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Abstract Classifying large datasets without any a-priori information poses a
problem in numerous tasks. Especially in industrial environments, we often encounter
diverse measurement devices and sensors that produce huge amounts of data, but we
still rely on a human expert to help give the data a meaningful interpretation. As the
amount of data that must be manually classified plays a critical role, we need to reduce
the number of learning episodes involving human interactions as much as possible. In
addition for real world applications it is fundamental to converge in a stable manner
to a solution that is close to the optimal solution. We present a new self-controlled
exploration/exploitation strategy to select data points to be labeled by a domain
expert where the potential of each data point is computed based on a combination
of its representativeness and the uncertainty of the classifier. A new Prototype Based
Active Learning (PBAC) algorithm for classification is introduced. We compare the
results to other active learning approaches on several benchmark datasets.

Keywords Active learning · Data mining · Subtractive clustering · Exploration ·
Exploitation · Prototype classification

1 Introduction

In a previous article (Cebron and Berthold 2006), we have introduced the problem
of mining cell assay images. To study the effects of drug candidates or more gener-
ally to obtain observations about how a biological entity reacts when it is exposed to
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a chemical compound, an array of cells is screened with a camera. This process is
called High-Content-Screening and allows to collect a large amount of experimental
data. Especially the development of new screening devices—with specialized robots
creating the cell assay and automatically taking measurements and pictures—makes it
possible to obtain hundreds of thousands of cell images in only a few days. In this work,
we focus on classifying such a large unlabelled datasets with the help of a biological
expert who is able to provide us with class labels for few, selected examples.

Similar use cases can be found in the field of text, music and image mining
(McCallum and Nigam 1998; Mandel et al. 2006; Wang et al. 2003), where a large
library of documents, music or images are available and we want to categorize this
library with the help of the user. In these situations, the concept of active learning is
applied, where the learning algorithm has control over which parts of the input domain
it receives information about from the user.

In this work, we further develop the earlier work of Cebron and Berthold (2006)
where we separately explore the data space by clustering and later adapt the learned
policy with Learning Vector Quantization (LVQ). This approach was motivated by the
idea that the datasets needs to be explored first to generate a coarse model and then
the model can be adapted to further fine-tune the classification accuracy. However,
this classification scheme had to be initialized with a fixed number of clusters, which
influenced how much focus was laid on the exploration part. Each cluster was then
split up into sub-clusters in order to verify the current cluster classification hypothe-
sis, which resulted in “unnecessary” queries, if all sub-clusters already had the same
class label. Our new approach takes into account the density of the feature space and
the uncertainty of the classifier. In contrast to our earlier approach, both criteria are
combined to form one single criterion for the selection of unlabelled data. During
each classification iteration the influence of the exploration part decreases whereas
the influence of exploitation increases in a natural way. This allows for a smooth tran-
sition between these two opposing phases. In contrast to our old approach, the density
is taken into account during the entire time and not only during the exploration phase.
Furthermore, the use of nearest prototype based classification (instead of LVQ learn-
ing) enhances the stability of the classifier and makes it computationally feasible and
robust even for large datasets. This completely changes the way that the data is clas-
sified, and enhances the classification accuracy drastically as we will demonstrate in
the experimental section.

In Sect. 2, we will shortly revise the concept of active learning which leads us to a
selection strategy in Sect. 3. In Sect. 4 we introduce the prototype based classification
scheme (PBAC) with some examples. Results on different benchmark datasets are
presented in Sect. 5 before drawing conclusions in Sect. 6.

2 Active learning

We now describe and formalize the central part of this work, the active learning.
Consider a set X of n feature vectors {x1, . . . , xn} lying in �d . The training set con-
sists of a large set of unlabelled examples U ⊆ X and a set of labeled examples L ,
which contains examples from X and their corresponding labels from a set of possible
class labels Y = {y1, . . . , ym}: {(x1, y1), (x2, y2), . . . , (xn, yn)} ∈ X × Y .
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In many classification tasks it is common that a large pool of unlabelled examples U
is available whereas the cost of generating a label for an example is high. The concept
of active learning (Cohn et al. 1994a) tackles this problem by enabling a learner to pose
specific queries, chosen from an unlabelled dataset. In this setting, we assume that we
have access to a noiseless oracle that is able to predict the class label of a sample. We
can describe an active learner by its underlying classifier and a query function. The
classifier f is trained on L and sometimes also on U . The query function q makes a
decision based on the current model f which examples from U should be chosen for
labeling. In pool-based active learning, a new classifier f ′ is generated after a fixed
number of queries.

Many active learning strategies for different kinds of algorithms exist. In Cohn et al.
(1994a), a selective sampling is performed in areas where the most general and the most
specific hypotheses disagree. The hypotheses were implemented using feed-forward
neural networks with backpropagation.

Active Learning with Support Vector Machines (SVM) has also become very
popular. The expensive learning process for the SVM can be reduced by querying
examples with a certain strategy. In Schohn and Cohn (2000), the query function
chooses the next unlabelled data point closest to the decision hyperplane in the ker-
nel induced space. In a more recent approach (Xu et al. 2004), the unlabelled data
located in the margin of the SVM is clustered using the k-means algorithm to choose
representative samples to query next. This approach is more similar to our work as
it is attempting to take into account the distribution of the input data. However, this
approach is still based on a discriminative model and does not take the data distribu-
tion into account as good as a generative model. SVM with active learning have been
widely used for image retrieval problems (Luo et al. 2005; Wang et al. 2003) and in
the drug discovery process (Warmuth et al. 2003).

In Kang et al. (2004), k-means clustering has been used to select an initial training
set for active learning in text classification. However the problem of choosing the cor-
rect number of clusters in order to have a representative from each available class is not
addressed. Active learning in hierarchical pairwise data clustering has been proposed
in Buhmann and Zöller (2000). The active data selection aims to reduce the number
of samples needed in pairwise data clustering to reduce the computational load. This
approach focuses on clustering and does not incorporate class labels. In McCallum and
Nigam (1998), an EM approach is used to integrate the information from unlabelled
data. In that work, the active learning is based on the Query-by-Committee algorithm,
normally used in stream-based learning. This involves having a set of classifiers to
measure the disagreement between committee classifiers. Active Learning for 2-class
problems and clustering have been combined in Nguyen and Smeulders (2004). The
dataset is preclustered with the K-medoid algorithm before additional samples enhance
the classification accuracy. The clustering is adapted during the learning epochs. A
combination of density estimation and classifier uncertainty is used to select new
examples. However, the density of each data point is estimated only with the current
set of clusters.

There have been several attempts to balance between exploration and exploita-
tion in active learning. In the work of Baram et al. (2004), a combination of different
active learning algorithms that focus either on the current classification boundary or
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Fig. 1 Interaction of unlabelled
and labeled data, potential and
classifier uncertainty

on exploration have been used together with an algorithm for the multi-armed bandit
problem and a novel performance evaluation measure. The decision whether to choose
an algorithm for exploration or exploitation depends on the performance measure and
does not take into account the distribution of the underlying input data.

In the work of Osugi et al. (2005), a Kernel-Farthest-First algorithm is used for
exploration in active learning with SVM. The choice of an exploration step depends
on the change that is induced with the newly labeled example on the hypothesis space.
Results on benchmark data sets show a slight improvement of the classification accu-
racy with this technique.

Our approach differs from the others in the way that we use an integrated approach
with a classification model that combines the potential of each data point (which is
based on density estimates on the unlabelled data) and the classifier uncertainty (based
on the labeled data) in one single criterion which we call uncertainty distribution (see
Fig. 1). Instead of preclustering the datasets, we use the uncertainty distribution to
choose examples for a prototype based classification. As potentials of selected points
and their neighboring points are reduced, a smooth transition between exploration and
exploitation takes place since the labeled points will gradually reduce the potentials
over the entire feature space. We will work out the details of this estimation technique
and how this transition takes place in the next sections.

3 Selection strategy

We assume that the data space X is normalized in the interval [0, 1]. In our special
setting, we assume that we do not have any labeled instances at the beginning. There-
fore we focus on two interleaving aspects: exploration (finding representative samples
in the dataset that are useful to label) and exploitation (adapting the classification
boundaries).

In the work of Cohn et al. (1994b), having an input distribution p(x), it is proposed
to minimize the expected error weighted by the input distribution:

∫
x

ET

[
(ŷ(x) − y(x))2|x

]
p(x)dx (1)
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where ET [.] denotes the expectation over training set L , ŷ(x) is the learner’s output
and y(x) is the true label of x. Rather than trying to minimize the value of Eq. 1 by
minimizing the learner’s variance (as proposed in Cohn et al. 1994b), we try to select
examples with the biggest contribution to the current error of the classifier, similar
to the approach in Nguyen and Smeulders (2004). Equation 1 shows that we need to
weight the uncertainty of the classifier with the input data distribution p(x). In the
next sections we will introduce two measures to estimate—for each data point—its
density and the uncertainty of the classifier.

3.1 Exploration

At the beginning of model learning we assume that we do not have any labeled
examples |L| = 0, so we need a strategy to pick examples to label based on the
unlabelled samples from U . From the exploration point of view we want to explore
unknown regions and find possible classes in a dataset. One criterion for data selection
is the representativeness of a data point. Rare or borderline cases that do not occur
very often are not interesting for a classification.1 In order to estimate the representa-
tiveness of a data point we compute the potential P of each data point xi , according
to the subtractive clustering approach from Chin (1997) as:

P(xi ) =
n∑

j=1

e−αd(x i ,x j )
2
, α = 4

r2
a

(2)

where ra is a positive constant defining a neighborhood. d() is a distance measure,
usually the euclidean distance is used. All points x j that lie within this neighborhood
have a large influence on the potential of data point xi . Unlike the original algorithm
we do not need to calculate the total similarity for all data points. To reduce the com-
putational load we only compute the bounded total potential for the data within the
radius ra , as the data points outside the boundary will have little effect on the resulting
potential. An efficient way to find the nearest neighbors within a given distance is to
use KD-Trees (Bentley 1975) as underlying data structure.

After the potential of each data point has been computed the data point x∗
k with

the highest potential P(x∗
k) is selected. In order to avoid that another data point near

the chosen point is selected in the next iteration, the potential of this point and the
surrounding points in the neighborhood are reduced:

P(xi ) ⇐ P(xi ) − P(x∗
k)e

−βd(x i ,x∗
k )2

, β = 4

r2
b

(3)

where rb is a positive constant defining the neighborhood in which the potentials are
reduced. In the work of Chin (1997), rb has been set to 1.25ra . In this work, we set the
value of rb in the same way. Note that from the algorithmic point of view any density

1 In a real world application one could show those examples as potentially interesting outliers to the user
but for the construction of a global model they do not carry much information.
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estimation technique can be used. However, the reduction of the potentials plays an
important role as it reduces the overall exploration potential in each iteration and thus
gradually allows a transition to the exploitation step, which will be described in the
next section.

3.2 Exploitation

The idea of exploitation in a classification task is to take into account information
of the current classifier model in order to find new points that help to enhance the
classification. We use the weighted K -nearest neighbor classifier based only on the
examples that have been labeled so far. The K nearest prototypes of a query point xq

are denoted by pk, k = 1, . . . , K . The class label f̂ (xq) is determined by taking the
class label of the K nearest prototypes f (pk) with the largest prototype weight.

f̂ (xq) = max
v∈Y

K∑
k=1

wkδ(v, f (pk))

δ(a, b) =
{

1, if a = b
0 else

(4)

where

wk = 1

d(xq − pk)
2 (5)

Regarding all currently labeled examples as prototypes, we can calculate for all data
points their class probabilities c(yi ) for all classes y1, . . . , ym :

c(yi ) =
K∑

k=1

wkδ(yi , f (pk)) (6)

Having assigned a class label to each prototype, we can classify all data points by
assigning them the label of the prototype with the highest probability. The class prob-
abilities also provide us with information about the uncertainty of the classifier. We
focus on data points that have an almost equal probability to different classes. These
points can be found easily with an one-pass scan through the class probabilities.

We compute the entropy of the histogram of the class probabilities and refer to it
as classifier uncertainty C :

C(xq) = H(c(y1), . . . , c(ym)) = −
m∑

j=1

c(y j ) log2(c(y j )) (7)

The resulting entropy value must be normalized with the number of classes in the
current iteration Hmax = log2 m. Intuitively, a very sharply peaked distribution has a
very low entropy, whereas a distribution that is spread out over many bins has a very

123



Active learning for object classification 289

high entropy. Therefore, we take the entropy as an uncertainty measurement, inversely
related to the voting confidence of the nearest neighbor classifier.

3.3 Combination

Based on the potentials P that we compute on the unlabelled data and the classifica-
tion uncertainty C which is based on the labeled data, we form a new data selection
criterion which is called Uncertainty Distribution D.

D(xi ) = (1 − ε)P(xi ) + εC(xi ) (8)

where ε ∈ [0, 1] controls the influence of the exploitation in the first iterations. As
the potentials are reduced in each step, the classifier uncertainty becomes more and
more important. However, the remaining potential on the data point still prevents
unrepresentative samples from being chosen. This helps to prevent selection of rare or
borderline cases. The reduction of potentials also provides a useful measure to induce
a stopping criterion. If the total sum of all potentials drops under a predefined value t ,
we can stop the classification process.

4 Prototype based active classification

Based on the idea developed in Sect. 3, we outline our new PBAC in Algorithm 1. The
potentials of all data points can be precomputed offline in order to speed up the inter-
active classification process. We start by calculating the uncertainty distribution for
all data points and selecting the point with the highest estimate as the first prototype.
In every iteration, the potentials for the chosen data point and its neighbor points are
reduced, which also causes an overall reduction of the global potential. Each selected
data point gets labeled by the expert and is added as a prototype. Based on the current
set of prototypes, all data points are classified with the weighted K -nearest neighbor
algorithm.

The performance of the PBAC algorithm depends on its two parameters: the value
of ra the radius of the neighborhood and ε the value that controls the influence of
C(xi ) (both values are in the range of [0, 1]). The radius ra controls how many points
in the neighborhood are considered in the estimation of the potential. A large radius
provides a smoother estimate, but as this radius is also used for the reduction of poten-
tials around a data point, this can result in too much reduction—leaving some areas
in the datasets unexplored. If the value of the radius is too small, too many high peak
values for exploration will be obtained which will result in too many unnecessary
queries. The second parameter ε controls the point of time when the exploitation takes
place. As the potentials are reduced in each iteration, the focus will be laid on the
classification uncertainty C(xi ) in subsequent iterations in a natural way. But a higher
ε value will result in more exploitation in the first steps. The choice of ε depends on the
underlying datasets but should not be too high in order to allow for some exploration
in the beginning. We analyze the influence of the parameters in Sect. 5.1.
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Algorithm 1 Prototype Based Active Classification
Require: Threshold t
1: GlobalPotential ⇐ 0
2: for all xi ∈ U do
3: Compute the potential P(xi ) according to Equation 2.
4: GlobalPotential ⇐ GlobalPotential + P(xi )

5: end for
6: while GlobalPotential > t do
7: for all xi ∈ U do
8: Compute the classifier uncertainty C(xi ) according to Equation 7.
9: Compute the uncertainty distribution D(xi ) according to Equation 8.
10: end for
11: Select the data point xt with the highest uncertainty distribution.
12: Obtain a class label y j for xt .
13: Create a new prototype with values xt and class label y j .
14: Classify the datasets with the current set of prototypes.
15: Reduce the potentials according to Equation 3.
16: end while

We demonstrate the mode of operation of the PBAC algorithm on a 1-dimensional
artificial example with three classes (A, B and C) in Fig. 2. In Fig. 2a, the potentials
for all data points (plotted on the x-axis) indicate that there are three distributions
that need to be explored. The exploitation factor ε has been set to 0.5, therefore the
maximal uncertainty distribution value at the beginning is 0.5. In the first step, a pro-
totype of class B is created and the potentials around it are reduced (see Fig. 2b). After
choosing the next point with class label A with a high potential in step 2 (Fig. 2c), the
uncertainty distribution does no longer depend on the potential only but also on the
classifier uncertainty (dotted line). The decisive factor for choosing the next prototype
of class C is primarily due to a high potential, but is also a little bit amplified by the high
classifier uncertainty for the data points at the right side. In step 3 (Fig. 2d), one can
observe the combination of potentials and classifier uncertainty. The fourth prototype
of class B is chosen by a combination of classifier uncertainty between class A and B
and the remaining potential between A and B. It can be clearly seen how the datasets is
explored in the first iterations, finding all three possible classes. In subsequent steps, the
focus is laid on the classification boundaries between class A and B and class B and C.

5 Results

We have chosen different datasets from the UCI Machine Learning Repository
(Asuncion and Newman 2007) to demonstrate the effectiveness of our active learning
algorithm. In Sect. 5.1, we analyze the influence of the parameters of the PBAC algo-
rithm on the segment data, before comparing our algorithm against a margin-based
Active SVM with randomly chosen examples for initialization. In subsequent exper-
iments on the segment data, the satimage data and the pendigits data from the UCI
Machine Learning Repository (Asuncion and Newman 2007), we compare the PBAC
algorithm against our own Active LVQ classification scheme (Cebron and Berthold
2006) and an Active Representative SVM, that uses clustering to select representative
examples.
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Fig. 2 Characteristics of potential P , classifier uncertainty C and the resulting uncertainty distribution D
in consecutive steps
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We have evaluated the performance of three prominent kernels (polynomial, RBF
and hyper-tangent kernel) that are used by the support vector machine on the whole
classified datasets. Then we choose the best performing kernel and tried out different
reasonable values for its parameters and the overlapping penalty. All training instances
are first assumed to be unlabelled. The performance is always measured on a separate
test data set. In all figures we show the number of samples that are classified by the
expert on the x-axis versus the resulting classification accuracy on a separate test set
in percent on the y-axis.

5.1 Segment data

The segment data from the UCI Machine Learning Repository (Asuncion and Newman,
2007) consists of numerical features of different outdoor images. The images were
handsegmented to create a classification for every pixel.

Before comparing the different active learning methods with each other, we want to
analyze the influence of the parameters ra and ε in the PBAC algorithm on the segment
data. In Fig. 3, the ε-value has been set to zero to show the influence of the radius ra .
A larger radius seems to be beneficial in the first iterations, whereas a small radius
leads to more regions with high potential. This causes more exploration and leads to a
more detailed (but slower) exploration of the datasets, which proves beneficial in later
iterations.

In Fig. 4, the value of ra has been fixed to 0.4 to analyze the influence of the
parameter ε. A too high value of ε obviously leads to a bad and instable classification
performance. A moderate value in the range of 0.4 shows a little improvement with
respect to a small value in classification accuracy. This demonstrates that it may be
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Fig. 3 Segment data: influence of the parameter ra
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Fig. 5 Segment data: influence of the parameters ra and ε

sometimes useful to lay the focus on exploitation even before the potentials have been
totally reduced.

The interaction of the two parameters ra and ε is more complex. We try to get
an insight by showing combinations of values in a low, medium and high range in
Fig. 5. In this figure, especially the graphs with high ε stand out from the average
performance. In order to gain an average performance in the tests, we set the value of
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Fig. 6 Segment data: stability of the PBAC classifier against several runs of an active SVM

ra and ε to 0.4 in all comparisons of the PBAC algorithm. This does not guarantee
the best performance on all datasets, but as the differences are not that severe, a fixed
parameter combination may be the best choice.

Another issue that we want to take a look at is the stability of our approach compared
to an Active Margin SVM (Schohn and Cohn 2000) that is initialized with random
examples and queries new samples at the decision hyperplane, see Fig. 6. The SVM
was trained with a RBF kernel with σ = 1.0. One can see the effect of choosing repre-
sentative examples in the stability of our PBAC algorithm against random selection in
the SVM for the first queries. The random selection SVM technique does not reach the
same performance and is, especially during earlier epochs, severely unstable. Perfor-
mance can drop easily during subsequent queries. Since our potential estimation has
such drastic effects on the stability and performance of the active learning scheme, we
tried to provide the SVM with the possibility to choose more representative examples
and give it a stable initialization. We implemented a combination of two techniques:
First, the datasets is clustered to find representative examples for the initialization of
the SVM, similar to Kang et al. (2004) and then examples inside the SVM’s margin
are clustered to find representative examples according to the approach in Xu et al.
(2004). We call this procedure Active Representative SVM.

We now compare our PBAC algorithm against our own former Active LVQ clas-
sification scheme (Cebron and Berthold 2006) and the Active Representative SVM
in Fig. 7. The Active LVQ algorithm has been trained with an iteration size of 5 and
a learning rate of 0.1. As a frame for the different active learning schemes, we plot
the worst-case classification with randomly chosen prototypes (with variance) and the
performance of a SVM trained on all examples and a weighted KNN classifier on all
examples. Both the PBAC algorithm and the Active LVQ algorithm initialize in a sta-
ble way and gain a high classification accuracy with very few examples. The clustering
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Fig. 7 Segment data: comparison of different classifiers

seems to be beneficial for the stability of the active SVM, but the performance on this
datasets is below the other active learning schemes.

5.2 Satimage data

The satimage data from the UCI Machine Learning Repository (Asuncion and Newman
2007) consists of 4435 training instances which describe satellite image data by their
multispectral values. The performance was measured on a separate test data set con-
taining 2000 instances.

The PBAC algorithm and the Active Representative SVM have been initialized
with the same parameters as mentioned above. The number of queries used on the
x-axis versus the classification accuracy on the test data set on the y-axis for the first
250 queries is shown in Fig. 8. It can be observed that random selection performs
very unstable in the first iterations and has a large variance. Choosing representative
examples for all different active classification schemes proves to be highly beneficial
in the initialization phase. The PBAC algorithm outperforms both our own Active
LVQ classification scheme as well as the Active Representative SVM approach with
respect to accuracy. After 250 queries the PBAC algorithm has reached an accuracy
of 85.3%, the Active Representative SVM 79.7% and the Active LVQ 74.1%.

5.3 Pendigits data

The Pendigits datasets from the UCI Machine Learning Repository (Asuncion and
Newman 2007) consists of (x, y) coordinates of hand-written digits. Each digit is rep-
resented as a vector in a 16-dimensional space. We have used the training datasets with
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7,494 examples for training the classifier and a separate test datasets containing 3,498
examples for measuring the classification accuracy. Figure 9 shows the performance
of the different classification schemes. We have used again the Active Representa-
tive SVM algorithm from the previous section and the Active LVQ algorithm for
comparisons. A weighted KNN classifier initialized with all 7,494 examples from the
training set reaches an accuracy of 97.7%, a SVM classifier with a quadratic kernel
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trained on all examples 97.9%. As a worst-case classifier, we plot the mean perfor-
mance of a classifier with randomly chosen prototypes and its variance. The SVM was
trained with a quadratic kernel, bias 2.0 and overlapping penalty 2.0. The Active LVQ
algorithm has been initialized with an iteration size of 5 and a learning rate of 0.1. After
having labels for just approx. 1% of the available data, the PBAC algorithm reaches
an accuracy of 90.6%, the Active Representative SVM 90.4% and the Active LVQ
71.5%. Our old Active LVQ algorithm performs stably at the beginning but performs
worse than all other learning schemes in subsequent learning iterations. The PBAC
algorithm performs stably at the beginning and equal to a Active Representative SVM
with quadratic kernel in the following iterations. For clarity we omitted the plot of the
performance of a SVM with a linear kernel which is worse, reaching an accuracy of
80.1% after 100 iterations.

5.4 Prototype based classification vs. SVM classification

One cannot expect that our PBAC algorithm always performs better than a SVM with
representative selection. Prototype based classification can suffer from the “curse of
dimensionality”, whereas a SVM is better suited for high-dimensional data (e.g. in
text classification). In our case (classification of cell assay images) this problem is
not so important. As the performance of the introduced Active Representative SVM
seems to be comparable to our PBAC algorithm, one might ask why we are not using
this technique instead.

There are several reasons to favor a prototype based approach as presented in this
paper: First of all, the performance of a support vector machine depends heavily on the
kernel which is used. Finding a good kernel requires either labeled training data or a
multitude of experimental evaluation, which will be impossible to achieve in real world
applications where no labeled examples are available initially. Furthermore, SVMs are
binary classifiers with computational complexity O(n2). In multi class problems, a
SVM has to be trained for each class which requires that labels are queried for each
SVM which can increase the number of total queries and the training time. And finally,
prototypes provide the possibility to communicate the learned concept to a user in a
way that can be grasped easily as opposed to support vectors, which tend to be hard
to interpret.

6 Conclusions

In this article we have addressed the problem of classifying a large unlabelled datasets
with the help of a human expert in as few labeling steps as possible. We have proposed
a new prototype based active learning scheme in which a new, labeled prototype is
added in each learning iteration to fine-tune the classification of the datasets. Based
on this growing pool of labeled prototypes, class probabilities are calculated for all
data points in order to calculate estimates for their classification uncertainty. Together
with a density estimation technique, a new criterion for prototype selection has been
developed. Results revealed that this new approach enhances the classification accu-
racy significantly and is more stable—especially in subsequent iterations—compared

123



298 N. Cebron, M. R. Berthold

to our old approach. The classification accuracy and stability of the PBAC algorithm
proved to be better than classic Active Learning with SVM with random initialization
and closest-to-boundary selection. Choosing representative samples in the initializa-
tion can improve the performance of the SVM as well as choosing representative
examples in the margin of the classifier. However, these techniques do not have the
same advantages as our selection technique: we select representative samples first
and focus on examples at the classification boundary when it becomes necessary in
an automatic fashion. On several benchmark datasets we demonstrated stable perfor-
mance for our algorithm, which reaches levels of accuracy close to the final one after
only few iterations. This plays a crucial role in such applications and is essential for
user acceptance of such an interactive learning system. Future work can be done by
tuning the parameters of the PBAC algorithm to a specific problem. One possibility
may be to fine-tune the ε value by measuring the change in the expected classification
error.
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