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Abstract Rules are commonly used for classification because they are modular,
intelligible and easy to learn. Existing work in classification rule learning assumes
the goal is to produce categorical classifications to maximize classification accuracy.
Recent work in machine learning has pointed out the limitations of classification
accuracy: when class distributions are skewed, or error costs are unequal, an accuracy
maximizing classifier can perform poorly. This paper presents a method for learning
rules directly from ROC space when the goal is to maximize the area under the ROC
curve (AUC). Basic principles from rule learning and computational geometry are
used to focus the search for promising rule combinations. The result is a system that
can learn intelligible rulelists with good ROC performance.

Keywords Classification · ROC analysis · Rule learning · Cost-sensitive learning

1 Introduction

One concern of utility-based data mining is the ability to make cost-effective clas-
sification decisions. In order to make such decisions, a classifier should be able to
produce, from a new instance, not just a hard classification (i.e. a class name) but
also an instance score or probability that the instance belongs to the class. Given
such an estimate, a classifier can use information about error costs to determine the
most cost-effective classification. Previous work has shown that methods that can pro-
duce instances scores can be used to make cost-sensitive decisions, either directly by
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208 T. Fawcett

converting them into proper probabilities using a calibration technique (Zadrozny and
Elkan 2001; Niculescu-Mizil and Caruana 2005), or indirectly by using a technique
such as the ROC convex hull (Provost and Fawcett 1998, 2001).

This goal calls for classification methods that are good at producing accurate
instance scores; in other words, methods that maximize ROC performance. In the
data mining community, researchers in classification are starting to look at the area
under the ROC curve (AUC) instead of accuracy as an evaluation measure, and design-
ing methods to maximize AUC. Such work has been pursued in data mining, but most
of it has involved methods whose concepts are difficult to interpret, such as ensem-
bles of classifiers, support vectors machines, etc. Probabilistic classification has been
investigated with other model classes such as neural networks (Santini and Bimbo
1995) and ensembles of decision trees (Provost and Domingos 2001; Zadrozny and
Elkan 2001). These models tend to be much more complex than rule sets. They attain
good ROC performance but they do not have rules’ appealing properties of modularity
and intelligibility.1

Rules are commonly used in data mining because of several desirable properties:
they are simple, intuitive, modular, and straightforward to generate from data. But
existing methods strive to optimize classification decisions, usually by maximizing
accuracy (or equivalently, minimizing error rate) on a training set. They usually try to
construct small, compact rule sets while achieving high accuracy. Others have pointed
out that accuracy is a poor metric to optimize (Provost et al. 1998; Ling et al. 2003),
so accuracy-maximizing methods may be a poor choice for producing scoring classi-
fiers—that is, classifiers with good ROC performance.

Therefore, an open question in data mining is how to generate rules to produce
reliable instance scores. Previous work (Fawcett 2001) showed how rules could be
combined in various ways to maximize ROC performance, but the rules used in that
work were generated by techniques that were not intended to maximize such perfor-
mance. Most techniques attempt to maximize accuracy, and techniques that maximize
accuracy do not always perform well in ROC space (Provost et al. 1998).

This paper may be seen as an extension to that prior work. We introduce a rule
learning system called PRIE which is designed to maximize ROC performance. PRIE
exploits the structure of ROC space to guide the generation of new rules. PRIE has
several attractive features:

1. Because PRIE maximizes ROC performance, it naturally handles skewed datasets.
2. PRIE is able to handle multiple classes. It will attempt to optimize the combined

AUC for any number of classes simultaneously.
3. PRIE’s output is a single rulelist and thus is relatively intelligible and modular.

To use this rulelist on a new unseen instance, the rules are evaluated sequentially
and the first one matching determines the class and probability. Some data mining
practitioners consider rulelists to be more intelligible than rulesets because only
a single rule matches a new instance.

1 Modularity means that each rule is local and a decision on an instance is made by only a single rule.
Ensembles lack modularity because multiple classifiers may participate in deciding an instance’s class,
and their votes may combine in unintuitive ways. Intelligibility means that the classifier is reasonably
understandable to the end users of the classification system.
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A system for generating rulelists to maximize ROC performance 209

4. Because PRIE uses a rulelist whose rules are ordered decreasing by class likeli-
hood, the rulelist may be used naturally with the ROC convex hull (Provost and
Fawcett 2001). In use, if operating conditions (class skew and relative error costs)
are known, the rulelist can be truncated to eliminate rules that will never affect a
classification decision.

5. PRIE handles numerical attributes naturally, using the ROC curve implicitly to
identify promising discretizations. Other classification models may discretize vari-
ables in a preprocessing pass or may use techniques unrelated to model construc-
tion. PRIE considers every discretization of a continuous attribute to comprise a
separate point in ROC space, and handles these the same as any other discrete
attribute.

6. PRIE can handle set-valued attributes (Cohen 1996), in which an attribute of an
instance may take on a set of discrete values instead of a single one. Such fea-
tures are useful, for example, in text classification domains in which the set may
represent the “bag of words” of a text document.

PRIE is unusual in that it uses basic principles from rule learning and computational
geometry to focus the search for promising rule combinations. The result is a system
that can learn rulelists with high AUC scores.

The remainder of the paper is organized as follows. Section 2 reviews the basics of
ROC graphs and the ROC convex hull. These principles and equations form the basis
of PRIE’s operation. Section 3 describes PRIE and the principles behind its opera-
tion. Section 4 describes the sets of experiments, and their results, intended to validate
PRIE’s approach. The final section concludes and describes areas for future work.

2 ROC graphs

Prior to explaining the PRIE system we briefly review the theory of Receiver Operating
Characteristics (ROC) graphs upon which PRIE is based. ROC graphs have long been
used in signal detection theory to depict the trade-off between hit rates and false alarm
rates of classifiers (Egan 1975; Swets et al. 2000). ROC analysis has been extended
for use in visualizing and analyzing the behavior of diagnostic systems (Swets 1988).

A discrete classifier applied to a test set generates two important statistics. The
True Positive rate (also called hit rate and recall) of a classifier is:

TP rate ≈ positives correctly classified

total positives

The False Positive rate (also called false alarm rate) of the classifier is:

FP rate ≈ negatives incorrectly classified

total negatives

On an ROC graph, TP rate is plotted on the Y axis and FP rate is plotted on the X axis.
A “hard” classifier—one that outputs only a class label—produces an (FP rate,

TP rate) pair, so it corresponds to a single point in ROC space. Classifiers A and B in
Fig. 1 are hard classifiers.
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Fig. 1 An ROC graph
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Several points in ROC space are useful to note. The lower left point (0,0) represents
the strategy of never issuing a positive classification; such a classifier commits no false
positive errors but also gains no true positives. The opposite strategy, of uncondition-
ally issuing positive classifications, is represented by the upper right point (1,1). Any
classifier that randomly guesses the class will produce performance on the diagonal
line y = x . The point (0,1) represents perfect classification. Informally, one point in
ROC space is better than another if it is to the northwest (TP rate is higher, FP rate is
lower, or both) of the first.

The diagonal line y = x represents the strategy of randomly guessing a class, and
any classifier that appears in the lower right triangle performs worse than random
guessing. This triangle is therefore usually empty.

A ranking or scoring classifier may be thresholded to produce a binary classifier: if
the classifier output is above the threshold, the classifier produces a Y, else a N. Each
threshold value produces a different point in ROC space, so varying the threshold
from −∞ to +∞ produces a curve through ROC space. An ROC curve illustrates
the error trade-offs available with a given classifier. Figure 1 shows the curve of a
ranking classifier, C, in ROC space. Much further information on ROC graphs and
ROC analysis is available elsewhere, such as Fawcett’s (2006) overview article and
tutorial notes by Peter Flach (2004).

2.1 Area under the ROC curve

To compare classifiers we often want to reduce ROC performance to a single number
representing average expected performance. A common method is to calculate the area
under the ROC curve, abbreviated AUC (Bradley 1997; Hanley and McNeil 1982).
Since the AUC is a portion of the area of the unit square, its value will always be
between 0 and 1.0. However, because random guessing produces the diagonal line
between (0,0) and (1,1), which has an area of 0.5, no realistic classifier should have
an AUC less than 0.5.
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0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

False Positive rate

T
ru

e 
P

os
iti

ve
 r

at
e A

B

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

False Positive rate

T
ru

e 
P

os
iti

ve
 r

at
e

A

B
(a) (b)

Fig. 2 The area under ROC curves (AUC)

The AUC of a classifier is equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative instance.
This is equivalent to the Wilcoxon test of ranks (Hanley and McNeil 1982). Figure 2a
shows the areas under two ROC curves, A and B. B has greater area and therefore
better average performance, though A performs better than B in the upper right region
of ROC space.

ROC analysis is commonly used for two classes, but it has been extended to multiple
classes (Srinivasan 1999). Unfortunately, visualizing the result for more than two clas-
ses is non-intuitive. In practice, n classes are commonly handled by producing n dif-
ferent ROC graphs. Let C be the set of all classes. ROC graph i plots the classification
performance using class ci as the positive class and all other classes c j �=i ∈ C as the
negative class. Each such graph yields an AUC value.

For a single probabilistic classifier this produces n separate curves with n different
AUC values. The AUC values can be combined into a single weighted sum where the
weight of each class ci is proportional to the class’s prevalence in the training set:

AUCtotal =
∑

ci∈C

AUC(ci ) · p(ci )

2.2 The ROC convex hull

Provost and Fawcett (1998, 2001) have shown some important properties of the convex
hull of a set of points in ROC space. The details are beyond the scope of this article,
but a classifier is potentially optimal if and only if it lies on the convex hull of the set
of points in ROC space. We call the convex hull of the set of points in ROC space the
ROC convex hull (ROCCH) of the corresponding set of classifiers.

This ROCCH formulation has a number of useful implications. In use, since only
the classifiers whose operating points are on the convex hull are potentially optimal,
no other classifiers need to be retained. Furthermore, in rule learning, the convex hull
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can be used to efficiently keep track of the best individual rules yet found. This may
in turn be used to guide generation of new rules, as Sect. 3.2 explains.

2.3 Rulelists and the ROCCH

PRIE constructs a rulelist: an ordered list of rules which, in use, will be tested one at
a time against a new instance. The rules are tested in order until one of them matches
or until the rulelist is exhausted. The score then emitted for the instance will be based
on the rule’s statistics.

Each rule is a conjunction of conditions, the satisfaction of which implies member-
ship in a class. For simplicity, consider a two-class problem with classes p and n. An
example of a simple rule and some of its performance statistics is:

x1 ∧ x2 ∧ x3 −→ p
TP = 15, P = 100, TPrate = .15
FP = 2, N = 200, FPrate = .01

The second line specifies that within the dataset, 15 p examples satisfy x1 ∧ x2 ∧ x3
(True Positives). There are 100 p examples altogether, yielding a true positive rate
(TPrate) of .15. The rule matches two n examples (False Positives). There are 200 n
examples altogether, yielding a false positive rate (FPrate) of .01.

Rulelists have a natural correspondence to ROC points and to the ROCCH. Rules
on a rulelist are naturally ordered by likelihood. Each rule in a rulelist corresponds
to a point on an ROC curve. The probability that a given rule matches an instance
corresponds to the conditional probability that the instance satisfies its conditions,
given that it fails to satisfy all preceding rules on the rulelist. Figure 3 illustrates this
relationship. At the bottom is a list of 11 rules learned from the UCI “car” domain
with two classes, acc (positive class) and unacc (negative class). Each rule has two
lines: its number and the text (antecedents and consequent) of the rule on the first line,
and its local statistics on the second. The local statistics describe how many positive
(P) and negative (N) examples matched against it in the training set, and from those
how many were correct (TP) and incorrect (FP).

At the top of Fig. 3 is an ROC graph illustrating the rulelist’s performance. Each
point is labeled by the rule to which it corresponds. More precisely, each point corre-
sponds to a prefix of the rulelist. For example, the point labeled 7 on the ROC graph
represents the performance that would be derived if only the first seven rules were
tested on an instance. It lies at (.06,0.5) in ROC space. The TP rate can be determined
by adding the TPs of rules 1–7 (235) and dividing by the number of positives (P=467).
The FP rate can be determined by adding the FPs of rules 1–7 (13) and dividing by the
number of negatives (N=220). If an example were to be classified by this rulelist, and
it failed to match rules 1–6 but matched rule 7, the example’s score would be given
as 235/(235 + 13) ≈ 0.95. If an example failed to match any rule in the rulelist, it
would be given the score of 467/(220 + 467) ≈ 0.68, which is the prior probability
of the acc class.
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A system for generating rulelists to maximize ROC performance 213

N Conditions
1 (maint = med) AND (lug boot = big) → acc

TP: 59 FP: 0 P: 467 N: 220
2 (maint = low) AND (lug boot = big) → acc

TP: 58 FP: 0 P: 408 N: 220
3 (safety = high) AND (maint = low)

AND (lug boot = med) → acc
TP: 28 FP: 0 P: 350 N: 220

4 (maint = med) AND (lug boot = med)
AND (safety = high) → acc
TP: 27 FP: 0 P: 322 N: 220

5 (maint = low) AND (doors = 5more) → acc
TP: 19 FP: 3 P: 295 N: 220

6 (maint = low) AND (doors = 4) → acc
TP: 18 FP: 4 P: 276 N: 217

N Conditions
7 (maint = med) AND (lug boot = med) → acc

TP: 26 FP: 6 P: 258 N: 213
8 (safety = high) AND (doors = 3) → acc

TP: 40 FP: 15 P: 232 N: 207
9 (safety = high) AND (lug boot = big)

AND (doors = 5more) → acc
TP: 10 FP: 5 P: 192 N: 192

10 (safety = high) AND (lug boot = big) → acc
TP: 17 FP: 9 P: 182 N: 187

11 (safety = high) → acc
TP: 73 FP: 46 P: 165 N: 178

Fig. 3 A rulelist (bottom) for the “car” domain and the corresponding ROC curve (top) with respect to the
acc class

This rulelist may thus be seen as a single classifier composed of 11 pieces. It can
be “thresholded” by cutting off evaluation at any of these 11 pieces, and thus yields
an ROC curve with 11 points, plus the two endpoints at (0,0) and (1,1). PRIE’s goal is
to construct such a rulelist with the best possible ROC performance. The way it goes
about generating rules and assembling a rulelist from them is described next.

3 PRIE

PRIE is a separate-and-conquer rule learner (Fürnkranz 1999; Fürnkranz and Flach
2005). It may be thought of as comprising an outer loop and an inner loop. The outer
loop iteratively chooses the best existing rule and adds it to the end of the rulelist.
As rules are added to the rulelist, the instances they match are removed from consid-
eration (“covered”). The inner loop develops new rules for the outer loop to extract.
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214 T. Fawcett

What makes PRIE different is that the outer loop covers examples based on ROC per-
formance, and the inner loop uses ROC performance to suggest new promising rules.

Rule generation is accomplished by two interleaved processes. One process cal-
culates the convex hull in ROC space, then repeatedly tries to generate rules that
independently extend the hull. The outer process extracts the left-most rule of the con-
vex hull, inserts the rule at the end of a rulelist, then removes those instances matched
by the rule, and re-invokes the first process. The entire rule generation method may be
seen as a process that “shrinks” ROC space iteratively then attempts to find the best
(most conservative) individual rule in that space.

3.1 Rule selection and instance covering (outer loop)

The inner loop is discussed in more detail below. The outer loop comprises the higher
level actions of the rulelist generation process. PRIE maintains a global rulelist, ini-
tially empty, and adds successive rules to the end of it. Algorithm 1 is a basic description
of the outer loop process.

PRIE maintains one ROC space for each class under consideration. Each space is
a class reference ROC (Fawcett 2006), i.e. if C is the set of classes, for every class
ci ∈ C there is an ROC space ROCi such that the positive class p = ci and the negative
class n = {c j ∈ C | j �= i}. Each of these ROC spaces is initialized to be simply a line
connecting (0,0) and (1,1).

PRIE then generates singleton rules for attributes. For each discrete-valued attribute
a j with a value v j,k it creates a rule:

(a j = v j,k)→ ci

For each set-valued attribute a j with a value v j,k , PRIE creates a rule:

(v j,k ∈ a j )→ ci

For each continuous-valued attribute a j with a value v j,k , PRIE creates two rules:

(a j < v j,k)→ ci

(a j ≥ v j,k)→ ci

For all these singleton rules, PRIE calculates the rule statistics (TP and FP and their
corresponding rates), then calculates their position in ROCi space and calculates the
convex hull.2

PRIE then enters its outer loop. Given each of the ROCi spaces, it attempts to
develop each space as described in Sect. 3.2. Once this is done, it extracts the single
highest likelihood rule from all of the convex hull of each class. The highest likeli-
hood rule corresponds to the endpoint of the leftmost segment of the hull. If there

2 As an implementation note, PRIE keeps bit vectors with all rules, so calculating and updating rule statistics
is very fast. Calculating and updating convex hulls is also efficient.
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A system for generating rulelists to maximize ROC performance 215

Algorithm 1 Rule generation algorithm
Given: C: Set of classes; I: Set of instances, each containing an instance vector and class assignment
Output: RL: rulelist

1: RL ← 〈〉
2: for c ∈ Classes do
3: Hullc ← 〈(0, 0), (1, 1)〉
4: end for
5: Create initial rules for discrete and set-valued attributes
6: Create initial rules for continuous attributes
7: repeat
8: for c ∈ Classes do
9: Develop_rules_for(ROCc)
10: end for
11: R← Extract_best_rule
12: Add R to end of RL
13: Remove R from all ROCc spaces
14: Recompute each ROC convex hull Hullc
15: until all ROC convex hulls are diagonal lines from (0,0) to (1,1)
16: Output RL

are multiple vertical segments, the one with the highest TP rate is chosen. In Fig. 3,
rule 1 would be considered the highest likelihood rule. This rule is added to the end
of the global rulelist, and all of the ROCi spaces are adjusted accordingly. Finally, the
convex hulls are recomputed.

Conceptually, this iterative extraction of rules may be thought of as excising suc-
cessive lower left (L-shaped) portions of ROC space. Fürnkranz and Flach (2005)
discuss separate-and-cover rule-learning algorithms and how the successive removal
of examples implicitly shifts to successively nested PN spaces.3 This is exactly what
PRIE is doing explicitly as it extracts rules for its rulelist. Extracting a rule affects all
the ROC spaces so they must be adjusted.

This process continues until all the ROC spaces are exhausted, i.e. they are reduced
to a single line connecting (0,0) to (1,1). At this point, the global rulelist is output and
PRIE terminates.

3.2 Constraining rule generation

PRIE’s inner loop is responsible for generating new rules. It does this by combining
existing rules, by conjoining their conditions. It operates independently over each of
the ROC spaces it maintains.

One key issue for any separate-and-cover rule learning algorithm is how to generate
promising new rules. Considering every possible combination of features is NP-com-
plete so rule learning systems must use heuristics to guide their search. PRIE attempts
to determine, for each of its ROC spaces, which combinations of existing rules are

3 PN space is simply an unscaled version of ROC space in which the axes are labeled by the number of
examples rather than the example proportions. For discussing evaluation metrics, PN space is often more
natural than ROC space, though most of the properties of PN space also hold for ROC space.
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likely to extend the convex hull. If the new rule would be unlikely to extend the ROC
convex hull, it can be eliminated from consideration. In fact, geometric properties of
ROC space can be used to eliminate large numbers of rules from consideration. Before
explaining how PRIE’s inner loop works in Sect. 3.3, we describe the principles under-
lying its process for deciding which rules to combine.

If we conjoin the conditions of two rules α and β to create a new rule γ , where will
the new rule lie in ROC space? The answer depends on the intersections among the
TP and FP sets of α and β; that is, upon their attribute interactions.

Let tprγ be the expected true positive rate of γ and let x be an instance in the true
positive set of γ . Then:

tprγ ≈ p(x ∈ TPγ )

≈ p(x ∈ TPα ∧ x ∈ TPβ)

A useful simplification is to assume that the rules are conditionally independent, so
the probability of an instance matching one rule is independent of the probability of
it matching the other. If we assume independence of α and β,

tprγ ≈ p(x ∈ TPα) · p(x ∈ TPβ)

≈ | TPα |
| P | ·

| TPβ |
| P |

≈ tprα · tprβ

A similar derivation can be done for the expected false positive rate fprγ . Thus, the
conjunction of two rules α and β can be expected to lie in ROC space at:

γ = (
fprα · fprβ, tprα · tprβ

)
(1)

Figure 4 shows an ROC graph of two rules, α at (0.6, 0.85) and β at (0.35, 0.70). Rule
γ is plotted at (0.21, 0.595) as calculated by Eq. 1.

Equation 1 may be used as a heuristic to constrain rule generation. Given two exist-
ing rules α and β, we can use this equation to estimate whether combining them would
produce a new rule whose ROC position lies beyond the ROC convex hull (and so
would extend it). If it would, we can proceed with the (presumably much more expen-
sive) process of combining the rules performing instance matching to determine the
actual performance of the new rule.

In fact, a further optimization is possible. It is not strictly necessary to examine all
pairs of rules and test them with (1). For any given rule a, we can quickly eliminate
from consideration many rules that would not likely extend the hull when combined
with a.

Refer to Fig. 5. The ROC convex hull is made up of line segments connecting pairs
of rules. One such hull segment is shown in the figure. Consider some existing rule a,
shown in the figure. It is not necessary to test every other rule z using (1) to determine
whether a ∧ z would lie beyond this hull segment. We can do this by plugging a’s
position into (1).
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Given a rule α and a hull segment hi ∈ H , we can create a corresponding boundary
line wi . If a second rule β does not lie above wi , then α∧β will not lie above the hull
line hi , and the combination α ∧ β need not be considered. Given a hull line segment
hi expressed in the line equation y = mhull · x + bhull , points lying above this line
must satisfy the inequality:

y > mhull · x + bhull

Let rule α have true positive rate tpα and false positive rate fpα . By (1), for a second
rule rβ to produce a rule above this hull line when conjoined with α, it must satisfy
the inequality:

y · tpα > mhull · x · fpα + bhull (2)

tpβ · tpα > mhull · fpβ · fpα + bhull (3)

tpβ >
fpα · mhull

tpα

· fpβ +
bhull

tpα

(4)

This inequality yields a “constraint line” below which no rule should be considered
for combining with α to extend segment hi .

Figure 5 shows an example of this. Assume there is a hull segment from (.1, .4) to
(.3,.6), shown as a solid line in the figure. We have a rule labeled a at (.35, .6), and we
want to determine which rules, when combined a, will likely produce a new rule that
lies beyond (the left of) this hull segment. Using the inequality in (4) we can derive
the equation of a line:

y = 0.58 · x + 0.5

which forms the dashed constraint line shown in Fig. 5. When considering rules to
combine with a, we can immediately remove from consideration any rule lying to the
right of the constraint line. Thus, rule c is a promising choice for conjoining with a,
but b is not.

3.3 Rule generation (inner loop)

PRIE’s inner loop is responsible for generating new rules by conjoining the condi-
tions of existing rules. PRIE operates independently over each of the ROC spaces it
maintains, using the techniques of the last sections to develop rules for each space.

Each hull segment is examined in turn and rule pairs are considered whose con-
junction might extend the hull; that is, whose conjunction is predicted to lie to the
northwest of the segment, in the portion of ROC space as yet uncovered. PRIE uses
the principles in Sect. 3.2 to constrain its search for combinations.

Prior to generating the new rule, the antecedents of the constituent rules are checked
for tests that might render the conjunction useless. For example, if one rule contains
a test (ai = v) and the other contains a test (ai =w) for two distinct values v and w,
the two would not be combined. Another such test is for conditions like ai<v and
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A system for generating rulelists to maximize ROC performance 219

ai>v being combined in the conjoined rule. In addition, duplicate tests within the
antecedents are removed.

4 Empirical validation

In this section, we compare PRIE’s performance against various other induction meth-
ods. The domains for evaluation are described and summarized in Table 1. These results
are based on 10-fold cross-validation, and all values are given as means and standard
deviations.

4.1 PRIE versus randomness

As a baseline, we compare PRIE’s rule generation method against a method that evalu-
ates rules randomly when considering whether they should be combined. Specifically,
when considering whether a new rule conjunction is likely to extend the ROC hull,
this random method generates a random number between −1 and 1 as an estimate
of how far to the left of a hull segment the new rule will be. We would expect such
random estimates not to perform very well, and in fact the results shown in Table 2
shows they do not. A Wilcoxon Matched-pair Signed-Ranks Test confirms this.

4.2 PRIE versus error minimization methods

Next we compare PRIE against error minimization methods. Previous work (Fawcett
2001) showed that rules used for scoring performed better on maximizing the AUC
than the same rules with just their hard classifications. This is not a surprising result,
since hard classifications produce a single ROC point, whereas scores can produce a
set of points (a curve) in ROC space. Figure 2b illustrates this. However, it remains
to be seen whether a system like PRIE, designed to maximize AUC performance, can
perform better than error minimizing rules interpreted probabilistically.

Previous work (Fawcett 2001) evaluated the performance of rule sets for maximiz-
ing the AUC, but there are two significant differences with that work. The goal of that
work was to use standard error minimizing (i.e. accuracy maximizing) rule genera-
tion techniques to see how they could best be used to maximize AUC. In addition,
that work experimented with a variety of rule resolution techniques—methods for
combining the responses of multiple matching rules—to determine which was most
effective in maximizing AUC. That paper concluded that a weighted voting scheme
(called WVOTE) performed best with the error-minimizing rules.

In this section we compare the best results from that paper with PRIE’s results.
Table 3 shows the AUC results of PRIE and the AUC results of C4.5rules using the
WVOTE protocol. PRIE’s performance is comparable to the weighted voting of accu-
racy-maximizing rulesets.

4.3 PRIE and other rule-learning methods

ROCCER (Prati and Flach 2005) is an AUC-maximizing rule learning method. As
such, it is a competitor with PRIE. ROCCER uses an association rule learning method
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220 T. Fawcett

Table 1 Datasets and their characteristics

Name Instances Classes Attributes

N Proportions N Type

Breast 683 2 65/34 9 0 + 9

Breast-wisc 683 2 65/34 9 0 + 9

Breast-wpbc 198 2 76/23 32 0 + 32

Bupa 345 2 57/42 34 0 + 34

Car 1728 2 70/29 34 6 + 28

Cmc 1473 3 42/34/22 34 7 + 27

Covtype 5000 7 24/18/18/12/11/9/3 34 4 + 30

Crx 653 2 54/45 34 9 + 25

Dermatology-BBa 366 2 69/30 34 33 + 1

Ecoli 336 2 89/10 34 26 + 8

Flag 194 8 35/24/20/8/4/4/1/0 33 32 + 1

Flag-Prati 194 2 91/8 33 22 + 11

German 1000 2 70/30 33 23 + 10

Glass 214 2 92/7 32 16 + 16

Glass-RS 205 5 37/34/14/8/6 32 16 + 16

Haberman 306 2 73/26 33 16 + 17

Heart 270 2 55/44 33 15 + 18

Image 2310 7 14/14/14/14/14/14/14 33 11 + 22

Ionosphere 351 2 64/35 34 0 + 34

Kr-vs-kp 3196 2 52/47 36 36 + 0

Letter-a 20000 2 96/3 36 20 + 16

Mushroom 5644 2 61/38 36 36 + 0

New-thyroid 215 2 86/13 36 31 + 5

Nursery 12960 2 97/2 36 36 + 0

Optdigits 5620 10 10/10/10/10/10/9/9/9/9/9 64 0 + 64

Page-blocks 5473 5 89/6/2/1/0 64 0 + 64

Pima 768 2 65/34 64 0 + 64

Promoters 106 2 50/50 64 57 + 7

Sonar 208 2 53/46 64 0 + 64

Splice 3190 3 51/24/24 64 60 + 4

Vehicle 846 2 76/23 64 42 + 22

Yeast 1484 10 31/28/16/10/3/2/2/2/1/0 63 42 + 21

Attribute type in the form “d + c” is the number of discrete and continuous attributes
a This is the UCI dermatology domain as converted by Barakat and Bradley (2006): a two-class domain
comprising the original class 1, and class 2 comprising the original classes 2 through 6

to generate rules. It attempts to insert each rule into a rulelist, testing the resulting
rulelist’s ROC classification performance. If the new rule improves the performance,
it is retained, else it is discarded.
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Table 2 PRIE compared to a
random rule generation method

Dataset AUC using random PRIE

Bupa 68.3± 9.1 69.9± 7.4

Car 93.5± 3.0 94.0± 1.7

Covtype 79.6± 0.7 87.8± 1.3

Haberman 67.0± 11.5 67.2± 16.3

Promoters 79.2± 13.7 83.3± 13.9

Sonar 62.9± 12.3 65.3± 10.9

Splice 83.8± 3.3 93.0± 1.7

Vehicle 97.2± 1.9 98.3± 1.3

Yeast 54.9± 2.5 56.5± 2.1

Table 3 PRIE compared to
weighted voting (WVOTE) of
accuracy-maximizing rules

Dataset AUC using WVOTE PRIE

Breast-wisc 97.3± 3.6 98.1± 1.8

Car 98.3± 0.7 94.0± 1.7

Cmc 66.4± 4.9 66.1± 3.2

Covtype 82.2± 1.4 87.8± 1.3

Crx 90.2± 3.4 91.0± 4.4

German 68.4± 9.9 74.2± 5.0

Glass 75.5± 6.0 82.5± 12.5

Image 99.0± 0.5 99.0± 0.4

Kr-vs-kp 99.7± 0.2 98.5± 0.6

Mushroom 100.0± 0.0 100.0± 0.0

Nursery 99.8± .1 99.0± 0.3

Promoters 88.9± 13 83.3± 13.9

Sonar 76.9± 14 65.3± 10.9

Splice 97.2± 0.7 93.0± 1.7

Table 4 shows ROCCER’s performance results compared to PRIE’s on fifteen
domains4 reported by Prati and Flach (2005). The table shows that PRIE performs
on par on these domains with ROCCER. A Wilcoxon Matched-pair Signed-Ranks
Test confirmed that there was no statistical difference.

Prati and Flach also reported the number of rules selected by their system, and
compared these numbers to the number of rules selected by CN2 (Clark and Niblett
1989; Clark and Boswell 1991), a competing rule learning system that attempts to
maximize accuracy. Their results are reported in Table 5 along with PRIE’s results
from the same domains. It is difficult to draw conclusions from only three domains,
but on this sample PRIE’s rulelists contain fewer rules than CN2 does.

4 Satimage is not included because the contributors of that domain specified that it should not be used in
cross-validation, upon which these results are based.
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Table 4 PRIE compared to
ROCCER

Dataset ROCCER PRIE

Breast 98.63± 1.88 98.1± 1.8

Bupa 65.30± 7.93 69.9± 7.4

E-coli-prati 90.31± 11.56 94.1± 7.5

Flag 61.83± 24.14 68.2± 16.1

German 72.08± 6.02 74.2± 5.0

Glass 79.45± 12.98 82.5± 12.5

Haberman 66.41± 11.54 67.2± 16.3

Heart 85.78± 8.43 80.3± 6.8

Ionosphere 94.18± 4.49 93.7± 5.4

Kr-vs-kp 99.35± 0.36 98.5± 0.6

Letter-a 96.08± 0.52 99.4± 0.4

New-thyroid 98.40± 1.70 96.1± 7.8

Nursery 97.85± 0.44 99.0± 0.3

Pima 70.68± 5.09 78.9± 6.2

Vehicle 96.42± 1.47 98.3± 1.3

Table 5 Number of rules
selected by CN2, ROCCER and
PRIE

Dataset CN2 ROCCER PRIE

German 139.8± 5.9 29.9± 2.88 57.6± 5.2

Pima 158.5± 12.3 11.8± 1.32 44± 1.7

Sonar 31.6± 1.71 62.5± 3.59 21.5± 1.8

Table 6 PRIE compared to the
SVM rule extraction method of
Barakat and Bradley

Values given are AUC and
standard deviation

Dataset SVM SVM + Rules PRIE

Pima 82 ± 3 94 ± 2 78.9± 6.2

Breast cancer 97 ± 1 96 ± 2 98.1± 1.8

Heart 89 ± 4 81 ± 5.1 80.3± 6.8

Dermatology 1.00 ± 0 98.4 ± 1.1 99.5± 0.5

As another comparison, we consider the work of Barakat and Bradley (2006). They
point out that, because support vector machines are “black box” classifiers, some work
has been done on generating rulesets from SVMs. The goal is to obtain a classifier
that retains much of the performance of the SVM with the intelligibility of a rule set.
Barakat and Bradley specifically investigated the AUC performance of the SVMs and
the rulesets derived from them. Though it requires two steps—generating an SVM
from data, then generating a ruleset from the SVM—it achieves the same ends and
thus is a competing approach to PRIE. It is worth comparing their results to PRIE’s.

Barakat and Bradley (2006) compared their approach on only four domains. Their
results are shown in Table 6. After the domain name is the AUC value obtained from
the original SVM trained on the data, followed by the AUC obtained from the ruleset
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generated from the SVM. The fourth column shows the results of PRIE on the domain.
These data show that PRIE is comparable to the rules extracted from an SVM on these
domains.

5 Conclusions and future work

PRIE is an induction technique that is able to generate rules directly from ROC space
when the goal is to maximize the area under the ROC curve. PRIE uses basic princi-
ples from rule learning and computational geometry to focus the search for promising
rule combinations. The result is a system that can learn intelligible rulelists with good
ROC performance. Empirical results show that PRIE’s rules compare favorably with
those of other similar induction techniques.

As mentioned in Sect. 3.1, PRIE discretizes continuous attributes by generating
discrete singleton rules from every cut-point. It then “drops” these rules into ROC
space and lets them compete with others to form new rules. Thus PRIE implicitly uses
ROC space to determine effective cut-points; the best discretizations will end up on
the convex hull. To the best of our knowledge, this is the first time ROC space has
been used as a discretization technique in data mining, though it is used here in con-
junction with rule learning. An area of future work is to investigate this discretization
method independently, against other discretization techniques, to determine the extent
to which the attribute discretization is a factor in rule-learning performance.

In terms of system control, PRIE may be seen as complementary to the ROCCER
system (Prati and Flach 2005). ROCCER takes rules generated from an association
rule learner and examines their ROC performance when placed into a rulelist. Thus
ROCCER may be seen as generating from the rule lattice space and filtering in ROC
space. On the other hand, PRIE generates rules directly from ROC space, but it must
employ post-processing tests (described in the last paragraph of Sect. 3.3) to filter
obviously poor combinations. In a sense, these tests are incorporating information
about the structure of rule space that an association rule learner employs directly. One
interesting area of future work is to attempt a more concerted integration of these
spaces, so that both rule space information and ROC performance expectations are
used in parallel to maximum effect.
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