
Data Min Knowl Disc (2008) 16:349–364
DOI 10.1007/s10618-008-0093-2

Fast mining of distance-based outliers
in high-dimensional datasets

Amol Ghoting · Srinivasan Parthasarathy ·
Matthew Eric Otey

Received: 29 January 2007 / Accepted: 14 February 2008 / Published online: 4 March 2008
Springer Science+Business Media, LLC 2008

Abstract Defining outliers by their distance to neighboring data points has been
shown to be an effective non-parametric approach to outlier detection. In recent years,
many research efforts have looked at developing fast distance-based outlier detec-
tion algorithms. Several of the existing distance-based outlier detection algorithms
report log-linear time performance as a function of the number of data points on many
real low-dimensional datasets. However, these algorithms are unable to deliver the
same level of performance on high-dimensional datasets, since their scaling behavior
is exponential in the number of dimensions. In this paper, we present RBRP, a fast
algorithm for mining distance-based outliers, particularly targeted at high-dimensional
datasets. RBRP scales log-linearly as a function of the number of data points and line-
arly as a function of the number of dimensions. Our empirical evaluation demonstrates
that we outperform the state-of-the-art algorithm, often by an order of magnitude.

Keywords Outlier detection · High-dimensional datasets · Approximate k-nearest
neighbors · Clustering

Responsible editor: Thorsten Joachims.

A. Ghoting (B)
IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
e-mail: aghoting@us.ibm.com

S. Parthasarathy
The Ohio State University, Columbus, OH, USA
e-mail: srini@cse.ohio-state.edu

M. E. Otey
Google, Inc., Pittsburgh, PA, USA
e-mail: otey@google.com

123

350 A. Ghoting et al.

1 Introduction

A common problem in data mining is that of automatically finding outliers or anom-
alies in a dataset. Outliers are those points that are highly unlikely to occur given a
model of the data. Since outliers and anomalies are rare, they can be indicative of bad
data, faulty collection, or malicious content. Recently, researchers have applied out-
lier detection to tasks such as data cleaning (Gamberger et al. 1999), fraud detection
(Bolton and Hand 2002), and intrusion detection (Sequeira and Zaki 2002).

There are several approaches to outlier detection. One approach is that of model-
based outlier detection, where the data is assumed to follow a parametric (typically
univariate) distribution (Barnett and Lewis 1994). Such approaches do not work well
in even moderately high-dimensional spaces and finding the right model is often a
difficult task in its own right. To overcome these limitations, researchers have turned
to various non-parametric approaches that use a point’s distance to its nearest neigh-
bor as a measure of unusualness (Angiulli and Pizzuti 2002, Knorr and Ng 1999,
Ramaswamy et al. 2000). The following, among others (Bay and Schwabacher 2003),
is a popular definition of distance-based outliers:

• Outliers are the top n data points whose distance to their kth nearest neighbor is
greatest (Ramaswamy et al. 2000).

While distance-based outlier detection has proved to be useful, the process con-
tinues to be time consuming. The nested loop (NL) algorithm for mining distance-
based outliers (Knorr and Ng 1999) typically requires O(N2) time, where N is the
numbers of data points. To overcome this problem, in the past few years, research-
ers have proposed several solutions ranging from the use of spatial index structures
(KD-trees (Bentley 1975), R-trees (Guttmann 1984), or X-trees (Berchtold et al. 1996))
for fast nearest neighbor computation to partitioning the feature space with clustering
(Ramaswamy et al. 2000). Unfortunately, these approaches do not scale well with the
number of dimensions (Bay and Schwabacher 2003, Knorr and Ng 1999). Conse-
quently, for high-dimensional datasets, solutions based on the simple NL algorithm
are known to provide the best performance (Knorr and Ng 1999, Bay and Schwabacher
2003).

Bay and Schwabacher (2003), and have shown that coupled with data randomiza-
tion and a simple pruning rule, the NL algorithm provides the best known performance
on large, high-dimensional datasets. While the worst case complexity of their variant
of the NL algorithm continues to be O(N2), their approach achieves a complexity
that is sub-quadratic (but not log-linear) in the number of data points. Although their
strategies do result in a significant reduction in computation, the process is still very
time consuming.

In this paper, we further improve the scaling behavior of distance-based outlier
detection on large, high-dimensional datasets. Specifically, we make the following
contributions:

• We study the conditions under which the state-of-the-art distance-based outlier
detection algorithm, ORCA (Bay and Schwabacher 2003), is unable to provide
near-linear time performance.

123

Fast mining of distance-based outliers 351

• We present RBRP, a two-phase algorithm for fast mining of distance-based outli-
ers. In the first phase, the dataset is pre-processed into bins such that points that are
close to each other in space are likely to be placed in the same bin. In the second
phase, an extension of the NL algorithm that operates over bins is used for deter-
mination of outliers. The pre-processing performed in the first phase facilitates fast
convergence to a point’s approximate nearest neighbors. As we shall see, only a
point’s approximate nearest neighbors, and not its nearest neighbors, are needed
for fast distance-based outlier detection.

• We demonstrate that our algorithm scales well to high-dimensional datasets with
millions of data points, and outperforms the state-of-the-art distance-based outlier
detection algorithm, often by over an order of magnitude. Empirically as well as
analytically, we show that the algorithm scales log-linearly as a function of the
number of data points.

The rest of this article is organized as follows. In Sect. 2, we will describe the state-
of-the-art in distance-based outlier detection. In Sect. 3, we first present the shortcom-
ings of the state-of-the-art, and then RBRP, our two-phase outlier detection algo-
rithm. We evaluate the performance of our algorithm in Sect. 4. Finally, we conclude
in Sect. 5.

2 Distance-based outlier detection

In distance-based outlier detection, one typically looks at the local neighborhood of
a data point to find its nearest neighbors. If the nearest neighbors are relatively close,
then the data point is considered to be normal, otherwise it is considered to be an
outlier. The key benefit of defining outliers based on their neighborhood is that no
parametric distribution needs to be defined to measure unusualness. The following are
three popular definitions of distance-based outliers:

• Outliers are the data points for which there are fewer than p other data points
within distance d (Knorr and Ng 1999).

• Outliers are the top n data points whose distance to their kth nearest neighbor is
greatest (Ramaswamy et al. 2000).

• Outliers are the top n data points whose average distance to their k nearest neigh-
bors is greatest (Angiulli and Pizzuti 2002).

While there are several minor differences between these definitions, all these defi-
nitions use the nearest neighbor density estimate to determine if a point is an outlier.
Researchers have developed a variety of approaches to find these outliers efficiently.
Some approaches make use of KD-trees (Bentley 1975), R-trees (Guttmann 1984), or
X-trees (Berchtold et al. 1996) to find the nearest neighbors of each candidate point.
These index structures are extremely efficient in finding the k nearest neighbors of a
data point. Outlier detection algorithms that make use of these index structures can
potentially scale as O(N log N), if one can find the k nearest neighbors of a data point
in O(log N) time. However, the time required to search through these index structures
scales exponentially with the number of dimensions. Consequently, their usefulness

123

352 A. Ghoting et al.

is constrained to low-dimensional spaces. Similarly, researchers have proposed parti-
tioning the space into regions (Knorr and Ng 1999, Ramaswamy et al. 2000), which
allows for fast determination of nearest neighbors. Unfortunately, the aforementioned
approaches are affected by the curse of dimensionality and do not scale to high-dimen-
sional data (Bay and Schwabacher 2003).

The simple nested loop (NL) algorithm is known to give the best performance in
high-dimensional spaces (Knorr and Ng 1999). The algorithm, in its simplest form, is
presented in Algorithm 1. The main idea in the NL algorithm is that for each data point
in D (step 3), we scan the dataset (step 5) and keep track of its k closest neighbors.
We also maintain a cutoff threshold, c, that is the distance between the least outlying
point discovered thus far and its kth closest neighbor (step 14). When a data point’s
kth closest neighbor has a distance that is less than the cutoff threshold, c, the data
point is no longer an outlier, and we can proceed with the next data point (step 9). As
we process more data points, the algorithm finds more extreme outliers, and the cutoff
increases giving us improved pruning efficiency (step 14).

The state-of-the-art distance-based outlier detection algorithm, ORCA (Bay and
Schwabacher 2003), uses the NL algorithm with a pre-processed dataset. ORCA
randomizes the dataset (D) in linear time with constant amount of memory using a
disk-based shuffling algorithm. This randomization allows the NL algorithm to pro-
cess non-outlier points, which are the large majority, relatively quickly. The authors
report sub-quadratic time performance in the number of data points (often well below
quadratic but not log-linear) on several real and synthetic datasets.

3 Outlier detection algorithm

We will first characterize the shortcomings of ORCA and then present our outlier
detection algorithm.

3.1 Shortcomings of ORCA

For expository simplicity, let us assume that we are interested in finding the top n

data points whose distance to their nearest neighbor is the greatest. Let us examine
the number of distance computations that are required to process a data point (say x)
that is not an outlier. One can think of this problem as a set of independent Bernoulli
trials where one keeps drawing instances until one has a single success (one data point
within the cutoff threshold). Let �(x) be the probability that a randomly selected data
point lies within the cutoff threshold. Let Y be a random variable representing the
number of trials required until we have a single success. The probability of obtaining
a success on trial y, P(Y = y), is given by:

P(Y = y) = �(x) × (1 − �(x))(y−1) (1)

Therefore, the expected number of distance computations for the data point (x) that is
not an outlier is given by:

123

Fast mining of distance-based outliers 353

Algorithm 1 The simple nested loop
Procedure: Find outliers

Require: k, the number of nearest neighbors; n, the number of outliers to be returned; D, the set of data
points.

Ensure: O, the set of outliers.
1: c = 0 (c is the cutoff threshold)
2: O = {}
3: for each d in D do
4: Neighbors(d) = {}
5: for each b in D such that b �= d do
6: if |Neighbors(d)| < k or Distance(b, d) < Maxdist(d, Neighbors(d)) then
7: Neighbors(d) = Closest(d, Neighbors(d) ∪ b, k)
8: end if
9: if |Neighbors(d)| ≥ k and c > Distance(b, d) then
10: break
11: end if
12: end for
13: O = TopOutliers(O ∪ b, n)
14: c = MaxThreshold(O)
15: end for

Note:

Maxdist(d, S) returns the maximum distance between d and an element in set S

Closest(d, S, k) returns the k nearest elements in S to d

TopOutlier(S, n) returns the top n outliers in S based on the distance to their kth nearest neighbor

MaxThreshold(S) returns the distance between the weakest outlier in S and its kth nearest neighbor

E[Y] =
N∑

y=1

P(Y = y) × y = 1

�(x)
(2)

In order to achieve near-linear time scaling behavior, E[Y], and hence �(x), must be
a constant. This is the central premise behind ORCA’s near-linear time performance.
However, as we shall see next, this does not always hold.

Again, for expository simplicity, let us assume that we have N uniformly distributed
data points in an area of size

√
N × √

N . We seek to answer the following question:
If we randomly pick a point x in this area, what is the expected value of the cutoff
threshold, c, such that �(x) will be constant? Intuitively, for �(x) to be constant,
the area of the circle with radius = c and center = x, πc2, should scale as O(N). In
other words, c should scale as O(

√
N). Thus, for the aforementioned dataset, in order

for ORCA to maintain near-linear time performance, as we increase the size of the
dataset (N), the cutoff threshold must also increase as

√
N . This indicates that as the

dataset size increases, in order to maintain near-linear time performance, distance to
the nearest neighbor for the true outliers must also increase. Obviously, this will not
always hold true.

In summary, ORCA delivers near-linear scaling behavior only when the cutoff
distance can quickly converge to a large value such that �(x) is a constant. This can
occur only when the dataset has a large number of outlying points. When the dataset

123

354 A. Ghoting et al.

consists of a mixture of a few distributions, with not many outlying points, ORCA’s
complexity is near quadratic (Bay and Schwabacher 2003).

3.2 Algorithm RBRP (recursive binning and re-projection)

As pointed out in Sect. 2, in order to find distance-based outliers using the NL algo-
rithm, one needs to find k data points that are within the cutoff threshold, c. We call
these k data points approximate nearest neighbors. The key to fast outlier detection
is to efficiently find the k approximate nearest neighbors of a data point. This goal
is different from most existing approaches that attempt to find the k nearest neigh-
bors efficiently, which is more expensive. There are several existing efforts (Arya et al.
1998, Indyk and Motwani 1998, Kleinberg 1997, Kushilevitz et al. 1998) that facilitate
searching for approximate nearest neighbors of a data point. Unfortunately, to process
a single lookup query, these algorithms need time that scales either exponentially in
the dimensionality of the data or linearly in the size of the data. This is not acceptable
for processing large, high-dimensional datasets.

We now present RBRP (Recursive Binning and Re-Projection), a two-phase algo-
rithm for fast mining of distance-based outliers in high dimensional datasets. RBRP,
like ORCA, finds the top n outliers in the dataset whose distance to their kth nearest
neighbor is the greatest.

3.2.1 Phase 1

The goal of the first phase of RBRP is to partition the dataset into bins such that
points that are close to each other in space are likely to be assigned to the same
bin. One natural candidate to generate such bins is to cluster the data using an algo-
rithm such as K-means (Hartigan 1975) to find a large number of small clusters.
Each of the clusters can constitute a bin. However, this process requires us to specify
the number of clusters, and does not guarantee equal-frequency binning, making it
ineffective for our uses. Another possibility is to use a clustering algorithm such as
BIRCH (Zhang et al. 1996). This is in some senses similar to the approach proposed by
Ramaswamy et al. (2000). However, this approach will not scale to high-dimensional
data. Related to our goal is the problem of building equi-depth multidimensional histo-
grams (Muralikrishna and DeWitt 1988, Jagadish et al. 1998). The bucket boundaries
for such histograms can be used to partition the dataset into bins with nearly equal
number of points. Such an approach, however, will not necessarily result in bins that
are dense (or preserve locality), making it ineffective for our uses.

Our approach to partitioning the dataset into bins is shown in Algorithm 2. It is
a recursive procedure similar to divisive hierarchical clustering. At each stage in the
recursion, we iteratively partition the data into k partitions. This iterative partitioning
is akin to the partitioning step employed in the k-means (Hartigan 1975) algorithm.
Essentially, we start with k random centers (step 1), and assign each point to its closest
center, creating k partitions (steps 5–8). Next, we find k centers for these k partitions
(step 10), and continue iteratively for a fixed number of iterations. Once we have
finished with these iterations, for each of these partitions, we proceed recursively if

123

Fast mining of distance-based outliers 355

Algorithm 2 RBRP phase 1
Procedure: Bin

Require: Binsize, the maximum size of a bin; k, the number of partitions; it , no. of iterations; D, data
points to be binned.

Ensure: B, the set of bins.
1: c = {c1, c2, . . . , ck} (the set of k random centers)
2: p = {p1, p2, . . . , pk} (the set of k partitions of D)
3: for it iterations do
4: Empty all k partitions in p

5: for each d in D do
6: j = Closest(c, d)
7: Insert(d, j)
8: end for
9: c = {}
10: RecomputeCenters(c, p)
11: end for
12: for each pi in p do
13: if size of pi > Binsize then
14: Bin(Binsize, k, it, pi)
15: else
16: Reorganize data points in pi , ordered as per their projection along the principal component of pi

17: Add pi to B

18: end if
19: end for

Note:

Closest(c, d) returns the index of the nearest elements in c to d

Insert(d, j) inserts point d in j th partition in p

RecomputeCenters(c, p) inserts k centers of partitions in p into c

the size of the partition is greater than a user-defined threshold (Binsize) (steps 13–
14). Such a binning strategy ensures that points that are close to each other in space
are likely to be collocated in the same bin. In Phase 2 of RBRP, we will sequentially
scan through each bin to find the approximate nearest neighbors of a data point. To
facilitate fast convergence to the approximate nearest neighbors during a sequential
scan, we reorganize the data points in each bin as per their order in the projection
along the principal component (Jolliffe 1986) of the points in the bin (step 16). The
principal component of a bin represents the axis of maximal variance. Such a reorgani-
zation within bins allows for fast convergence to approximate nearest neighbors when
sequentially scanning through a bin. This is because we expect to find the approximate
nearest neighbors of a data point in its neighborhood when data points are ordered as
per their projection along the principal component. We also note that the task of finding
the principal component scales as O(N × d2). The process in depicted in Fig. 1.

3.2.2 Complexity analysis for phase 1

Assuming a two-way partitioning at each step in the recursion, the recurrence relation
for Phase 1 is given by:

T (N) = T (N − m) + T (m) + θ(N) (3)

123

356 A. Ghoting et al.

LEVEL 3 LEVEL 2LEVEL 1

43127685

4

PHASE 1 (INSTANCE OF TWO−WAY PARTITIONING)

SEARCH SPACE TRAVERSAL FOR A POINT IN BIN 5

PHASE 2

OF BINS
FINAL SET

COMPONENT
PROJECTION ONTO PRINCIPAL LEVEL 4

8

5

6

7

3

2

1

BIN 3

Fig. 1 Phase 1 and Phase 2 of RBRP

If the partitioning step is extremely unbalanced, then m is likely to be a constant (say
m = 1). In this case:

T (N) = T (N − 1) + T (1) + N

T (N) = T (N − 2) + 2T (1) + 2N

T (N) = N × N = θ(N2)

This results in the worst case complexity of O(N2) for phase 1. On the other hand, if
the partitioning step is highly balanced, then m is likely to be N/2 on average. In this
case:

T (N) = T (N − N/2) + T (N/2) + N

T (N) = 2T (N/2) + N

T (N) = 4T (N/4) + 2N

T (N) = 8T (N/8) + 3N

T (N) = N log N

This results in the best case complexity of O(N log N) for phase 1. The exact average
case complexity for phase 1 is obtained by solving the recurrence relation (assuming
all potential partitions are equally likely):

T (N) =
N∑

m=1

1

N
(T (m) + T (N − m)) + N

123

Fast mining of distance-based outliers 357

T (N) = 2

N

N−1∑

m=1

T (m) + T (N)

N
+ N

NT (N) = 2
N−1∑

m=1

T (m) + T (N) + N2

NT (N) − (N − 1)T (N − 1) = T (N − 1) + T (N) + N2 − (N − 1)2

(N − 1)T (N) = NT (N − 1) + 2N − 1

T (N)/N = T (N − 1)/(N − 1) + 2N − 1

N(N − 1)

Let An = T (N)/N

An = An−1 + 2N − 1

N(N − 1)

An ≈
N∑

i=1

1/i ≈ log N

Therefore, T (N) ≈ N log N

Therefore, the average case complexity for phase 1 is same as its best case complexity.
When employing a k-way partitioning at each step in the recursion, the above results
will continue to hold.

3.2.3 Phase 2

In Phase 2 (described in Algorithm 3), we use an extension of the NL algorithm to
find outliers in the dataset that has been organized into bins. For each data point, we
start searching for approximate nearest neighbors beginning at the next consecutive
location in the bin (steps 7–14). Once the end of the bin has been reached, we wrap
around to the start of the bin, and continue searching in the remainder of the bin. If
the entire bin has been searched and k approximate nearest neighbors have not been
discovered within this bin, we switch to the next closest bin (step 6), and continue
searching for approximate nearest neighbors. This search continues iteratively until k

approximate nearest neighbors are discovered. This process is depicted in Fig. 1.

3.2.4 Complexity analysis for Phase 2

The worst case time complexity of Phase 2 is O(N2). We expect such performance
when the data set does not have many true outliers (for example, consider a dataset in
which the distance to the kth nearest neighbor is the same for all data points). However,
for datasets with true outliers, we expect the cutoff threshold to increase to a point
that we can find the approximate nearest neighbors of a normal point in the same or
adjacent bin (looking at only a constant number of data points). For outliers, we need
to scan all of the bins, but this is expected to be a rare event, as number of desired

123

358 A. Ghoting et al.

outliers (n) is much smaller that the dataset size (N). Therefore, we expect Phase 2 to
scale as O(N × d). As Phase 1 scales as O(N log N × d), we expect RBRP to scale
as O(N log N × d).

Algorithm 3 RBRP phase 2
Procedure: Find outliers

Require: k, the number of nearest neighbors; n, the number of outliers to be returned; D, the set of data
points.

Ensure: O, the set of outliers.
1: c = 0 (c is the cutoff threshold)
2: O = {}
3: for each bin b in B do
4: for each d in b do
5: Neighbors(d) = {}
6: for each t in B, ordered by increasing distance to b do
7: for each p in t such that p �= d do
8: if |Neighbors(d)| < k or Distance(d, p) < Maxdist(d, Neighbors(d)) then
9: Neighbors(d) = Closest(d, Neighbors(d) ∪ p, k)
10: end if
11: if |Neighbors(d)| ≥ k and c > Distance(p, d)) then
12: break
13: end if
14: end for
15: end for
16: end for
17: O = TopOutliers(O ∪ b, n)
18: c = MaxThreshold(O)
19: end for

Note:

Maxdist(d, S) returns the maximum distance between d and an element in set S

Closest(d, S, k) returns the k nearest elements in S to d

TopOutlier(S, n) returns the top n outliers in S based on the distance to their kth nearest neighbor

MaxThreshold(S) returns the distance between the weakest outlier in S and its kth nearest neighbor

At this juncture, we would like to point out that RBRP will always discover the
exact same set of outliers as ORCA. The key difference between RBRP and ORCA
is that when processing normal points, RBRP will discover the k approximate nearest
neighbors in far less time than ORCA. For outliers, both ORCA and RBRP will need
to scan the entire dataset.

4 Experimental results

4.1 Setup

We evaluate our algorithm’s performance on a Linux-based system with a 2.4 GHz
Intel Pentium 4 processor and 1 GB of main memory. We report the wall clock time
in order to capture both CPU and I/O time. All of the algorithms were implemented

123

Fast mining of distance-based outliers 359

Table 1 Datasets

Data set Continuous attributes No. of points

Corel histogram 32 68,040

Covertype 55 581, 012

KDDCup 1999 24 4,898,430

Mixed 30D 30 2,000,000

Uniform 30D 30 1,000,000

IPUMS 128 2,000,000

using C. We use several real and synthetic data sets for our analysis. These data sets
are summarized in Table 1. They span a range of problems and have different types of
features.

• Covertype—This data set represents the type of forest coverings for 30×30 meter
cells in the Rocky Mountain region. For each cell, the data contains the cover type,
which is the dominant tree species, and additional attributes such as elevation,
slope, and soil type.

• Corel Histogram—Each point in this data set encodes the color histogram of an
image in a collection of photographs. The histogram has 32 bins corresponding to
eight levels of hue and four levels of saturation.

• IPUMS—This data set contains the responses from the 1990 Census in the United
States. It contains a variety of geographic, economic, and demographic information
about individuals.

• KDDCup 1999—This data set contains a set of records that represent connec-
tions to a military computer network where there have been multiple intrusions by
unauthorized users. The raw TCP data from the network has been processed into
features such as the connection duration, protocol type, number of failed logins,
and so forth.

• Mixed 30D—This is a synthetic data set generated from a mixture of 30-dimen-
sional normal and uniform distributions centered on the origin. The normal dis-
tribution is centered on the origin with a covariance matrix equal to the identity
matrix. This data set contains one million data points from each of the distributions.

• Uniform 30D—This is a synthetic data set generated from a 30 dimensional uni-
form distribution centered on the origin and in the range [−1,1].

We obtained the Covertype, Corel Histogram, and KDDCup 1999 data sets from
the UCI KDD Archive (Bay 1999). The IPUMS data set was obtained from the IPUMS
repository (Ruggles and Sobek 1997).

4.2 Scalability with increasing data set size

Figures 2–4 show the total execution time to mine outliers on the six data sets as we
vary the number of data points. Here, total execution time accounts for both the phases
of RBRP. Each graph shows four lines. Two of these lines represent the expected

123

360 A. Ghoting et al.

 0.01

 0.1

1

 10

 100

 1000

 10000(a)

(b)

 100 1000 10000 100000 1e+06 1e+07

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

RBRP-P1
RBRP-P2

 0.01

 0.1

1

 10

 100

 100 1000 10000 100000 1e+06

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

RBRP-P1
RBRP-P2

Fig. 2 (a) Covertype (b) Corel histogram

execution time to mine the data set given a linear time algorithm and an N log N

time algorithm. These lines are extrapolated from the first point in the line represent-
ing ORCA’s execution time. There are four remaining lines, two of which show the
actual running times for RBRP and ORCA, while the remaining two lines show the
running times for the individual phases of RBRP. The runs were set to mine the top
30 outliers with k set to 2.1

RBRP outperforms ORCA on all the considered data sets. On the Covertype,
Mixed 30D, and Uniform 30D data sets, RBRP outperforms ORCA by an order of
magnitude. Furthermore, it shows improved scalability with increasing data set size
when compared with ORCA. We can attribute these results to the fact that while
RBRP incurs an O(N log N) pre-processing overhead, it can find outliers in near
constant time per data point. For data sets that have a larger number of outlying data
points, the cutoff threshold is able to increase quickly, and ORCA is able to give fairly

1 We varied k from 2 to 8 and the trends observed for k = 2 continue to hold with increasing k.

123

Fast mining of distance-based outliers 361

1

 10

 100

 1000

 10000(a)

(b)

 1000 10000 100000 1e+06 1e+07 1e+08

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

RBRP-P1
RBRP-P2

 0.1

1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

RBRP-P1
RBRP-P2

Fig. 3 (a) IPUMS (b) KDDCup 1999

good performance. This behavior can be seen on the IPUMS data set. However, when
the data set has a fewer number of outliers, the cut-off threshold does not grow fast.
As a result, we get near quadratic scaling performance for ORCA. This can be seen
on the remaining data sets. The performance of RBRP is not affected as much by the
slow decay in the cutoff threshold because of its improved search space, resulting in
improved performance in all cases. Furthermore, Figs. 2–4 indicate that RBRP does
indeed scale as O(N log N). We note that on the IPUMS and KDDCup 1999 data sets,
it appears as though RBRP scales marginally better than O(N log N). This is simply
due to the errors introduced during extrapolation (Ghoting et al. 2005).

4.3 Scalability with increasing number of nearest neighbors

Figures 5–7 show the total time to mine outliers on the six data sets as the number of
nearest neighbors (k) are varied. For all these experiments, we mine outliers in the
entire data set. Each graph shows the actual running times for RBRP and ORCA. The
runs were set to mine the top 30 outliers.

123

362 A. Ghoting et al.

 0.1

1

 10

 100

 1000

 10000

 100000(a)

(b)

 1000 10000 100000 1e+06 1e+07 1e+08

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

RBRP-P1
RBRP-P2

 0.01

 0.1

1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07

E
xe

cu
tio

n
tim

e
(s

)

Number of data points

ORCA
RBRP
Linear
NlogN

RBRP-P1
RBRP-P2

Fig. 4 (a) Mixed 30D (b) Uniform 30D

0

10000

20000

30000

40000

50000

60000

70000

80000(a) (b)

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

0
100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

Fig. 5 (a) Covertype (b) Corel histogram

123

Fast mining of distance-based outliers 363

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000(a) (b)

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

Fig. 6 (a) IPUMS (b) KDDCup 1999

0

50000

100000

150000

200000

250000

300000

350000

400000(a) (b)

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

0
20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(s

)

Number of nearest neighbors

ORCA
RBRP

Fig. 7 (a) Mixed 30D (b) Uniform 30D

Both RBRP and ORCA exhibit linear scalability on all the considered data sets.
Moreover, RBRP exhibits better scalability than ORCA with increasing k. This is
attributed to the localized search for approximate nearest neighbors employed by
RBRP. As k increases, for each normal point, we expect to see a constant increase in
the number of bins that need to be searched. Unlike ORCA, RBRP is not affected by
the slow decay in the cutoff threshold that occurs on most data sets. This is evident
on all data sets except the IPUMS data set. On the IPUMS data set, the cutoff thresh-
old converges to a large value relatively quickly. Therefore ORCA and RBRP have
comparable scaling performance on this data set.

5 Conclusion

In this paper, we presented RBRP, a two phase distance-based outlier detection algo-
rithm targeted at high-dimensional datasets. RBRP improves upon the scaling behav-
ior of the state-of-the-art by employing an efficient pre-processing step that allows
for fast determination of approximate nearest neighbors. We provide theoretical argu-
ments as to why RBRP is expected to scale as O(N log N × d) on d-dimensional
datasets with N data points. We validated its scaling behavior on several real and
synthetic datasets. Our empirical results on real data back the above claim realizing a
significant speedup over ORCA, often by over an order of magnitude, while returning
the same set of outliers as ORCA.

123

364 A. Ghoting et al.

Acknowledgements This work is supported in part by NSF grants CAREER-IIS-0347662 and NGS-
CNS-0406386. This work was done while Amol Ghoting and Matthew Eric Otey were at The Ohio State
University.

References

Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In: Proceedings of the
international conference on principles of data mining and knowledge discovery

Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. J ACM 45(6):891–923

Barnett V, Lewis T (1994) Outliers in statistical data. John Wiley and Sons
Bay S (1999) The UCI KDD archive. University of California, Department of Information and Computer

Science, Irvine, CA
Bay S, Schwabacher M (2003) Mining distance-based outliers in near linear time with randomization and

a simple pruning rule. In: Proceedings of the international conference on knowledge discovery and
data mining

Bentley J (1975) Multidimensional binary search trees used for associative searching. Commun ACM
18:509–517

Berchtold S, Keim D, Kreigel H (1996) The X-tree: an index structure for high dimensional data. In:
Proceedings of the international conference on very large data bases (VLDB)

Bolton R, Hand D (2002) Statistical fraud detection: a review. Stat Sci 17:235–255
Gamberger D, Lavrac N, Groselj C (1999) Experiments with noise filtering in the medical domain. In:

Proceedings of the international conference on machine learning
Ghoting A, Parthasarathy S, Otey M (2005) Fast mining of distance-based outliers in high dimensional

datasets. Technical report TR71, Department of Computer Science and Engineering, The Ohio State
University

Guttmann R (1984) A dynamic index structure for spatial searching. In: Proceedings of the international
conference on management of data (SIGMOD)

Hartigan J (1975) Clustering algorithms. John Wiley and Sons
Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality.

In: Proceedings of the symposium on theory of computing (STOC), pp 604–613
Jagadish H, Poosala V, Koudas N, Sevcik K, Muthukrishnan S, Suel T (1998) Optimal histograms with

guarantees. In: Proceedings of the international conference on very large databases (VLDB)
Jolliffe I (1986) Principal component analysis. Springer-Verlag
Kleinberg JM (1997) Two algorithms for nearest-neighbor search in high dimensions. In: Proceedings of

the symposium on theory of computing (STOC), pp 599–608
Knorr E, Ng R (1999) Finding intensional knowledge of distance-based outliers. In: Proceedings of the

international conference on very large data bases (VLDB)
Kushilevitz E, Ostrovsky R, Rabani Y (1998) Efficient search for approximate nearest neighbor in high

dimensional spaces. In: Proceedings of the symposium on theory of computing (STOC)
Muralikrishna M, DeWitt D (1988) Equi-depth histograms for estimating selectivity factors for multidi-

mensional queries. In: Proceedings of the international conference on management of data (SIGMOD)
Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large datasets. In:

Proceedings of the international conference on management of data
Ruggles S, Sobek M (1997) Integrated public use microdata series: version 2.0
Sequeira K, Zaki M (2002) ADMIT: anomaly-based data mining for intrusions. In: Proceedings of the

international conference on knowledge discovery and data mining
Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large

databases. In: Proceedings of the international conference on management of data (SIGMOD)

123

	Fast mining of distance-based outliersin high-dimensional datasets
	Abstract
	Introduction
	Distance-based outlier detection
	Outlier detection algorithm
	Shortcomings of ORCA
	Algorithm RBRP (recursive binning and re-projection)
	Phase 1
	Complexity analysis for phase 1
	Phase 2
	Complexity analysis for Phase 2
	Experimental results
	Setup
	Scalability with increasing data set size
	Scalability with increasing number of nearest neighbors
	Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

