
Data Min Knowl Disc (2009) 18:257–282
DOI 10.1007/s10618-008-0103-4

Using instance-level constraints in agglomerative
hierarchical clustering: theoretical and empirical results

Ian Davidson · S. S. Ravi

Received: 12 December 2007 / Accepted: 20 May 2008 / Published online: 20 June 2008
Springer Science+Business Media, LLC 2008

Abstract Clustering with constraints is a powerful method that allows users to
specify background knowledge and the expected cluster properties. Significant work
has explored the incorporation of instance-level constraints into non-hierarchical clus-
tering but not into hierarchical clustering algorithms. In this paper we present a formal
complexity analysis of the problem and show that constraints can be used to not
only improve the quality of the resultant dendrogram but also the efficiency of the
algorithms. This is particularly important since many agglomerative style algorithms
have running times that are quadratic (or faster growing) functions of the number
of instances to be clustered. We present several bounds on the improvement in the
running times of algorithms obtainable using constraints.

Keywords Clustering · Constrained clustering · Semi-supervised learning

1 Introduction and motivation

Data mining with constraints is a natural evolution from finding any interesting pattern
in the data to finding patterns that are consistent with users’ expectations and prior

Responsible editor: Charles Elkan.

A preliminary version of this paper appeared as Davidson and Ravi (2005b).

I. Davidson (B)
Department of Computer Science, The University of California - Davis, Davis, CA 95616, USA
e-mail: davidson@cs.ucdavis.edu; davidson@cs.albany.edu

S. S. Ravi
Department of Computer Science, University at Albany - State University of New York, Albany,
NY 12222, USA
e-mail: ravi@cs.albany.edu

123

258 I. Davidson, S. S. Ravi

knowledge. Constraints represent one way of specifying useful properties to be sat-
isfied by patterns and enable the practitioner to seek actionable patterns in data. For
example, Wagstaff et al. (2001) show that clustering GPS trace data from automobiles
using the k-means algorithm produces clusters which are quite different from the
desirable elongated clusters (representing lanes). However, when the clustering pro-
cess makes use of the background knowledge that each highway lane is at most four
meters in width and hence any two cars separated by more than four meters (in the
direction perpendicular to the road) must be in different lanes (clusters), the resulting
clusters have the desired shape.

There already exists considerable work on constraints and non-hierarchical clus-
tering (see Sect. 2). To our knowledge, only a limited amount of work exists in the
application of instance-level constraints to hierarchical clustering (Davidson and Ravi
2005b; Klein et al. 2002). The addition of constraints to non-hierarchical clustering
has produced many benefits (Basu et al. 2008) and we believe that the addition of
constraints to hierarchical clustering algorithms will also yield similar benefits. Our
empirical results, presented in Sects. 4 and 5, illustrate convincingly that adding the
same number of constraints in hierarchical clustering produces performance improve-
ments which are at least as good as if not better than those obtained in non-hierarchical
clustering. It is also known that the use of some distance metrics and nearest-join oper-
ators that facilitate the implementation of agglomerative clustering algorithms can also
cause undesirable results (e.g. long straggled clusters produced by single-linkage algo-
rithms). The use of constraints (e.g. a constraint on the maximum cluster diameter)
can remedy such problems (Davidson and Ravi 2005a, 2007a).

Hierarchical clustering algorithms are run once and they create a dendrogram,
which is a tree structure containing a k-block set partition for each value of k between
1 and n, where n is the number of data points to cluster. These algorithms not
only allow a user to choose a particular clustering granularity, but in many domains
(Dragomirescu and Postelnicu 2007; Mohanta et al. 2002; Zho and Karypis 2005)
clusters naturally form a hierarchy; that is, clusters are part of other clusters such as in
the case of phylogenetic (evolutionary) trees. The popular agglomerative algorithms
are easy to implement as they just begin with each point in its own cluster and pro-
gressively join two closest clusters to reduce the number of clusters by 1 until k = 1.
The basic agglomerative hierarchical clustering algorithm considered in this paper is
shown in Fig. 1. However, these added benefits come at the cost of efficiency since a
typical implementation with symmetric distances uses �(mn2) time and space, where
m is the number of attributes used to represent each instance. For large data sets, where
the space needed to store all pairwise distances is prohibitively large, distances may
need to be recomputed at each level of the dendrogram, thus leading to a running time
of �(n3). Typically, a single application of a non-hierarchical clustering algorithm
has a better asymptotic running time than a hierarchical clustering algorithm.

This paper explores how agglomerative hierarchical clustering algorithms can be
modified to satisfy all instance-level cluster-level constraints. These classes of con-
straints restrict the set of possible clusterings. An instance-level constraint specifies
a condition to be satisfied by two different instances in any valid clustering. A clus-
ter-level constraint specifies a condition to be satisfied by a single cluster or a pair
of clusters in any valid clustering. We believe that our work is the first to modify

123

Using instance-level constraints in agglomerative hierarchical clustering 259

Fig. 1 Standard agglomerative clustering

hierarchical clustering algorithms so as to satisfy instance-level and cluster-level
constraints. Note that the work on constrained hierarchical clustering reported in
Zho and Karypis (2005) is actually a method for combining partitional and hierarchical
clustering algorithms; the method does not incorporate constraints specified a priori.

Recent work (Basu et al. 2002, 2004; Wagstaff and Cardie 2000; Wagstaff et al.
2001) in the non-hierarchical clustering literature has explored the use of instance-
level constraints. The must-link (ML) and cannot-link (CL) constraints require that
two instances must both be part of or not part of the same cluster respectively. They
are particularly useful in situations where a large amount of unlabeled data is available
along with some labeled data from which the constraints can be obtained (Wagstaff
and Cardie 2000). These constraints were shown to improve cluster purity when mea-
sured against an extrinsic class label not given to the clustering algorithm (Wagstaff
and Cardie 2000). References Davidson and Ravi (2005a, 2007a) show that certain
geometric constraints can be translated into equivalent instance-level constraints. The
δ-constraint requires the distance between any pair of points in two different clusters
to be at least δ. This constraint can be represented as a conjunction of ML-constraints,
where each constraint is between a pair of points whose distance is less than δ. For
any cluster pii with two or more points, the ε-constraint requires that for each point
x ∈ pii , there must be another point y ∈ pii such that the distance between x and y is
at most ε. This constraint can be viewed as a disjunction of ML-constraints. Examples
of δ- and ε-constraints are given in Davidson and Ravi (2005a).

The remainder of this paper is organized as follows. Section 2 describes previ-
ous work on using constraints with both non-hierarchical and hierarchical clustering,
emphasizing the benefits of using constraints. Section 3 explores two challenges to
using constraints with agglomerative clustering: feasibility subproblems and the notion
of irreducibility, which is not applicable to non-hierarchical clustering. The feasibil-
ity of hierarchical clustering is considered under the above mentioned instance- and

123

260 I. Davidson, S. S. Ravi

Table 1 Complexity results for feasibility problems for a given k (partitional clustering) and unspecified
k (hierarchical clustering) and whether dead-ends occur for hierarchical clustering

Constraint Non-hierarchical Hierarchical Hierarchical
(Given k) (Unspecified k) Dead-ends?

Must-Link P (Davidson and
Ravi 2005a)

P No

Cannot-Link NP-complete
(Davidson and
Ravi 2005a)

P Yes

δ-constraint P (Davidson and
Ravi 2005a)

P No

ε-constraint P (Davidson and
Ravi 2005a)

P No

Must-Link and δ P (Davidson and
Ravi 2005a)

P No

Must-Link and ε NP-complete
(Davidson and
Ravi 2005a)

P No

δ and ε P (Davidson and
Ravi 2005a)

P No

Must-Link, Cannot-Link, δ and ε NP-complete
(Davidson and
Ravi 2005a)

NP-complete Yes

cluster-level constraints (ML, CL, δ, ε). This problem is significantly different (as
Table 1 indicates) from the feasibility problems considered in our previous work since
the value of k is not given for hierarchical clustering. As can be seen from Table 1,
when k is not specified, most feasibility problems are in the computational class P.
A second challenge is that of irreducibility, which occurs when a series of joins in an
agglomerative clustering algorithm leads to a dead-end configuration where no further
joins can occur without violating a constraint. Here, it is important to note that there
may be other series of joins which lead to a dendrogram with a significantly larger
number of levels. Irreducibility does not mean that the dendrogram will be discontin-
uous. Our results regarding feasibility and irreducibility are discussed in Sects 3.3 and
3.4 respectively. Next, in Sect. 4, we show empirically that constraints with a mod-
ified agglomerative hierarchical algorithm can improve the quality and performance
of the resultant dendrogram. One barrier to using agglomerative algorithms on large
data sets is the quadratic running time of most algorithms. We show that ML- and
CL-constraints can improve the running times of these algorithms and provide a per-
formance bound as a function of the number of these constraints. To further improve
the running times of hierarchical clustering algorithms in practice, a new constraint
(called the γ -constraint) is introduced in Sect. 5. To estimate the speed up due to this
constraint, we perform a probabilistic analysis and derive upper bounds using Markov
and Chebyshev inequalities (Mitzenmacher and Upfal 2005).

Throughout this paper, de(x, y) denotes the Euclidean distance between two points
x and y. Also, de(πi , π j) denotes the Euclidean distance between the centroids of
two groups of instances πi and π j . The feasibility and irreducibility results (Sects 3.3
and 3.4) are set theoretic and hence are applicable to Euclidean centroids as well as

123

Using instance-level constraints in agglomerative hierarchical clustering 261

single and complete linkage clustering. The γ -constraint, which is shown to improve
performance (Sect. 5) using the triangle inequality, is applicable to any metric. We
prove that the common distance measures of centroid linkage and complete linkage
satisfy the triangle inequality while single linkage does not. This is particularly useful
since the running time under complete linkage is typically O(n3).

2 Previous work and contributions of this paper

The ML- and CL-constraints were introduced to the pattern recognition community
by Wagstaff and Cardie (2000). They used c = (x, y) and c �= (x, y) to denote ML-
and CL-constraints respectively. Even though these constraints are simple, they have
several interesting properties. First, ML-constraints are reflexive, symmetric and tran-
sitive; hence, they induce an equivalence relation on the given set of points. We refer
to each equivalence class under this relation as a component. Each pair of points in a
component has a given or an implied ML-constraint. As mentioned in the following
observation (which is a simple consequence of the transitivity of ML-constraints), the
result of adding a new ML-constraint is to simply merge two components.

Observation 2.1 (Must-link Constraints are Transitive.) Let CCi and CC j , where
i �= j , be two components formed by a given set of ML-constraints. The addition
of a new ML-constraint c = (x, y), where x and y are instances in CCi and CC j

respectively, introduces the following new ML-constraints: c = (a, b)∀a, b : a ∈
CCi , b ∈ CC j .

Similarly, components formed from ML-constraints can also give rise to entailed CL-
constraints.

Observation 2.2 (Cannot-link Constraints Can Be Entailed.) Let CCi and CC j ,
where i �= j , be two components formed by a given set of ML-constraints. The
addition of a new CL-constraint c�=(x, y), where x and y are instances in CCi and
CC j respectively, introduces the following new CL-constraints: c�=(a, b)∀a, b : a ∈
CCi , b ∈ CC j .

Many references have addressed the topic of non-hierarchical clustering under con-
straints, with the goal of satisfying all or a maximum number of constraints (Basu et al.
2002, 2004; Davidson and Ravi 2005a, 2006, 2007a,b; Davidson et al. 2007; Wagstaff
and Cardie 2000; Wagstaff et al. 2001). Some researchers have also used constraints
to learn a distance function so that in the learnt metric space, points involved in ML-
constraints are close together and those involved in CL-constraints are far apart (Basu
et al. 2004; Xing et al. 2002).

To our knowledge, only two references (Davidson and Ravi 2005b; Klein et al.
2002) have examined the general purpose use of instance-level constraints for hierar-
chical clustering.1 In the first, Klein et al. (2002) investigate the problem of learning
a distance matrix (which may not be metric) that satisfies all the constraints. The aim

1 Bae and Bailey (2006) use CL-constraints and hierarchical algorithms to focus on finding alternative
clusterings.

123

262 I. Davidson, S. S. Ravi

Fig. 2 Algorithm for creating a new distance matrix for hierarchical clustering

of their work is to produce a distance matrix (D′) so that must-linked points are closer
together and cannot-linked points are far apart; this matrix can then be “plugged” into
any hierarchical clustering algorithm. The algorithm in Fig. 2 shows their approach.

Steps 1 and 2 create an initial version of D′ from the Euclidean distances between
points. Step 3 adjusts D′ so that all must-linked instances have a distance of 0; this
step may result in distances that no longer satisfy the triangle inequality. Step 4 adjusts
all entries by performing shortest path calculations to restore the triangle inequality;
however, this step may take O(n3) time (Cormen et al. 2001). The last step, which can
also invalidate the triangle inequality, sets all cannot-linked instances to be the further
apart than other pairs of instances.

The conference version (Davidson and Ravi 2005b) of this paper made three main
contributions. First, it explored the computational complexity (difficulty) of the feasi-
bility problem (discussed in the next section) and showed that unlike non-hierarchical
clustering, the feasibility problem for most constraint types can be solved efficiently.
However, it was pointed out that the issue of dead-ends does arise. Secondly, the notion
of a γ -constraint was introduced and it was shown that this constraint can be used to
improve the expected efficiency of clustering algorithms. Finally, it was shown how
the basic agglomerative algorithm can be modified to satisfy all constraints.

This paper includes several significant new additions over the earlier conference
version (Davidson and Ravi 2005b). Firstly, we present for the first time a complete set
of proofs for the computational complexity results mentioned in Davidson and Ravi
(2005b). Secondly, we present detailed experimental analysis of the algorithms show-
ing that ML- and CL-constraints not only improve the dendrogram quality but also
the running time of the algorithm. We also observe a near linear relationship between
the number of ML-constraints and the run-time savings and explain this phenomenon.
Further, we develop a new lower bound on the expected run-time improvement due
to the use of ML- and CL-constraints. We also develop a new upper bound on the
performance improvement due to the γ -constraint using the Chebyshev inequality
and compare the theoretical bound with empirical estimates. Finally, we show that

123

Using instance-level constraints in agglomerative hierarchical clustering 263

the use of a γ -constraint can be extended to complete-linkage algorithms but not to
single-linkage algorithms since the latter’s distance function does not obey the triangle
inequality.

3 Challenges to hierarchical clustering with constraints

3.1 Overview

This section discusses two challenges, namely feasibility and irreducibility, that arise
in the context of hierarchical clustering with constraints. It is important to note that
these challenges are not dependent on or related to any particular distance function.
Since most of our results are set theoretic, the challenges apply to a wide variety of
hierarchical algorithms. Issues concerning the feasibility problem are addressed in
Sects 3.2 and 3.3. The irreducibility phenomenon is discussed in Sect. 3.4. The proofs
in this entire section can be skipped upon first reading without loss of flow if the
authors read the problem definitions in Sects. 3.2 and 3.4.

3.2 Feasibility problem: definitions and terminology

For non-hierarchical clustering under constraints, the feasibility problem is the fol-
lowing: Given integers ku and kl where kl ≤ ku , a set S of instances and a set � of
constraints, does there exist at least one partition of S into k clusters such that all the
given constraints in � are satisfied and kl ≤ k ≤ ku? This problem has been shown to
be NP-complete for several classes of constraints (Davidson and Ravi 2005a, 2007a).
The complexity results of that work, shown in Table 1, are important in data mining
because when problems are shown to be computationally intractable, one should not
expect to find an exact solution efficiently.

In the context of hierarchical clustering, the feasibility problem can be formulated
as follows.

Definition 3.1 Feasibility problem for Hierarchical Clustering (Fhc)
Instance: A set S of instances, the distance d(x, y) ≥ 0 for each pair of instances x
and y in S and a collection � of constraints.
Question: Can S be partitioned into subsets (clusters) so that all of the constraints in
� are satisfied?

We note that the Fhc problem formulated above is significantly different from
the constrained non-hierarchical clustering problem considered in Davidson and Ravi
(2005a, 2007a) and Klein et al. (2002). In particular, the formulation of Fhc does not
include any restrictions on the number of clusters k. This formulation can be viewed
as asking whether there is any level of the dendrogram where all the given constraints
are satisfied. In other words, a feasible solution to the Fhc may contain any number of
clusters. Because of this difference, proofs of complexity results for the Fhc are quite
different from those for the non-hierarchical case. For example, in our earlier work
(Davidson and Ravi 2005a, 2007a), we showed intractability results for CL-constraints

123

264 I. Davidson, S. S. Ravi

using a straightforward reduction from the graph coloring problem. The intractability
proof presented here for the Fhc involves a more elaborate reduction.

In this section, we use the same types of constraints as those considered in Davidson
and Ravi (2005a, 2007a). They are: (a) Must-Link (ML) constraints, (b) Cannot-Link
(CL) constraints, (c) δ-constraint and (d) ε-constraint. As observed in Davidson and
Ravi (2005a), a δ-constraint can be efficiently transformed into an equivalent collection
of ML-constraints. Therefore, we restrict our attention to ML-, CL- and ε-constraints.
Our results are presented in Sect. 3.3. When all three types of constraints are specified,
we show that the feasibility problem is NP-complete and hence finding a cluster-
ing, let alone a good clustering, is computationally intractable. However, for any pair
of these constraint types, we show that there are simple and efficient algorithms for
the corresponding feasibility problem. These simple algorithms can be used to seed
an agglomerative or divisive hierarchical clustering algorithm, as is the case in our
experimental results.

3.3 Complexity results for the feasibility problem

3.3.1 Complexity under ML-, CL- and ε-constraints

In this section, we show that the Fhc problem is NP-complete when all the three
constraint types are involved. This indicates that creating a dendrogram under these
constraints is an intractable problem and the best one can hope for is an approximation
algorithm that may not satisfy all of the constraints. Our proof uses a reduction from
the One-in-Three 3SAT with positive literals problem (Opl) which is known to be
NP-complete (Schaefer 1978). A definition of this problem is as follows.

One-in-Three 3SAT with Positive Literals (Opl)
Instance: A set X = {x1, x2, . . . , xn} of n Boolean variables, a collection Y =
{Y1, Y2, . . . , Ym} of m clauses, where each clause Y j = (x j1 , x j2 , x j3} has exactly
three non-negated literals.
Question: Is there an assignment of truth values to the variables in X such that exactly
one literal in each clause becomes true?

Theorem 3.1 The Fhc problem is NP-complete when the constraint set contains ML-,
CL- and ε-constraints.

As the proof of the above theorem is somewhat long, it is included in the Appendix.

3.3.2 Efficient algorithms for some constraint combinations

When the constraint set � contains only ML- and CL-constraints, the Fhc problem
can be solved in polynomial time using the following simple algorithm.

1. Form the components implied by the transitivity of the ML-constraints. Let S1,
S2, . . ., Sp denote the resulting components.

123

Using instance-level constraints in agglomerative hierarchical clustering 265

2. If there is a component Si (1 ≤ i ≤ p) containing instances x and y such that
CL(x, y) ∈ �, then there is no solution to the feasibility problem; otherwise,
there is a solution.

It is easy to verify the correctness of the above algorithm. When the above algorithm
indicates that there is a feasible solution to the given Fhc instance, one such solution
can be obtained as follows: use the clusters produced in Step 1 along with a single-
ton cluster for each instance that is not involved in any ML-constraint. Clearly, this
algorithm runs in polynomial time.

Next, consider the combination of CL- and ε-constraints. For this combination,
there is always a trivial feasible solution consisting of |S| singleton clusters. Obvi-
ously, this solution satisfies both CL- and ε-constraints, as the latter constraint applies
only to clusters containing two or more instances.

Finally, we consider the Fhc problem under the combination of ML- and ε-
constraints. For any instance x , an ε-neighbor of x is another instance y such that
d(x, y) ≤ ε. It can be seen that any instance x which does not have an ε-neighbor must
form a singleton cluster in any solution that satisfies the ML- and ε-constraints. Based
on this fact, an algorithm for solving the feasibility problem for ML- and ε-constraints
is as follows.

1. Construct the set S′ = {x ∈ S : x does not have an ε-neighbor}.
2. If there is an instance x ∈ S′ such that x is involved in some ML-constraint, then

there is no solution to the Fhc problem; otherwise, there is a solution.

When the above algorithm indicates that there is a feasible solution, one such solu-
tion is to create a singleton cluster for each node in S′ and form one additional cluster
containing all the instances in S − S′. It is easy to see that the resulting partition of
S satisfies the ML- and ε-constraints and that the feasibility testing algorithm runs in
polynomial time.

The following theorem summarizes the above discussion.

Theorem 3.2 The Fhc problem can be solved efficiently for each of the following
combinations of constraint types: (a) ML and CL, (b) CL and ε, and (c) ML and ε.

This theorem points out that one can extend the basic agglomerative algorithm with
the above combinations of constraint types to perform efficient hierarchical clustering.
However, it does not mean that one can always use traditional agglomerative cluster-
ing algorithms, since the nearest-join operation can yield dead-end configurations as
discussed in the next section.

3.4 Irreducibility due to dead-ends

We begin this section with a simple example to illustrate the notion of dead-ends that
arise when nearest-join operations are done in certain orders. Figure 3 shows an exam-
ple with six points denoted by A, B, . . ., F ; each edge shown in the figure represents a
CL-constraint. The nearest cluster join strategy may join E with D and then DE with
F . There are 4 clusters at that point, namely DE F , A, B and C . No further cluster

123

266 I. Davidson, S. S. Ravi

Fig. 3 Example of
CL-constraints (edges) that leads
to a dead-end. Note that instance
positions in figure reflect
distances between points; for
example, points D and E are the
closest

joins are possible without violating a CL-constraint. This is an example of a dead-end
situation since a different sequence of joins (e.g. B with E , D with F , A with DF)
results in a collection of 3 clusters, namely ADF, BE and C . Thus, in this example,
there is another dendrogram with one additional level. Another example presented
later in this section shows that the number of levels of the two dendrograms can be
significantly different.

We use the following definition to capture the informal notion of a “premature end"
in the construction of a dendrogram.

Definition 3.2 A feasible clustering C = {pi1, pi2, . . . , pik} of a set S is irreducible
if no pair of clusters in C can be merged to obtain a feasible clustering with k − 1
clusters.

The remainder of this section examines the question of which combinations of
constraints can lead to premature stoppage of the dendrogram. We first consider each
of the ML-, CL- and ε-constraints separately. It is easy to see that when only ML-
constraints are used, the dendrogram can reach all the way up to a single cluster, no
matter how mergers are done. The following example shows that with CL-constraints,
some sequences of mergers can produce irreducible configurations with a much larger
number of clusters compared to other sequences.

Example The set S of 4k instances used in this example is constructed as the union
of four pairwise disjoint sets X , Y , Z and W , each containing k instances. Let X = {x1,
x2, . . ., xk}, Y = {y1, y2, . . ., yk}, Z = {z1, z2, . . ., zk} and W = {w1, w2, . . ., wk}. The
CL-constraints are as follows. (1) There is a CL-constraint for each pair of instances
{xi , x j }, i �= j . (2) There is a CL-constraint for each pair of instances {wi , w j }, i �= j .
(3) There is a CL-constraint for each pair of instances {yi , z j }, 1 ≤ i, j ≤ k.

Assume that the distance between each pair of instances in S is 1. Thus, a sequence
of nearest-neighbor mergers may lead to the following feasible clustering with 2k clus-
ters: {x1, y1}, {x2, y2}, . . ., {xk, yk}, {z1, w1}, {z2, w2}, . . ., {zk, wk}. This collection
of clusters can be seen to be irreducible in view of the given CL-constraints. However,
a feasible clustering with k clusters is possible: {x1, w1, y1, y2, . . ., yk}, {x2, w2, z1,
z2, . . ., zk}, {x3, w3}, . . ., {xk , wk}. Thus, in this example, a carefully constructed
dendrogram allows k additional levels.

123

Using instance-level constraints in agglomerative hierarchical clustering 267

When only the ε-constraint is considered, the following lemma points out that there
is only one irreducible configuration; thus, no premature stoppages are possible. In
proving this lemma, we assume that the distance function is symmetric.

Lemma 3.1 Let S be a set of instances to be clustered under an ε-constraint. Any
irreducible and feasible collection C of clusters for S must satisfy the following two
conditions.

(a) C contains at most one cluster with two or more instances of S.
(b) Each singleton cluster in C consists of an instance x which has no ε-neighbors

in S.

Proof Suppose C has two or more clusters, say pi1 and pi2, such that each of pi1
and pi2 has two or more instances. We claim that pi1 and pi2 can be merged without
violating the ε-constraint. This is because each instance in pi1 (pi2) has an ε-neighbor
in pi1 (pi2) since C is feasible. Thus, merging pi1 and pi2 cannot violate the ε-con-
straint. This contradicts the assumption that C is irreducible and the result of Part (a)
follows. The proof of Part (b) is similar. Suppose C has a singleton cluster pi1 = {x}
and the instance x has an ε-neighbor in some cluster pi2. Again, pi1 and pi2 can be
merged without violating the ε-constraint. ��

Lemma 3.1 can be seen to hold even for the combination of ML- and ε-constraints
since ML-constraints cannot be violated by merging clusters. Thus, no matter how
clusters are merged at the intermediate levels, the highest level of the dendrogram will
always correspond to the configuration described in the above lemma when ML- and
ε-constraints are used. In the presence of CL-constraints, it was pointed out through
an example that the dendrogram may stop prematurely if mergers are not carried out
carefully. It is easy to extend the example to show that this behavior occurs even when
CL-constraints are combined with ML-constraints or with an ε-constraint.

How to perform agglomerative clustering in these dead-end situations remains an
important open question.

4 Extending nearest-centroid algorithms to satisfy ML- and CL-constraints

4.1 Overview

To use constraints with hierarchical clustering we change the algorithm in Fig. 1 to
factor in the above discussion. As an example, a constrained hierarchical clustering
algorithm with must-link and cannot-link constraints is shown in Fig. 4. In this section
we illustrate that constraints can improve the quality of the dendrogram. We purpose-
fully chose a small number of constraints and believe that even more constraints will
improve upon these results but increase the chance of dead-ends. A comparison of
these results with other results for the same data sets reported in Davidson and Ravi
(2005a) and Wagstaff et al. (2001) shows that the addition of constraints to agglom-
erative algorithms produces results that are as good as or better than non-hierarchical
algorithms.

123

268 I. Davidson, S. S. Ravi

Fig. 4 Agglomerative clustering with ML- and CL-constraints

We will begin by investigating must-link and cannot-link constraints using eight real
world UCI datasets. The number of instances and extrinsic number of labels for each
are as follows: wine(178,3), glass(214,6), iris(150,3), image-seg(210,7), ecoli(336,8),
heart(80,2), ionsphere (351,2) and protein (116,6).

Recall that UCI datasets include an extrinsic class label for each instance. For each
data set S, we generated constraints using a fraction of the instances in S and then
clustered the entire set S using those constraints. We randomly selected two instances
at a time from S and generated must-link constraints between instances with the same
class label and cannot-link constraints between instances of differing class labels. We
repeated this process twenty times starting with zero constraints all the way to twenty
constraints of each type, each time generating one hundred different constraint sets of
each type. The performance measures reported are averaged over these one hundred
trials. The clustering algorithm is not given the instance labels which are then used to
score the algorithm’s performance.

4.2 Experimental results

The quality of a dendrogram can be measured in terms of its ability to predict the extrin-
sic label of an instance as measured by the error rate. The error rate for a dendrogram
level is calculated as follows. For each cluster the most populous label is determined
and then the number of instances in the cluster not having that label is determined and
summed over all clusters. The error rate is then this summation divided by the total
number of points. The overall error rate for a dendrogram is the average error over all
constructed levels.

123

Using instance-level constraints in agglomerative hierarchical clustering 269

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0 5 10 15 20

Iris

 0.15

 0.155

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0 5 10 15 20

Glass

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016

 0 5 10 15 20

Wine

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0 5 10 15 20

Heart

 0.029
 0.0295

 0.03
 0.0305
 0.031

 0.0315
 0.032

 0.0325
 0.033

 0.0335
 0.034

 0 5 10 15 20

Ecoli

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0 5 10 15 20

Image Segmentation

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0 5 10 15 20

Ionosphere

 0.17
 0.175
 0.18

 0.185
 0.19

 0.195
 0.2

 0.205
 0.21

 0.215
 0.22

 0 5 10 15 20

Protein

Fig. 5 The average error at predicting labels over all levels in the dendrogram (y-axis) versus number of
x ML- and x CL-constraints (x-axis). The unconstrained result is given at the y-axis intercept

Our experimental results for the improvement in dendrogram quality are shown
in Figs. 5 and 6. The first figure shows the average error at predicting the extrinsic
labels averaged over all levels in the dendrogram. The second figure shows the maxi-
mum error at predicting the extrinsic labels which typically occurred at the top of the
dendrogram. A valid question here is the following: why does the error not decrease
in a strict monotonic fashion? The answer is that we are averaging over only 100
constraint sets for each size, and as noted in Davidson et al. (2006), not all constraints
are equally useful at reducing the error. Therefore, it is possible that some of the
100 constraint sets of size five will be better at reducing the error than some of the
100 constraint sets of size ten, even though all the constraints are generated from the
same ground truth (labels). Since we are randomly generating constraint sets from the
labeled data, there is a chance that this will occur.

Another benefit of using constraints is the improvement of run-time. We see from
Fig. 7 (solid line) that the addition of just five ML- and five CL-constraints is suffi-
cient to reduce the number of calculations typically by 5%. We note an interesting
near linear trend that can be explained by the following result.

Consider creating a complete dendrogram using agglomerative techniques for a set
of n points. The number of pairwise inter-cluster distances at level j (containing j
clusters) for j ≥ 2 is N (j)= j (j −1)/2. (Note that there are no inter-cluster distances
at level 1.) Thus, if one were to compute all the inter-cluster distances at levels 2
through n, the total number of distances is

∑n
j=2 N (j). The following lemma, whose

123

270 I. Davidson, S. S. Ravi

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20

Iris

 0.46
 0.48
 0.5

 0.52
 0.54
 0.56
 0.58
 0.6

 0.62
 0.64
 0.66

 0 5 10 15 20

Glass

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20

Wine

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20

Heart

 0.1
 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0 5 10 15 20

Ecoli

 0.75
 0.76
 0.77
 0.78
 0.79
 0.8

 0.81
 0.82
 0.83
 0.84
 0.85
 0.86

 0 5 10 15 20

Image Segmentation

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0 5 10 15 20

Ionosphere

 0.4
 0.42
 0.44
 0.46
 0.48
 0.5

 0.52
 0.54
 0.56
 0.58
 0.6

 0 5 10 15 20

Protein

Fig. 6 The maximum error at predicting labels over all levels in the dendrogram versus number of x ML-
and x CL-constraints. The unconstrained result is given at the y-axis intercept

proof appears in Graham et al. (1989), gives a simple closed form expression for this
sum.

Lemma 4.1 For all n ≥ 2,
n∑

j=2
N (j) = (n3 − n)/6.

Now, every CL-constraint will prune at most one level from the top of the dendro-
gram and entailed constraints Davidson and Ravi (2005a) may prune more. However,
with a small number of constraints (as is typical), the number of new constraints
generated due to entailment will also be small; hence the number of joins saved due
to CL-constraints is negligible. When ML-constraints are generated, each ML-con-
straint involving instances which don’t appear in other constraints reduces the number
of clusters at the bottom-most level of the dendrogram by 1. Therefore, if there are q
such ML-constraints, the number of levels in the dendrogram is at most n − q. Now,
from Lemma 4.1, an upper bound on the number of distance calculations at all levels of
the dendrogram is [(n −q)3 − (n −q)]/6. This bound in conjunction with Lemma 4.1
can be used to calculate a lower bound on the savings and this lower bound is plotted
in Fig. 7 as the crossed line. As we see, this is a very tight lower bound for small sets
of constraints.

Finally, we empirically show that dead-ends are a real phenomenon. Since we derive
the constraints from extrinsic labels, one would expect the minimum value of k for
the constrained dendrogram to be no smaller than the number of different extrinsic
labels reported at the start of Sect. 4. For example, with the iris data set, the smallest

123

Using instance-level constraints in agglomerative hierarchical clustering 271

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20

Iris

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20

Glass

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20

Wine

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20

Heart

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

 0 5 10 15 20

Ecoli

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20

Image Segmentation

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

 0 5 10 15 20

Ionosphere

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 5 10 15 20

Protein

Fig. 7 The percentage of distance calculations that are saved due to ML- and CL-constraints versus number
of x ML- and x CL-constraints. The solid line shows actual saving and the crossed line the lower bound
estimate calculated above. The unconstrained result is given at the y-axis intercept

value of k reported is three which is expected since there are three extrinsic labels but
this could be reduced to two if no instances are involved in more than one constraint.
Table 2 shows the minimum, maximum and average smallest value of k found for our
data sets. Note that these results are a function of the constraint sets and will depend
on issues such as whether the labels are sampled with or without replacement and the
random number generator used. Note that sometimes the theoretical minimum number
of clusters (the number of extrinsic labels) is not achieved as is the case for iris, heart
and ionosphere.

Table 2 Empirical results for dead-ends obtained from the same experiments reported in Fig. 5 for
x = 20

DataSet Minimum smallest k Average smallest k Maximum smallest k

Wine 3 4.3 6
Glass 6 9.1 13
Iris 4 6.1 9
Image Seg 7 10.9 14
Ecoli 8 12.3 18
Heart 3 6.9 15
Ionosphere 4 5.9 11
Protein 6 9.5 14

Results are for 100 constraint sets and show the minimum, average and maximum highest level (smallest
value of k) obtained so that all constraints are satisfied

123

272 I. Davidson, S. S. Ravi

5 Using the γ -constraint to improve performance

In this section we introduce a new constraint, called the γ -constraint, and illustrate
how the triangle inequality can be used to further improve the run-time performance of
agglomerative hierarchical clustering. As in the other sections of this paper, we assume
that the distance matrix cannot be stored in memory; so distances are recalculated at
each level of the dendrogram. The improvements offered by the use of γ -constraint
do not affect the worst-case analysis. However, we can perform best case analysis and
obtain upper bounds on the expected performance improvement using the Markov and
Chebyshev inequalities. Other researchers have considered the use of triangle inequal-
ity for non-hierarchical clustering (Elkan 2003) as well as for hierarchical clustering
(Nanni 2005). However, these references do not use triangle inequality in conjunction
with constraints.

Definition 5.1 The γ -Constraint For Hierarchical Clustering. Consider two clus-
ters πi , π j and a distance metric d. If d(πi , π j) > γ then clusters πi and π j should
not be joined.

The γ -constraint allows us to specify how well separated the clusters should be.
Recall that the triangle inequality for three points a, b, c refers to the expression
|d(a, b) − d(b, c)| ≤ d(a, c) ≤ d(a, b) + d(c, b) where d is the Euclidean distance
function or any other distance metric. We can improve the efficiency of the hierarchical
clustering algorithm by making use of the lower bound in the triangle inequality and
the γ -constraint. Let a, b, c now be cluster centroids and suppose we wish to deter-
mine the closest pair of centroids to join. If we have already computed d(a, b) and
d(b, c) and |d(a, b) − d(b, c)| > γ , then we need not compute the distance between
a and c as the lower bound on d(a, c) already exceeds γ and hence a and c cannot
be joined. Formally, the function to calculate distances using geometric reasoning at
a particular dendrogram level is shown in Fig. 8.

If the triangle inequality bound exceeds γ , then we save making m floating point
power calculations if the data points are in m-dimensional space. As mentioned earlier,
we have no reason to believe that the triangle inequality saves computation in all prob-
lem instances; hence in the worst-case, there may be no performance improvement.
But in practice, one would expect the triangle inequality to have a beneficial effect
and hence we can explore the best case and expected case results.

5.1 Best-case analysis for the γ -constraint

Consider the n points to cluster {x1, . . . , xn}. The first iteration of the agglomerative
hierarchical clustering algorithm using symmetric distances is to compute the dis-
tance between each pair of points. This involves n(n − 1)/2 computations at the base
level, namely d(x1, x2), d(x1, x3), . . . , d(x1, xn), . . . , d(xi , xi+1), d(xi , xi+2), . . . ,

d(xi , xn), . . . , d(xn−1, xn). A simple example for n = 5 is shown in Fig. 9. When
using our γ -constraint, we first calculate the distance from the first instance x1 to all
other instances (x2, . . . , xn) requiring n − 1 calculations. These distances provide us
with estimates for the remaining (n − 1)(n − 2)/2 distances. In the best case, all of

123

Using instance-level constraints in agglomerative hierarchical clustering 273

Fig. 8 Function for calculating distances using the γ -constraint and the triangle inequality

Fig. 9 A simple illustration for
a five instance problem of how
the triangle inequality can save
distance computations

x1

x2 x3 x4 x5

x3 x4 x5 x4 x5 x5

these lower bound distance estimates exceed γ and we save calculating all of these
distances. We say that “these calculations are saved" since evaluating each distance
exactly will require m floating point calculations while the lower bound uses just one
floating point calculation. Thus in the best case there are only n − 1 distance compu-
tations at the bottom level of the dendrogram instead of n(n − 1)/2. For subsequent
levels of the dendrogram no further distance calculations would be required in the best
case.

123

274 I. Davidson, S. S. Ravi

5.2 Average-case analysis for using the γ -constraint

However, it is highly unlikely that the best case situation will ever occur. We now focus
on average case analysis using first the Markov inequality and then the Chebyshev
inequality to determine the expected performance improvement. In the conference
version of this paper (Davidson and Ravi 2005b) we presented empirical results for
improvements only at the bottom most level of the dendrogram. In this work, we
provide experimental results to show that these bounds are useful for determining
computational savings whilst constructing the entire dendrogram.

5.2.1 An expected-case performance upper bound based on Markov inequality

Let ρ be the average distance between any two instances in the data set to cluster. The
triangle inequality provides a lower bound; if this bound exceeds γ , computational
savings will result. We can bound how often this occurs if we can express γ in terms
of ρ, hence let γ = cρ for some constant c > 1.

Recall that the general form of the Markov inequality (Mitzenmacher and Upfal
2005) is: P(X = x ≥ a) ≤ E(X)/a, where x is a value of the non-negative random
variable X , a is a constant and E(X) is the expected value of X . Also, recall that at
the base level of the dendrogram there are n(n − 1)/2 calculations and a possibility
of saving at most (n − 1)(n − 2)/2 calculations. Since X is distance between two
points chosen at random, E(X) = ρ and γ = a = cρ; we wish to determine how
often the distance will exceed γ . Note that the population consists of all the data
points whose mean pairwise distance is ρ. Therefore, by the Markov inequality, the
probability that the distance will exceed γ is bounded by ρ/(cρ) = 1/c. At the lowest
level of the dendrogram (k = n) where there are n(n − 1)/2 distance calculations,
we notice that the expected number of times the triangle inequality will save us com-
putation time is at most n(n − 1)/(2c). As indicated in Lemma 4.1, the total number
of distance computations over the entire dendrogram is (n3 − n)/6 and so the the
expected number of times the triangle inequality will save us computation time is at
most (n3 − n)/(6c).

Consider the 150 instance IRIS data set (n = 150) where the average distance (with
attribute value ranges all being normalized to between 0 and 1) between two instances
is approximately 0.64; that is, ρ = 0.64. Suppose we choose γ = 2ρ = 1.28; that
is, we do not wish to join clusters whose centroids are separated by a distance greater
than 1.28. By not using the γ -constraint and the triangle inequality the total number of
computations is (n3 − n)/6 = 562475. Using the constraint with γ = 1.28, the num-
ber of computations that are saved is at most 50%. How well this bound approximates
the true improvement is empirically examined in the next section.

5.2.2 An expected-case performance upper bound based on Chebyshev inequality

Given a random variable X with expected value µ and variance σ 2, the
Chebyshev inequality states that P(|X − µ| ≥ γ) ≤ σ 2/γ 2 (see for example,

123

Using instance-level constraints in agglomerative hierarchical clustering 275

(Mitzenmacher and Upfal 2005)). In our case, the random variable X represents dis-
tances between instances. In the following analysis, γ is a constant and is not a function
of µ as before. To apply the Chebyshev inequality to our work, we first modify our
distances so that µ = 0; note that this does not change σ 2 (which is a function of
the second moment of the distribution). This can be achieved by calculating µ on the
original data set and letting d ′

i, j = di, j − µ, ∀i, j .

Applying the Chebyshev inequality with µ = 0, we have P(|X | ≥ γ) ≤ σ 2/γ 2.
Since the event “X ≥ γ ” implies the event “|X | ≥ γ ”, we have P(X ≥ γ) ≤ P(|X | ≥
γ). Since the latter quantity is bounded by σ 2/γ 2, we get P(X ≥ γ) ≤ σ 2/γ 2. Thus,
the expected fraction of the calculations that can be saved, as given by the Chebyshev’s
inequality, is at most σ 2/γ 2.

This bound can be tightened in two ways, namely by making assumptions on the
distribution of distances or by effectively estimating σ 2 for each level (without explic-
itly calculating it). For example, if the distribution of X was Gaussian, then symmetry
would mean that P(X ≥ γ) = P(X ≤ −γ) and hence the performance bound could
be tightened to σ 2/(2γ 2).

5.3 Experimental results for the γ -constraint

We now empirically show that the γ -constraint can be used to improve efficiency and
validate the usefulness of our bounds for our UCI data sets. We have chosen to plot
distance calculations saved rather than raw computation time so as to allow more easy
comparison and replication of our work. The raw computation time results show very
similar trends since the overhead to check constraints is insignificant given our earlier
complexity results. Our empirical results are shown in Fig. 10. Of course, the Markov
bound is generally the weaker of the two, but it is interesting to note that the Chebyshev
bound is a strict and usually tight upper bound. In our experiments, the Chebyshev
bound was occasionally (for the heart, ionosphere and image segmentation data sets)
not as tight as in the other five cases. This is not due to data set size (all data sets are
under 500 instances) but rather due to the number of dimensions. The heart, ionosphere
and image segmentation data set have 22, 34 and 19 attributes respectively while the
iris, wine, glass, protein and ecoli data sets have 4, 13, 20, 8 and 7 respectively. We
expect the accuracy of the bound for these larger dimension data sets to improve when
more instances are used since the estimates of µ and σ 2 obtained from the data will
be more accurate.

5.4 Common distance measures for which γ -constraint can be used

The γ -constraint makes use of the triangle inequality and hence is only applicable
for distance measures which satisfy that property. It is clear that the centroid distance
measure obeys the triangle inequality, but what of the two other common measures,
namely single-linkage and complete-linkage? We now investigate this issue.

Definition 5.2 Single and Complete Linkage Distance. Let de(x, y) denote the
Euclidean distance between two points x and y and let πi and π j be two clusters.

123

276 I. Davidson, S. S. Ravi

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Iris

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Glass

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Wine

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Heart

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Ecoli

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Image Segmentation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Ionosphere

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Protein

Fig. 10 The percentage of distance calculations that are saved using the γ -constraints versus the value of
γ . The solid line shows actual γ , the crosses show the Chebyshev upper bound and the crossed-line shows
the Markov upper bound

(a) The single-linkage distance between πi and π j is defined by dSL(πi , π j) =
argmina,bde(xa, xb) : xa ∈ πi , xb ∈ π j .

(b) The complete-linkage distance between πi and π j is defined by dC L(πi , π j) =
argmaxa,b de(xa, xb) : xa ∈ πi , xb ∈ π j .

Theorem 5.1 The complete-linkage distance in Definition5.2 satisfies the triangle
inequality but is not a distance metric.

Proof The four requirements for a metric D are:

1. d(x, y) ≥ 0 (non-negativity),
2. d(x, y) = 0 if and only if x = y (identity of indiscernibles),
3. d(x, y) = d(y, x) (symmetry) and
4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Clearly Property 1 is satisfied for Euclidean distances. However, since the closest
point to x is itself, dC L(πi , πi) > 0 and hence Property 2 does not hold. Property 3
holds since Euclidean distances are symmetric. We can prove Property 4 as follows.

Let xa
i and xc

l be the furthest points between Clusters a and c. Then d(xa
i , xc

l) ≤
d(xa

i , xb∗)+d(xb∗, xc
l) where xb∗ is an arbitrary point in Cluster b. Now, d(xa

i , xb∗)+
d(xb∗, xc

l) ≤ argmax j,kd(xa
i , xb

j) + d(xb
k , xc

l). Hence the triangle inequality
holds. ��

123

Using instance-level constraints in agglomerative hierarchical clustering 277

Theorem 5.2 The single linkage distance in Definition5.2 does not satisfy the triangle
inequality and hence is not a distance metric.

Proof To see that the single-linkage distance does not satisfy the triangle inequality,
note that for an arbitrary point xb∗, d(xa

i , xb∗)+d(xb∗, xc
l) �≤ argmin j,kd(xa

i , xb
j)+

d(xb
k , xc

l). ��

Therefore, centroid and complete-linkage distances satisfy the triangle inequality
and can be used with the γ -constraint.

6 Conclusions

We have made several significant contributions to the new field of incorporating con-
straints into hierarchical clustering. We study four types of constraints, namely ML,
CL, ε and δ. Our formal results for the feasibility problem (where the number of
clusters is unspecified) show that clustering under all four types (ML, CL, ε and δ) of
constraints is NP-complete; hence, creating a feasible dendrogram under all these is
intractable but for all other constraint combinations the feasibility problem is tractable.
These results are fundamentally different from our earlier work (Davidson and Ravi
2005a) not only because the feasibility problem and proofs are quite different but for
non-hierarchical clustering many constraint combinations gave rise to an intractable
feasibility problem.

We have proved that under CL-constraints, traditional agglomerative clustering
algorithms may give rise to a dead-end (irreducible) configuration. Even for data sets
for which there are feasible solutions for all the values of k in the range kmin to kmax ,
traditional agglomerative clustering algorithms which start with kmax clusters and join
two closest clusters may not get all the way to a feasible solution with kmin clusters.
Therefore, the approach of joining the two nearest clusters may yield an incomplete
dendrogram.

Our empirical results for incorporating constraints into agglomerative algorithms
show that small amounts of constraints not only improve the label prediction error
rates of dendrograms but also improve the run-time. The former is to be expected
since a few initially carefully chosen joins can greatly improve the accuracy of the
entire dendrogram. The latter is a particularly important result since agglomerative
algorithms, though useful, are computationally time consuming; for large data sets,
they may take �(n3) time. We showed that the number of distance calculations that
are saved is a near linear function of the number of ML-constraints and the transitive
nature of ML-constraints can greatly reduce the computation time. We presented a
lower bound for this improvement.

To further improve the efficiency of agglomerative clustering we introduced the
γ -constraint which can be used in conjunction with triangle inequality to save com-
putation time. The γ -constraint allows a user to specify how far apart two cluster
centroids should be. We derived best case and expected case analysis for this situation
which were verified by our experiments. We showed that this constraint would work
with the complete linkage and centroid linkage techniques but not with the single

123

278 I. Davidson, S. S. Ravi

linkage approach which does not obey the triangle inequality. Finally, we provided
both Markov and Chebyshev upper bounds on the distance calculations that will be
saved.

Our experimental results clearly showed the following interesting insights.

• Adding ML- and CL-constraints to hierarchical clustering can achieve significantly
better improvements in accuracy. This is to be expected given that a few carefully
selected joins can greatly improve the accuracy of the overall dendrogram.

• Adding ML- and CL-constraints can significantly reduce the number of distance
calculations. We presented a simple lower bound that estimates how many distance
calculations will be saved.

• The γ -constraint can greatly reduce the number of distance calculations in the
expected case and the validation of the performance of our Markov and Cheby-
shev bounds showed that the latter is a useful upper bound.

Acknowledgements We thank the reviewers for their careful reading of the manuscript and for providing
valuable suggestions. The first author gratefully acknowledges support of this work by NSF grant number
IIS-0801528 titled “CAREER: Knowledge Enhanced Clustering using Constraints”.

Appendix A

Proof of Theorem 3.1

It is easy to see that Fhc is in NP since one can guess a partition of S into clusters and
verify that the partition satisfies all the given constraints. We establish NP-hardness
by a reduction from Opl.

A note regarding terminology: In this proof, we use the term ‘nodes’ to refer to the
points which are to be clustered. We need this terminology since the term ‘instance’
must be used in its complexity theoretic sense in the proof.

Given an instance I of the Opl problem consisting of variable set X and clause set
Y , we create an instance I ′ of the Fhc problem as follows.

We first describe the nodes in the instance I ′. For each Boolean variable xi , we create
a node vi , 1 ≤ i ≤ n. Let V = {v1, v2, . . . , vn}. For each clause y j = {x j1 , x j2 , x j3},
1 ≤ j ≤ m, we do the following:

(a) We create a set A j = {w j1, w j2 , w j3} containing three nodes. (The reader may
find it convenient to think of nodes w j1 , w j2 and w j3 as corresponding to the
variables x j1 , x j2 and x j3 respectively.) We refer to the three nodes in A j as the
primary nodes associated with clause y j .

(b) We create six additional nodes denoted by a1
j , a2

j , b1
j , b2

j , c1
j and c2

j . We refer
to these six nodes as the secondary nodes associated with clause y j . For con-
venience, we let B j = {a1

j , b1
j , c1

j }. Also, we refer to a2
j , b2

j and c2
j as the twin

nodes of a1
j , b1

j and c1
j respectively.

Thus, the construction creates a total of n + 9m nodes. The distances between these
nodes are chosen in the following manner, by considering each clause y j , 1 ≤ j ≤ n.

123

Using instance-level constraints in agglomerative hierarchical clustering 279

(a) Let the primary nodes w j1 , w j2 and w j3 associated with clause y j correspond to
Boolean variables x p, xq and xr respectively. Then d(vp, w j1) = d(vq , w j2) =
d(vr , w j3) = 1.

(b) The distances among the primary and secondary nodes associated with y j are
chosen as follows.

(i) d(a1
j , a2

j) = d(b1
j , b2

j) = d(c1
j , c2

j) = 1.

(ii) d(a1
j , w j1) = d(a1

j , w j2) = 1.

(iii) d(b1
j , w j2) = d(b1

j , w j3) = 1.

(iv) d(c1
j , w j1) = d(c1

j , w j3) = 1.

For each pair of nodes which are not covered by cases (a) or (b), the distance is set to
2. The constraints are chosen as follows.

(a) ML-constraints: For each j , 1 ≤ j ≤ n, there are the following ML-con-
straints: ML(w j1 , w j2}), ML(w j1 , w j3), ML(w j2 , w j3), ML(a1

j , a2
j), ML(b1

j , b2
j)

and ML(c1
j , c2

j).
(b) CL-constraints:

(i) For each pair of nodes vp and vq , there is a CL-constraint CL(vp, vq).
(ii) For each j , 1 ≤ j ≤ m, there are three CL-constraints, namely CL(a1

j , b1
j),

CL(a1
j , c1

j) and CL(b1
j , c1

j).
(c) ε-constraint: The value of ε is set to 1.

This completes the construction of the Fhc instance I ′. It can be verified that the
construction can be carried out in polynomial time. We now prove that the Fhc instance
I ′ has a solution if and only if the Opl instance I has a solution.

If part: Suppose the Opl instance I has a solution. Suppose this solution assigns the
value true to variables xi1 , xi2 , . . ., xir and the value false to the rest of the variables
in X . A solution to the Fhc instance I ′ is obtained as follows.

(a) Recall that V = {v1, v2, . . . , vn} and that {vi1 , vi2 , . . . , vir } represents the set
of nodes corresponding to the variables which were assigned the value true. For
each node v in V − {vi1, vi2 , . . . , vir }, create the singleton cluster {v}.

(b) For each node viq corresponding to variable xiq , which has been assigned the
value true (1 ≤ q ≤ r), we create the following clusters. Let y j1 , y j2 , . . ., y jp be
the clauses in which variable xiq occurs.

(i) Create one cluster containing the following nodes: node viq , the three
primary nodes corresponding to each clause y jl , 1 ≤ l ≤ p, and one pair
of secondary nodes corresponding to cluster y jl chosen as follows. Since
xiq satisfies clause y jl , one primary node corresponding to clause y jl has
viq as its ε-neighbor. By our construction, exactly one of the secondary
nodes corresponding to y jl , say a1

jl
, is an ε-neighbor of the other two

primary nodes corresponding to y jl . The cluster containing viq includes
a1

jl
and its twin node a2

jl
.

123

280 I. Davidson, S. S. Ravi

(ii) For each clause y jl , 1 ≤ l ≤ p, the cluster formed in (i) does not include
two secondary nodes and their twins. Each secondary node and its twin is
put in a separate cluster. (Thus, this step creates 2p additional clusters.)

We claim that the clusters created above satisfy all the constraints. To see this, we note
the following.

(a) ML-constraints are satisfied because of the following: the three primary nodes
corresponding to each clause are in the same cluster and each secondary node
and its twin are in the same cluster.

(b) CL-constraints are satisfied because of the following: each node corresponding
to a variable appears in a separate cluster and exactly one secondary node (along
with its twin) corresponding to a variable appears in the cluster containing the
three primary nodes corresponding to the same variable.

(c) ε-constraints are satisfied because of the following. (Note that singleton clusters
can be ignored here.)

(i) Consider each non-singleton cluster containing a node vi corresponding
to Boolean variable xi . Let y j be a clause in which xi appears. Node vi

serves as the ε-neighbor for one of the primary nodes corresponding to y j

in the cluster. One of the secondary nodes, corresponding to y j , say a1
j ,

serves as the ε-neighbor for the other two primary nodes corresponding
to y j as well as its twin node a2

j .
(ii) The other non-singleton clusters contain a secondary node and its twin.

These two nodes are ε-neighbors of each other.

Thus, we have a feasible clustering for the instance I ′.

Only if part: Suppose the Fhc instance I ′ has a solution. We can construct a solution
to the Opl instance I as follows. We begin with a proposition.

Proposition 8.1 Consider any clause y j . Recall that A j = {w j1, w j2 , w j3} denotes
the set of three primary nodes corresponding to y j . Also recall that V ={v1, v2, . . . , vn}.
In any feasible solution to I ′, the nodes in A j must be in the same cluster, and that
cluster must also contain exactly one node from V .

Proof of proposition: The three nodes in A j must be in the same cluster because of the
ML-constraints involving them. The cluster containing these three nodes may include
only one node from the set B j = {a1

j , b1
j , c1

j } because of the CL-constraints among
these nodes. Each node in B j has exactly two of the nodes in A j as its ε-neighbor.
Note also that the only ε-neighbors of each node in A j are two of the nodes in B j and
one of the nodes from the set V = {v1, v2, . . . , vn}. Thus, to satisfy the ε-constraint
for the remaining node in A j , the cluster containing the nodes in A j must also contain
at least one node from V . However, because of the CL-constraints between each pair
of nodes in V , the cluster containing the nodes in A j must have exactly one node from
V . This completes the proof of the claim. ��
Proposition 8.2 Consider the following truth assignment to the variables in the
instance I : Set variable xi to true if and only if node vi appears in a non-single-
ton cluster. This truth assignment sets exactly one literal in each clause y j to true.

123

Using instance-level constraints in agglomerative hierarchical clustering 281

Proof of proposition: From Proposition 8.1, we know that the cluster containing the
three primary nodes corresponding to y j contains exactly one node from the set V =
{v1, v2, . . . , vn}. Let that node be vi . Thus, vi is the ε-neighbor of one of the primary
nodes corresponding to y j . By our construction, this means that variable xi appears in
clause y j . Since xi is set to true, clause y j is satisfied. Also, note that the cluster con-
taining vi does not include any other node from V . Thus, the chosen truth assignment
satisfies exactly one of the literals in y j .

From Proposition 8.2, it follows that the instance I has a solution, and this completes
the proof of Theorem 3.1. ��

References

Bae E, Bailey J (2006) COALA: a novel approach for the extraction of an alternate clustering of high qual-
ity and high dissimilarity. In: Proceedings of the 6th IEEE international conference on data mining
(ICDM 2006), Hong Kong, Dec 2006, pp 53–62

Basu S, Banerjee A, Mooney R (2002) Semi-supervised clustering by seeding. In: Proceedings of the 19th
international conference on machine learning (ICML 2002), Sydney, Australia, Jul 2002, pp 27–34

Basu S, Bilenko M, Mooney RJ (2004) Active semi-supervision for pairwise constrained clustering. In:
Proceedings of the 4th SIAM international conference on data mining (SDM 2004), Lake Buena Vista,
FL, Apr 2004, pp 333–344

Basu S, Davidson I, Wagstaff K (2008) Advances in clustering with constraints: algorithms, theory and
practice. Chapman & Hall, CRC Press (to appear)

Cormen T, Leiserson CE, Rivest R, Stein C (2001) Introduction to algorithms. MIT Press, Cambridge
Davidson I, Ravi SS (2005a) Clustering with constraints: feasibility issues and the k-means algorithm. In:

Proceedings of the SIAM international conference on data mining (SDM 2005), Newport Beach, CA,
Apr 2005, pp 138–149

Davidson I, Ravi SS (2005b) Agglomerative hierarchical clustering with constraints: theoretical and empir-
ical results. In: Proceedings of the 15th european conference on principles and practice of knowledge
discovery in databases (PKDD 2005), Porto, Portugal, Oct 2005, pp 59–70

Davidson I, Wagstaff K, Basu S (2006) Measuring constraint-set utility for partitional clustering algorithms.
In: Proceedings of the 16th european conference on principles and practice of knowledge discovery
in databases (PKDD 2006), Berlin, Germany, Sept 2006, pp 115–126

Davidson I, Ravi SS (2006) Identifying and generating easy sets of constraints for clustering. In: Proceedings
of the 21st national conference on artificial intelligence (AAAI 2006), Boston, MA, Jul 2006

Davidson I, Ravi SS (2007a) The complexity of non-hierarchical clustering with instance and cluster level
constraints. Data Min Know Disc 14(1):25–61

Davidson I, Ravi SS (2007b) Intractability and clustering with constraints. In: Proceedings of the interna-
tional conference on machine learning (ICML 2007), Portland, OR, June 2007, pp 201–208

Davidson I, Ester M, Ravi SS (2007) Efficient incremental clustering with constraints. In: Proceedings of
the ACM conference of knowledge discovery and data mining (KDD 2007), San Jose, CA, Aug 2007,
pp 240–249

Dragomirescu L, Postelnicu T (2007) A natural agglomerative clustering method for biology. Biometrical
J 33(7):841–849

Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the international
conference on machine learning (ICML 2003), Washington, DC, Aug 2003, pp 147–153

Graham RL, Knuth DE, Patashnik O (1989) Concrete mathematics: a foundation for computer science.
Addison-Wesley, Reading

Klein D, Kamvar SD, Manning CD (2002) From instance-level constraints to space-level constraints: mak-
ing the most of prior knowledge in data clustering. In: Proceedings of the international conference on
machine learning (ICML 2002), Sydney, Australia, Jul 2002, pp 307–314

Mitzenmacher M, Upfal E (2005) Probability and computing: randomized algorithms and probabilistic
analysis. Cambridge University Press, New York

123

282 I. Davidson, S. S. Ravi

Mohanta P, Mukherjee D, Acton S (2002) Agglomerative clustering for image segmentation. In: Proceed-
ings of the international conference on pattern recognition (ICPR 2002), Qubec City, Canada, Aug
2002, pp 664–667

Nanni M (2005) Speeding-up hierarchical agglomerative clustering in presence of expensive metrics. In:
Proceedings of the 9th pacific asia conference on knowledge discovery and data mining (PAKDD
2005), Hanoi, Vietnam, May 2005, pp 378–387

Schaefer TJ (1978) The complexity of satisfiability problems. In: Proceedings of the 10th ACM international
symposium on theory of computing (STOC 1978), San Diego, CA, May 1978, pp 216–226

Wagstaff K, Cardie C (2000) Clustering with instance-level constraints. In: Proceedings of the 17th inter-
national conference on machine learning (ICML 2000), Stanford, CA, Jun–Jul 2000, pp 1103–1110

Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering with background
knowledge. In: Proceedings of the 18th international conference on machine learning (ICML 2001),
Williamstown, MA, Jun–Jul 2001, pp 577–584

Xing E, Ng A, Jordan M, Russell S (2002) Distance metric learning with application to clustering with
side-information. In: Advances in neural information processing systems (NIPS 2002), Dec 2002,
vol 15. Vancouver, Canada, pp 505–512

Zho Y, Karypis G (2005) Hierarchical clustering algorithms for document datasets. Data Min Know Disc
10(2):141–168

123

	Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results
	Abstract
	1 Introduction and motivation
	2 Previous work and contributions of this paper
	3 Challenges to hierarchical clustering with constraints
	3.1 Overview
	3.2 Feasibility problem: definitions and terminology
	3.3 Complexity results for the feasibility problem
	3.4 Irreducibility due to dead-ends

	4 Extending nearest-centroid algorithms to satisfy ML- and CL-constraints
	4.1 Overview
	4.2 Experimental results

	5 Using the -constraint to improve performance
	5.1 Best-case analysis for the -constraint
	5.2 Average-case analysis for using the -constraint
	5.3 Experimental results for the -constraint
	5.4 Common distance measures for which -constraint can be used

	6 Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

