
Data Min Knowl Disc (2009) 19:320–350
DOI 10.1007/s10618-009-0132-7

Subsea: an efficient heuristic algorithm for subgraph
isomorphism

V. Lipets · N. Vanetik · E. Gudes

Received: 14 November 2007 / Accepted: 12 May 2009 / Published online: 29 May 2009
Springer Science+Business Media, LLC 2009

Abstract We present a novel approach to the problem of finding all subgraphs
and induced subgraphs of a (target) graph which are isomorphic to another (pattern)
graph. To attain efficiency we use a special representation of the pattern graph. We
also combine our search algorithm with some known bisection algorithms. Experi-
mental comparison with other algorithms was performed on several types of graphs.
The comparison results suggest that the approach provided here is most effective when
all instances of a subgraph need to be found.

Keywords Graph algorithms · Subgraph isomorphism · Heuristic · Bisection

1 Introduction

Subgraph isomorphism is an important and very general form of pattern matching that
finds practical application in areas such as pattern recognition and computer vision,
computer-aided design, image processing, graph grammars, graph transformation, bio
computing, search operation in chemical structural formulae database, and numerous
others. Theoretically, subgraph isomorphism is a common generalization of many
important graph problems including finding Hamiltonian paths, cliques, matching,

Responsible editor: Charles Elkan.

V. Lipets · N. Vanetik (B) · E. Gudes
Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
e-mail: orlovn@cs.bgu.ac.il

V. Lipets
e-mail: lipets@cs.bgu.ac.il

E. Gudes
e-mail: ehud@cs.bgu.ac.il

123

Algorithm for subgraph isomorphism 321

girth, and shortest paths. Subgraph isomorphism is also a basic component of any
graph mining algorithm, an area which has become important in many data mining
applications of unstructured and complex data. Graph mining algorithms often require
finding not one but all subgraphs of the database graph isomorphic to a given small
graph in order to compute the measure of statistical significance (also called ’support’)
of that small graph in the database. The subgraph isomorphism problem is generally
NP-complete (see Garey and Johnson 1979) and computationally difficult to solve.
But because of its wide applicability much effort was invested in finding algorithms
and heuristics which can reduce the total search effort. Since the number of subgraphs
isomorphic to a given small graph in a graph database can also be exponential in the
size of the database, support computation is the bottleneck of all graph mining algo-
rithms. Graph mining is an important and fast growing field of data mining with many
applications such as mining biochemical structures, program flow analysis, mining
XML structures and Web communities.

The most common technique to establish a subgraph isomorphism is based on back-
tracking in a search tree. In order to prevent the search tree from growing unnecessarily
large, different refinement procedures are used. Best known is the one by Ullman (see
Ullmann 1976). Cordella et al. have suggested another general graph matching algo-
rithm in Sansone et al. (2004). This algorithm is tailored for dealing with large graphs
without using information about the topology of the graphs to be matched. It employs
a recursive algorithm which grows a set of partial sub-graphs until the isomorphic
sub-graph is found. The growing is done in such a way that reduces considerably the
search space by providing pruning rules, and a dynamic ordering method for node
matching. (The idea of pruning also appears in our algorithm as will be seen later.)
The algorithm has become quite popular and the authors supply executables which
can be used for evaluation (Cordella et al. 1999).

On the other hand, a lot of work has been done to solve this problem in polyno-
mial time for specific families of graphs, for example papers Dessmark et al. (2000),
Eppstein (1999), Lingas and Sysło (1989) and Matula (1978). Alon et al. (1995) has
presented a novel randomized method—color-coding—for finding simple paths and
cycles of a specified length k, and other small subgraphs, within a given graph G.

The essential part of the recent research on subgraph isomorphism algorithms has
been based on heuristic search techniques and was described in Akinniyi et al. (1986),
Cheng and Huang (1981) , Cortadella and Valiente (2000), Larrosa and Valiente (2000),
Messmer and Bunke (1996). Some of the techniques work better in some special cases.
For example, Akinniyi et al. (1986) use a tree searching procedure over the projections
of the implicit product of the two graphs and utilize the minimum number of neigh-
bors of the projected graphs to detect infeasible subtrees. Cheng and Huang (1981) use
bitwise parallelism during the resolution process even though a sequential computer
is used. Cortadella and Valiente (2000) use a representation of relations and graphs
by Boolean functions, which allows handling the combinatorial explosion in the case
of small pattern graphs and large target graphs. Larrosa and Valiente (2000) use the
notion of neighborhood constraints. In particular, an efficient algorithm is described
by Foggia et al. (2001). This algorithm uses a set of feasibility rules to significantly
reduce the computational cost of the matching process.

123

322 V. Lipets et al.

Two additional algorithms have been published recently. Krissinel and Henrick
(2004) describe an algorithm that recursively enumerates all possible mappings of
subgraphs of the two graphs. They improve the computational complexity of the algo-
rithm by limiting the search area for possible matching. This is done by maintaining a
static vertex matching matrix (VMM). The VMM stores all previous matchings, which
the algorithm uses to determine if a certain mapping can or succeeded to cannot obtain
a result with a sufficient size. If the mapping is present in the matrix, and is known
to produce a result that is too small, the algorithm will simply skip calculating with
that mapping and continue to the next one, thus saving computing the entire recursive
branch.

Batz (2006) describes a heuristic algorithm for finding a graph-subgraph mapping
on directed labeled graphs, based on building a “plan graph” that helps model all
available mappings and finds the mapping that takes the shortest time to build. First,
a “search plan” is defined as an iterative mapping between two graphs built by atomic
(“primitive”) operations. on the primitive operations is defined, based on informa-
tion from the host graph. This paper gives a heuristic algorithm of finding an optimal
selection and ordering of the “search plan” that will give a matching between the two
graphs. According to the analysis done by this paper, the algorithm runs in almost
linear time when very few labels are repeated. However, cases where the graph is not
labeled, or is labeled poorly (few different labels for many components) cause the
algorithm to find more expensive search plans which take more time to calculate.

There are other variations of the subgraph isomorphism problem. An algorithm
for subgraph isomorphism detection from a set of a priori known model graphs to
an input graph that is given on-line is presented in Bunke and Messmer (2000). The
approach is based on a compact representation of the model graphs that is computed
offline. A related problem is that of Graph matching where exact isomorphism is not
required but some similarity measure is defined. One such measure is based on the
“edit distance” Berretti et al. (2004), but other measures are possible. A recent paper
by Sammoud et al. (2005) describes an algorithm for finding an approximation to the
maximal subgraph matching between two graphs. First, the authors define a function
that measures the similarity of two graphs with respect to a certain mapping, and a
function that measures the “desirability” of a single vertex matching for maximizing
the similarity factor (a score function). They use these functions to iteratively build the
best mapping (or close to it). mapping using a greedy algorithm. This greedy algorithm
works by choosing the most desirable vertex matching available to it and adding it to
its original graph mapping. The algorithm ends after the score function of the mapping
no longer increases, or after a maximal number of iterations is reached.

Also, in some papers it is proposed to go a step further by introducing multi-vertex
matchings, where a vertex in one graph may be matched with a set of vertices of the
other graph Ambauen et al. (2003), Boeres et al. (2004), Champin and Solnon (2003).

Recently, the area of graph mining and especially finding frequent graph patterns,
has become an important research area with applications in mining and discovering
frequent patterns in semi-structured data such as Web and XML data Chen et al.
(1998), Wang and Liu (1998), Lin et al. (1998), chemical compounds data such as
Dehaspe et al. (1998), Nijssen and Kok (2004a,b), or biological data Pennec and
Ayache (1998). All the algorithms for frequent graph mining require heavy use of

123

Algorithm for subgraph isomorphism 323

subgraph isomorphism as a basic step; therefore, their performance is critically depen-
dent on the efficiency of the subgraph isomorphism algorithm. Examples of graph
mining algorithms which make heavy use of subgraph isomorphism can be found in
Kuramochi and Karypis (2001), Vanetik et al. (2002) and Yan and Han (2002).

Recall that the subgraph isomorphism problem is NP-complete in general. However,
for any target graph with n vertices and any pattern graph with k vertices, where k is
fixed, both the enumeration and decision problems can easily be solved in polynomial
O(nk) time, and for some patterns an even better bound might be possible. However,
for the general subgraph isomorphism problem, nothing better than the naive O(nk)

bound is known. Thus one is led to the problem of finding heuristics for reducing the
expected complexity of a subgraph isomorphism algorithm for a given fixed pattern
graph.

In this paper, we propose an efficient heuristic method for finding all subgraphs
and induced subgraphs of a target graph which are isomorphic to another connected
pattern graph of a fixed size. The proposed algorithm is presented for non-directed
labeled graphs but it has general validity, since no constraints are imposed on the
topology of the pattern and the target graphs, and the method can be easily extended
to the directed graphs case as well. To attain the efficiency we use a special repre-
sentation of the pattern graph, which gives preference to checking the more “dense”
parts first, thus obtaining “negative” answers as early as possible. We also combine
our search algorithm with some known bisection algorithms and use them recursively
which eases the search in large target graphs.

A special property of our algorithm is the fact that it finds all instances of the
subgraph isomorphism and not just the first one. Our motivation was graph mining in
the single graph-setting case, see e.g., Kuramochi and Karypis (2004), Gudes et al.
(2006). The presented algorithm is particularly useful when the target graph is much
larger than the pattern graph, a case which is common in many applications, such as
mining the Web or Social networks Cai et al. (2005). Recently the interest in mining all
occurrences in a single large graph has increased. An example biological application
was presented by Zhang et al. (2009). The following is a citation from Zhang et al.
(2009): “For example, biological networks (protein-protein interaction networks, and
gene regulatory networks, etc.) are often much larger than the graphs used in previous
exact indexing methods. A single biological network may contain thousands or tens of
thousands of vertices. Biologists may want to find all the occurrences of a particular
pattern (subgraph), e.g., protein type A interacts with protein type B and C, and protein
type C interacts with protein type A and D. In different occurrences of the pattern, the
exact proteins involved may be different since multiple proteins may share the same
type. As a result, all occurrences of a particular pattern need to be retrieved.”

To evaluate our approach we implemented our algorithm and compared it to one of
the most popular subgraph isomorphism algorithms, the one by Ullmann (1976), and
to the algorithm of Cordella et al. Sansone et al. (2004), using latest publicly available
implementations at Sansone (2001). Given a graph and a database graph, both of these
algorithms are capable of finding and reporting all subgraph isomorphisms the given
graph and the database graph, either as induced graph or not. The main conclusions
of the evaluation is that our Subsea algorithm outperforms both these algorithms in
finding all the instances of a subgraph in a graph, while finding a first instance of a

123

324 V. Lipets et al.

subgraph in a graph may be slower than either one of them. Thus Subsea is particularly
attractive for graph mining in a single transaction setting case Kuramochi and Karypis
(2004), Zhang et al. (2009).

The rest of this paper is structured as follows: Sect. 2 is devoted To definitions and
notations, and also contains the high-level outline of the algorithm. Sections 3, 4, and
5 present the necessary auxiliary algorithms; in Sect. 3 we describe some well known
bisection algorithms, in Sect. 4 we give some heuristic methods to represent a “small”
pattern graph, and Sect. 5 describes our search strategy. In sect. 6 we present our main
algorithm to find all occurrences of the given subgraph in the target graph and which
uses the above auxiliary algorithms. In Sect. 7, we present the experimental compar-
ison of our algorithm with the algorithms presented in Ullmann (1976) and Sansone
et al. (2004), and we show the effectiveness of the proposed heuristic method. We
conclude and propose further research in Sect. 8.

2 Definition and notations

2.1 General definitions

A graph G = (V, E) is called vertex-labeled (or simply labeled) if a mapping l : V →
N is given. l(v) is called a label of a vertex v. Throughout this paper we always speak of
a labeled graph unless otherwise specified. Two graphs which contain the same number
of vertices with the same labels connected in the same way are said to be isomorphic.
Formally, two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomor phic, denoted by
G1 ∼= G2, if there is a (label-preserving) bijection ϕ : V1 −→ V2 such that, for every
pair of vertices vi, vj ∈ V1, (vi, vj) ∈ E1 if and only if

(
ϕ(vi), ϕ(vj)

) ∈ E2. Bijection
ϕ is said to be an isomor phism between two graphs. An isomorphism which maps
v ∈ V into v′ ∈ V we denote by

(
v→ v′

)
-isomorphism.

A graph G ′ is a subgraph of a given graph G if vertices and edges of G ′ form
subsets of the vertices and edges of G. If G ′ is a subgraph of G, then G is said to be
a supergraph of G ′. We denote this relationship by G ′ ⊆ G.

A graph G1 = (V1, E1) is isomorphic to a subgraph of a graph G2 = (V2, E2) if
there exists a subgraph of G2, say G ′2, such that G1 ∼= G ′2. In this case the correspond-
ing bijection between vertices of G1 and G ′2 is said to be a subisomor phism between
two graphs. Note that for labeled graphs, this bijection must be label-preserving.

An induced subgraph is a subset of the vertices of a graph G together with all edges
whose endpoints are both in this subset. Formally, let G be a graph and V ′ ⊂ V (G).
We call the graph G ′ = (

V ′, E(G) ∩ {(u, v)|u, v ∈ V ′}) the subgraph of G induced
by V ′ and we denote it by G(V ′). The relationship between G ′ and G in this case we
denote by �.

Thus, an induced subgraph isomorphism is an isomorphism with an induced sub-
graph of a given graph, i.e., a graph G1 = (V1, E1) is isomorphic to an induced
subgraph of a graph G2 = (V2, E2) if there exists an induced subgraph of G2, say
G ′2, such that G1 ∼= G ′2. In this case a corresponding bijection between vertices of G1
and G ′2 is said to be an induced subisomor phism between two graphs.

123

Algorithm for subgraph isomorphism 325

Note that for induced subgraph isomorphism all edges of G1 must be mapped into
edges of G ′2, but also all non-edges of G1 must be mapped to non-edges of G ′2. Thus
without loss of generality we assume that the number of non-edges of the pattern
graph is larger than the number of edges (for the induced subgraph isomorphism prob-
lem only), otherwise we can solve the inverse graph problem (recall that the inverse
graph is obtained by replacing non-edges by edges). An automor phism of a graph
G = (V, E) is a graph isomorphism with itself.

The neighborhood of a vertex v in graph G, denoted by NG(v), is the set of vertices
in G that are adjacent to v, i.e., NG(v) = {u ∈ V |(u, v) ∈ E}. For any e ∈ E(G), we
define G − e = (V (G), E(G) \ {e}).

A cut in G is a partition of V into two disjoint sets, say (A, Ā). For A ⊆ V , denote
by e

(
A, Ā

)
the set of all A − Ā edges:

e
(

A, Ā
) = {(u, v) ∈ E | u ∈ A, v 	∈ A} .

The si ze of the cut (A, Ā), denoted by c
(

A, Ā
)
, is the number of edges having exactly

one vertex in A and the other in Ā, namely |e (
A, Ā

) |.
The minimum bisection is a cut

(
A, Ā

)
minimizing c

(
A, Ā

)
over all sets with

A of size
|V |/2�. For arbitrary graphs G, the problem of determining the minimum
bisection is NP-hard Garey and Johnson (1979).

For any graph G = (V, E) we assume that there exists a total order on the set of
vertices V which enables us to compare any two vertices formally for each u 	= v ∈ V
either v < u or u < v. We use the notation w = 〈w1, w2, . . . , wk〉 to represent a
sequence of k elements and denote the i-th element by w[i] for all i ∈ {1, 2, . . . , k}.
Two sequences of numbers can be compared according to the lexicographical order.

In order to test bisection algorithms, we need a way to generate graphs with known
best bisections. We use the following graph generation methods:

The probability distribution Gn,p,r is commonly used in the literature on minimum
bisection because the minimum bisection of a generated graph is known with high
probability, and the simplicity of the distribution leads to the possibility of determin-
ing analytically the probability of success of some algorithms.

Gn,p,r is a probability distribution on graphs with vertex set {1, 2, . . . , n} in which
the presence of each possible edge is independent, with probability p for edges within
{1, 2, . . . n/2} or {n/2+ 1, . . . , n} and probability r < p for other edges. If p − r is
sufficiently large, then with high probability, the minimum bisection is the obvious one.

Throughout this paper we use notations of “small” and “large” graphs, denoted by
GS and GL respectively. We assume that |E(GS)| << |E(GL)|, where E(GS) is the
pattern graph and E(GL) is the target graph. The number of edges of a “large” graph
was usually three or more orders of magnitude more than that of the “small” graph.

2.2 Outline of the Subsea algorithm

The algorithm, called Subsea, relies on the fact that the target graph is much larger
than the pattern graph. Therefore it uses bisection to decompose the “large” graph and
search for isomorphisms in the bisected parts (recursively). Clearly, if the bisection

123

326 V. Lipets et al.

is minimal the amount of time which is spent on checking edges belonging to the
bisection is also small, and the work can proceed on the two decomposed parts which
are considerably smaller. This, of course, relies on the fact that the target graphs are
not highly connected and that the bisection is not very large, something which is true
in most of the applications we mentioned in the Introduction. The isomorphism check
itself uses a canonical numbering scheme called traverse history constructed in such
a way that the isomorphism check will find non-matching subgraphs as early as possi-
ble. Since the isomorphism check can start at any pair of adjacent vertices, a traverse
history may be generated at most twice for every edge in the pattern graph and, in the
worst case, 2e traverse histories are generated for e edges.

The main steps of the algorithm are as follows:

1. In a preprocessing step generate all the traverse histories of the pattern graph.
2. Decompose the target graph by finding an approximate minimum bisection

(heuristically).
3. Check all possible isomorphisms using edges belonging to the bisection.
4. Apply step 2 again recursively on the two parts of the bisected graph until the

target graph becomes comparable in size to the “small” graph.

Section 3 describes steps 1 and 2. Section 4 describes the isomorphism check using
traverse histories. Section 5 describes the subgraph search algorithm and Sect. 6 dis-
cusses the entire algorithm.

There are two main reasons why Subsea performs as it does. First, traverse histories
for the small graph are generated once in the pre-processing stage of the algorithm and
the small graph is never traversed later during the search. We ’pay’ in running time
for that, but since the number of database subgraphs isomorphic to given graph can
be exponential in the size of the database, a lot of running time is saved later. This is
also the reason our approach has shown an advantage over dynamic re-ordering imple-
mented in the algorithm of Sansone et al. (2004). The second reason is that bisecting
the large graph each time decreases search space dramatically each time it is applied.

3 Bisection algorithms

In this section we describe two well-known approximation algorithms for finding a
minimum bisection of a given graph G. Note that since the minimum bisection is only
a tool to decompose the problem efficiently, we are not required to find the actual mini-
mum bisection (which is a hard problem), but it is enough to provide an approximation
for it.

We ignore vertex labels in this construction, because minimum bisection size de-
pends only on the number of edges and not on vertex labels.

3.1 Black holes bisection algorithm

This simple method which we devised works well on graphs with a very thin minimum
bisection, and has the advantage of running very fast.

123

Algorithm for subgraph isomorphism 327

Given a graph G = (V, E), the algorithm runs as follows. Initialize B1 = B2 = ∅.
These are the black holes. Choose uniformly at random an edge from V \ (B1 ∪ B2)

to B1, and add the first endpoint to B1. If no such edge exists, choose uniformly at
random among all vertices in V \ (B1 ∪ B2) for a vertex to add to B1. Do the same for
B2. Repeat until |B1 ∪ B2| = |V | (See Algorithm 3.1).

The motivation for this algorithm is that, assuming that the black holes are currently
contained in opposite sides of a minimal bisection, we are likely to add to each hole
a vertex from the correct side because there will be more edges from this side.

Algorithm 3.1 Black Holes Bisection

Input: Graph G = (V, E)

Output: Cut (B, B̄) of V which approximates a minimal bisection
1: B1 ←− B2 ←− ∅
2: B0 ←− V \ (B1 ∪ B2)

3: repeat
4: Add2Hole(1)

5: Add2Hole(2)

6: until B0 = ∅
7: return (B1, B̄1)

Algorithm 3.1 :: Procedure Add2Hole(i)
1: if B0 = ∅ return
2: E0 ←− {(u, v) : u ∈ Bi , v ∈ B0}
3: if E0 	= ∅ then
4: chose randomly e = (u, v) ∈ E0 with v ∈ B0
5: else
6: chose randomly v ∈ B0
7: end if
8: Bi ←− Bi ∪ {v}
9: B0 ←− B0 \ {v}

Let G be a graph chosen at random according to the distribution Gn,p,r . The
probability that randomized black holes will find the minimum bisection on G is
(p/p + r)n−2/2.

In fact, in the first step, we will simply be picking two vertices uniformly at random;
the probability that they will lie on opposite sides of the canonical bisection is 1

2 (or
close to it). Assume that after k steps H1 ∈ P1 and H2 ∈ P2, where P1 and P2 are
the two halves of the canonical bisection. The expected number of edges from H1 to
P1 \H1 is pk(n/2−k), while the expected number from H2 to P2 \H2 is rk(n/2−k).
Hence the probability that we pick an edge from the correct side is p/(p + r). Since
we must make n − 2 such correct choices, our overall probability of success is as
stated.

Obviously this success rate becomes quite bad as n becomes large if p and r are
constant. But consider the case where r = c/n for some constant c, or equivalently

123

328 V. Lipets et al.

where the number of edges across the minimum bisection is O(n). Now the probability
of success is greater than

1

2

(
1− r

p + r

)n

>
1

2

(
1− r

p

)n

= 1

2

(
1− c

np

)n

This last expression approaches the non-zero constant, say q, as n approaches infinity.
Hence by running randomized black holes 1/q times, a number depending only on c
and p, we achieve a success rate of at least 1/e.

3.2 Simple greedy bisection method

The obvious greedy algorithm for the graph bisection problem consists of starting with
any bisection

(
B, B̄

)
of V (in particular, we can use a bisection obtained by Black

Holes algorithm) and computing a new bisection by swapping the pair of elements
x ∈ B, y ∈ B̄ which maximizes the gain (number of edges in

(
B, B̄

)
before the swap

minus the number after the swap). This process is repeated until the maximum gain is
less than zero or until the maximum gain is zero and another heuristic has determined
that it is time to stop swapping “zero gain” pairs. The issue of breaking ties is resolved
by choosing the pair to swap uniformly at random from the set of pairs for which the
gain is maximum.

To efficiently determine the cost of a swap, we store for each vertex x ∈ B its inter-
nal cost I (x), which is the number of edges

(
x, x ′

) ∈ E with x ′ ∈ B, and its external
cost E(x), which is the number of edges (x, y) ∈ E with y ∈ B̄. This can be done in
O(m+n) time, and can be updated after swapping x and y in O (|NG(x)| + |NG(y)|)
time. The gain in swapping x and y is then gain = E(x) − I (x) + E(y) − I (y) −
2w(x, y), where w(x, y) = 1 if (x, y) ∈ E and w(x, y) = 0 otherwise. We can
therefore determine the best pair to swap in O(n2) time by simply running through all
(n/2)2 candidate pairs, keeping track of the leaders for the random choice at the end.

4 Traverse history

In this section we give two heuristic methods to represent a “small” pattern graph.
Each such representation enumerates the vertices of the pattern graph in a particular
order. This order will determine the order in which the isomorphism check is done. In
the experiments that we carried out, these simple methods essentially improved our
search technique by reducing the run time of the corresponding search algorithm (when
compared to the case when some induced traverse history was chosen randomly). The
motivation for using these representations will become clearer in Sect. 5.

Let d : V −→ N be a numbering of vertices of graph G. Let li denote the label
of the vertex that has number i in numbering d, i.e., li := l(v), d(v) = i ; let Ni :=
{d(u) < i : u ∈ NG(v), d(v) = i}. The sequence

〈
(l1, N1), (l2, N2), . . . ,

(
l|V |, N|V |

)〉

is called a traverse history of graph G induced by numbering d. In particular, we say
that traverse history started on vertices v1, v2, . . . , vi , if d(vi) = i , where i ≤ |V |.
Informally, Ni is the set of adjacent vertices to i with numbering smaller than i . The

123

Algorithm for subgraph isomorphism 329

Fig. 1 Traverse history of graph
G (labels omitted)

traverse history
〈
(l1, N1), (l2, N2), . . . ,

(
l|V |, N|V |

)〉
is connected if Ni 	= ∅ for each

2 ≤ i ≤ |V |. See Fig. 1 for an example of Ni on given graph. For traverse history
H, H [i] denotes (li , Ni), H [i].l denotes li and H [i].N denotes Ni .

We have two heuristic methods, Algorithm 4.1—the DFS method, and 4.2—the
“black holes” method, for finding a traverse history for “small” pattern graph with
given starting vertices. Algorithm 6.1 finds such traversals for all pairs of starting with
adjacent vertices. This is needed since the starting edge of the isomorphism check
may be arbitrary. The traverses obtained in this stage are used then as an input for the
search algorithm which is described in Sect. 5.

4.1 The DFS approach

Our first approach is based on a modification of the well known Depth-First Search
(DFS) algorithm which provides a general technique for traversing a graph (traversing
a graph means visiting all of its vertices in some systematic order). Recall that the DFS
traversing is not deterministic, i.e., for any graph G a number of traverses is possible.
We extend the traversing strategy by some heuristic rules, to provide a “fastest” return
to the visited nodes.

In Algorithm 4.1 we present our modification of the DF S algorithm. This algo-
rithm produces a traverse history of a connected graph G starting at given vertices
v1, v2. The same as the DFS algorithm, Algorithm 4.1 visits all vertices of G in some
schematic order, thereby producing the numbering of vertices of V (G). Note that the
obtained traverse history is induced by the above numbering.

Algorithm 4.1 Traverse History

Input: Graph G = (V, E), starting vertices v1, v2 ∈ V , with (v1, v2) ∈ E
Output: Traverse history H started on v1, v2 ∈ V .
1: for all v ∈ V do
2: d(v)←− 0
3: end for

123

330 V. Lipets et al.

Algorithm 4.1 continued

4: vt ime←− etime←− 1
5: V isi t (v1)

6: return H

Algorithm 4.1 :: Procedure V isi t (v)

1: d(v)←− vt ime
2: H [vt ime ++] = (l(v), {0 < d(u1) ≤ ... ≤ d(um) : u1, ..., um ∈ NG(v)})
3: if v = v1 then V isi t (v2)

4: N0 ←− {u ∈ NG(v) : d(u) = 0}
5: while N0 	= ∅ do
6: choose w ∈ N0 with lexicographically minimal EstimateNext (w, v) pair
7: if d(w) = 0 then V isi t (w)

8: N0 ←− N0 \ {w}
9: end while

Algorithm 4.1 :: Procedure EstimateNext (w, v)

1: S←− {w}
2: len←− 1
3: repeat
4: NS ←− ∪z∈S NG−(v,w)(z)
5: p = |{y ∈ NS : d(y) > 0}|
6: if p > 0 then return 〈len,−p〉
7: len ++
8: S←− S ∪ NS

9: until NS 	= ∅
10: return 〈∞,−|S|〉

The main goal of this approach is the choice of the next vertex to visit. To implement
our strategy, we define Breadth first search (BFS) based procedure EstimateNext ,
which helps to choose a next vertex to visit, by finding for any unvisited vertex (adja-
cent to the last visited vertex) an estimation pair using the following heuristic method,
which prefers to visit first nodes which have high “proximity” to the current node: Let
v be the last visited vertex and let w ∈ NG(v), be an unvisited vertex adjacent to v.
We distinguish between two cases (illustrated in Fig. 2):

(a) there exists a path in G − (v,w) started in w and leading to a visited vertex,
(b) such a path does not exist.

The first coordinate of the estimation pair is at least 1 in case (a) and equal to∞ in
case (b). This provides highest priority to case (a) and lowest to (b), since the minimal
value returned by EstimateNext procedure is chosen by the lexicographical order.
Actually, in case (a) the first coordinate is the length of the shortest path (paths) leading
to the visited vertices and the second coordinate equals the number of visited vertices

123

Algorithm for subgraph isomorphism 331

Fig. 2 Estimation cases

that the above path (paths) is leading to (multiplied by −1). This forces the choice
of the next vertex which belongs to the shortest path (paths) leading to the maximal
number of visited vertices. In case (b) the second coordinate equals to the size of the
connected component of G − (v,w) containing w (multiplied by −1). This forces
the choice of the next vertex which belongs to the smallest connected non-visited
component, when the above path leading to the visited vertices does not exist.

Remark In fact, the run time O
(
(|E | + |V |)2

)
of Algorithm 4.1 can be essentially

improved. But since we apply this algorithm on the “small” graph only at the prepro-
cessing stage, it is not necessary, and we present the simplest version here.

4.2 Black holes approach

In this section we give another approach for finding induced traverse history for “small”
pattern graph. In the experiments that we carried out, this method essentially improved
the run time when the main algorithm was applied on randomly generated graphs.

For any traverse history H = 〈
(l1, N1), (l2, N2), . . . , (l|V |, N|V |)

〉
of graph G we

define a traverse integrality as follows:

IG(H) =
|V |∑

i=1

(|V | + 1− i)|Ni |.

Actually this value gives a measure about the number of edges of subgraphs of some
given graph G induced by the first i = 1, 2, . . . , V (G) vertices of any numbering d
(Fig. 3).

We provide a simple (and very fast) randomized method for finding the induced
traverse history with the largest (or the smallest) traverse integrality. This method is
very similar to the Black Holes Bisection algorithm, presented in Sect. 3.

Given a graph G = (V, E) and starting vertices v1, v2 ∈ V , the algorithm runs as
follows: Initialize B = {v1, v2}. This is the black hole. Choose uniformly at random an

123

332 V. Lipets et al.

Fig. 3 Traverse integrality

edge from V \B to B, and add the first endpoint to B (in the Case when we are seeking
the smallest integrality, choose Randomly a vertex in

{
v ∈ B̄ : NG(v) ∩ B 	= ∅} and

add it to B). Enumerate v and for each vertex in NG(v)∩ B add d(u) to N|d(v)|. Repeat
until |B| = |V |.

The motivation for this algorithm is the same as for the bisection algorithm: assum-
ing that the black holes are currently contained in B, we are likely to add to a hole a
vertex with the largest number of neighbors in B, thereby increasing the corresponding
|Ni | value.

Algorithm 4.2 Hole Integration

Input: Graph G = (V, E), starting vertices v1, v2 ∈ V, (v1, v2) ∈ E
Output: Traverse history H started on v1, v2 ∈ V .
1: for all v ∈ V do
2: d[v] ←− 0
3: end for
4: d(v1) = 1
5: d(v2) = 2
6: B ←− {v1, v2}
7: while |B| 	= |V | do
8: Add2HoleAndV isi t ()
9: I ←− I + etime

10: end while
11: return (AH , I)

Algorithm 4.2 :: Procedure Add2HoleAndV isi t
1: chose randomly e = (u, v) ∈ e(B, B̄), where v ∈ B̄
2: d(v) = vt ime
3: H [vt ime ++] = (l(v), {d(u) : u ∈ NG(v) ∩ B})

Note that since initially B = v1, v2 and each vertex added to B has a neighbor in
B, the sequence of the set obtained by Algorithm 4.2 is connected traverse history of
graph G started on vertices v1, v2 ∈ V .

123

Algorithm for subgraph isomorphism 333

Remark The problem of finding traverse history with largest integrality is not well
studied. We suppose that it is NP-complete, and we will try to prove this fact in the
future. In our approach only the “small” graph is used as an input for this algorithm,
thus we can apply it a sufficiently large number of times to attain a high probability
that largest (smallest) integrality is found.

5 Search technique

In this section we start with an algorithm which searches for the isomorphic subgraphs
by given traverse history. In fact, the above algorithm seeks for subgraphs satisfying
the condition of the following obvious lemma.

Lemma 5.1 Let H1 =
〈
(l1, N1), (l2, N2), . . . ,

(
l|V1|, N|V1|

)〉
be a traverse history of

graph G1 = (V1, E1) with labeling l, induced by numbering d1 of V1. A subgraph
(induced subgraph) G ′2 a of a graph G2 = (V2, E2) with labeling m is isomorphic to
G1 if |V2| ≥ |V1| and there exists H2 =

〈
(m1, M1), (m2, M2), . . . ,

(
m|V2|, M|V2|

)〉
, a

traverse history of graph G2 induced by some numbering d2 of V2 such that li = mi

and Ni ⊆ Mi (Ni = Mi) for each 1 ≤ i ≤ |V1|. Moreover d−1
2 ◦d1 is an isomorphism

between G1 and G ′2 ⊆ G2 (G ′2 � G2).
In particular, graph G1 is

(
v1 → v′1, v2 → v′2

)
-isomorphic to subgraph (induced

subgraph) of G2 if v1, v2 ∈ V1 and v′1, v′2 ∈ V2 are starting vertices of H1 and H2,
respectively. ��

Our search technique is based on the DFS method and is depicted in Algorithm 5.2.
As an input it receives “large” target graph GL = (VL, EL), starting vertices v1, v2 ∈
VL and traverse history H of a “small” pattern graph GS , previously obtained by Algo-
rithms 4.1 or 4.2. It finds all subgraphs (induced subgraphs) of GL

(
v1→v′1, v2→v′2

)
-

isomorphic to GS, where v′1, v′2 are the first two vertices of the traverse history H .
An example of such an isomorphism is given in Fig. 4. All the labels are assumed to
be the same in this example and are therefore omitted from traverse histories. Here,
GS is

(
v1 → v′1, v2 → v′2

)
-isomorphic to two subgraphs of GL, induced by vertices

v′1, v′2, v′3 and v′1, v′2, v′4, respectively. The traverse history of GL shown in the picture
starts with v′1 and v′2, and therefore both these isomorphisms are discovered by simple
comparison of the traverse histories.

Fig. 4 Estimation cases v

vv

1

2 3
G

v

v v 2

3
v
1

4

1 2
TH = < 0, {1}, {1,2},{1,2}>TH = <0 , {1}, {1,2}>

 S G L

123

334 V. Lipets et al.

The extension of the above algorithm for the induced subisomorphism is the use of
the “Black” edges, namely some edge is colored to “Black” instead of being removing
from the graph by the main algorithm described in the next section. Note that only if
we finished seeking for all subgraphs

(
vi → v′1, v j → v′2

)
-isomorphic to GS where

i, j = 1, 2 . . . , |VS|, then the edge
(
v′1, v′2

)
can just be removed from the graph. How-

ever, in an induced subgraph isomorphism case, this edge can be used as non-edge
after being removed. Thus, in each stage of Algorithm 5.2 we verify that the found
subgraphs do not contain “Black” edges.

Notation: in algorithms throughout the rest of the chapter we write “/ ∗ . . . ∗ /”
for the induced subisomorphism case.

Algorithm 5.2 Search Traverse

Input: Graph GL = (VL, EL), starting vertices v′1, v′2 ∈ VL, traverse history H of
GS, /∗ set of “Black” edges ∗/

Output: All subgraphs /∗ or induced subgraphs ∗/ of GL (v1 → v′1, v2 → v′2)-
isomorphic to GS , where v1, v2 are starting vertices of H /∗ and do not contain
“Black” edges ∗/

1: for all v′ ∈ VL do
2: g(v′)←− 0
3: end for
4: g(v′1)←− 1
5: g(v′2)←− 2
6: return SearchV isi t ({v′1, v′2},∅)

Algorithm 5.2 :: Procedure SearhV isi t (V ′, E ′)
1: vt ime←− |V ′|
2: v′ = g−1(vt ime)
3: if H [vt ime].N 	⊆ {g(u′) > 0 : (v′, u′) ∈ E} or H [vt ime].l 	= l(v′) then return

f alse
4: /∗ if |H [vt ime]| 	= |{g(u′) > 0 : (v′, u′) ∈ E}| or H [vt ime].l 	= l(v′) then

return f alse ∗/
5: E ′ ←− E ′ ∪ {(u′, v′ : d(u′) ∈ H [vtime].N }
6: if |H | = vt ime then return {(V ′, E ′)}
7: choose v ∈ H [vtime + 1].N
8: L ←− ∩{NGL(u) : u ∈ H [vtime + 1].N }
9: S←− ∅

10: for each w ∈ L do
11: if g(w) = 0 /∗ and color(v,w) 	= “Black” ∗/ then
12: g(w)←− vtime
13: S←− S ∪ SearchV isi t (V ′ ∪ {w}, E ′)
14: g(w)←− 0
15: end if
16: end for
17: return S

123

Algorithm for subgraph isomorphism 335

The main idea of this algorithm is to perform recursively all possible traversals
(starting on given vertices v1, v2 ∈ VL) on the subgraphs of the target graph. Each
such traverse visiting vertices in a certain order proceed by numbering the visited
vertices g : V ′ −→ N. In each stage of the procedure we verify that the condition of
Lemma 5.1 holds for a given traverse history H and for traverse history H ′ induced
by g.

To implement this strategy we use a SearchV isi t procedure. Logically it can be
divided into two parts: in the first part we are trying to check that the condition of
Lemma 5.1 holds (lines 3–4), namely that H [i].N ⊆ H ′[i].N and li = l ′i (for induced
subgraph isomorphism H [i].N = H ′[i].N and li = l ′i) for i ∈ {1, 2, . . . |VS|}. If
this condition holds, we extend E ′ by the corresponding (not “Black” for induced
subgraph isomorphism case) edges. In the case when the set of vertices V ′ is extended
to the number of vertices of the pattern graph (namely to |H |), then isomorphic sub-
graph (induced subgraph) G ′ = (

V ′, E ′
)

is found (line 6). Otherwise, in the second
part we are trying to extend V ′ by adding each unvisited vertex adjacent to the one
of the visited vertices (recall that H is connected traverse history, then each newly
visited vertex has a visited neighbor), thereby finding all possible subgraphs of GL
isomorphic to GS (line 12).

Actually, the above procedure will work “faster” if it does not enter the second
recursive part. Except for the case when the subisomorphism is found, it happens
only when there is no edge between two visited vertices when the corresponding edge
exists in the pattern graph (or in addition there is an edge between two visited verti-
ces when the corresponding edge does not exist in the pattern graph for the induced
subisomorphism case). If this mismatch is discovered in the earlier stage of Algo-
rithm 5.2, then its run time is reduced. This observation explains the importance of
using the heuristics presented in Algorithms 4.1 and 4.2, since this technique forces
the above checking to be done as soon as possible, thereby decreasing the expected run
time.

Remark Obviously, each isomorphic subgraph is found by Algorithm 5.2 exactly k
times, where k is the number of

(
v1 → v′1, v2 → v′2

)
-automorphisms of graph GS.

Therefore the modification of Algorithm 5.2 to just count the number of such subgraphs
of GL which are isomorphic to GS can be obtained as follows:

• SearchV isi t procedure should return 1 instead of (V ′, E ′) in the case when iso-
morphic subgraph is found.
• The value returned by Algorithm 5.2 should be divided by k. (Note that the cor-

responding number of automorphisms can be also calculated in precomputational
stage by Algorithm 5.2).

The traverse history with the smallest integrality approach can improve the run time
of the main search algorithm for the induced subisomorphim problem in following
cases:

• The number of edges of the “large” target graph is close to the number of non-
edges (recall that we assume that the number of non-edges of the “large” pattern
graph is larger than number of edges)

123

336 V. Lipets et al.

• The number of edges of the “small” pattern graph is significantly smaller than
the number of non-edges.

6 Subsea: subgraph isomorphism algorithm

In this section we combine all the previously defined algorithms to achieve the main
goal: subgraph (induced subgraph) isomorphism algorithm.

First, we present an algorithm which collects all traverse histories of a “small”
pattern graph in a precomputation stage. Then we present the main algorithm, which
finds all the subgraphs (or induced subgraphs) of a given target graph GL isomorphic
to a pattern graph GS. Note that since our patterns are small, the space required to
store all the traverse histories is not prohibitive.

6.1 Precomputation stage

A pair of vertices 〈v1, v2〉 ∈ V 2 of graph G we will call redundant if there exists an
(v1 → v′1, v2 → v′2)-automorphism of G such that 〈v1, v2〉 > 〈v′1, v′2〉.

Algorithm 6.1 finds a corresponding traverse history for each non-redundant pair
of adjacent vertices. Note that each edge of the pattern graph may derive 0, 1, or 2
traverse histories.

Algorithm 6.1 All Traverse Histories

Input: Graph G = (V, E)

Output: Set of traverse histories of G
1: A←− ∅
2: for each 〈v1, v2〉 ∈ V 2 such that (v1, v2) ∈ E do
3: run Algorithm 4.1 on G, v1, v2 to obtain traverse history Hv1,v2

4: if ! I s Redundant (v1, v2) then A←− A ∪ {Hv1,v2}
5: end for
6: return A

Algorithm 6.1 :: Procedure I s Redundant (v1, v2)

1: for each 〈v′1, v′2) ∈ V 2 such that 〈v′1, v′2〉 ∈ E and 〈v′1, v′2〉 < 〈v1, v2〉 do
2: run Algorithm 5.2 on G, v′1, v′2, Hv1v2 to obtain set S of graphs
3: if S 	= ∅ then return true else return f alse
4: end for

We use Algorithm 5.2 to find redundant edges, which also can be used to look for
the corresponding automorphisms.

This approach enables us to minimize the number of stored traversals, when a set
of automorphisms of G is non-empty, thereby reducing the running time of the main
search algorithm.

123

Algorithm for subgraph isomorphism 337

6.2 Main algorithm

In general our technique can be described as follows:

1. Find the traverse history (using Algorithm 6.1) for each non-redundant pair of
adjacent vertices of the pattern graph.

2. Divide vertices of a given “large” target graph into two parts using the bisection
methods of Sect. 3.

3. For each edge with endpoints in distinct parts of the obtained bisection, find the
set of all subgraphs (or induced subgraphs) containing this edge and isomorphic
to a given pattern graph (Algorithm 5.2 is used).

After performing these steps, we continue to apply, in recursive manner, the same
approach on two subgraphs of GL induced by the two parts of bisection. We stop
when we get a graph with fewer vertices than the pattern graph.

Algorithm 6.2 All Subgraph Isomorphisms

Input: Pattern graph GS = (VS, ES); target graph GL = (VL , EL); the set A of all
non-redundant traverse histories on graph GS.

Output: All subgraphs (induced subgraphs) of GL which are isomorphic to GS
1: Apply Algorithm 6.1 on GS to obtain set of traverse histories A of GS.
2: return SubI so(A, GL)

Algorithm 6.2 :: Procedure SubI so(A, GL)

1: if |VS| > |VL| then return ∅
2: Apply several times Algorithm 3.1 on GS to obtain (B, B̄)− bisection of vertices

of GL
3: for each e = (v1, v2) ∈ (B, B̄) do
4: for each H ∈ A do
5: Apply Algorithm 5.2 on GL, v1, v2, H to obtain S − a set of subgraphs of G
6: G ←− G − e /∗ or color(e)←− “Black” ∗/
7: end for
8: end for
9: Eliminate duplicates from S

10: return S ∪ SubI so(GL(B)) ∪ SubI so(GL(B̄))

Theorem Algorithm 6.2 applied on (GL, GS) finds all subgraphs of target graph GL
which are isomorphic to pattern graph GS.

Proof The correctness is assured by Lemma 5.1. Completeness is proved by induc-
tion in the number of vertices of the target graph. If |VL| < |VS|, then, obviously, no
subgraph of GL exists isomorphic to GS.

Assume that |VL| = k ≥ |VS|, where k ∈ N. Let G ′ = (
E ′, V ′

)
be a subgraph of

GL isomorphic to GS (if such subgraph does not exist, then we are done). Let
(
B, B̄

)

123

338 V. Lipets et al.

be a partition of VL obtained after applying Algorithm 3.1. If E ′ ∩ e
(
B, B̄

) = ∅ then,
obviously G ′ is a subgraph of GL(B) or GL(B̄) and is found by recursion. Otherwise,
let e′ = (

v′1, v′2
) ∈ E ′ be an edge that was removed before any other edge in E ′. Since

G ′ ∼= GS thereby exists an isomorphism ϕ which maps V ′ to VS. Put u1 = ϕ
(
v′1

)
and

u2 = ϕ
(
v′2

)
, where u1, u2 ∈ VS. Let w1, w2 be a smallest pair of vertices of GS such

that there exists an automorphism of GS which maps u1 to w1 and u2 to w2. Then,
clearly,

• there is an isomorphism between G ′ and GS which maps v′1 to w1 and v′2 into w2,
• 〈w1, w2〉 is not a redundant pair and consequently an induced traverse history of

GS starting in w1, w2 is contained in A.

Thus applying Algorithm 6.2 on v′1 and v′2 and on traverse history starting on w1, w2
we obtain all subgraphs of GL and isomorphic to GS, such that v1 and v2 mapped
to w1 and w2, respectively. Since we assume, that e′ was an edge that was removed
before any other edge in E ′, all other edges of G ′ are not removed when the above
algorith is applied and G ′ is found. ��

The proof for the case of induced subgraph isomorphism is quite similar.

6.3 Duplicate counting problem

Algorithm 6.2 actually finds a copy of GS for every automorphism of GS. We eliminate
duplicates from the set of GS instances in Procedure SubIso before the set is returned.
This elimination is relatively easy since all we have to do is to compare vertex sets of
instances.

If we aim to only obtain a count of instances rather than the instance set, we need
to return the size of set S ∪ SubI so(GL(B)) ∪ SubI so

(
GL

(
B̄

))
instead of the set

itself in Procedure SubIso. This size needs to be divided by the size of automorphism
group of GS. This size can be computed during Traverse History construction, thus
adding no computational overhead to the algorithm.

7 Experimental results

7.1 Settings

The Subsea algorithm was implemented in C++, on an Intel Pentium 4 CPU 2.4 GHz
running Windows 2000 and with 512 MB of main memory.

We performed three sets of experiments: experiments on random synthetic graphs,
experiments on real-life database called NCI (2008) and experiments on benchmark
graphs used by Sansone et al. (2004).

For the synthetic case, We generated random graphs of sizes 100–5000 nodes with
various numbers of edges and labels to serve as database graphs. We used two types of
random graphs: graphs with large diameter (which are not expander-like) and Erdös–
Renyi graphs (which are expander-like, see Erdoös and Renyi 1959) where each edge
in a graph exists with a probability p. Labels distribution was uniformly random in

123

Algorithm for subgraph isomorphism 339

part of experiments, and normal in another part. We have also used unlabeled cliques,
stars and lines for the experiments.

7.2 Algorithms

We compared our algorithm’s results on these graphs with the results of Ullman’s
algorithm (see Ullmann 1976) and (see Sansone et al. 2004) algorithm. Both algo-
rithms are publicly available on the Web (see Sansone 2001). In all experiments we
use the sub-algorithm of these algorithms that find all distinct subgraphs isomorphic
to a given subgraph.

7.3 Detailed comparison

In all of the charts, the running time of all the algorithms is specified in seconds. Bar
charts are used to present the results and names of the algorithms (Subsea, Ullman
and VF2 for Cordella et al. algorithm) appear above their respective bars.

7.3.1 Present subgraphs

Here, we have compared Subsea, Ullman’s and Cordella et al. algorithms on vari-
ous random and real-life database graphs and subgraphs that have instances in these
database graphs (sometimes, quite large number of instances). The X axis shows the
number of nodes in the large graph. All randomly generated graphs have average node
degree 3 or more. We use log-scale for the Y axis (running time) in order to see small
running times better.

The first series of experiments refers to random database graphs with 10 and 5 labels
and having uniform label distribution. Figures 5 and 6 show how the three algorithms
perform when a subgraph has 15 and 100 nodes respectively and the database graph
contains 10 labels. For a subgraph of 15 nodes, Ullman’s and Cordella et al. algorithms
did not finish in many of the cases (denoted by missing bars). In Fig. 6, we show times
on Subsea algorithm only because the other two algorithms did not finish for either
database graph within 5 min (we counted pure application time, system time in these
cases exceeded 30 min). We see that the Subsea algorithm has an advantage over the
other two algorithms.

Figure 7 shows how the three algorithms perform when a subgraph has 15 nodes
and the database graph has five different labels; the label distribution on both graphs is
uniform. Smaller number of labels causes the number of instances to rise dramatically
and the problem of finding all subgraph instances quickly becomes unfeasible. Again,
we see that Subsea algorithm performs better in these cases.

The second series of experiments was performed on labeled random Erdös–Renyi
with 10 labels and normal label distribution (see Figs. 8, 9 and 10). As expected, nor-
mal label distribution implies more appearances of a subgraph in the database graph
and thus larger search space. We included in charts only the cases where at least one
of the algorithms finishes. For smaller subgraphs (Fig. 8), we see an advantage to

123

340 V. Lipets et al.

Fig. 5 Subgraph with 15 nodes and 10 labels, uniform label distribution

Fig. 6 Subgraph with 100 nodes and 10 labels, uniform label distribution

Fig. 7 Subgraph on 15 nodes and 5 labels, uniform label distribution

the Subsea algorithm, but in other cases there are some subgraphs instances where
Ullman’s algorithm performs better.

The third series of experiments have been made on unlabeled graphs of specific
structure in an attempt to understand the behavior of the Subsea algorithm. These cases,
for which the number of subgraph instances can be easily found combinatorially, are
in fact very hard for every algorithm tested. Double-digit running time (in seconds)
occurs when the number of subgraph instances in a database graph reaches hundreds

123

Algorithm for subgraph isomorphism 341

Fig. 8 Subgraph of 15 nodes, normal label distribution

Fig. 9 Subgraph of 50 nodes, normal label distribution

Fig. 10 Subgraph of 100 nodes, normal label distribution

of thousands. The horizontal axis in the charts shows which small graphs were tested
on the same database graph (star i denotes a star with i leaves, line i denotes a simple
path on i nodes, clique i denotes a complete graph on i nodes and cycle i denotes a
simple cycle on i nodes). Figure 11 gives runtimes for the case when both database and
subgraphs are stars, with the database graph having 100 nodes. Since Subsea algorithm

123

342 V. Lipets et al.

Fig. 11 The database graph is an unlabeled star with 100 nodes

Fig. 12 The database graph is an unlabeled line with 200 nodes

uses divide-and-conquer approach based on cuts, and a well-chosen cut in the center
of a star stops the recursion very quickly, we see that Subsea outperforms the other
algorithms. In Fig. 12, both the database and subgraphs are lines, and the database
graph has 200 nodes. In this case, the Subsea recursion is deep (but not exponential),
and still it performs better than other algorithms. For an unlabeled line of 2000 nodes
and larger subgraphs, both Ullman’s and VF2 algorithms did not finish, while Subsea
showed reasonable results (see Fig. 13). Finally, Fig. 14 shows how the algorithms
behave when a database graph is an unlabeled complete graph and a subgraph is either
a line, a cycle or a star. Complete graph is the worst case for any approach, and we
see a clear dependence between the feasibility of a case and the number of nodes in a
subgraph. It is not surprising that all algorithms fail when a subgraph size increases.
However, since Subsea is based on finding-a-good-cut technique (which unlabeled
clique definitely lacks), it performs worse than Ullman’s and VF2 algorithms.

Our final series of experiments was performed on a real-life database obtained from
National Cancer Institution (see NCI 2008). We tested all three algorithms on subsets
of the database graph, because the complete graph is too large; we present in Table 1
Subsea results only since other algorithms did not finish in any of the cases.

123

Algorithm for subgraph isomorphism 343

Fig. 13 Unlabeled line on 2000 nodes as a large graph

Fig. 14 Complete graph on 50 nodes as a large graph

7.3.2 Absent subgraphs

We have compared all three algorithms on a series of cases where a subgraph in ques-
tion is not present in the database graph. This is an important domain since in graph
mining candidate subgraphs that are not present in database must be eliminated as
quickly as possible. An absent subgraph detection can be also viewed as the time
required to find the first instance of a subgraph in a database graph. In our charts X
axis shows the number of nodes in a subgraph and the Y axis denoted the time in
seconds on logarithmic scale. Distribution of labels on the nodes of database graphs
and small graphs in these tests is uniformly random.

Figure 15 shows the behavior of the three algorithms on large-diameter database
graph with 1000 nodes and 10 labels. The chart in Fig. 16 shows the behavior of the
three algorithms on large-diameter database graph with 2000 nodes and 10 labels. We
see that Subsea runs faster than Ullman’s algorithm on these graphs, but slower than
the VF2 algorithm. However, the number of cases where the latter algorithm was stuck
is quite large, while Subsea provides an answer in most of the cases.

123

344 V. Lipets et al.

Table 1 NCI database tests
Large graph
(nodes)

Small graph
(nodes)

Subsea
time (s)

Num
of matches

532 20 0.23 172

532 80 0.26 696

532 50 0.22 172

999 50 0.95 257

999 50 0.61 257

999 54 0.78 257

999 41 0.86 1158

999 50 0.85 1157

999 50 0.69 1158

1000 90 0.64 290

1000 20 0.61 290

1000 70 0.73 1221

1000 99 0.81 1221

1000 71 0.62 290

2000 22 3.18 642

2000 90 3.43 2605

Fig. 15 Database graph with 1000 nodes

7.4 Benchmark graphs

For the last series of experiments we used the ARG Database (see SIVALab of the
University of Naples 2003) by the Intelligent Systems and Artificial Vision Laboratory
(SIVALab) of the University of Naples. We tested Subsea and VF2 algorithms on selec-
tion of unlabeled graphs from this database. We have run these experiments on cluster

123

Algorithm for subgraph isomorphism 345

Fig. 16 Database graph with 2000 nodes

Table 2 Comparison of Subsea and VF2 on ARG random graphs and 2D meshes

Nodes Random graphs 2D meshes

η = 0.01 η = 0.05 η = 0.1 Regular ρ = 0.2 ρ = 0.4 ρ = 0.6

Up to 60 nodes Subsea Subsea VF2 VF2 VF2 Subsea Subsea

60–80 nodes Subsea Subsea Subsea VF2 Subsea Subsea Subsea

80–1000 nodes Subsea Subsea Subsea Subsea Subsea Subsea Subsea

consisting of four Intel SMP servers with 2 Dual Core Xeon 5140 2.33GHz processors
and 4G RAM. Table 2 summarizes obtained results and shows which algorithm ran
faster for various types of graphs. For a random graph, η denotes the probability with
which the edge is added and for a 2-dimensional mesh ρ indicates the ratio of extra
edges added. Figures 17, 18 and 19 show a detailed comparison of runtimes of both
algorithms on sample graphs of various size. On graph with bounded degree, VF2 runs
faster than Subsea (see Fig. 19).

Detailed comparison shows that Subsea runs faster on randomly generated graphs
and two-dimensional meshes, while VF2 shows better times on bounded degree graphs.
In general, as the graph becomes larger and the number of isomorphic subgraph grows,
the Subsea advantage becomes more prominent.

Finally, Figs. 20 and 21 show how Subsea scales when graph density, graph size and
number of labels change. In all these experiments, single small graph with 10 nodes is
used. Figure 20 demonstrates how the runtime of Subsea changes when the number of
edges of the large graph with 100 nodes increases. When large graph becomes denser,
the number of isomorphisms rises to hundreds of thousands. Figure 21 shows the
dependency of Subsea runtime on the large graph size when the density remains the
same. Figure 22 demonstrates how Subsea scales when the number of labels increases
in the same dense database graph of 100 nodes and 1200 edges.

123

346 V. Lipets et al.

Fig. 17 Randomly generated graphs with η = 0.01

Fig. 18 Randomly generated graphs with η = 0.1

Fig. 19 Bounded-valence graphs with valence 3

123

Algorithm for subgraph isomorphism 347

Fig. 20 Subsea runtimes for database graphs of increasing density

Fig. 21 Subsea runtimes for database graphs of increasing size and the same density

Fig. 22 Subsea runtimes for database graphs of increasing label number

123

348 V. Lipets et al.

As expected, running times rise when density and graph size increase and drops
dramatically when the number of labels increases.

7.5 Summary

There is one distinct observation from all the above experiments. Subsea outperforms
the other algorithm when there exist many isomorphic instances of the small graph
within the database graph. We feel that the main reason is the bisection approach.
Subsea starts the search only from “small” cuts, while in other algorithms the entire
graph is searched for the next instance.

8 Conclusions

We presented a new heuristic for finding all isomorphisms of a source pattern graph
(or induced source graph) in a target graph. The new approach is based on a bisection
algorithm and on a search strategy which is directed by an original traverse history
notion. The experimental results show advantage of our approach over algorithms of
Ullmann (1976) and Sansone et al. (2004) when all the instances of a subgraph need
to be found. The conclusion from the above experiments is that Subsea is much better
that the two other algorithms when multiple instances of a subgraph are searched for.
The reason is that in Subsea in every bisection we test for multiple instances and never
search that part of the graph later. When a single instance of a subgraph needs to be
found, the algorithms of Ullmann (1976) and Sansone et al. (2004) have an advantage
over Subsea.

The proposed algorithm has general validity, since no constraints are imposed on the
topology of the pattern and the target graphs, and the method can be easily be extended
to the case of directed graphs as well. An extension to the case of edge-labeled graphs
is less trivial and will require some effort.

Another advantage of our algorithm is that the bisection procedure leads itself
naturally to parallel computation. We plan to pursue this topic in the future. An impor-
tant goal is to enable current researchers to compare their codes with each other, in
hopes of identifying the more effective of the recent algorithmic innovations that have
been proposed. Although many implementations do not include the most sophisticated
speed-up tricks and thus may not be able to compete on speed with highly tuned alter-
natives, we may be able to gain insight into the effectiveness of various algorithmic
ideas by comparing codes with similar levels of internal optimization. It will also be
interesting to compare the run times of the best current optimization codes with those
of the more complicated heuristics on instances that both can handle.

Acknowledgments We thank anonymous reviewers for their useful comments on our paper. We thank
Lior Becker and Arie Ohana for doing extraordinary job implementing the Subsea algorithm and making
it even more efficient than we anticipated. We also thank Rosa Shlayzer for conducting the experiments.
We thank Fraenkel Center for Computer Science and Paul Ivanier Center for Robotics and Production
Management for partially supporting this work.

123

Algorithm for subgraph isomorphism 349

References

Akinniyi FA, Wong AKC, Stacey DA (1986) A new algorithm for graph monomorphism based on the
projections of the product graph. Trans Systems, Man and Cybernetics SMC-16:740–751

Alon N, Yuster R, Zwick U (1995) Color-coding. Electronic colloquium on computational complexity
(ECCC). 1(009), 1994. Full paper appears in J ACM 42(4):44–856

Ambauen R, Fischer S, Bunke H (2003) Graph edit distance with node splitting and merging, and its
application to diatom identification. Lecture notes in computer science, vol 2726, pp 259–264

Bunke H, Messmer BT (2000) Efficient subgraph isomorphism detection: a decomposition approach. IEEE
Trans Knowl Data Eng 12:307–323

Batz GV (2006) An optimization technique for subgraph matching strategies. Technical report 2006–2007,
Universitat Karlsruhe, Faculty of Informatik

Berretti S, Del Bimbo A, Pala P (2004) A graph edit distance based on node merging. In: Proceedings of
CIVR2004, pp 464–472

Boeres M, Ribeiro C, Bloch I (2004) A randomized heuristic for scene recognition by graph matching. In:
Proceedings of WEA 2004, pp 100–113

Cai D, Shao Z, He X, Yan X, Han J (2005) Mining hidden community in heterogeneous social networks.
In: Proceedings of the 3rd international workshop on link discovery, pp 58–65

Champin P, Solnon C (2003) Measuring the similarity of labeled graphs. Conference on case-based reasoning
(ICCBR), pp 100–113

Chen MS, Park JS, Yu PS (1998) Efficient data mining for path traversal patterns. IEEE Trans Knowl Data
Eng 10(2):209–221

Cheng JK, Huang TS (1981) A subgraph isomorphism algorithm using resolution. Pattern Recognit 13:371–
379

Cordella LP, Foggia P, Sansone C, Vento M (1999) Performance evaluation of the vf graph matching
algorithm. In: Proceedings of ICIAP 1999, pp 1172–1177

Cortadella J, Valiente G (2000) A relational view of subgraph isomorphism. In: Proceedings of fifth inter-
national seminar on relational methods in computer science, pp 45–54

Dehaspe L, Toivonen H, King RD (1998) Finding frequent substructures in chemical compounds. In:
Proceedings of the 4th international conference on knowledge discovery and data mining (KDD-98),
pp 30–36

Dessmark A, Lingas A, Proskurowski A (2000) Faster algorithms for subgraph isomorphism of k-connected
partial k-trees. Algorithmica 27(3):337–347

Eppstein D (1999) Subgraph isomorphism in planar graphs and related problems. J Graph Algorithms &
Appl 3(3):1–27

Erdoös P, Renyi A (1959) On random graphs. I. Publicationes Mathematicae 6:290–297
Foggia P, Sansone C, Vento M (2001) An improved algorithm for matching large graphs. In: 3rd IAPR-TC15

workshop on graph-based representations. Lecture Notes in Computer Science, Ischia
Garey MR, Johnson DS (1979) Computers and Intractability: A guide to the theory of NP-completeness.

W. H. Freeman
Gudes E, Shimony SE, Vanetik N (2006) Discovering frequent graph patterns using disjoint paths. IEEE

Trans Knowl Data Eng 18(11):1441–1456
Krissinel EB, Henrick K (2004) Common subgraph isomorphism detection by backtracking search. Softw

Prac Exp 34(6):591–607
Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: Proceedings of ICDM 2001
Kuramochi M, Karypis G (2004) Finding frequent patterns in a large sparse graph. In: Proceedings of SDM

2004
Larrosa J, Valiente G (2000) Graph pattern matching using constraint satisfaction. In: Proceedings of joint

APPLIGRAPH/GETGRATS workshop of graph transformation systems, pp 189–196
Lin X, Liu Ch, Zhang Y, Zhou X (1998) Efficiently computing frequent tree-like topology patterns in a web

environment. In: Proceedings of 31st International conference on technology of object-oriented land
systems

Lingas A, Sysło MM (1989) A polynomial-time algorithm for subgraph isomorphism of two-connected
series-parallel graphs. Technical report LiTH-IDA-R-89-05, Linköping University, Department of
Computer and Information Science

Matula DW (1978) Subtree isomorphism in O(n5/2). Ann Discrete Math 2:91–106

123

350 V. Lipets et al.

Messmer BT, Bunke H (1996) Subgraph isomorphism detection in polynomial time on preprocessed model
graphs. In: Proceedings of 2nd Asian conference on computer vision. springer, pp 373–382

NCI (2008) Database of interacting proteins. Technical report. Available at http://dtp.nci.nih.gov
Nijssen S, Kok JN (2004a) Frequent graph mining and its application to molecular databases. In: Proceed-

ings of the IEEE international conference on systems, man and cybernetics, SMC 2004, Den Haag,
Netherlands, October 10–13, 2004. IEEE Press

Nijssen S, Kok JN (2004b) A quickstart in frequent structure mining can make a difference. In: Kohavi
R, Gehrke J, DuMouchel W, Ghosh J (eds) Proceedings of the 10th ACM SIGKDD international
conference on knowledge discovery and data mining, KDD2004, Seattle, USA, August 22–25, 2004,
pp 647–652. ACM Press

Pennec X, Ayache N (1998) A geometric algorithm to find small but highly similar 3d substructure s in
proteins. Bioinformatics 14(6):516–522

Sammoud O, Solnon C, Ghédira K (2005) Ant algorithm for the graph matching problem. In: Proceedings
of EvoCOP 2005, pp 213–223

Sansone C (2001) Graph database library for subgraph isomorphism. Technical report. Available at http://
amalfi.dis.unina.it/graph/

Sansone C, Cordella LP, Foggia P, Vento M (2004) A (sub)graph isomorphism algorithm for matching
large graphs. IEEE Trans Pattern Anal Mach Intell 26(10):1367–1372

SIVALab of the University of Naples (2003) Arg graph database. Technical report. Available at http://
amalfi.dis.unina.it/graph/

Ullmann JR (1976) An algorithm for subgraph isomorphism. J Assoc Comput Mach 23:31–42
Vanetik N, Gudes E, Shimony SE (2002) Computing frequent graph patterns from semistructured data. In:

Proceedings of ICDM 2002, pp 458–465
Wang K, Liu H (1998) Discovering typical structures of documents: a road map approach. In: Proceedings

of SIGIR 1998, pp 146–154
Yan X, Han J (2002) gSpan: graph-based substructure pattern mining. In: Proceedings of ICDM 2002,

pp 721–724
Zhang S, Li S, Yang J (2009) Gaddi: distance index based subgraph matching in biological networks.

In: Proceedings of EDBT conference 2009

123

http://dtp.nci.nih.gov
http://amalfi.dis.unina.it/graph/
http://amalfi.dis.unina.it/graph/
http://amalfi.dis.unina.it/graph/
http://amalfi.dis.unina.it/graph/

	Subsea: an efficient heuristic algorithm for subgraph isomorphism
	Abstract
	1 Introduction
	2 Definition and notations
	2.1 General definitions
	2.2 Outline of the Subsea algorithm

	3 Bisection algorithms
	3.1 Black holes bisection algorithm
	3.2 Simple greedy bisection method

	4 Traverse history
	4.1 The DFS approach
	4.2 Black holes approach

	5 Search technique
	6 Subsea: subgraph isomorphism algorithm
	6.1 Precomputation stage
	6.2 Main algorithm
	6.3 Duplicate counting problem

	7 Experimental results
	7.1 Settings
	7.2 Algorithms
	7.3 Detailed comparison
	7.4 Benchmark graphs
	7.5 Summary

	8 Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

