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Abstract Automated statistical learning of graphical models from data has attained
a considerable degree of interest in the machine learning and related literature. Many
authors have discussed and/or demonstrated the need for consistent stochastic search
methods that would not be as prone to yield locally optimal model structures as simple
greedy methods. However, at the same time most of the stochastic search methods are
based on a standard Metropolis—Hastings theory that necessitates the use of relatively
simple random proposals and prevents the utilization of intelligent and efficient search
operators. Here we derive an algorithm for learning topologies of graphical models
from samples of a finite set of discrete variables by utilizing and further enhancing a
recently introduced theory for non-reversible parallel interacting Markov chain Monte
Carlo-style computation. In particular, we illustrate how the non-reversible approach
allows for novel type of creativity in the design of search operators. Also, the parallel
aspect of our method illustrates well the advantages of the adaptive nature of search
operators to avoid trapping states in the vicinity of locally optimal network topologies.

Keywords MCMC - Equivalence search - Learning graphical models

Responsible editor: Charu Aggarwal.

J. Corander (<)
Department of Mathematics, Abo Akademi University, 20500 Abo, Finland
e-mail: jukka.corander@abo.fi

M. Ekdahl
Department of Mathematics, Linkoping University, 581 83 Linkoping, Sweden

T. Koski
Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden

@ Springer



432 J. Corander et al.

1 Introduction

Statistical learning of graphical models from databases has been extensively discussed
both in the computer science and statistical literature (Chickering 2002a,b; Corander
2003; Cooper and Hershkovitz 1992; Jordan 1998; Janzura and Nielsen 2006; Lam and
Bacchus 1994; Madigan etal. 1996; Poli and Roverato 1998; Madigan and Raftery
1994; Riggelsen 2005; Wong etal. 2003; Sanguesa and Cortes 1997; Suzuki 1996,
2006; Giudici and Castelo 2003; Dellaportas and Forster 1999; Koivisto and Sood
2004; Jones etal. 2005; Wedelin 1996).

Generally, the vast number of existing works agree on the main challenges related
to such tasks, the first of which is the increase in the number of graphical model struc-
tures as a function of the number of nodes. The second main obstacle is considered
to be the equivalence of the statistical models determined by different graphical mod-
els. The size of the space of graphical models poses difficulties both with respect to
the computational complexity of the learning task, as well as the reliability to reach
representative model structures.

Certain types of stochastic search methods, such as Markov chain Monte Carlo
(MCMC) or simulated annealing can be proven to be consistent with respect to the
identification of a structure maximizing posterior probability. However, a standard
MCMC-based search method is built upon the theory of reversible Markov chains,
which requires closed form expressions for the proposal probabilities between graph-
ical structures. This often confines the search operators to be extremely simple and
naive, and consequently, such operators may easily fail to traverse efficiently towards
optimal structures.

In the current work we derive an algorithm for learning topologies of graphical
models from samples of a finite set of discrete variables by utilizing and further enhanc-
ing a recently introduced theory for non-reversible parallel interacting Markov chain
Monte Carlo-style computation (Corander etal. 2006). In particular, we illustrate how
the non-reversible approach allows for novel type of creativity in the design of search
operators, and show the advantages of the adaptive nature of search operators resulting
from the parallel learning by analyzing several sets of data. The article is organized
as follows. In the next section we provide the basic notation concerning graphical
models and Bayesian learning, whereafter the stochastic search algorithm is derived,
along with a statistical consistency result. Illustrations of the non-reversible parallel
learning approach are given in Sect. 5. The final section contains a discussion on the
possibilities of further developments and the technical details related to characteristics
of graphical models, Bayesian model scoring and estimator consistency are provided
in Appendix.

2 Graphical models and Bayesian learning

Let the set of nodes V = {1, ..., d} index the random variables X, ..., X4. Each
variable X; assume values in the discrete and finite alphabet &;. The set of all possible
configurations of X, ..., X4 is denoted by X = xle A;. Let the generic element of
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X be denoted by x. The symbol X designates a training set of data, or, samples of the
variables, i.e., X = {x(l)}lrzl, x® e x, where there are no missing values.

A graph G is a pair (V, E), where E C V x V\{(i,i) € V x V}is the set of
ordered pairs of nodes denoted as edges. If both (i, j) € E and (j, i) € E then there
is an undirected edge between i and j written as i — j. In the case that (i, j) € E but
(j,i) ¢ E there is a directed edge between i and j written as i — j. Here a path is
a sequence vy, . .., v, of different nodes such that v; # v; and (v;—1, v;) € E for all
i,j=1,...,n. Acycleis apath with the only exception that vy = v,,.. Let a directed
cycle be a cycle which has at least one directed edge.

A partially directed acyclic graph (PDAG) is a graph G that does not contain any
directed cycles. A directed acyclic graph (DAG) is a PDAG with only directed edges
and an undirected graph (UG) is a graph with only undirected edges.

Since {DAG} C {PDAG} and {UG} C {PDAG} it is sufficient to state most results
with respect to PDAGs. Here the probabilistic models that PDAGs (and DAGs as
well as UGs) represent are characterized by a set of Markov properties called Laurit-
zen, Wermuth and Frydenberg (LWF) Markov properties. Further details of graphical
models are provided in Appendix.

Bayesian learning of graphical models within any particular class S of interest is
generally formulated in terms of the posterior distribution over the models. By letting
P (X'| G) denote the marginal likelihood of the data conditional on the graph G, and
P (G) the prior probability of the graph, the corresponding posterior probability is
obtained from the Bayes’ theorem as

PX|6G)P(G)
26es PXIG)P(G)

P (GIX) = (1)

The exact derivation of the marginal likelihood under a range of further assumptions
is shown in Appendix. A natural object of interest in Bayesian learning is the structure
G°P' ¢ S associated with the highest posterior probability, i.e.,

G € arg max P (G|X). )

In the next section we show how a statistically consistent estimate of the posterior
optimal structure may be obtained using stochastic search algorithms.

3 Bayesian learning with interacting stochastic search processes

In general, even for a moderately large number of nodes d, it is not possible in practice
to make an exhaustive search through the space of considered models S to find the
optimal model G°" and to characterize model uncertainty in terms of the posterior
probabilities of the most likely topologies. Instead, a structure G, estimating G°?' can
be computed using the estimator

G, € arg max P G |X),
1 gGest (GIX)
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where §; C S is the part of the model space that has been explored by some (search)
process, like MCMC, until time . MCMC can be interpreted as a stochastic search
within S that may in arelatively few steps (compared to the size of S) tend to a structure
resembling (one of) G°P'. However, as we do not wish to restrict the learning only to
approximating the posterior mode, the posterior distribution will also be approximated
in the sequel (Theorem 1 (5)). Markov chain-based methods are generally described
in (Robert and Casella 2004), as well as in (Isaacson and Madsen 1976).

An MCMC method known as Metropolis—Hastings (M-H) algorithm is compactly
defined in the current context by its acceptance probability

P (X|G*) P (G* G|G*
(X|G*) P (G*) q(G]| ))’ )

v(G*|G):min 1, -
P (X|G) P (G) q(G™|G)

where ¢(G*|G) is a proposal distribution generating candidate topologies given any
particular state of the search process. In other words, we draw a candidate G* of a new
model structure from this distribution conditionally on the current structure G, and
accept this as the next state of the process with probability v (G*|G). This algorithm
can encounter practical problems in a finite time, such as:

1. q(G|G*)/q(G*|G) contributes to a large portion of Eq.3 when the proposal dis-
tribution is not symmetric, and makes the transition or acceptance probability
practically independent of X.

2. The process is stuck in the vicinity of local maximum of the posterior.

These problems were addressed, e.g., in (Geyer and Thompson 1995; Corander
etal. 2006), through the introduction of several parallel chains, that communicate at
random times that are independent of the process in the search space.

To utilize this in the current context, we introduce first a sequence {«;}, the ele-
ments of which are the probabilities of success in a corresponding sequence of inde-
pendent Bernoulli variables, the successes of which determine the times where the
parallel chains communicate by drawing a new start value from a pooled posterior
distribution.

Definition 1 {o;,r = 1,2, ...} is a strictly decreasing sequence of positive numbers
such that 1 > «; > a1 and lim;_, oo ¢y — 0.

Algorithm I introduces a Bernoulli process of independent random variables Z;
such that, if Z; = 1 (which happens with probability P(Z; = 1) = «;), then the
chains interact by choosing a new structure as in Algorithm2. We call Z, = 1 a
mixing event.

Intuitively it is not as likely that all parallel chains should get simultaneously stuck
at domains of low posterior probability, and those who will, can make leaps to bet-
ter areas of the model space through communicating with the other chains at mixing
events.
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Algorithm 1 ParalelllnteractingProcess({Go; }T:o’ n)

1: fort = 1ton do

2 Z[ ~ Be(a;)

3. if Z; = 0 then

4 {G(,H)j};f’:l <« ParallelProcesses({G,j}’j’?:])

5:  else

6 {Givn)) }’J'.':l <« InteractingProcesses({G/ }'j”:l)
7:  endif

8: end for

Algorithm 2 InteractingProcess({G; }7: D

1: for j = 1 tom do
P(Gj)P(X|Gj)
2: P~ e
Gurnj ST PG PXIG,))
3: end for

Algorithm 3 ParallelProcess({G; };”: D

1: for j = 1 tom do

2 Gryy ~ 016Gy

3 p~UO,1)

4 if p < vpar (GFy, | Gyj) then
5: Gy < Gyyy
6: else

7 Gty < Gyj
8: endif

9: end for

The acceptance probabilities are now introduced like in simulated annealing algo-
rithms (van Laarhoven and Aarts 1987),

vpar (G* | G) = min(l, m) “)

P (X|G)

Here the prior is uniform, P(G) = 1/|S], and hence, it cancels in the M-H ratio. We
note that there is in general no exact expression for |S|, when S = {LPDAG}.

The removal of the explicit dependence on the proposal distribution g (-|-) in (4)
does not imply that a proposal mechanism need not be specified. The mechanism
described in the Algorithm4 is used here, and it is analogous to that used in a clus-
tering context in (Corander etal. 2006), except for the last operator which utilizes the
information in the data to propose intelligent splits in contrast to the random split
operator in (Corander etal. 2006). If the nonempty sets A, B, C C V form a parti-
tion of V, C separates A from B, and C is a complete subset of V, then (A, B, C)
is a proper decomposition of V. An undirected graph G is decomposable, if it is
complete or it possesses a proper decomposition (A, B, C), such that G 4yc and
G puc are decomposable. It is worthwhile to notice, that the first two simple random
search operators in the the Algorithm 4 could be computationally more efficient by the
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strategy exploited in (Giudici and Green 1999), which ensures that the proposal graphs
are always decomposable.

Algorithm 4 Search operators

1: Delete a randomly chosen edge in the UG. If the operator leads to a non-decomposable UG, the graph
is omitted and the operator is applied again to the original graph.

2: Add an edge between a randomly chosen pair of nodes lacking an edge in the UG. If the operator leads
to a non-decomposable UG, the graph is omitted and the operator is applied again to the original graph.

3: Choose randomly two cliques of the UG and add edges between all pairs of nodes lacking edges.

4: 1. Choose a clique ¢ with [c¢| > 1 at random.
2. Calculate the ML-estimate of the conditional KL-divergences from the joint distribution to the model

arising under the conditional independence of i and j given c\{i, j} according to

plxe)

[ pxe\(i) PXe\(j}) ]
PG\, jy)

(KL)j j =nY_ p(xc)log

Xe

c

for each pair {i, j} € (2

). Denote by
m € Argmax K L{i, j}
{i.J}
a maximum KL-divergence. Define a dissimilarity matrix D with elements D; ; for the |c| nodes as
mlje|x|c| — (KL)j,j-
(Thus, when two nodes are conditionally independent, their distance is maximum in D.) Let u be
uniformly distributed in the interval [2, ..., |c|]. A candidate for the split of ¢ into u cliques with

no edges between them is now obtained by cutting a complete linkage dendrogram 4 based on D at
level d, such that the tree is split into u# separate components.

Computation of the KL-divergences exploited in the split proposal may be straight-
forwardly done using either maximum likelihood or maximum a posteriori estimates
of the clique probabilities. With the total number of samples r, the maximum like-
lihood estimates for any subset a of nodes are defined as p(x,) = ng,x,/r, and the
corresponding posterior estimates as p(x,) = (ng.x, + *ax,)/(r + queé\’}, Aaxy)s
where A, x, is ahyperparameter in a Dirichlet prior distribution (for details, see Appen-
dix). A particular advantage of the Bayesian approach in this context is that it avoids
the numerical instability of the KL-divergence occurring when the observed empiri-
cal count ng x, is zero for some outcome x,. The Bayesian estimates can indeed be
interpreted as a smoothed version of the empirical relative counts.

The illustration of the non-reversible M-H algorithm in (Corander etal. 2006) uti-
lizes a search operator that splits randomly clusters into two parts, i.e., in the current
context an analogous operator would remove all edges between two parts of the original
clique. However, such an operator is extremely inefficient in finding sensible splits,
when the clique size increases. Here we demonstrate in the context of graph learn-
ing how the non-reversible M-H algorithm enables one to invoke intelligent search
operators without having to calculate the proposal probabilities.
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The complete linkage tree attempts to allocate together nodes which have high
values of dependence according to the KL-divergence. The search operator has some
fixed proposal probability distribution, designated by Q in Algorithm 3, over all pos-
sible proposals in any given state. However, the explicit calculation of the proposal
probabilities is in general complicated and would not lead to a practically implement-
able algorithm. It is worthwhile to notice also how a random join/split operator would
behave in an ordinary M-H algorithm, c.f. (Corander etal. 2006). Also, this approach
illustrates the possibility to embed rapid standard computational tools of data analysis
into an MCMC-style computation.

Let G* U G denote the union of any two graphs on the same set of nodes, such
that the resulting graph contains all the edges of both graphs. The following algorithm
samples for each chain two graph structures from the pooled posterior distribution,
merges them and replaces eventually the next chain state after the mixing event with the
merged graph, if the latter is associated with a sufficiently high posterior probability
compared to the original state.

Algorithm 5 UnionProcess({G (1) }’;‘:1)

1: for j = 1 tom do
20 Gy~ PG ) PXIG (1))
C T S PGy )P XIG 1))
3 Goi~ P(G4+1))) PXIG(141)))
' 2j 21 PG 1)) PXIGpy1) )
4: p~U(Q,1)
5: Gj* <—G]jUszP(G PG
. . J* J*
6 W p < 561 PXIG 1)) PG PXIG ) then
7o Guynj < Gjx
8: else
9 Guynj < Gt
10:  end if
11: end for

The above union operator, which is used at the mixing times in the algorithm, pro-
vides the possibility of merging plausible topologies together. Such a global operator
can improve the convergence in particular for large graphs, where each of the distinct
search processes may leave a distinct part of the graph structure unexplored. The union
of the edges of the separate graphs can then provide a way of making larger leaps in
the model space.

4 Consistent estimation of the maximum posterior graphs through parallel
interacting chains

The construction introduced in the previous section turns out to guarantee that a set
of communicating parallel processes moving with the acceptance probabilities in (4)
eventually visits all states of S, when the search operators results in an irreducible Mar-
kov chain with respect to Algorithm 3 (although in general the asymptotic distribution
will not be P (G|X)).
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Theorem 1 Let S; € S be the part of the space explored at time t by the search
process defined by the acceptance probability in (4), the Algorithms 1-5, and search
operators that yield an irreducible Markov chain with respect to Algorithm 3.

Let G be an arbitrary structure in S. Let

Then
B (GIX)BP(GIX), GeS
ast — oQ.

The almost sure convergence (a—'s>') in the statement above is with respect to the
probability measure on S (and some o -field) determined by the search algorithm. The
proof of this theorem will be given in Appendix section. The proof improves from
(Corander etal. 2006) by removing the necessity of requiring aperiodicity. Theorem 1
(5) has the following straightforward corollary.

Corollary 1
max P (G|X) % max P (G|X) (6)
GeS; GeS

ast — oQ.

The above theorem ensures that computations in Eqs. 5 and 6 are consistent in the
sense of asymptotically computing the exact posterior probability distribution P (G|X)
over S, if based on the algorithms introduced in the previous section, which define
an irreducible Markov chain. Consistency in this sense is different from the statistical
consistency proved in (Suzuki 2006), where the ‘true graph structure’ (in the sense
defined in Suzuki 2006) is found when the number of samples, », grows to infinity.

5 Performance on real and simulated data sets for S = {UG}

To illustrate our model search framework in the special case when S = {UG}, we
consider two real data sets investigated earlier in the graphical modeling literature, as
well as two simulated data sets reflecting a more challenging graph topology. The first
real data set comprises six binary risk factors for coronary heart disease, for which
1841 cases are presented in Table 1, and the corresponding variable labels are listed in
Table?2. The second real data set (economic activity) contains 8 binary variables and
665 observations, presented in Tables4 and 5, respectively.

Bothreal data sets are available in (Whittaker 1990), where the original data sources
are cited as well. In particular, the first data set has been extensively investigated in
the graphical modeling literature. Two types of stochastic searches were performed
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Table 1 Prognostic factors in coronary heart disease

F E D C B Yes No
A No Yes No Yes
Neg <3 <140 No 44 40 112 67
Yes 129 145 12 23
>140 No 35 12 80 33
Yes 109 67 7 9
>3 <140 No 23 32 70 66
Yes 50 80 7 13
>140 No 24 25 73 57
Yes 51 63 7 16
Pos <3 <140 No 5 7 21 9
Yes 9 17 1 4
>140 No 4 3 11 8
Yes 14 17 5 2
>3 <140 No 7 3 14 14
Yes 9 16 2 3
>140 No 4 0 13 11
Yes 5 14 4 4

Table 2 Explanations of the

labels in Table 1 Label  Meaning Range
A Smoking No, yes
B Strenuous mental work No, yes
C Strenuous physical work No, yes
D Systolic blood pressure <140, >140
E Ratio of B and « lipoproteins <3,>3
F Family anamnesis of coronary heart disease ~ No, yes

for both real data sets, one using the Algorithm4 as such, and the other where a mod-
ification was made to keep the search processes independent from each other. For the
simulated data sets we only considered the Algorithm4, as the examples with real data
already illustrate the poor performance of the independent search processes.

5.1 Coronary data set

We consider the search on the data set in Table 1 first. Figure 1a and b show the behav-
ior of the logarithm of the marginal data distribution over the first 15 iterations of 1000
parallel search processes with and without mixing, respectively.

The difference between these two strategies is clearly visible in this early phase, as
a mixing event takes place for the dependent processes at iteration 4, which absorbs
the processes in the neighborhood of the global posterior mode. On the contrary,
many of the independent processes continue outside the mode vicinity and are grad-
ually absorbed towards this area in the equivalence class space. For this data even all
independent processes are able to reach the mode neighborhood fairly rapidly. Both
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Fig. 1 (a) Behavior of log P (X|G) for 1000 dependent search processes for the coronary dataset. (b)
Behavior of log P (X|G) for 1000 independent search processes for the coronary dataset
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approaches yield the same optimal equivalence class, having the estimated posterior
probability .32 and the cliques

{F},{B,C},{A,C,E},{A, D, E}.

Our method enables also consistent estimation of the marginal posterior probabilities
of any edges being present in the graphs, that is we estimate the marginal probabilities
as

2 (G=(V.E)e(UG)(GeS, ecE) P(GIX)

P(e|X) =
2 (Geluacyces,) P(GIX)

These are illustrated in Table3 where the probability of adjacency is given for all
pairs of the considered variables. When the marginal posterior probabilities estimated
by the two different searches were compared, the largest absolute difference was of
magnitude ~.0001.

5.2 Women’s economic activity

As the coronary heart disease data contains only a very limited number of variables,
even the independent search processes perform satisfactorily with respect to the con-
vergence towards the optimum. However, the behavior of the search algorithms is
already totally different for the second data set with the 8 variables described in
Tables4 and 5.

Figure 2a and b show the behavior of the logarithm of the marginal data distribution
over the first 500 iterations of 100 parallel search processes with and without mixing,
respectively.

A majority of the independent processes (Fig. 2b) has not reached the vicinity of the
posterior mode by 500 iterations, whereas all the dependent processes have reached
this by the mixing events around iterations 5, 60 and 120. Figure 3 shows the traces
of the log P(X|G) for the dependent processes in a larger detail over the first 100
iterations.

Even if the both approaches to search reach the same optimum, this example illus-
trates well the benefits of allowing the processes to exchange information about their
states at mixing events. This aspect becomes clearly increasingly important with an

Table 3 The estimated marginal posterior probabilities of edges for the coronary heart disease data

A B C D E F
A - 0.1630 0.9999 0.9655 0.9997 0.0487
B 0.1630 - 1.0000 0.0002 0.1864 0.3003
C 0.9999 1.0000 - 0.0010 0.9313 0.0164
D 0.9655 0.0002 0.0010 - 0.9839 0.0553
E 0.9997 0.1864 0.9313 0.9839 - 0.1273
F 0.0487 0.3003 0.0164 0.0553 0.1273 -
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Table 4 Women’s economic activity: an eight-way table

5 0 2 1 5 1 0 0 4 1 0 0 6 0 2 0
8 0 11 0 13 0 ] 3 0 1 0 26 0 1 0
5 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0
4 0 8 2 6 0 1 0 1 0 1 0 0 0 1 0
17 10 1 1 16 7 0 0 0 2 0o 0 10 6 0 0
1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0
4 7 3 1 1 1 2 0 1 0 0 0 1 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
18 3 2 0 23 4 0o 0 22 2 0o 0 357 3 0 0
5 1 0 0 11 0 1 0 11 0 0o 0 29 2 1 1
3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0o 0 0 0 0 0
41 25 0 1 37 26 0 0 15 10 0 0 43 22 0 0
0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0
2 4 0 0 2 1 0 0 0 1 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E:E: iSn ,ll,:; ﬁ’i?dnom of the Label Meaning Range
A Wife economically active No, yes
B Age of wife > 38 No, yes
C Husband unemployed No, yes
D Child < 4 No, yes
E Wife’s education, O level+ No, yes
F Husband’s education, O level+ No, yes
G Asian origin No, yes
H Other household member working No, yes

increasing number of nodes in the graph. The posterior mode is associated with the
estimated probability .57 and the cliques of the corresponding graph are:

{E,F},{B,D,H},{B,D,E},{A, D, E},
{A,D,G},{A,C,E},{A,C,G}, {C, E, G}

As for the earlier data set, the marginal posterior probabilities of adjacencies are given
in Table 6. The values given this table are estimated using the interacting processes,
and when the estimates yielded by the two different searches were compared, the
largest absolute difference was of magnitude .0028, indicating a slight increase from
the difference obtained for the smaller variable set.

5.3 Simulated data sets

In order to investigate the performance of the parallel stochastic search method in a
more challenging scenario, we simulated data from two Bayesian networks. First net-
work consists of d = 20 binary nodes with the following dependence structure. We use
~Unif(0, 1) in the sequel to denote that a random variable has the uniform distribution
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Fig. 2 (a) Behavior of log P (X|G) for 100 dependent search processes for the economic activity dataset.
(b) Behavior of log P (X|G) for 100 independent search processes for the economic activity dataset
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Fig. 3 Behavior of log P (X|G) over first 100 iterations for 100 dependent search processes for the
economic activity dataset

Table 6 The estimated marginal posterior probabilities of edges for the economic activity data

A B C D E F G H

A - 0.1097 0.9999 1.0000 0.9432 0.0102 1.0000 0.0006
B 0.1097 - 0.0539 1.0000 0.9988 0.0094 0.1761 1.0000
C 0.9999 0.0539 - 0.0008 0.9847 0.0704 0.8731 0.0000
D 1.0000 1.0000 0.0008 - 0.8900 0.0258 0.9768 0.9157
E 0.9432 0.9988 0.9847 0.8900 - 1.0000 0.9907 0.0049
F 0.0102 0.0094 0.0704 0.0258 1.0000 0.9990 0.0001
G

H

1.0000 0.1761 0.8731 0.9768 0.9907 0.9990 - 0.0008
0.0006 1.0000 0.0000 0.9157 0.0049 0.0001 0.0008 -

on the interval (0, 1). Let the probability p(x; = 1) ~Unif(0, 1) and the conditional
probability p(x; = 1|x;—1) ~Unif(0, 1), independently for x;_; = 0 and x;_; = 1,
fori =2, ...,5. Arealization of such a process creates a first-order Markov structure
for a set of 5 nodes. Further, let the probabilities p(x; = 1), p(xj41 = 1|x;), p(xit2 =
1|xi, xi+1) all be independently distributed as Unif(0, 1), for x;, x;11, xi+2 € {0, 1}.
A realization of this process corresponds to a complete graph for three nodes as an
equivalence class. A network of 20 nodes is then comprised of three independent
replicates of such three node systems, combined with two independent replications
of the first-order Markov structure over 5 nodes, and an additional a single isolated
node associated with the probability p(x; = 1) ~Unif(0, 1). For a realization of the
network parameters, r = 300 observations were generated from the corresponding
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Fig. 4 Behavior of log P (X|G) for 100 mixing search processes for the 20 node network learning

distribution and provided as the data X = {x(l)}lr=1 for the stochastic learning
algorithm.

We used 100 parallel search processes to learn the underlying graph topology given
the data X. In Fig.4, a realization of the search process is shown. The considerably
higher statistical model uncertainty compared to the previous examples is immediately
clear from behavior of the processes, as a large degree of variation is maintained in
the process after it reaches a plateau. The usefulness of the process mixing is also well
visible in the early phase of the search, where a majority of the processes are able to
make huge leaps in the model space at the interaction event.

The relatively small size of the training data (» = 300) used here induces an uncer-
tainty about the model structure, which should not be ignored by focusing solely on
the estimated posterior optimal graph. The uncertainty about the graph topology can
be represented by using the marginal posterior probabilities of the individual edges,
which are consistently estimated with the aid of the results presented in Sect. 4. In the
current example the generating graph topology is known, so it is instructive to con-
nect the marginal posterior edge probabilities to the degrees of true and false findings.
There are 17 edges in total in the generating model structure, out of which 13 (76%)
are correctly identified when a threshold equal to 0.75 is used for a marginal edge

2
absent edges, three were suggested to be included in the graph, when a threshold
0.10 was used for the marginal edge probabilities. Thus, a vast majority of the truly
absent edges (91%) had very low marginal posterior probabilities. Finally, to investi-
gate whether it is likely that the search processes have converged to a region relatively
distant from the global optimum, we calculated the ratio of the posterior probabilities

probability to claim its presence in the graph. Correspondingly, out of the (2()) —17
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for the estimated optimal model Gt and the generating model, respectively. This ratio
equals approximately 117, which means that the randomness in the realized data ren-
ders the generating graph topology rather inferior compared to the estimated optimal
structure. However, structural learning using the posterior nevertheless mimics the
generating graph with relatively high fidelity, as can be seen from the reported results.

The second network consists of 50 binary nodes associated with a dependence
structure extended from the first simulation scenario. In this network, six indepen-
dent realizations of the first-order Markov structure over five nodes are combined.
Additionally, we generated four similar replicated systems associated with a complete
graph for three nodes. Finally, eight marginally independent nodes were added to the
graph and the model probabilities were then generated analogously to the network of
20 nodes. Given these probabilities, 400 observations were simulated to be used as a
training data.

Due to the increased statistical uncertainty in the learning of the network with
50 nodes, it is expected that posterior probabilities will eventually support a much
sparser graph topology than the true generating structure. As in the previous example,
we used 100 parallel search processes for the learning. In Fig.5, a realization of the
search process is shown. To investigate the accuracy of the topology learning, we use
the same summaries as for the 20 node network. There are 36 edges in total in the
generating model structure, out of which 15 (42%) are correctly identified when a
threshold equal to 0.75 is used for a marginal edge probability to claim its presence in

the graph. Correspondingly, out of the (50

> ) — 36 absent edges, seven were suggested
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Fig. 5 Behavior of log P (X]|G) for 100 mixing search processes for the 50 node network learning
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to be included in the graph, when a threshold 0.10 was used for the marginal edge
probabilities. Thus, 99.4% of the truly absent edges had very low marginal posterior
probabilities. Finally, we calculated again the ratio of the posterior probabilities for the
estimated optimal model G, and the generating model, respectively. This ratio equals
approximately 4.3163 - 10'2, which, together with the proportion of false positive and
true positive edges, illustrates the Occam’s razor feature of the Bayesian topology
learning, as the size of the training data is very small compared to the putative model
complexity.

6 Discussion

MCMC has been widely considered as the tool of choice for consistent Bayesian
model learning. However, albeit its satisfactory theoretical underpinnings, practical
experience has clearly shown that some main challenges still remain to be solved for
many problems. Two primary challenges are the convergence to local modes of the
posterior and the limitations to relatively simple symmetric search operators for which
the proposal probabilities needed in the Metropolis—Hastings algorithm are explicitly
calculable.

Our present work illustrates in the context of graphical model learning how solu-
tions to these two obstacles may be obtained using the non-reversible Markov chain
theory in combination with a parallel search strategy. In particular, this offers consid-
erable freedom in the design of the search operators, which was here concretized in
terms of a rapid standard tool for data clustering (the complete linkage algorithm).
However, in a general model learning context, many fast heuristic data analysis tools,
such as principal and independent component analysis could be incorporated to guide
the search operators in an intelligent manner. Obviously, the parallel architecture of
the learning algorithm introduced here has a relatively high degree of computational
complexity and is also memory intensive for large networks. An efficiently optimized
implementation would still enable the use of such an approach in a single CPU environ-
ment for rather generic learning applications. We conclude by noting that assessing the
convergence of the MCMC computation in practice is still an open issue as well. We
aim to investigate this in the future to define systems that could assess the convergence
semi-automatically.

Acknowledgements The work of M.E. and T.K. was partially supported by Swedish Research Council,
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Appendix
Characteristics of graphical models

Recall that the set of nodes V = {1, ..., d} index the random variables X1, ..., Xy .
For a set A C V let the parents of A be defined as pa(A) = {ieV|(, j)eE,
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(j,i) ¢ E,j € A,i & A}. The boundary of aset A C V is bd(A) = pa(A) U {i €
VI, j), (j,i) € E,j € A,i ¢ A}. The smallest ancestral set is the smallest set
An(A) such that A C An(A) and for all i € An(A), bd(i) C An(A). A trail
is a sequence v, ..., v, of different nodes such that v; # v;, (v;—1, v;) or/and
(vi,vi—1) € Eforalli,j = 1,...,n. For A, B,C C V the subset C separates
A, B if for each v; € A, v; € B any trail from v; to v; includes a node in C. Let a
subgraph G 4 of a graph G be the graph (A, EN (A x A))forAC V.

If there is a path from node v to node v,, and a path from vj, to vy then vy and v, con-
nect. The chain components T (G) of a graph is the partition induced by the connected
nodes in the graph G = (V, E), where E C E is the set of undirected edgesin E. Let
ch(i) ={j € V|(i, j) € E, (j,i) ¢ E} denote the children of a node i. We denote by
G" the moral graph obtained by adding undirected edges between all directed edges
that have children in the same chain component and then undirecting the graph (making
directed edges undirected). If for all A C &; P(X; € AlX,, X;) = P(X; € AlX,),
then X is conditionally independent of X, given X, which will be denoted asi L y|z
and analogously for sets B, C, S C V as B L C|S. The main properties of condi-
tional independence are found in (Dawid 1979). The descendants of anodei € V is
de(i)={j € V|j € V, there is a path from i to j, there are no paths from j to i }. The
non-descendants are denoted by nd(i) = V\(de(i) U i).

Definition 2 LWF Markov properties P, L, G relative to a (DAG, UG, PDAG) are
defined as

1. the pairwise Markov property P, if for any pair (¢, j) of nodes (i, j), (j,i) € E
with j € nd(i), i L jind()\{i, j}.

2. the local Markov property L, for any i € V, i Lnd(i)\bd(i)|bd(i).

3. the global Markov property G, if for any triple of disjoint subsets (A, B, S C V)
such that § separates A from B in (G Anaupus))™> A L BIS.

There are alternative Markov properties (AMP) for PDAGs, neither AMP nor
LWF is more expressive than the other (see Fig.12 in Andersson etal. 2001, and
Theorem 4.2 in Andersson etal. 1996). Variations include especially the represen-
tation of a unique graph in each equivalence class, an algorithm for finding such is
presented in (Roverato and Studeny 2006). One algorithmic problem with AMP is the
lack of factorization beyond chain components, see (Andersson etal. 2001).

The next definition of a complex is due to (Studeny 1998). This is the mini-
mal complex in (Frydenberg 1990). A complex in a graph is a sequence of nodes
Vi, ..., U, k = 3suchthatvy — vy, v; —vjpy fori =2,...,k—2,v4_1 < v and
there are no other edges (v;, v;) € E forall 0 < i, j <k.

The following theorem is proved in (Frydenberg 1990) and more specially in (Verma
and Pearl 1990), see also (Andersson etal. 1997).

Theorem 2 Two PDAGs have the same (LWF) Markov properties iff they have the
same undirected graph and the same complexes.

A graph G = (V, E) is larger than the graph G = v, E) if ECE.

Theorem 3 (Frydenberg 1990) For any PDAG G there exists a unique PDAG G =
(V,E) with the same Markov properties as G such that G is larger than any other
graph G= (V E ) that has the same Markov properties as G.
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Let an LPDAG be this largest PDAG. In (Volf and Studeny 1999), which uses the
chain graph notation instead of PDAG, an LPDAG is called a LCG. Those LPDAGs
that represent the same Markov properties as an equivalence class of DAGs have been
referred to as patterns (Spirtes etal. 1993), essential graphs (Andersson etal. 1997)
and CPDAGs (Chickering 1995).

Let || denote the cardinality of a class of graphs. Then |[{CPDAG}| < |{DAG}| <
[{PDAG}|. Furthermore, |{UG}| < |{CPDAG}| and we have that [{UG}| < |{LPDAG}],
making UG a good candidate for practical implementation. Note however that it is
possible to represent a set of Markov properties in a PDAG that cannot be represented
in a DAG or UG, such as 1 — 2 —3 <« 4. For small d the known number of LPDAGs
that cannot be represented by UGs is 0 for d = 2,3 (Volf and Studeny 1999). For
d = 4,5 the percentage of LPDAGS that cannot be represented as UGs is 6 and 22.

In (Chickering 2002b) a search space is said to have the following components:

1. aset of states,
2. ascheme of representation of states.

A straightforward example of a state is a directed acyclic graph (DAG). The generic
state space is denoted as S, G € S.

The presence of equivalent DAGs suggests the use of search space S, the states
of which are equivalence classes of DAGs. That is, classes of DAGs that all have the
same Markov properties according to Definition2. Then the size of a search space,
where the states are equivalence classes, is smaller than the space of all DAGs for
d < 10 (Gillispie and Perlman 2001). An approximate investigation for d < 20 can
be found in (Pefia 2007).

Bayesian model scoring

Here we will introduce factorizations of priors and and the corresponding likelihoods
under graphical models, to derive concrete forms for the marginal likelihood needed
in Bayesian learning.

A graph G = (V, E) is complete if for all i, j € V either (i, j) € E or (j,i) € E.
The closure is cl(A) = bd(A) U A.

P (x|G) is the probability of x or observing X1, ..., Xy with the value x condi-
tioned by the structure of the PDAG G. When no risk of confusion is present, this
will be written as P(x). For a subset A C V, the corresponding random variable is
XA = (Xiiea.

Theorem 4 (Frydenberg 1990) A probability distribution on a discrete and finite sam-
ple space with strictly positive density P satisfies P (see Definition2) over a PDAG G
if and only if it factorizes as

Pxy= ] Pxclxbacm), )
€7 (G)

where each factor P (xt |xbd(r)) further factorizes along the undirected closure graph
G" ..
cl(t)
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As noted by (Andersson etal. 1997), the factors in (7) P (x, |xbd(,)) satisfy also
P on G, i.e., the graph induced by the chain component 7. Hence, as observed by
(Andersson etal. 1997), the so-called hyper-Dirichlet distributions can be used as pri-
ors. The properties of hyper Markov priors on probability distributions satisfying the
LWF Markov properties over graphs are given in (Dawid and Lauritzen 1993).

A clique is a complete subgraph G',, such that there exists no (other) complete
subgraph G';,, A C A’ C V such that G # G'. A hyper-Dirichlet density is defined
on cliques of an undirected graph, as pioneered by (Sundberg 1975).

Definition 3 For given real positive numbers Ao = {A¢ x.}x.cx, let D(A¢) denote the
hyper-Dirichlet distribution for 6, defined by the density

' A
7 Belre) = 0 T ™! @®)

Yp xceXe

on the set {ch ZMEXC Ocx,=1,6cx. > O}, where I'(x) is the Euler gamma function,
and

=D rexovp= ] T (ex)- ©)

x.€X, x.€X,

Let G be a PDAG, and let us set

,
PX16.6) = [ 1P (¥ xhucr)

€7 (G) =1

by (7), which is formally rewritten to include the parameters.
Next note that in (7) the probabilities P (x, |6;, xbd(r)) satisfy the LWF Markov
property P on the undirected closure graph G, (1) Recall that a probability P (x]6) > 0

satisfying the property P on an undirected graph factorizes as (see for example Cowell
etal. 1999)

HCEC QC,X(‘
HSES essxs

where C C {A|A C V}is the set of cliques and S C {A|A C V} is the multiset
(including repetitions of elements) of separators (for two cliques C; and C; the sep-

arator S = C; N C}), respectively. Thus [];_, P (xlrwr, xéd(r)) is a function of a
product of expressions of the following form

,
[Toh =[] o,
=1

x.€X,

P(x|0) =

r

where n x, is the number of times the configuration x. occurs in X, = {xgl)}
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On any clique ¢ in G’C’}(r) we introduce the integration with respect to D(A. ;) as
follows,

[T 6esicm @cline) db.

x.€X,

/{90 Zxchc Oc xe = 1,0 x, >0}
By standard properties of the Dirichlet integral one gets from (8) to (9) that

T (%) Bl T (nex, + rex.)

P (Xe) = T(r+A) . r ()»c,x(;)

) (10)
c€Xe

where

r+A= Z (”c,xc + )\c,xc) :

x.eX,

The distribution in (10) is of the same form as the likelihood function for structures
pioneered by (Cooper and Hershkovitz 1992).

Hence, if C(7) and S(7) are the set of cliques and separators in the undirected graph
G

ﬁp(xl Ix! )_M (11)
T %bd(r) )] — X .
Pl [ies Ps Xo)

The probability P (X.) can be constructed for a separator by marginalizing over a
clique that includes S. For the validity of this argument and the properties of the mar-
ginal data distribution, see (Dawid and Lauritzen 1993). The expression (11) must be
multiplied over all the chain components t in order to yield the overall marginal data
distribution

HceC(t) PC (XC)

PX|G)= . (12)
1eT(G) HSES(‘[) Py (Xe)
From (12) we define the final scoring function as the posterior probability
PX|G)P(G
P (GIX) = X1 6)P(G) (13)

26es PX1G)P(G)
For a given set of nodes V let S = {LPDAG} be the search space. One particular goal
for the topology learning can be stated as the identification of a structure G?* € S

having highest posterior probability (13), i.e.

G ¢ P (GIX).
argmax P (G[X)
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Proof of consistency for the parallel learning procedure

Let X = {X;}i>0 be a time homogeneous Markov chain with the state space S. We
set Py (X;) = P(Xi|Xo = x).

Definition 4 (Durrett 1996) Let T)) = 0 and for k > 1 let

Tyk = inf{n > Tyk*1 X, =) (14)

Definition 5 (Durrett 1996) S is irreducible if x, y € § = P)C(Ty1 < 00) > 0.

Definition 6 (Durrett 1996) S is recurrent if Py(Ty].C < o00) = 1 forall k.

Theorem 5 (Durrett 1996) If S is finite and closed, then every Markov chain that is
irreducible on S is recurrent.

Theorem 6 (Durrett 1996) If x € S is recurrent and S is irreducible then y € S is
recurrent and Py(Ty, < c0) = 1 forallx,y € S.

Let now T's be defined as the first time, when the Markov chain X has visited every
state of S.

Theorem 7 (Durrett 1996) When S is a closed, finite and irreducible set, then there
exists a M1 > O such that ift > My, then Pxy(Ts <t) > 1 — %forallx eS.

Proof Let x1, ..., x5 be any enumeration all x € S. Then by Theorem5 and
Theorem 6

Py(Ts < 00) 2 Py(Ty; < 00) Py (Tyy <00) -+ Pyg | (Tygy <00)=1-1---1=1.

We get the limit by writing P, (Ts < 00) as a convergent sum
o0
1= P(Ts <00) = > Pu(Ts =n)
n=1

then for any 5 > O there exists a M such that

M,
1= P(Ts =n)

n=1

P e o
<§©1—§<ZPX(T3=n)=Px(TS<M1). O

n=1

Finally, to show consistency of the introduced posterior estimator, it suffices to con-
sider one of the m parallel search processes defined in the Sect. 3, which is denoted
by {G;}:>0 in the sequel. We recall that Z = (Z;), where Z; ¢t > 0, are independent
Bernoulli variables such that P(Z; = 1) = «,. We define first stopping times for enu-
merating the return times of Z to 1 or times of mixing events, where Z is the process
defined in Algorithm 1.

Ti = inf{t > Tz, = 1}
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and the time between two return times
T = T;rl - T, —1.

With the aid of these notions, the search process {Gt},_zo can be regarded as a
sequence of Markov chains patched together at the times 7. Or, more precisely, for

Té <t < Té“, the search process G; is a time homogeneous Markov chain X ®
with the state space S and a fixed transition kernel defined by (4), Algorithm 3. and
an irreducible proposal mechanism. We write this as

G =x", T,<i<T1 (15)

Next we need to show the irreducibility of the Markov chain X ). For CPDAGs this
will follow by the next result, which is Proposition4.5 from (Andersson etal. 1997).

Theorem 8 Consider two graphs G and H with same set of nodes in S = {LPDAG}.
Then there exists a finite sequence of LPDAGs G = G, ..., Gy = H such that each
consecutive pair Gi, Gi4 differs by either (i) exactly one undirected edge, (ii) exactly
by one directed edge, or (iii) by two edges that form an immorality.

For the special case of decomposable UGs, (Frydenberg and Lauritzen 1989) shows
that search operators adding and deleting of single edges in decomposable UGs is suf-
ficient to guarantee irreducibility.

Corollary 2 The Markov chain XY with transition mechanism defined by (4),
Algorithm3 and the search operator in Algorithm4 is irreducible with respect to

S={UG).

The following lemma is an improved version of a similar lemma in (Corander etal.
2006). It and Theorem 6 are needed to establish that the search process, which is a
Markov chain inside [Té , T;’l) , will eventually have enough time during this interval
to visit all states of the space S.

Lemma 1 There exist M>, M3 > 0 such that if t > M3, then

P(a>M)>1-.
Proof
My—1
P(tizMy)=1-P(ti<M)=1- > P(r=1)
t=0
My—1 Té"'t Myr—1
=1- Z & T+ 1 H (I—ag) =1- Z & Ti+1
1=0 s=Th+1 1=0
> 1= Mymax{a gy 6 =0, M) = 1= Maagy
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Since lim;_, oo @y — 0 (Definition 1), there exists M3 > 0 such that if # > M3 then
oy < 2672 O

Next we prove that the search process will eventually visit every state of the state
space. We consider the following random time, as in (Corander etal. 2006).

TS = inf{t|S; = S}, (16)

where S; C S is the part of the model space that has been explored by G;. We define
forany x inSandany A C S

PX(SIZA)ZP(S[ZAlGOZX)

Theorem 9 Let X©) be an irreducible Markov chain with respect to S. Then for any
xinS

SEs (17)
Proof We consider the search process G, and its arbitrary patch chain X, in other

words Té <t< T;‘l. As we are going to choose ¢ larger than a certain constant,
even i must implicitly be chosen large enough. We have

=P (S5 =8 <1=-P (5 =571 >M).

Let now 74 “ be defined as the first time, when X® defined in (15) has visited every

state of S. Tg @ equals +o0, if this event does not occur.

Clearly, if the chain X @) has visited every state of S, then a fortiori the search
process G has also visited all of S. Hence

@)
Po(Si=81m> M) P (T8 <Ml 5> )

for some y € S, where X T, =Y where y is given by Algorithm?2. Hence
P(ti > My) P (S, =S|t > My) > P (r; > My) Py (Tg“” <M |7 > Ml).

But the times 7; are by construction independent of X, Thus, for r > M| we have
Py (Tgm <Mt > Ml) > 1 — & by Theorem7, since X is irreducible (S is
the whole state space and is clearly closed by irreducibility). Using the bounds above
we get

I_Px(SIZS)
<1—P(r,»>M1)(1—§)
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and by Lemma 1 there exists a M3(M1), such that when r > max {M3(M;), M1}

<1—(1—§)2.

Now Bernoulli’s inequality entails

<1—(1—2§)=e,

which proves lim;_, o, Py(S; = &) = 1. Finally, we can regard §; as a random
variable defined on a countable outcome space. In that case convergence in probability
implies convergence almost surely (see for example formula 6.16 on page 55 in Durrett
1996). O

From this the proof of Theorem 1 is immediate, since the sums in P, (G|X) and in
P (G|X) are finite.
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