningful clusters. Once size-2 patterns are available for all instances, they

123

Hierarchical document clustering using local patterns 163

can be easily merged to form longer patterns (and their corresponding clusters) in
a controlled fashion (Sects. 4.2 and 4.3).

Therefore, after reducing the dimensionality of the feature space and initializing the
necessary data structures (lines 4-4 of Algorithm 1), we process instances in the data-
set in a purely local way (i.e., on an instance by instance basis). Each size-2 pattern in
an instance is processed (lines 4-4) to compute its “overall” significance with respect
to the current instance, considering the pattern significance at both local and dataset
levels.

First, we use the “ls” method in Algorithm 2 to determine the local pattern sig-
nificance. We used local frequency as the local significance measure (i.e., features
that occur more frequently in the document are considered more important with re-
spect to the document). Since each size-2 pattern contains two features, we calculate
local pattern significance by averaging the local frequencies of both of the features
(i.e., pattern1 and pattern2) in the size-2 pattern (i.e., pattern) as it favors patterns
that contain two locally frequent features. We have considered using maximum or
minimum as alternatives to averaging. However, these approaches assign the same
values to a large number of patterns and do not provide any further discriminative
information. Our choice was also inspired by Tan et al. (2002) that used averaging to
compute symmetric interestingness scores.

Next, we call the “ds” method in Algorithm 2, which uses a common interest-
ingness measure to determine the pattern significance in the dataset. In Malik and
Kender (2006), 22 interestingness measures previously proposed in Geng and Hamil-
ton (2006), Tan et al. (2002), were evaluated in the context of global pattern-based
hierarchical clustering. Only a small number of these were found to be stable across
all datasets used in the evaluation. We have found that the same measures are useful
to determine the pattern significance in the dataset in this context. Table 1 presents the
formulas of interestingness measures considered. All these measures are functions of
2 × 2 contingency tables for binary variables A and B indicating presence or absence
of particular features. A detailed comparison of the properties of these interesting-
ness measures is given in Geng and Hamilton (2006), Tan et al. (2002). Algorithm 2
describes computation of “ls” and “ds”.

Table 1 Interestingness measures for size-2 patterns (A, B) (see Sect. 7.4 for empirical evaluation)

Symbol Interestingness measure Formula

AV Added value max(P(B|A) − P(B), P(A|B) − P(A))

CF Certainty factor max
(

P(B|A)−P(B)
1−P(B)

,
P(A|B)−P(B)

1−P(A)

)

V Conviction max
(

P(A)P(¬B)
P(A¬B)

,
P(¬A)P(B)

P(¬AB)

)

χ2 Chi-squared
∑

i j
P(Ai B j)−P(Ai)P(B j)

P(Ai)P(B j)

YQ Yule’s Q P(AB)P(¬A¬B)−P(¬AB)P(A¬B)
P(AB)P(¬A¬B)+P(¬AB)P(A¬B)

MI Mutual information

∑
i j P(Ai B j) log2

(
P(Ai B j)

P(Ai)P(B j)

)

min
(
− ∑

i P(Ai) log2(P(Ai)),−
∑

j P(B j) log2(P(B j))
)

123

164 H. H. Malik et al.

Algorithm 2: Functions for computing local and within-dataset significance of
size-2 patterns. These methods reflect the reference implementation used in this
paper, many alternative implementations are possible

function ls(pattern, instance, measure)1

begin2

return average(freq(pattern 1, t), freq(pattern 2, t))3

end4

function ds(pattern, dataset, measure)5

begin6

compute the contingency table using pattern 1 and pattern 2 as variables7

apply measure on the contingency table and return the outcome8

end9

Once both values are available, we compute the overall pattern significance with
respect to the current instance (line 9 in Algorithm 1) by multiplying local and within-
dataset pattern significance values. Local frequencies and interestingness measures
do not follow similar distributions and local frequencies in general have much larger
magnitudes. Using combination schemes other than product (such as average or sum)
would have resulted in local frequencies dominating the scores, or require introduc-
ing an additional normalization step which would complicate the algorithm. Since we
are only concerned with the relative order of patterns and not the actual significance
values, we use product as a simple way of combining local and within-dataset pettern
significance values.

All size-2 patterns are then sorted in decreasing order of their overall within-instance
significance values (line 12 in Algorithm 1), and a local pattern selection scheme is
applied to select representative patterns with respect to the current instance (line 13).
We evaluate two schemes, shown in Algorithm 4 for this purpose. The first scheme
(line 6 in Algorithm 4) selects a variable number of patterns for each instance by
selecting up to maxK patterns with significance values that are greater than or equal
to “minStdDev” standard deviations from the mean, where maxK and minStdDev are
user definable parameters. In contrast, the second scheme (line 14 in Algorithm 4)
always selects the top-k patterns with highest scores. This scheme essentially allows
the user to limit the degree of cluster overlap. For either scheme, we ensure cover-
age and account for boundary conditions (i.e., instances with a very small number of
patterns) by also always selecting the most-significant pattern (line 3 in Algorithm 4).

Each unique size-2 pattern selected by some document forms an initial cluster, and
instances are associated with the pattern clusters they selected. We maintain a list of
pointers for each instance to track instance-to-cluster relationships.

4.2 Stage 2: prune duplicate clusters

The set of initial clusters may contain duplicates (i.e., clusters with different labels
but the exact same instances). Since these redundant clusters are unlikely to add any

123

Hierarchical document clustering using local patterns 165

Algorithm 3: Supporting methods for the IDHC algorithm

function add-to-cluster(cluster_list, pattern, instance)1

begin2

if pattern /∈ cluster_list then3

add a new cluster with label = pattern to cluster_list4

append instance to cluster with label = pattern in cluster_list5

end6

function prune-duplicates(instance_cluster_ptrs, cluster_list)7

begin8

for ptr lists lininstance_cluster_ptrs do9

m = clusters in l that also exist in cluster_list10

for cluster pairs p(cluster1, cluster2) ∈ m do11

if cluster1 and cluster2 contain same instances then12

label(cluster1) = merge-labels(cluster1, cluster2)13

remove(cluster_list, cluster2)14

end15

function refine-clusters(instance_cluster_ptrs, cluster_list)16

begin17

refined_clusters = ∅18

for ptr lists l ∈ instance_cluster_pointers do19

m = clusters in l that also exists in cluster_list20

for cluster c ∈ m do21

if si ze(c) < 2 then22

remove c from m23

for cluster pairs p(cluster1, cluster2) ∈ m do24

cluster_label = merge-labels(cluster1, cluster2)25

if cluster_label not in refined_clusters then26

Add a new cluster to refined_clusters with label = cluster_label27

common_instances = cluster1 ∩ cluster228

add instances in common_instances to cluster with label =29

cluster_label in refined_clusters
mark instances in common_instances for elimination in both cluster130

and cluster2
Add cluster with label = cluster_label as a child node to both cluster131

and cluster2

In one pass over clusters in cluster_list, prune all instances that were marked32

for elimination
Return refined_clusters33

end34

123

166 H. H. Malik et al.

practical value to the user, we merge / prune them in a way that enhances the label of
the retained unique cluster. The naïve way of performing this operation requires com-
paring each cluster with all other clusters (quadratic time). Fortunately, as a positive
side effect of our instance-driven approach, we already know instance-to-cluster rela-
tionships. It is not difficult to prove that checking for and pruning duplicate clusters
locally (i.e., by comparing cluster pairs in each instance’s pointer list, and repeating
this process for all instances) also prunes all global duplicates.

Method “prune-duplicates” in Algorithm 3 implements pruning based on this obser-
vation, avoiding quadratic time cluster comparisons. While removing duplicate clus-
ters, it at the same time expands cluster labels by merging the label of the retained
cluster with the duplicate cluster being pruned. This results in increasingly meaningful
(more specific) labels, partially addressing the problem described in Sect. 1.4. All the
non-redundant clusters remain unchanged.

Algorithm 4: This function updates current set of clusters and instance pointers
with document t and its select patterns, stored in list

function update_clusters(top_level_clusters, instance_cluster_pointers, t, list)1

begin2

add-to-cluster(top_level_clusters, list(1), t)3

append(instance_cluster_pointers(t) , list(1))4

switch patternSelectionScheme do5

case M I N_ST D_DEV6

calculate mean and standard_deviation of significance values in list7

min_significance = mean + (standard_deviation * minStdDev)8

max K = k9

for i = 2; i ≤maxK; i + + do10

if significance(list(i)) < min_significance then break11

add-to-cluster(top_level_clusters, list(i), t)12

append(instance_cluster_pointers(t), list(i))13

case T O P_K14

k = min(k, size(list))15

for i = 2; i ≤k; i + + do16

add-to-cluster(top_level_clusters, list(i), t)17

append(instance_cluster_pointers(t), list(i))18

end19

4.3 Stage 3: generate the cluster hierarchy

The initial clusters form the top level nodes in the cluster hierarchy, and the rest of
the hierarchy is obtained by following an iterative cluster refinement process (lines
4-4 in Algorithm 1) that makes patterns progressively longer and cluster memberships
progressively sparser. Atomic clusters (i.e., clusters with only one instance) clearly
can not be any more specific and do not need to be considered for refinement. In fact,

123

Hierarchical document clustering using local patterns 167

refinement is only necessary when a cluster c1 shares some instances with another
cluster c2. These common instances can be removed from both c1 and c2, and added
to a node that is a child to both of these nodes. This refined node still retains the instance
memberships of the originating clusters for retrieval purposes (i.e., as child nodes are
merely specializations, and are considered part of their parents). This determination of
overlap exploits instance-to-cluster pointers in a way similar to our duplicate cluster
pruning scheme in Sect. 4.2, resulting in an efficient procedure.

Method “refine-clusters” in Algorithm 3, based on the above observations, finds
clusters for the next level. For this purpose, on an instance by instance basis, it first
identifies cluster pairs from non-atomic clusters that share some instances. Next, it
appends these shared instances to a child cluster, the label of which is obtained by
merging labels of the cluster pair itself.

A child cluster with a “merged” label may already exist, for two possible reasons.
First, the same cluster pair may have existed in the pointer list of another instance that
has already been processed. Second, merging labels of two different cluster pairs may
result in a single label. However, it is easy to see that first appending shared instances
to the cluster with the resulting label, and then adding this cluster as a child to both
the originating clusters does not affect instance memberships of the parent clusters.
One final note on implementation: since clusters may share instances with several
other clusters, deleting shared instances from originating clusters immediately after
adding them to a new child cluster may result in eliminating some valid child clusters.
Therefore, shared instances are marked for elimination as they are found, but pruned
only after all cluster pairs are processed.

Hierarchy refinement continues from level to level. Efficiency is maintained by
tracking pointers to newly generated clusters. These pointers are later used to regen-
erate instance-to-cluster pointers (line 19 of Algorithm 1) in one pass over the newly
generated clusters. Since newly generated clusters can contain duplicates, we apply
the duplicate cluster pruning process (Sect. 4.2) in each iteration (Line 4 of Algorithm
1). The full process is repeated until all clusters are refined (i.e., all leaf-clusters are
either atomic or contain instances that are not shared with any other cluster at their
level). This refinement process eliminates the need to mine all patterns of a specific
size and only mines patterns that are likely to increase the specificity of some general
clusters at the current level. As a result, the final hierarchy contains smaller but more
specific clusters as we move further from the root. Note that the degree of cluster
overlap in the resulting hierarchy depends on the degree of overlap in the initial size-2
patterns selected by instances.

Pattern-based clustering algorithms can result in a large number of top level clus-
ters. Most of the existing algorithms (Beil et al. 2002; Fung et al. 2003; Yu et al. 2004)
use agglomerative clustering to merge these top level nodes. In Malik and Kender
(2006) agglomerative clustering was replaced with bisecting k-means (using I2 cri-
terion function; Zhao and Karypis 2005) for computational efficiency. Following a
similar approach, IDHC first obtains a joint feature vector for each top level cluster
in the hierarchy by combining the feature vectors of all documents in the cluster, and
then applies bisecting k-means on these vectors. It is important to note that using
bisecting k-means at this stage does not require introduction of a new parameter for
desired number of clusters. Bisecting k-means repeatedly partitions documents into

123

168 H. H. Malik et al.

two clusters and then selects one of these clusters for further bisection. On a dataset
with n instances, this process continues n - 1 times, leading to n leaf clusters, each
containing a single document (Sect. 3 in Zhao and Karypis (2005)). Since bisecting
k-means always partitions each cluster into two clusters it does not use parameter k
and produces a dendrogram that is similar to the output of hierarchical agglomerative
clustering. In our case therefore, bisecting k-means will proceed until all top-level
level clusters from the previous stage are separated from each other, because each
top-level cluster forms a single instance for bisecting k-means.

We finally note that the merging of top-level clusters does not depend on the rest
of the functionality explained in this stage. Therefore, it can be applied in parallel to
or in the beginning of this stage, if desired.

5 Example

We would like to illustrate some aspects of the workings of IDHC algorithm with an
example. Table 2 provides a sample transaction dataset with documents about cars
and felines. Using Added Value (Geng and Hamilton 2006; Tan et al. 2002) as the
interestingness measure and the standard deviation-based pattern selection scheme
(with minStdDev = 1.0), we obtain the most significant patterns with respect to each
instance as shown in Table 3. These patterns are used to form the initial clusters in
Fig. 1, which also shows instance-to-cluster pointers. For demonstration purposes, this
example used a small value for minStdDev, which results in a relatively high number of
initial patterns. Experiments in Sect. 7.3 used a more realistic value for this parameter.

Tables 2 and 3 also demonstrate how the algorithm “balances” local pattern signif-
icance and pattern significance in the dataset. As an example, instance “T4” contains
one item (i.e., ’roar’) with local frequency = 4, three items (i.e., ’jaguar’, ’feline’ and
’cheetah’) with frequency = 3, two items (i.e., ’power’ and ’tiger’) with frequency = 2,
and one item (i.e., ’speed’) with frequency = 1. A pattern selection scheme that only

Table 2 Instance database used as an example

ID Features and local frequencies # Size-2 patterns

T1 (car:2), (jaguar:4), (power:1), (quiet:2), (feline:4), (tiger:1) 15

T2 (car:3), (speed:1), (power:6), (roar:1), (engine:4) 10

T3 (jaguar:2), (speed:3), (power:1), (ride:5), (cheetah:2) 10

T4 (jaguar:3), (speed:1), (power:2), (roar:4), (feline:3), (cheetah:3), (tiger:2) 21

T5 (jaguar:7), (speed:2), (power:1), (quiet:3), (ride:2) 10

T6 (car:1), (jaguar:1), (speed:1), (roar:1), (feline:3), (cheetah:1)) 15

T7 (jaguar:9), (speed:3), (drive:4), (quiet:5), (feline:1), (tiger:5) 15

T8 (speed:6), (power:2), (engine:1), (ride:1), (cheetah:3) 10

T9 (jaguar:3), (power:2), (feline:4), (cheetah:1), (tiger:8) 10

T10 (car:4), (jaguar:2), (power:7), (drive:3), (ride:6) 10

T11 (speed:1), (roar:1), (drive:1), (engine:2), (quiet:1), (ride:4), (feline:1) 21

123

Hierarchical document clustering using local patterns 169

Table 3 Selected patterns for
the example

ID Selected patterns

T1 (jaguar, feline) (feline, tiger), (quiet, feline)

T2 (power, engine), (car, power)

T3 (speed, ride)

T4 (roar, feline) (feline, tiger)

T5 (jaguar, quiet) (jaguar, power)

T6 (roar, feline) (jaguar, feline) (feline, cheetah)

T7 (jaguar, tiger)

T8 (speed, engine) (speed, cheetah)

T9 (feline, tiger) (jaguar, tiger)

T10 (power, ride) (drive, ride)

T11 (engine, ride) (drive, ride) (speed, ride) (quiet, ride)

considers local significance would rank size-2 patterns that include two of {’roar’,
’jaguar’, ’feline’ and ’cheetah’} higher than the other size-2 patterns in this instance.
Similarly, considering the values in Table 4, a pattern selection scheme that only con-
siders pattern significance in the dataset would rank patterns (’feline’, ’tiger’) and
(’jaguar’, ’tiger’) higher than the other patterns. The final set of patterns selected for
this instance (i.e., (’roar’, ’feline’) and (’feline’, ’tiger’)) does include the most frequent
local item (i.e., ’roar’), but does not include two of the three items with frequency = 3.
Instead, the algorithm selects pattern (’feline’, ’tiger’) that has a higher Added Value,
providing a better balance between local pattern significance and pattern significance
in the dataset.

Finally, we observe that the number of patterns selected by our standard deviation
based scheme is not necessarily proportional to the number of size-2 patterns available
in an instance. As an example, both T4 and T11 contain 21 size-2 patterns but our
scheme selected twice as many patterns for T11.

Considering the 17 initial clusters in Fig. 1, the naïve way of identifying dupli-
cate clusters will need up to 136 cluster-pair comparisons. Using instance-to-cluster
relationships reduces the number of these comparisons to no more than 18 (i.e., we
perform only three cluster pair comparisons for T1; {(’quick’, ’feline’), (’jaguar’,
’feline’)}, {(’quick’, ’feline’), (’feline’, ’tiger’)} and {(’jaguar’, ’feline’), (’feline’,
’tiger’)}). After processing all instances, we easily identify four duplicates (marked
in boxes in Fig. 1). These duplicates are pruned and their labels are merged to obtain
the 13 clusters in the left side of Fig. 2.

The right side of Fig. 2 demonstrates refining clusters (from the left side of the same
figure) to the next level. Processing cluster pointers from T1, we find only one pair
of non-atomic clusters (i.e., {(’jaguar’, ’feline’), (’feline’, ’tiger’)}), with T1 itself as
the only shared instance. We then merge labels of the cluster pair to obtain (’jaguar’,
’feline’, ’tiger’), which is used to form the new child node. Cluster pointers from T2 to
T11 are processed in a similar fashion to obtain 4 clusters for the next level. This pro-
cess may result in adding several children to the same cluster (i.e., two child clusters

123

170 H. H. Malik et al.

[car, power]
T2

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

In
st

an
ce

s

[jaguar,
power]

T5

[jaguar, quiet]
T5

[jaguar, feline]
T1, T6

[jaguar, tiger]
T7, T9

[speed,
cheetah]

T8

[speed,
engine]

T8

[speed, ride]
T3, T11

[power,
engine]

T2

[power, ride]
T10

[roar, feline]
T4, T6

[drive, ride]
T10, T11

[engine,
ride]
T11

[quiet, ride]
T11

[quiet, feline]
T1

[feline,
cheetah]

T6

[feline, tiger]
T1, T4, T9

Fig. 1 Initial clusters. Candidates for deletion are boxed

added to (’roar’, ’feline’)) or appending several instances to an existing child cluster
(i.e., two instances added to cluster (’jaguar’, ’feline’, ’tiger’)).

6 Discussion

On the surface, it might seem like IDHC merely replaces some global thresholds (i.e.,
minimum support (Beil et al. 2002; Fung et al. 2003; Xiong et al. 2004; Yu et al.

123

Hierarchical document clustering using local patterns 171

Table 4 Within-dataset
significance values of some
size-2 patterns using Added
Value (AV) transformed to
positive scale

Pattern AV

(jaguar,power) 0.52

(roar, feline) 0.70

(jaguar, roar) 0.38

(roar, cheetah) 0.54

(jaguar, feline) 0.60

(roar, tiger) 0.38

(jaguar, cheetah) 0.57

(feline, cheetah) 0.55

(jaguar, tiger) 0.77

(feline, tiger) 0.95

(power, roar) 0.38

(cheetah, tiger) 0.54

2004) or minimum interestingness (Malik and Kender 2006), and maximum instance
duplication (Malik and Kender 2006; Yu et al. 2004) with a set of local thresholds
(i.e., maxK and minStdDev for the standard deviation based pattern selection scheme,
or k for the top-k pattern selection scheme). However, as we have discussed in Sect. 1,
selecting a dataset-independent value for any of the commonly used global thresholds
(i.e., minimum support) is non-trivial. Any selected value can result in a very large
or a very small number of patterns, with no upper bound on the number of patterns
mined. In contrast, we show in Sect. 7.3 that our local parameters are rather stable
across datasets.

Additionally, we note that the computational complexity of calculating within-
dataset pattern significance using an interestingness measure (line 8 of Algorithm 1)
depends on the underlying dataset representation used for frequency counting. Exper-
iments in this paper represented datasets as compressed bitmaps (Malik and Kender
2007), with frequency counting time complexity of O (d), where d is the number of
documents in the dataset. However in practice, frequency counting using compressed
bitmaps takes close to constant time on document datasets because of their inherent
sparseness. Similarly, the sparseness of features limits the number of size-2 patterns
considered for each instance even though it can theoretically be quadratic in the number
of features in the entire dataset (Sect. 4.1).

Finally, we note that in practice, IDHC scales linearly with the number of instances
on real-life text datasets. Informally analyzing major steps in the IDHC algorithm, the
first step of selecting size-2 patterns for instances (Sect. 4.1) scales linearly because
the number of size-2 patterns considered for a given instance always remains the same.
Further, adding instances to the dataset can only add a linear number of bits to the
compressed bitmaps used for pattern frequency counting. Next, the pruning of dupli-
cate clusters (Sect. 4.2) scales linearly because its processing of instance-to-cluster
pointers is entirely local and instance by instance. The iterative hierarchy refinement
process in Sect. 4.3 also scales linearly for the same reason. Note that the number of

123

172 H. H. Malik et al.

[car, power,
engine]

T2

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

In
st

an
ce

s

[jaguar,
power,
quiet]

T5[jaguar,
feline]
T1, T6

[jaguar,
tiger]
T7, T9

[speed,
engine,

cheetah]
T8

[speed,
ride]

T3, T11

[power,
ride]
T10

[roar,
feline]
T4, T6

[drive,
ride]

T10, T11
[engine,

quiet, ride]
T11

[quiet,
feline]

T1

[feline,
cheetah]

T6

[feline,
tiger]

T1, T4, T9

[jaguar,
feline]

T6

[feline,
tiger]
T4, T9

[jaguar,
feline, tiger]

T1

[roar,
feline]

T6

[feline,
tiger]

T9

[roar, feline,
tiger]

T4

[drive,
ride]
T10

[speed,
ride]
T3

[drive,
speed, ride]

T11

[roar,
feline]

[jaguar,
feline]

[roar, feline,
tiger]

T4

[jaguar,
feline, tiger]

T1

[roar, jaguar,
feline]

T6

[feline,
tiger]

[jaguar,
tiger]

T7

[roar, feline,
tiger]

T4

[jaguar,
feline, tiger]

T1, T9

noisnapxEretsulClavomeRetacilpuD

Fig. 2 Duplicate removal and cluster expansion. Newly added clusters and instances are lightly colored

123

Hierarchical document clustering using local patterns 173

Table 5 Datasets and their characteristics

Dataset # Classes # Instances # Features

Reuters 90 10,787 19,127

Classic 4 7,094 41,681

Hitech 6 2,301 22,498

k1a 20 2340 21,839

k1b 6 2340 21,839

la12 6 6,279 30,125

mm 2 2521 126,373

Ohscal 10 11,162 11,465

re0 13 1,504 2,886

Reviews 5 4,069 36,746

Sports 7 8,580 27,673

tr11 9 414 6,429

tr12 8 313 5,804

tr23 6 204 5,832

tr31 7 927 10,128

Wap 20 1,560 8,460

pointers in the instance-to-cluster list for each instance is upper bounded by maxK
or topK (or some proportion to it, depending on the level). Finally, the last step of
merging top-level hierarchy nodes (Sect. 4.3) scales linearly because it uses bisecting
k-means, which scales essentially linearly with the number of non-zero entries in the
dataset (Malik and Kender 2006; Zhao and Karypis 2005).

7 Empirical evaluation

We conducted an extensive empirical evaluation of IDHC on 16 standard text datasets,
9 of which were also used in Malik and Kender (2006). Characteristics of these datasets
are summarized in Table 5. With the exception of Reuters3, we obtained all datasets
from Cluto clustering toolkit (Karypis 2003). We compared IDHC with two state of
the art algorithms, and evaluated effects of various parameters on IDHC performance,
significantly expanding on our prior experimental work in Malik and Kender (2008).

We used the two standard hierarchical clustering evaluation metrics, FScore and
entropy, as defined in Zhao and Karypis (2005), to compare the quality of cluster
hierarchies produced by IDHC with two state-of-the-art hierarchical clustering algo-
rithms. FScore combines the standard precision and recall functions commonly used
in Information Retrieval, and evaluates the overall quality of hierarchical tree using a
small number of its nodes. For each ground truth class (i.e., each unique class label
assigned to any instance in the dataset), FScore identifies the node in the hierarchical

3 http://kdd.ics.uci.edu/databases/reuters21578.

123

http://kdd.ics.uci.edu/databases/reuters21578

174 H. H. Malik et al.

tree that best represents it and then measures the overall quality of the tree by evalu-
ating this subset of clusters. Specifically, given a particular class Lr of size nr and a
particular cluster Si of size ni , suppose ni

r documents in the cluster Si belong to Lr ,
then the F value of this class and the cluster is defined as:

F(Lr , Si) = 2 ∗ R(Lr , Si) ∗ P(Lr , Si)

R(Lr , Si) + P(Lr , Si)
(2)

where R(Lr , Si) = ni
r/nr is the recall value and P(Lr , Si) = ni

r/ni is the precision
value defined for the class Lr and the cluster Si . It follows from these definitions that
F(Lr , Si) ∈ [0, 1]. The FScore of class Lr is the maximum F value attained at any
node in the hierarchical tree T . That is,

FScore(Lr) = max
Si ∈T

F(Lr , Si). (3)

The FScore of the entire hierarchical tree is defined to be the sum of the individual
class specific FScores weighted according to the class size. That is,

FScore =
c∑

r=1

nr

n
FScore(Lr). (4)

where c is the total number of classes. FScore clearly lies in the interval [0, 1]. In
general, higher FScore values indicate a better clustering solution. On the other hand,
entropy takes into account the distribution of documents in all nodes of the tree. Given
a particular node Sr of size nr , the entropy of this node is defined to be:

E(Si) = − 1

| log(q)|
q∑

i=1

ni
r

nr
log

ni
r

nr
(5)

where q is the total number of classes and is the number of documents of the i th class
that were assigned to the r th node. Then, the entropy of the entire tree is:

E(T) = E(Si) = 1

p

p∑
i=1

E(Si) (6)

where p is the total number of non-leaf nodes of the hierarchical tree T . In general,
lower entropy values indicate a better clustering solution. Like FScore, Entropy takes
values in [0, 1].

As discussed in Sect. 4.1, we evaluated IDHC with two pattern selection schemas:
a standard deviation based scheme and a top-k scheme. Unless otherwise specified, we
used the fix parameter values of minStDev=1.5 and maxK=6 for the standard deviation
based scheme and k=5 for the top-k scheme. This value for minStdDev was obtained
by executing IDHC on one dataset (Reuters) and varying minStdDev between 1.0 and
4.0, in intervals of 0.1, selecting the value giving the best entropy score on the selected

123

Hierarchical document clustering using local patterns 175

dataset. Unless otherwise specified, all IDHC results presented here used Cluto post-
processing (Sect. 4.3) and used a fixed value for the local coverage parameter, i.e.,
n=10.

7.1 Other algorithms

We selected bisecting k-means with I2 criterion function (Zhao and Karypis 2005) as
the first state-of-the-art algorithm for comparison. I2 criterion function is defined as:

maximize
k∑

r=1

∑
di ∈Sr

cos(di , Cr) (7)

where Cr is a centroid of the r -th cluster Sr . Essentially, each cluster is represented
by a centroid vector, and the idea is to find the solution maximizing the similarity
between each document and the centroid of the cluster it is assigned to. As mentioned
before (Sect. 4.3), bisecting k-means repeatedly partitions each cluster into two (trying
to optimize the above criterion) until each cluster consists of only one document, pro-
ducing a complete dendrogram. Therefore, no parameter for the number of clusters
in needed. We also selected our previous global pattern-based hierarchical cluster-
ing algorithm, referred to as GPHC here as the second state-of-the-art algorithm for
comparison with IDHC.

We limited our comparison to these two existing algorithms, since Malik and Kender
(2006) showed that GPHC significantly outperformed FIHC (Fung et al. 2003) and
TDC (Yu et al. 2004). Furthermore, Zhao and Karypis (2005) reported that bisecting
k-means with I2 criterion function outperforms UPGMA. Findings in Malik and
Kender (2006) were also consistent with this observation. Consequently, we do not
compare our algorithm against FIHC, TDC and UPGMA. In addition, we do not
compare our algorithm against HICAP as it is reported Xiong et al. (2004) to have a
performance that is comparable to UPGMA.

Like IDHC, GPHC requires an interestingness measure. We used MI (i.e., Mutual
Information), which was found to be the top measure for it on text datasets in Malik
and Kender (2006); see Sect. 7.8 for a note on the MI thresholds used for GPHC.

Bisecting k-means implementation from the Cluto clustering toolkit (Karypis 2003)
was used. Since it relies on randomized heuristics, we attempted to ensure fairness
by using the same dedicated machine (i.e., a 64-bit server with two Xeon processors
and 8 GB of memory) to execute each clustering algorithm on each dataset 10 times
and reported the averages. We note that Cluto produces both flat and hierarchical
clustering solutions for bisecting k-means. The hierarchical solution is a dendrogram
as discussed in Sect. 4.3. In contrast, the flat solution is obtained by applying sec-
ondary cluster analysis on this dendrogram (with number of clusters as a user defined
parameter). We ensured an apples-to-apples comparison by always considering the full
hierarchical solution (i.e., the dendrogram) and by using the same code to calculate
FScore and entropy values for cluster hierarchies produced by all three algorithms.

123

176 H. H. Malik et al.

Finally, since the iterative cluster refinement process in IDHC (Sect. 4.3) may pro-
duce many clusters containing only a single document leading to inflated IDHC entropy
scores, we ensured fairness by excluding all IDHC clusters with a single document
for computing FScore and entropy.

7.2 Evaluation tasks

In the following sections we will describe results of experiments designed to examine
different aspects of IDHC performance relative to other methods and to choices of
different parameters. Specifically, we perform experiments that:

– Compare IDHC with two state-of-the-art hierarchical classifiers, bisecting k-means
and GPHC (Sect. 7.3), showing IDHC to be superior to both;

– Evaluate the choice of within-dataset interestingness measure for size-2 patterns
(Sect. 7.4), with best overall results obtained using Added Value;

– Examine the effect of local significance measure and the cluster merging step on
performance (Sect. 7.5). Use of local significance improves overall performance;
while the merging step leads to better FScores but worse Entropy scores.

– Study the effect of varying local coverage, n, and minimum support minS param-
eters (Sect. 7.6). These experiments show that for a range of reasonable parameter
values (i.e. n ∈ [5, 20] and minS ∈ [2, 50]) the performance of IDHC is rather
stable, both with top-k and with standard deviation schemes.

– Study the effect of varying local coverage, n, and number of top patterns k, in top-k
scheme (Sect. 7.7) showing that larger k leads to better entropies, but intermediate
k leads to best FScores.

– We also show that IDHC uses significantly fewer patterns compared to methods
that focus on global patterns, while having a better performance (Sect. 7.8).

7.3 Clustering performance

Tables 6 and 7 present the results of IDHC (both with the standard deviation and top-k
schemes), bisecting k-means and GPHC. Figure 3 provides a visual summary of these
tables. In order to demonstrate that IDHC is not very sensitive to parameter values,
we used the same fixed parameter values on all 16 datasets. Tuning these parameters
for each dataset separately may lead to slight further improvements.

From Table 6, we observe that GPHC achieved the highest FScores on 5 datasets and
bisecting k-means achieved the highest FScores on 2 datasets, whereas the two IDHC
pattern selection schemes achieved highest FScores on 9 datasets. Note that the two
IDHC schemes generally performed similarly, and that their average performance was
better than that of either GPHC or bisecting k-means. When IDHC performed worse
than either of the other methods, the differences were relatively small (ex. classic, k1b,
ohscal, mm). Frequently however, IDHC was significantly better than the other two
methods (ex. tr* datasets). In terms of entropy (Table 7), GPHC and bisecting k-means
were about 50% worse on average as compared to IDHC. These results convincingly
demonstrate that IDHC is a better method overall.

123

Hierarchical document clustering using local patterns 177

Table 6 Clustering quality (FScores) on text datasets for 3 hierarchical clustering methods

IDHC

Dataset Bisecting k-means GPHC minStdDev top-k

Classic 0.782 0.880 0.749 0.814

Hitech 0.528 0.540 0.539 0.542

k1a 0.668 0.654 0.672 0.677

k1b 0.882 0.903 0.886 0.893

la12 0.741 0.661 0.746 0.748

mm 0.774 0.943 0.902 0.924

Ohscal 0.601 0.530 0.552 0.562

re0 0.610 0.672 0.623 0.623

Reuters 0.835 0.851 0.855 0.847

Reviews 0.801 0.818 0.837 0.843

Sports 0.882 0.886 0.874 0.883

tr11 0.795 0.519 0.791 0.800

tr12 0.689 0.604 0.758 0.739

tr23 0.667 0.487 0.718 0.754

tr31 0.837 0.584 0.861 0.823

Wap 0.683 0.663 0.662 0.674

Average 0.736 0.700 0.752 0.759

Bold numbers indicate the best result for each dataset

We also observe that the flexible overlapping clustering scheme adapted by IDHC
is more beneficial to multi-label datasets as compared to single-label datasets. Among
the datasets used in our experiments, Reuters was the only multi-label dataset and
IDHC, when used with the standard deviation scheme, outperformed other algorithms
with a substantially higher margin in terms of entropy (Table 7) on this dataset as
compared to the average entropy improvement achieved on single-label datasets. This
is because instances that dynamically select a higher number of size-2 patterns are
more likely to belong to multiple topics and several instances that belong to each topic
are likely to select common patterns, thus increasing their chances to share clusters
with other instances that share at-least one class with them.

7.4 Interestingness measures

In this section, we compare the relative performance of top-6 interestingness measures
(Geng and Hamilton 2006; Tan et al. 2002) to compute the within-dataset significance
of size-2 patterns (as described in Sect. 4.1). Figure 4 presents the results for each of
the two pattern selection schemes. We observe that on average Added Value (AV) is
comparable to or slightly better than Yule’s Q (YQ) and Certainty Factor (CF), with
Mutual Information (MI) and χ2 (CHI) performing somewhat worse than these mea-
sures and Conviction (V) performing much worse. Therefore, the rest of the results
presented in this work used Added Value as the interestingness measure.

123

178 H. H. Malik et al.

Table 7 Clustering quality (entropies) on text datasets for 3 hierarchical clustering methods

IDHC

Dataset Bisecting k-means GPHC minStdDev top-k

Classic 0.060 0.025 0.044 0.049

Hitech 0.224 0.172 0.150 0.182

k1a 0.106 0.045 0.068 0.083

k1b 0.042 0.042 0.035 0.041

la12 0.120 0.062 0.074 0.095

mm 0.073 0.053 0.028 0.041

Ohscal 0.198 0.237 0.204 0.222

re0 0.115 0.077 0.031 0.067

Reuters 0.075 0.156 0.008 0.026

Reviews 0.073 0.048 0.029 0.045

Sports 0.030 0.016 0.012 0.020

tr11 0.107 0.141 0.076 0.095

tr12 0.133 0.161 0.074 0.089

tr23 0.136 0.042 0.065 0.070

tr31 0.041 0.114 0.025 0.037

Wap 0.106 0.047 0.074 0.087

Average 0.102 0.090 0.062 0.078

Bold numbers indicate the best result for each dataset

FScore Entropy
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
nt

ro
py

BiKMeans
GPHC
IDHC−minStdDev
IDHC−topK

Fig. 3 FScores and entropies (averaged over all datasets) for bisecting k-means, GPHC and two IDHC
schemes (left to right)

123

Hierarchical document clustering using local patterns 179

FScore Entropy
0

0.2

0.4

0.6

0.8
CF
V
MI
YQ
CHI
AV

FScore Entropy
0

0.2

0.4

0.6

0.8
CF
V
MI
YQ
CHI
AV

Fig. 4 Averages of FScores and Entropies across the datasets, obtained with different interestingness
measures, for top-k (left) and standard deviation (right) schemes. Top-to-bottom on legend corresponds to
left-to-right in the plot

7.5 Contribution of local significance and merging top-level clusters

In this section, we discuss two variants of IDHC to demonstrate the importance of
local significance for pattern selection (Sects. 1.3 and 4.1) and of merging top-level
clusters (Sect. 4.3). To demonstrate the importance of local pattern significance, we
replaced line 7 of Algorithm 1 with sl = 1 which results in ignoring local frequen-
cies altogether. Similarly, we skipped top-level node merging by eliminating line 23
of Algorithm 1. For both variants, we executed IDHC on all datasets using default
parameters. FScores and Entropies obtained with these variants, as well as the default
IDHC results, are shown in Tables 8 and 9.

Without top-level node merging the entropies are much smaller as compared to all
other variants (0.038 and 0.045), however, so are the FScores (0.185 and 0.178). This
indicates that without this post-processing, IDHC creates very fine-grained clusters.
This may be important for applications where cluster purity is very important, for
example duplicate story detection.

Without local frequencies, IDHC still achieves decent FScores (averages of 0.734
and 0.728) - better than the GPHC result (average of 0.700). However, these results
are noticeably worse than the default setting where local frequency information is
used (averages of 0.752 and 0.759). The entropies without local frequencies are much
worse than with the other approaches. This suggests that while within-dataset signif-
icance alone provides a lot of information, local pattern significance is important for
achieving good clustering quality.

7.6 Effects of varying local coverage threshold and minimum support

Here we discuss the influence of the local coverage parameter n and minimum support
MinS. Results with the standard deviation scheme are in Fig. 5 When MinS is low,
all words that occur in more than 1 document are used, and so the local coverage
parameter has no effect on the results. As MinS increases, fewer terms are included

123

180 H. H. Malik et al.

Table 8 Clustering quality (FScores) on text datasets for different variants of IDHC, illustrating importance
of top-level merging and of using local frequencies

IDHC default Without top-level node merging Without local frequencies

Dataset minStdDev top-k minStdDev top-k minStdDev top-k

Classic 0.749 0.814 0.056 0.065 0.849 0.767

Hitech 0.539 0.542 0.099 0.094 0.522 0.532

k1a 0.672 0.677 0.140 0.133 0.674 0.671

k1b 0.886 0.893 0.093 0.088 0.906 0.891

la12 0.746 0.748 0.136 0.129 0.732 0.732

mm 0.902 0.924 0.081 0.072 0.935 0.932

Ohscal 0.552 0.562 0.101 0.091 0.527 0.544

re0 0.623 0.623 0.311 0.315 0.585 0.584

Reuters 0.855 0.847 0.357 0.344 0.793 0.775

Reviews 0.837 0.843 0.116 0.106 0.817 0.824

Sports 0.874 0.883 0.166 0.153 0.860 0.855

tr11 0.791 0.800 0.235 0.222 0.803 0.770

tr12 0.758 0.739 0.272 0.268 0.660 0.669

tr23 0.718 0.754 0.331 0.319 0.641 0.623

tr31 0.861 0.823 0.308 0.298 0.820 0.832

Wap 0.662 0.674 0.157 0.149 0.628 0.646

Average 0.752 0.759 0.185 0.178 0.734 0.728

globally, so local coverage becomes more important. The worst results are observed
with high MinS and n = 0, however, the results are rather stable elsewhere.

With the top-k scheme (Fig. 6), the observations are similar: high local cover-
age compensates for high minimum support. When MinS is low, local coverage has
very little effect. Overall, the results tend to be slightly better and more sensitive to
parameter values with the top-k scheme, however, these differences are not signifi-
cant.

7.7 Effect of varying k in the top-k pattern selection scheme

In this section, we analyze the effect of varying k in the top-k pattern selection scheme.
As shown in Fig. 7, for any value of the local coverage threshold (i.e., n), the entropies
are lowest when k is high, while FScores are highest when k is not very high (3 or
5). Intuitively, when k=1 we don’t get enough good features and the cluster overlap
is minimal, but with much larger values of k we start getting features that aren’t very
useful and it results in too many instances to shares clusters with instances from other
classes. It also appears that for a fixed value of k in the examined range, increasing n
does not improve entropies and leads to some decline in the FScore (with an exception
of k=5, where best FScore is achieved with n=20).

123

Hierarchical document clustering using local patterns 181

Table 9 Clustering quality (Entropies) on text datasets for different variants of IDHC, illustrating impor-
tance of top-level merging and of using local frequencies

IDHC default Without top-level node merging Without local frequencies

Dataset minStdDev top-k minStdDev top-k minStdDev top-k

Classic 0.044 0.049 0.011 0.027 0.076 0.055

Hitech 0.150 0.182 0.101 0.112 0.241 0.242

k1a 0.068 0.083 0.034 0.036 0.123 0.127

k1b 0.035 0.041 0.028 0.028 0.037 0.040

la12 0.074 0.095 0.049 0.058 0.120 0.133

mm 0.028 0.041 0.008 0.012 0.090 0.109

Ohscal 0.204 0.222 0.169 0.181 0.210 0.236

re0 0.031 0.067 0.033 0.049 0.122 0.125

Reuters 0.008 0.026 0.007 0.015 0.074 0.089

Reviews 0.029 0.045 0.012 0.016 0.074 0.090

Sports 0.012 0.020 0.009 0.013 0.029 0.038

tr11 0.076 0.095 0.043 0.048 0.130 0.131

tr12 0.074 0.089 0.034 0.039 0.177 0.180

tr23 0.065 0.070 0.023 0.015 0.151 0.152

tr31 0.025 0.037 0.019 0.029 0.070 0.074

Wap 0.074 0.087 0.035 0.041 0.132 0.138

Average 0.062 0.078 0.038 0.045 0.116 0.122

n=0 n=5 n=10 n=20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
S

co
re

MinS=2
MinS=10
MinS=50

n=0 n=5 n=10 n=20
0

0.02

0.04

0.06

0.08

0.1

E
nt

ro
py

MinS=2
MinS=10
MinS=50

Fig. 5 FScores and entropies (averaged over all datasets) for different values of n and MinS, with standard
deviation scheme. Top-to-bottom on legend corresponds to left-to-right in the plot

123

182 H. H. Malik et al.

n=0 n=5 n=10 n=20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
S

co
re

MinS=2
MinS=10
MinS=50

n=0 n=5 n=10 n=20
0

0.02

0.04

0.06

0.08

0.1

E
nt

ro
py

MinS=2
MinS=10
MinS=50

Fig. 6 FScores and entropies (averaged over all datasets) for different values of n and MinS, with top-k
scheme. Top-to-bottom on legend corresponds to left-to-right in the plot

n=0 n=5 n=10 n=20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
S

co
re

k=1
k=3

k=5
k=7

n=0 n=5 n=10 n=20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
nt

ro
py

k=1
k=3

k=5
k=7

Fig. 7 FScores and entropies (averaged over all datasets) for different values of n and k using the top-k
scheme. Top-to-bottom on legend corresponds to left-to-right in the plot

7.8 Robustness in the number of patterns

In Sect. 1.2, we noted that the threshold-based global pattern mining step in existing
algorithms may result in an unpredictable number of patterns. During our experiments,
we found many examples that clearly demonstrate this problem. We provide a few here
and also show that IDHC does not suffer from this problem.

In Malik and Kender (2006), we showed that the GPHC algorithm worked well
on all 9 datasets used there with interestingness threshold values of 0.1 and 0.85 for
MI and YulesQ, respectively. However, using the same threshold values on some of
the highly correlated datasets leads to an extremely large number of size-2 patterns

123

Hierarchical document clustering using local patterns 183

Table 10 Number of size-2
patterns for GPHC (Malik and
Kender 2008) and IDHC (using
the standard deviation scheme
and default parameters)

IDHC uses significantly fewer
patterns while producing better
results

Approximate # of size-2 patterns

Dataset GPHC, MI
(million)

GPHC, YulesQ IDHC

mm 2.4 Fails 3, 651

Reviews 2.6 Fails 5, 952

Sports 1.4 Fails 12, 607

tr11 4.3 11.4 million 604

tr12 3.6 8.8 million 464

tr23 7.6 12.2 million 282

tr31 7.0 Fails 1, 360

(Table 10), so that in a number of cases the mining process could not continue because
it has exhausted the available system resources. In some cases, GPHC could not even
finish mining size-2 patterns. Thus, we had to increase threshold values to obtain the
results reported in Sect. 7.3.

The problem of generating too many patterns is not unique to GPHC. All global
pattern mining based clustering algorithms suffer from a similar problem. In fact, a
pure frequent or closed frequent itemset based algorithm would be expected to find an
even higher number of itemsets (Malik and Kender 2006). In contrast, our local stan-
dard deviation based pattern selection scheme selected up to three orders of magnitude
fewer size-2 patterns, without loss of performance in general (Sect. 7.3). If the top-k
scheme is used, the maximum number of size-2 patterns selected for each instance
can be directly controlled using the k parameter.

8 Conclusions and future work

IDHC is an instance of the LeGo framework that uses local patterns as features for
constructing a cluster hierarchy. These patterns are mined using an instance-driven
approach that selects representative size-2 patterns for each instance in the dataset.
This eliminates the need to use highly unstable global thresholds and also guarantees
that the final set of selected patterns covers all instances. The selected patterns form
initial clusters, described by sets of local patterns, and a cluster hierarchy is obtained
by following an iterative cluster refinement process that avoids global processing by
utilizing instance-to-cluster relationships, produces more meaningful cluster labels,
and allows for generating more flexible overlapping clusters.

Our extensive experimental evaluation on 16 datasets shows that the proposed ap-
proach outperforms existing hierarchical clustering algorithms both in terms of FScore
and entropy. Most importantly, this approach was equally effective on highly corre-
lated datasets, while using a lot fewer patterns than other methods. These results clearly
demonstrate the effectiveness of LeGo approach and show that global models con-
structed using local patterns may substantially outperform global models constructed

123

184 H. H. Malik et al.

using globally significant patterns, even if local patterns were minded using a rather
simple method. We also demonstrate the importance of individual steps in the IDHC
algorithm, such as use of local significance and the merging of clusters in the final
stages. While the algorithm relies on several parameters, such as minimum support
minS and local coverage n, for a large range of values of these parameters perfor-
mance is very similar, indicating that the proposed algorithm is rather stable. The use
of Added Value as a pattern significance measure was experimentally supported in
comparison with 5 other measures.

In the future, we plan to investigate more sophisticated ways of calculating local
pattern significance and incorporate methods from natural language processing that
may help restrict the local pattern search space even further. In addition, we plan to
apply IDHC on non-textual dense datasets such as the UCI dataset collection.

Acknowledgements We would like to thank the editors of this special issue and the anonymous reviewers
for their constructive and detailed comments. We would also like to thank Professor Howard Hamilton who
reviewed an earlier version of this paper and provided valuable feedback.

References

Angiulli F, Ianni G, Palopoli L (2001) On the complexity of mining association rules. In: Proceedings of
Nono Convegno Nazionale su Sistemi Evoluti di Basi di Dati (SEBD), pp 177–184

Beil F, Ester M, Xu X (2002) Frequent term-based text clustering. In: Proceedings of international confer-
ence on knowledge discovery and data mining, pp 436–442

Brijs T, Vanhoof K, Wets G (2003) Defining interestingness for association rules. Int J Inf Theor Appl
10(4):370–376

Carter C, Hamilton H, Cercone N (1997) Share based measures for itemsets. In: Proceedings of the first
European symposium on principles of data mining and knowledge discovery, pp 14–24

Clifton C, Coolie R, Rennie J (2004) TopCat: Data mining for topic identification in a text corpus. IEEE
Trans Knowl Data Eng 16(8):949–964

Fung B, Wang K, Ester M (2003) Hierarchical document clustering using frequent itemsets.
In: Proceedings of SIAM international conference on data mining, pp 59–70

Geng L, Hamilton HJ (2006) Interestingness measures for data mining: a survey. ACM Comput Surv 38(3).
http://portal.acm.org/citation.cfm?id=1132960.1132963

Gunopulos D, Khardon R, Mannila H, Saluja S, Toivonen H, Sharma RS (2003) Discovering all most
specific sentences. ACM Trans Database Syst 28(2):140–174

Han E.H., Karypis G, Kumar V, Mobasher B (1997) Clustering based on association rule hypergraphs.
In: Proceedings of research issues on data mining and knowledge discovery, pp 59–70

Karypis G (2003) CLUTO: A software package for clustering high dimensional datasets. http://www-users.
cs.umn.edu/~karypis/cluto/

Knobbe A, Crémilleux B, Fürnkranz J, Scholz M (2008) From local patterns to global models: the LeGo
approach to data mining. In: Proceedings of local patterns to global models workshop (ECML/PKDD),
pp 1–16

Li Y, Chung S. M, (2005) Text document clustering based on frequent word sequences. In: Proceed-
ings of the 14th ACM international conference on information and knowledge management (CIKM),
pp 293–294

Malik H, Kender JR (2006) High quality, efficient hierarchical document clustering using closed interesting
itemsets. In: Proceedings of sixth IEEE international conference on data mining, pp 991–996

Malik H, Kender JR (2007) Optimizing frequency queries for data mining applications. In: Proceedings of
Seventh IEEE International Conference on Data Mining, pp 595–600

Malik H, Kender JR (2008) Instance driven hierarchical clustering of document collections. In: Proceedings
of local patterns to global models workshop (ECML/PKDD)

123

http://portal.acm.org/citation.cfm?id=1132960.1132963
http://www-users.cs.umn.edu/~karypis/cluto/
http://www-users.cs.umn.edu/~karypis/cluto/

Hierarchical document clustering using local patterns 185

Moerchen F, Brinker K, Neubauer C (2007) Any-time clustering of high frequency news streams. In: Pro-
ceedings of data mining case studies workshop, the thirteenth ACM SIGKDD international conference
on knowledge discovery and data mining

Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. ACM SIGKDD
Explor Newslett 6(1):90–105

Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag
24((5):513–523

Tan P, Kumar V, Sristava J (2002) Selecting the right interestingness measure for association patterns. In:
Proceedings of 8th international conference on knowledge discovery and data mining, pp 32–41

Wang J, Karypis G (2004) SUMMARY: efficient summarizing transactions for clustering. In: Proceedings
of fourth IEEE international conference on data mining, pp 241–248

Wu C (2006) Mining top-K frequent closed itemsets is not in APX. In: Proceedings of PAKDD, pp 435–439
Xiong H, Steinbach M, Tan PN, Kumar V (2004) HICAP: hierarchical clustering with pattern preservation.

In: Proceedings of SIAM international conference on data mining, pp 279–290
Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. In: Proceedings

of the 14th international conference on machine learning, pp 412–420
Yu H, Searsmith D, Li X, Han J (2004) Scalable construction of topic directory with nonparametric closed

termset mining. In: Proceedings of fourth IEEE international conference on data mining, pp 563–566
Zhao Y, Karypis G (2005) Hierarchical clustering algorithms for document datasets. Data Min Knowl

Discov 10(2):141–168

123

	Hierarchical document clustering using local patterns
	Abstract
	1 Introduction and motivation
	1.1 Notations and definitions
	1.2 Problem 1: sensitivity of pattern selection to thresholds
	1.3 Problem 2: insensitivity to local term frequencies
	1.4 Problem 3: unnecessary coupling of pattern size and hierarchy depth
	1.5 Problem 4: artificial constraints on overlapping clustering
	1.6 IDHC: a more flexible instance-driven hierarchical clustering algorithm

	2 Related work
	3 Dimensionality reduction
	4 Instance-driven hierarchical clustering
	4.1 Stage 1: select significant patterns with respect to each instance
	4.2 Stage 2: prune duplicate clusters
	4.3 Stage 3: generate the cluster hierarchy

	5 Example
	6 Discussion
	7 Empirical evaluation
	7.1 Other algorithms
	7.2 Evaluation tasks
	7.3 Clustering performance
	7.4 Interestingness measures
	7.5 Contribution of local significance and merging top-level clusters
	7.6 Effects of varying local coverage threshold and minimum support
	7.7 Effect of varying k in the top-k pattern selection scheme
	7.8 Robustness in the number of patterns

	8 Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

