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Abstract Classification is a well-studied problem in data mining. Classification
performance was originally gauged almost exclusively using predictive accuracy,
but as work in the field progressed, more sophisticated measures of classifier util-
ity that better represented the value of the induced knowledge were introduced.
Nonetheless, most work still ignored the cost of acquiring training examples,
even though this cost impacts the total utility of the data mining process. In this
article we analyze the relationship between the number of acquired training
examples and the utility of the data mining process and, given the necessary
cost information, we determine the number of training examples that yields the
optimum overall performance. We then extend this analysis to include the cost
of model induction—measured in terms of the CPU time required to generate
the model. While our cost model does not take into account all possible costs,
our analysis provides some useful insights and a template for future analyses
using more sophisticated cost models. Because our analysis is based on experi-
ments that acquire the full set of training examples, it cannot directly be used to
find a classifier with optimal or near-optimal total utility. To address this issue
we introduce two progressive sampling strategies that are empirically shown to
produce classifiers with near-optimal total utility.
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1 Introduction

Classification is an important application area for data mining. Originally only
simple measures like predictive accuracy were used to evaluate the utility of a
classifier, but as the field advanced and more complex problems were addressed,
more sophisticated performance measures were introduced—measures that
more accurately reflect how the classifier will be used in its target environment.
However, the quality of a classifier is still almost always measured exclusively by
its performance on new examples, without considering the costs associated with
acquiring the training data or the costs associated with generating the model.
Recently, the topic of Utility-Based Data Mining has focused attention on the
need to maximize the utility of the entire data mining process (Weiss et al. 2005;
Zadrozny et al. 2006). The research in this article makes several contributions
to Utility-Based Data Mining.

The first contribution of this article is that it fills a gap in the research on
Utility-Based Data Mining by analyzing the impact on data mining of what
Turney (2000) refers to as “the cost of cases,” which is the cost associated with
acquiring complete training examples. We find it surprising and notable that this
cost has not been studied before because this cost occurs in many real-world
situations. In particular, we have experienced this cost as data mining practi-
tioners in several settings. In one case, customer data had to be acquired from
an external vendor, which charged based on the amount of data purchased. In
another instance the raw data was available for free, but at a level unsuitable
for data mining. The process of aggregating the data to the appropriate level
for data mining was extremely time consuming and computationally expensive,
given that billions of records were involved. Thus, even though the raw data
was available at no cost, there was a cost in generating useful data—and this
cost could be reduced by generating fewer aggregated records.

It is also surprising that the cost of cases has not been studied since other
classifier costs have been studied extensively. In particular, the cost of label-
ing examples (Lewis and Catlett 1994) and the cost of measuring features
(Greiner et al. 2002; Veeramachaneni and Avesani 2003) have been studied in
the context of active learning (Cohn et al. 1994), where one has a choice of what
to label or to measure, while the costs associated with misclassification errors
have been studied in the context of cost-sensitive learning (Elkan 2001). In this
article we study the trade-off between the amount of training data used and
overall classifier utility when each training example incurs a fixed cost (this is
the “cost of cases”). We view this as a simple instance of active learning (a topic
subsumed by Utility-Based Data Mining), where the only choice one has is the
amount of training data to acquire.

One of the challenges of Utility-Based Data Mining is to maximize the utility
of the data mining process when there are competing costs and benefits. This can
be especially difficult when these costs and/or benefits occur at different stages
in the data mining process and hence cannot be optimized simultaneously. For
classification tasks the data mining process can be thought of has having three
main stages: (1) data acquisition, (2) model induction, and (3) application of the
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induced model to classify new data. We know of no prior data mining research
that considers the utility values associated with all of these stages. However, the
utility/cost model that we use in this article, described in Sect. 2, allows us to do
just that. While our utility model is not completely realistic in that it does not
consider all possible costs and/or benefits, it is nonetheless more complete than
what is typically used in practice, which only considers the utility associated with
applying the induced classifier to new data. Furthermore, we believe that the
analysis we provide based on this utility model provides general insights into
the data mining process and the trade-offs involved when data mining—and just
as importantly, that our analysis can be adapted for more sophisticated utility
models. We also expect that this work will stimulate more work in this area and
lead to the analysis of increasingly sophisticated utility models. In summary,
the second contribution of our research is that it addresses one of the central
challenges of Utility-Based Data Mining by analyzing the trade-offs between
decisions made at different stages of the data mining process and identifies, for
a number of data sets, the decisions that lead to the optimal-utility classifier.

The empirical analysis of our utility model demonstrates how different deci-
sions lead to classifiers with different total utility. While this enables us to
identify the decisions that lead to the optimal-utility classifier, this is not an
actionable strategy since the empirical analysis involves trying out a variety of
decisions (such as the specific number of training examples to acquire) and
once a decision is made the associated cost is immediately incurred. In order
to develop an actionable strategy for identifying the optimal-utility classifier,
we need to search the space of decisions more carefully. The third main contri-
bution of our research is that we develop such a strategy, by using progressive
sampling (Provost et al. 1999) to heuristically identify the number of training
examples that maximizes the utility of the data mining process. Our results
indicate that this heuristic method performs quite well. One should also be
able to adapt this progressive sampling strategy to handle more sophisticated
utility models. It is worth pointing out that this notion of a progressive sam-
pling strategy fits nicely with the data mining paradigm (Fayyad et al. 1996),
which is an iterative, incremental, process. Such a process is critical since only
in this way can we hope to optimize decisions that are inter-related but are
made at different stages in the data mining process. In fact, we would argue
that this is not coincidental—the data mining process is iterative because of the
need to refine a set of interrelated decisions. While the overhead associated
with an iterative process may seem prohibitive, such overhead is almost always
unavoidable when tackling complex, real-world, problems.

This article is organized as follows. In Sect. 2 we describe the utility/cost
model. In Sect. 3 we describe our experiments and, in Sect. 4, we present our
main experimental results. These results allow us to analyze the relationship
between the factors in our utility model and overall classifier utility. In Sect. 5
we present two simple progressive sampling strategies that are shown to be
effective at generating classifiers that are near-optimal in terms of the overall
utility of the data mining process. Related work is discussed in Sect. 6 and Sect. 7
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provides some concluding remarks and outlines possible future extensions to
this work.

2 The utility/cost model

The total utility of a classifier, which incorporates the costs and benefits asso-
ciated with the entire data mining process, can only be evaluated if the costs
and benefits are enumerated and assigned specific weights. In this section we
describe our utility model, the motivation for it, and its limitations.

The data mining process for a classification task can be partitioned into the
three stages described in Sect. 1. The total utility of a classifier can be described
conceptually as the sum of the utilities for these stages, as shown in Eq. (1).

Total Utility = Utilitydata-acquisition + Utilitymodel-induction

+ Utilityinduced-classifier (1)

The utilities associated with data acquisition and model induction will always
be non-positive and generally will be negative. We expect to derive benefits from
acquiring the data and inducing the model, but these benefits will be realized in
the third stage. This third component, the utility of the induced classifier, will
generally have a positive utility. The Utility-Based Data Mining problem then
is to maximize the total utility. Note that for Eq. 1 to be meaningful the terms
must share the same units. We discuss this shortly.

The utility of the induced classifier could be measured by assigning a positive
utility to each new example correctly classified and a negative utility to those
incorrectly classified. However, most work in cost-sensitive learning assigns a
cost to the incorrect classifications and no cost to the correct classifications, and
we adopt this scheme. Thus our task is to minimize the total cost rather than to
maximize total utility. This is reflected in Eq. (2). We assume that all costs are
expressed in the same units, such as dollars.

Total Cost = Costdata-acquisition + Costmodel-induction

+ Costmisclassification-errors (2)

There are numerous ways to measure the costs associated with these three
stages of the data mining process. We make a specific set of assumptions. For the
cost of data acquisition, we only consider the “cost of cases” described in Sect. 1.
We do this because this cost has never been studied in detail. We measure the
cost of model induction exclusively in terms of CPU time, although we recog-
nize that this cost could be measured in other ways (memory used, elapsed time,
hardware costs, etc.). Given that we are more concerned with showing how to
trade off the costs at different stages of the data mining process than with the
specific costs, we believe that this simplifying assumption is reasonable. Finally,
the cost of misclassification errors is conceptually straightforward to compute,
given a fixed cost for each error.
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Equation 3 shows how total cost is actually calculated in our study. For each
experiment we know the number of training examples, n, the CPU time required
to build the classifier, CPU, and the estimated error rate of the classifier e, based
on its performance on a test set. The data acquisition cost is simply the num-
ber of training examples, n, multiplied by the cost per training example, Ctr.
The cost of model induction is the CPU time multiplied by Ctime, the cost per
unit of CPU time. Computing the cost of misclassification errors is not quite
as straightforward since this cost depends on the number of examples in the
“score” data set, S, that are ultimately classified using the classifier. This score
set is not the same as the test set, since the examples in the test set contain the
correct classification and the sole purpose of the test set is to estimate the error
rate of the classifier. In order to compute the number of errors that the classifier
will make, we must multiply e by the size of S, denoted |S|, and then multiply
this by the cost per error, Cerr, to get the cost of misclassification errors. Note
that the three cost “factors”, Ctr, Ctime, and Cerr must all convert the costs to
the same units, such as the cost in dollars.

Total Cost = n · Ctr + CPU · Ctime + e · |S| · Cerr (3)

Although we do not know the value of |S| for any of the data sets in this
article, a domain expert should be able to estimate its value, although this may
not always be a simple task. With specific domain knowledge we should also be
able to estimate Ctr, Cerr, and Ctime and thus calculate the total cost. Unfor-
tunately, for the data sets used in this study we do not have this information.
Therefore we treat these values as variables and analyze the behavior for a wide
range of values. The problem with this is that four variables make a thorough
analysis difficult. However, we can eliminate one variable by arbitrarily assum-
ing |S| is 100. This does not reduce the generality of our results because we can
easily account for other values of |S| via a simple calculation. Namely, the cost
of misclassification errors is proportional to the product |S|·Cerr so that if we
find that |S| is 100,000 instead of 100, we can simply look at the experimental
results for Cerr/1,000 rather than Cerr. In a sense we are measuring the cost of
misclassification errors in terms of every 100 score examples and then adjusting
for different score set sizes. We can simplify things further by only tracking the
ratio of the three remaining cost factors. While the actual total cost will depend
on the actual cost factors, the optimal training set size will only depend on the
ratio of these costs. Note also that by specifying only the ratio of these costs, the
units are irrelevant—as long as the three terms in Eq. (3) share the same units.

For our experiments that do not consider the cost of model induction, we
simply report the cost ratio, Ctr:Cerr, where Ctr is typically 1 and Cerr ≥ 1.
Because we want to plot our results using numerical values, our figures report
the relative cost, which is simply Cerr/Ctr. For example, if the cost ratio is 1:100
then the relative cost is 100. Note that in this case, from a utility perspective it is
an even trade-off to purchase 100 training examples if it will reduce the number
of errors by 1 (as noted this assumes |S| is 100). We can remove the condition
on |S| by stating things in a slightly different manner: purchasing 100 training
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examples leads to an even trade-off if it results in a 1% (1/100) reduction in
error rate. When the cost of model induction is also considered, an additional
variable, Ctime, is introduced and its value is also measured relative to the other
two cost factors.

One potential issue with Eq. (3) is that if |S| is sufficiently large then the
cost of misclassification errors will dominate and no analysis is required—just
acquire as many training examples as possible and do not worry about the data
acquisition or model induction costs. We do not believe that the cost of misclas-
sification errors will always dominate the other costs. First, for some domains
the cost of acquiring training data is very significant and once a certain amount
of training data has been acquired, it may take tens or hundreds of thousands of
additional training examples in order to improve accuracy by even a tenth of a
percent (we observe this in Sect. 4 for several data sets). It is within that region
that we expect our utility model and analysis to be most useful. In addition,
|S| need not always be extremely large. As an example, consider the domain
of game playing. If the goal is to learn something about an opponent so that
one can design a game-playing strategy tailored to this opponent, the training
data will usually be costly, in terms of time, or money if betting is involved. For
example, if you want to learn something about an opponent in poker “you may
play only 50 or 100 hands against a given opponent and want to quickly learn
how to exploit them” (Hoehn et al. 2005). Finally, related work seems to support
our intuition that costs associated with data acquisition and model induction
are important. For example, the entire field of active learning is based on the
assumption that error cost will not totally dominate the various data acquisi-
tion costs—if it did then active learning would be unnecessary. Similarly, the
focus on scalable data mining algorithms would not be necessary if the cost of
misclassification errors always dominated the cost of computation.

One concern is whether a practitioner will be able to accurately estimate
the values of the three cost factors or the size of the score set. Fortunately
the figures we generate in Sect. 4 show the relationship between total cost and
these cost factors for a variety of values and this can aid a practitioner with
incomplete knowledge by allowing him to evaluate any number of “what if”
scenarios in order to help determine the optimal training set size. The figures
may also show that the utility of the classifier is relatively insensitive to cer-
tain costs, which can also be helpful. The problem a practitioner faces here is
actually quite similar to a problem often encountered in cost-sensitive learning,
since specific misclassification cost information is often not known. In that sit-
uation a practitioner may get some guidance by viewing any one of a number
of “performance curves” that encodes the performance of the classifier for a
variety of different decisions. The most common of these are precision/recall
curves (Van Rijsbergen 1979), lift curves (Berry and Linoff 2004), ROC curves
(Provost and Fawcett 2001), and, more recently, cost curves (Drummond and
Holte 2006). Thus the analysis and visualization techniques that we provide can
aid a practitioner with incomplete domain knowledge.
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Table 1 Description of data sets

Large data sets Medium data sets Small data sets

Forest-covertype 581,012 Adult 21,281 Network1 3,577

Census-income 299,284 Coding 20,000 Kr-vs-kp 3,196

Protein 145,750 Blackjack 15,000 Move 3,029

Physics 50,000 Boa1 11,000 German 1,000

3 Description of experiments

The analyses in this article are derived from a common set of experiments.
These experiments vary the size of the training set, generate a classifier from
the training data, and then record the training set size, accuracy of the induced
classifier, and the CPU time required to generate the classifier. These three mea-
sured quantities are later combined with specific cost information, as described
in Sect. 2, to determine the total cost associated with a classifier and to evalu-
ate the progressive sampling strategies described in Sect. 5. In this section we
provide the details of our experimental methodology and describe the data sets
employed in our study. The results of these experiments are provided in Sect. 4.

All of the experiments in this paper use C4.5 (Quinlan 1993), a popular deci-
sion tree learner that is a descendant of ID3. The twelve data sets analyzed
in this article are described in Table 1. For each data set the total number of
examples, for training and testing, are provided. The data sets are partitioned
into three groups (small, medium, and large) to simplify the presentation of
our results. The data sets were obtained from the following sources: the forest-
covertype and census-income data sets were obtained from the UCI KDD
Archive (Hettich and Bay 1999), the protein and physics data sets were obtained
from the KDD Cup 2004 competition (Caruna et al. 2004), the adult, kr-vs-kp
and german data sets were obtained from the UCI Machine Learning Repos-
itory (Newman et al. 1998), and the coding, blackjack, boa1, network1, and
move data sets were obtained from researchers at AT&T (these data sets have
been used in previous studies and are available from the author). The protein
and physics data sets were utilized in a simpler manner than in the KDD-Cup
competition, in that each record is treated as a single example and our learning
task is to maximize predictive accuracy.

For all experiments, 25% of the available data is randomly selected and
placed into the test set, while the remaining data is available for training. In
order to determine the relationship between training set size, predictive accu-
racy, and the time required to build a model, a variety of training set sizes are
generated and then used to build a classifier. Our basic sampling strategy is
simple and incrementally builds larger and larger training sets using a constant
increment amount. For each data set we generate 50 uniformly spaced training
set sizes, using random sampling from the 75% of the data allocated for train-
ing. In addition to these uniformly spaced training set sizes, we also evaluate



260 G. M. Weiss, Y. Tian

the following five (small) training set sizes, since we expect the learning curves
to exhibit dramatic changes when little data is available: 10, 50, 100, 500, and
1000. Other sampling schedules could have been employed, but as we will see in
Sect. 4.1, this simple schedule is adequate for generating good learning curves.

In order to improve the quality and statistical significance of the results,
multiple runs are employed and the reported accuracies and CPU times are
based on the averages over these runs. Due to the large number of experiments
and the computational resources required to run these experiments, fewer runs
were executed for the large data sets. For the small and medium sized data sets
100 runs were executed, while 20 runs were executed for all of the large data sets
except the forest-covertype data set, which used only 5 runs (in the next section
we show that for the large data sets many runs are not necessary in order to
generate reliable results). Throughout this article we place the most emphasis
on the large data sets, because those are the most representative of the types
of tasks we expect to encounter in practice—especially when data acquisition
costs and model induction costs are an issue. Due to space considerations we
focus our most detailed analyses on the forest-covertype data set, the largest
data set in our study. However, summary results are often provided for all data
sets.

There is one assumption in our experimental setup that deserves additional
discussion. There is a maximum amount of training data available for each data
set (i.e., 75% of the total data listed in Table 1). Given that one of the goals of
this work is to identify the optimum training set size, this limit is an issue. Ide-
ally we should be able to continue to acquire more and more data (at a cost).
Because we cannot do this our experiments and analyses are limited in that
they assume that there is a “maximum amount of potentially available training
data.” We do not believe that this is a critical issue given that some of our data
sets are quite large and that, in practice, there often is a limit to the amount of
data that can be purchased (e.g., there is a limit on the number of businesses
that exist).

4 Experimental results and analysis

The analyses in this article require knowing the relationship between training
set size and classifier accuracy, and hence in Sect. 4.1 we present the learning
curves for all of the data sets employed in this study. We use these results in
Sect. 4.2 to analyze the cost of cases, by looking at the relationship between
training set size and total cost. In this section we also determine the training
set size that yields optimal overall performance. This analysis is extended in
Sect. 4.3, when we also consider the cost of model induction, measured in terms
of CPU time. In Sect. 4.4 we provide a mathematical foundation for this work
by showing how the optimal training set size can be derived from the learning
curve.



Maximizing classifier utility 261

4.1 The learning curves

The learning curves displayed in this section are generated using multiple runs,
as described in Sect. 3. The learning curves for the large, medium, and small
data sets are displayed in Figs. 1–3, respectively (the learning curves for the
large data sets are plotted in separate sub-figures to improve their readability).
The learning curves for the four large data sets all show a rapid increase in
accuracy at the start, which then, as expected, diminishes as the training set size
increases. None of the four learning curves in Fig. 1 have reached a plateau,
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although the continuing improvement for the protein and physics data sets is
only evident upon a careful examination of the underlying data. The fact that in
some cases the improvement in accuracy is slight and may continue over tens of
thousands of examples (e.g., for the protein data set) is noteworthy because in
this situation the cost of acquiring training examples may very well prevent one
from acquiring all of the potentially available training examples. The learning
curves for the medium-sized data sets in Fig. 2 and the small-sized data sets in
Fig. 3 are similar to ones for the large data sets, except that in one case, for boa1,
it appears that the learning curve has reached a plateau.

We consider a learning curve to be “well behaved” if it is relatively smooth
and monotonically non-decreasing. The learning curves for most of the data
sets are relatively well behaved, although the large data sets, which have fur-
ther spaced samples, tend to generate better behaved learning curves than the
medium and small-sized data sets. We expect that the temporary decreases
in accuracy in the learning curves are due to statistical variations in the per-
formance of the learning algorithm, which would diminish if more runs were
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used to generate the learning curves. Because the quality of the learning curves
impacts the analysis in Sects. 4.2 and 4.3 as well as the progressive sampling
strategy described in Sect. 5, we show, for a few data sets, how the number of
runs impacts the behavior of the learning curves and how one might improve
the behavior of the learning curves.

Figure 4 shows the impact of the number of runs on the learning curves for
the census-income and coding data sets. Both of these clearly benefit from the
use of more runs, which leads to smoother learning curves. As stated in Sect. 3
our analyses are based on 20 runs for the census-income data set and 100 runs
for the coding data set. In the interest of space we do not show the analogous
figures for the other data sets, but they show similar patterns.

The increased number of runs generally leads to more well-behaved learning
curves because it increases the statistical significance of the results. To demon-
strate this—and to show that we could generate better behaved learning curves
if necessary—we took the results for the census-income data set using 20 runs
and iteratively applied the Student t-test (Snedecor and Cochran 1989) between
each data point and its successor. If the difference was not significant with 90%
confidence then we eliminated the successor and repeated the t-test between the
original point and the next successor. The results are displayed in Fig. 5. Note
that even though the original curve was based on 20 averaged runs, the learning
curve using the t-tests still leads to a better-behaved learning curve, with only
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one point showing a decrease in accuracy (the last point). We believe that this
method can be useful for improving learning curves and can especially improve
the effectiveness of the progressive sampling strategy described in Sect. 5.

We consider the issue of how to best generate well-behaved learning curves
a research question worthy of further study. The choice of learning algorithm,
the number of runs, the distance between samples all will impact the behavior
of the learning curve and a variety of statistical techniques could be use to help
smooth these curves (including the technique described above). Because this is
not the focus of our research, we leave this for future work and do not use this
t-test “filtering” method in our analysis. However, our results indicate that such
a method would lead to only modest improvements in our results.

4.2 Analysis of the cost of cases on classifier utility

In this section we analyze how the cost of training examples impacts the over-
all utility of a classifier. We use Eq. (3) to calculate total cost, but in this
section ignore the second term, which concerns the cost of model induc-
tion (i.e., Ctime is set to 0). We begin with a detailed analysis of the forest-
covertype data set and then provide summary results for the other data sets.
Figure 6 shows the relationship between the total cost associated with the clas-
sifiers induced from the forest-covertype data set and the number of training
examples. Each curve in Fig. 6 is labeled with a cost ratio (Ctr:Cerr), which is
required to compute the total cost. Note that we refer to the curves in Fig. 6 as
utility curves because, as stated earlier, we view our work from the most general
perspective, where cost is a form of utility, and because the term “cost curves”
already has a specific meaning in the fields of machine learning and data mining
(Drummond and Holte 2006).

The cost ratio in Fig. 6 that places the highest relative cost on the train-
ing examples is 2:1. In this case the curve is linear, indicating that the data
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acquisition cost dominates the error cost (not surprisingly the 1:1 cost ratio also
yields a linear curve with half the slope). As the cost ratio increases so that
more emphasis is placed on the misclassification errors, the curve becomes non-
linear and the minimum total cost (identified for each curve by the large dia-
mond marker) no longer occurs at the minimum training set size, but rather
shifts towards the larger training set sizes. At a cost ratio of 1:50,000 the lowest
cost is achieved with 185,000 training examples.

One issue with Fig. 6 is that as the cost ratio becomes more skewed the total
cost rises, which obscures some of the changes for the curves with lower total
cost. To address this problem we normalize each curve by dividing the total cost
by the maximum total cost associated with the curve. The resulting normalized
utility curve for the forest-covertype data set is shown in Fig. 7. This method
for representing the results also permits us to examine higher cost ratios and
enables us to see that at a cost ratio of 1:1,000,000 the optimum strategy is to use
all of the available training data. Figure 7, in conjunction with the learning curve
for the forest-covertype data set in Fig. 1, shows that once the learning curve
begins to flatten out, a great increase in the cost ratio is required in order for it
to be profitable to acquire more training data. This is encouraging in that once
we get past a certain point the optimal training set size is not overly sensitive to
the exact value of the cost ratio; hence a good estimate of this ratio should be
adequate. Figure 7 also makes it clear that using all of the potentially available
training data is not a good strategy for most of the cost ratios analyzed.

The most critical information in Figs. 6 and 7 is the optimal training set size
for each cost ratio. This information is summarized in Fig. 8, which plots, for
each relative cost (Cerr/Ctr), the optimum training set size for the large, medium
and small data sets. These optimal training set size curves can be used by a prac-
titioner to determine the amount of training data to obtain even if the precise
cost ratio is not known. Note that the optimal curve exhibits the full range of
possible behaviors. At very low relative costs the best strategy is to acquire
the minimum amount of data possible (our experiments start with more than
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Fig. 7 Normalized utility curves for forest-covertype data set

zero examples) while at a high relative cost the best strategy is to acquire all
available training data. Once the maximum amount of available training data
is used, the curves are guaranteed to flatten out since the amount of training
data used will be fixed as will be the performance of the induced classifier.

One issue concerning the optimal curves in Fig. 8 concerns the range of rel-
ative costs displayed on the x-axis. Are the relative costs toward the higher
end of these ranges plausible? Would one ever want to acquire all potentially
available training examples for the census-income and protein data sets when
this is only optimal when the relative cost is greater than 800,000 and 2,000,000,
respectively? We believe that these apparently very high cost ratios may real-
istically occur. First, since Eq. (3) assumes that the score set contains only 100
examples, the relative cost of 2,000,000 is equivalent to a cost ratio of 1:2,000 if
the classifier will be used to classify 100,000 examples. In many situations the
cost of an error may in fact be 2,000 times that of the cost of acquiring each
training example—although in cases where the training data is expensive it may
not be. Note that if more training examples were available for the large data
sets and the rate of improvement for the learning curves continued to decrease,
this would result in an even wider range of cost ratios for which the optimum
strategy would not involve acquiring all potentially available training data.

4.3 The additional impact of model induction on classifier utility

The results in the previous section ignored the cost of generating the classifier.
In this section we extend our analysis by including this cost, measured in terms
of the CPU time required to generate the model (as discussed earlier any other
costs associated with model induction are ignored). Therefore, in this section
total cost is calculated using all of the terms in Eq. (3). Figure 9 shows the
average CPU time required to build a classifier for each of the large data sets,
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for varying training set sizes. Thus this figure shows the run-time complexity
of C4.5.

Run-time complexity models, especially those that handle average-case
rather than worst-case complexity, are not always available. However, pre-
viously reported empirical results for C4.5 (Provost et al. 1999) indicate that
its run-time complexity varies between O(n1.22) and O(n1.38) and the results in



268 G. M. Weiss, Y. Tian

0

50

100

150

200

0

Training Set Size

)s(  e
mi

T 
U

P
C

forest-covertype

census-income

protein

physics

100,000 200,000 300,000 400,000

Fig. 9 Average CPU time to generate a single classifier

Fig. 9 are consistent with this. The actual complexity of a decision tree algorithm
is not just based on the number of training examples, but also the complexity
of the induced model and the pruning method used. However, because training
set size is the only experimental parameter we analyze in this study, our primary
interest is on how this impacts the CPU time required to induce the model. For
more information on how other factors impact the time to induce a model, we
refer the reader to Quinlan (1993), which provides a detailed description of C4.5
and its use of error-based pruning and to Breiman et al. (1983), which provides
a valuable discussion of decision tree complexity and cost-complexity pruning.
A comparison of decision tree pruning methods, including their computational
complexity, is provided by Esposito et al. (1997), while Martin and Hirschberg
(1996) provide a general discussion of the complexity of learning decision trees.

Returning to Fig. 9, one thing that is clear is that the CPU times are relatively
modest in absolute terms, since all classifiers can be generated in under 4 min.
However, given that the experiments for most of the large data sets are based
on 20 runs, these times are actually more substantial—just over an hour for the
protein classifiers. Furthermore, when progressive sampling is used to deter-
mine the appropriate training set size, the CPU times increase substantially,
since the effective CPU time is the sum of the CPU times associated with each
of the evaluated training set sizes. Whether the CPU times incur a significant
cost for these data sets or not, we believe there are some situations where the
time cost will be substantial and needs to be factored into total utility. As stated
earlier, if this were not so, there would be less interest in the complexity of
learning methods.

Figure 10 shows the impact of the CPU cost on the normalized utility curves
for forest-covertype data set. Figure 10 corresponds to Fig. 7 except that in
Fig. 10 the cost ratio is fixed at 1:100,000 and the curves are now labeled with
the CPU cost factor instead of the cost ratio. Note that a CPU cost factor of
1,000 means that the number of CPU seconds is multiplied by 1,000 to obtain
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the CPU cost. The curve in Fig. 10 corresponding to a CPU cost of 0 is identical
to the curve in Fig. 7 labeled with the cost ratio of 1:100,000.

Figure 10 demonstrates that as the CPU cost factor increases, the optimum
training set size (indicated by the enlarged diamond markers) moves toward
smaller and smaller training set sizes. This is as expected since the CPU time
required to build the model increases with training set size, as was shown in
Fig. 9. Figures like this one show the sensitivity of the domain to CPU costs.
Figure 11 shows the optimum training set sizes given a variety of different CPU
cost factors and for a variety of different cost ratios (these label each curve).
Figure 11 therefore shows the trade-offs involved between training data cost,
error cost, and modeling (i.e., CPU time) costs. These modeling costs are also
analyzed in Sect. 5 in the context of progressive sampling.
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4.4 Relationship between learning curve and optimum training set size

One question that has intrigued us is the relationship between the learning
curves for each data set, which were displayed in Figs. 1–3, and the corre-
sponding optimum curves, which are displayed in Fig. 8. For example, one of
the specific things we were interested in is how the shape of the learning curve
impacts the shape of the optimal curve. In addition, we were interested in seeing
if we could find an analytical relationship between these two curves, since this
would provide more of a theoretical foundation for our work, and might also
allow us to predict the optimal training set size.

Our approach is to mathematically describe the learning curve associated
with a data set and then derive the optimal curve from it. In this section we
start by assuming that we are given a function that describes the learning curve.
From this, we show the step-by-step process of deriving the optimal curve. We
then fit a function to the learning curve associated with the forest-covertype
data set and then apply the same derivation process. We show that the derived
optimal curve approximates the actual one (the differences are due to our not
perfectly fitting the original learning curve). Note that because our focus is on
the derivation process and not function approximation, we only try to fit a very
simple function to the learning curves. We leave more sophisticated methods
for future work. In this section we only consider the cost of cases and ignore the
cost of model induction, although our analysis could be extended to handle this
cost given a function that maps the number of training examples to the CPU
time required to induce the model.

For our simple example, we assume that the learning curve is described by
f (x) = x/(x + 1), where x represents the number of training examples and f (x)

the represents the accuracy of the induced classifier. The error rate of the clas-
sifier is then 1 − x/(x + 1), which reduces to 1/(x + 1). Assuming that the score
set size |S| is 100 and the relative cost ratio is R (i.e., Ctr = 1 and Cerr = R),
then Eq. (3) from Sect. 2 yields a total cost of x + 100R/(x + 1). This equation
can be used to plot the utility curve, with the training set size x on the x-axis
and total cost on the y-axis. Since we want to find the optimum training set size,
which is the minimum of the utility curve, we take the first derivative of this
equation and set it to 0. Thus we want to solve Eq. (4) below for training set
size x, where R is a constant.

d(x + 100R/(x + 1))/dx = 0 (4)

Using the quotient rule for the second term and then solving for x, we get:

x = 100
√

R − 1 (5)

We can then generate the optimal curve for the learning curve by plotting the
relative cost ratio R on the x-axis and the optimal training set size x on the y-axis.
Figure 12 shows the learning curve described by the equation f (x) = x/(x + 1)

and the optimal curve derived from this learning curve, using Eq. (5).
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Figure 12 demonstrates that the optimal curve will be perfectly smooth and
monotonically increasing if the learning curve is also smooth and monoton-
ically increasing. However, the learning curve in Fig. 12 improves so rapidly
that it is not representative of even moderately difficult learning problems.
We approximate the learning curve for the forest-covertype data set by adapt-
ing the function f (x) = x/(x + 1). Since the observed accuracy of the forest-
covertype learning curve begins at 78%, we add another term that ensures that
the learning curve starts with this value. We then tried other values to replace
the “1” in the denominator until we achieved a reasonably good fit with the
actual learning curve. Equation (6) shows the function we use to approximate
the forest-covertype learning curve.

f (x) = 0.78 + 0.22[x/(x + 120,000)] (6)

Figure 13 shows the actual forest-covertype learning curve and the one gen-
erated by Eq. (6), while the empirically generated optimal curve for the forest-
covertype data set is shown in Fig. 14 along with the one derived from Eq. (6)
(we do not show the derivation but it follows the same steps as for the previous
derivation). Note that the derived optimal curve will select a negative training
set size for very low relative costs. Of course this is not possible (i.e., you cannot
“sell” training examples) and in practice the curve should be set to 0 rather than
being allowed to become negative.

This technique of finding an approximation of the actual learning curve is
used here to gain a better understanding of the relationship between the learn-
ing and optimal curves. However, it is possible that this technique could be
useful in practice. One could take a partially generated learning curve, fit a
function to it, and then analytically find the optimum training set size for any
relative cost. One could then “purchase” the optimal number of examples. This
could be used as an alternative to the progressive sampling strategy described
in the next section.
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5 Progressive sampling

Section 4 demonstrated that one can improve total classifier utility by carefully
selecting the training set size. However, given that we assume that payment for
training data must be made when the data is acquired, to be of practical use
a strategy must identify the number of training examples to acquire without
acquiring more than this number of examples. One way to accomplish this is by
using a progressive sampling strategy.

5.1 Progressive sampling methodology

The general outline of our progressive sampling strategy is simple. You begin
with some initial amount of training data and then, iteratively, build a classi-
fier, evaluate its performance and, based on those results, determine how much
additional training data, if any, to acquire. In this article we consider relatively
simple progressive sampling strategies. Our stopping strategy is quite simple: we
stop obtaining training examples after the first observed increase in total cost.
This guarantees that we will not achieve the optimum training set size since,
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at minimum, there will be one better training set size (i.e., the one observed
before the increase). If the accuracy of the learning curve is non-decreasing then
this stopping condition will lead to a training set size that is close to optimal.
While Fig. 1 demonstrates that our learning curves are not always non-decreas-
ing, which can lead to “premature stopping,” the results in this section will
show that this has only a modest impact on our ability to find the optimal-utility
classifier. We could also eliminate part of this problem of premature stopping by
employing the t-test “filtering” method described in Sect. 4.1 to remove points
on the learning curve that may not reflect statistically significant variations in
classifier performance.

The next decision for a progressive sampling strategy is how much additional
training data to acquire at each iteration. We evaluate two very simple, non-
adaptive sampling schedules. Our first progressive sampling schedule utilizes
the uniform sampling schedule described in Sect. 3.1. Our second progressive
sampling strategy uses a geometric sampling schedule, where the training set size
doubles each iteration. This geometric sampling scheme is motivated by previ-
ous work on progressive sampling, which shows that, given certain assumptions,
this schedule is asymptotically optimal (Provost et al. 1999). Although these
assumptions do not hold in our case due to the cost of training examples, the geo-
metric sampling scheme nonetheless provides a valuable alternative to the “uni-
form” progressive sampling strategy. Note that as before, multiple runs are uti-
lized to gain more reliable estimates of the accuracy for a given training set size.

Two other strategies are employed for comparison purposes. In order to
determine how close the uniform and geometric progressive sampling strate-
gies come to the optimum possible performance, we provide the results for the
“optimal strategy” that always selects the optimum training set size, from the
ones evaluated, using the data provided in Sect. 4. This strategy is not “fooled”
by any temporary decreases in accuracy present in the learning curves. We also
provide the results for a “straw man” strategy, which always uses all of the
potentially available training data. The straw man strategy is used to quantify
the benefits of considering the training data cost and the cost of model induction
when building a classifier.

The remainder of this section follows the format of Sect. 4, except that in
this section all of our results are based on the progressive sampling strategies.
In Sect. 5.2 we consider the performance of the progressive sampling strategies
when the cost of cases and error costs are considered and in Sect. 5.3 we extend
this analysis to include the impact of the modeling costs, in terms of the CPU
time required to build the classifier.

5.2 Progressive sampling strategy when there is a cost of cases

This section compares the results for the uniform and geometric progressive
sampling strategies to the optimal and straw man strategies. In this section
the cost of generating the model is not considered. Figure 15 presents the
detailed results for the forest-covertype data set. We see that the straw man
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strategy of using all of the training data independent of the relative cost
initially leads to very poor results, which demonstrates the advantage of utilizing
a progressive sampling strategy. The uniform strategy outperforms the geomet-
ric sampling strategy up until a relative cost of 100,000, because it samples more
frequently that the geometric sampling strategy. Ultimately the uniform strat-
egy performs worse than all other strategies because it stops prematurely, due
to a temporary increase in total cost (the geometric sampling scheme is less
susceptible to this problem since the distance between sample sizes is greater).
At around a relative cost of 200,000 (not shown in Fig. 15) all strategies ex-
cept for the uniform sampling strategy converge, since they properly deter-
mine that the optimum strategy is to acquire all potentially available training
data.

Tables 2 and 3 compare the performance of the progressive sampling strat-
egies for the large data sets (the names for the forest-covertype and census-
income data set are abbreviated). The results in Table 2 indicate that the uniform
sampling strategy generally is within 10% of the optimum performance. The
only time this is consistently not the case is for very low relative costs (≤1000),
because then the best strategy is to acquire almost no training data—and in that
situation the strategy of stopping after the first observed increase in training
set size results in a relatively large penalty. The geometric sampling strategy
generally performs worse, as can be seen by the last set of columns, since the
values in those columns are generally positive. The cases where the geometric
sampling strategy performs better is mainly due to the fact that the uniform
sampling strategy stops prematurely, due to statistical variations in the perfor-
mance of the learning algorithm. Table 3 provides a comparison with the straw
man strategy, which always uses the maximum amount of potentially available
training data. Consistent with the results presented in Fig. 15, we see that for
low cost ratios the straw man strategy performs poorly. The straw man performs
better as the relative cost increases and in quite a few cases outperforms the
uniform strategy, which often stops prematurely due to temporary increases in
total cost.
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In summary, we conclude that the uniform and geometric progressive
sampling strategies are fairly successful at finding a near-optimal classifier and
certainly outperform the strategy of always acquiring the maximum amount of
potentially available training data. Improvements in the progressive sampling
strategy are possible and these are discussed in Sect. 7.

5.3 Progressive sampling when the cost of model induction is considered

This section extends the analysis provided in the previous section by also con-
sidering the cost, in terms of CPU time, of inducing the classification model.
In the interest of space we limit our analysis to the forest-covertype data set,
although the same pattern of behavior is found for the other data sets. The
results in Fig. 16 show the behavior of the three progressive sampling strategies
given two different CPU cost factors.

The basic patterns we see are the same for both figures, although the curves
intersect at different points. We begin by explaining the observed behavior.
This explanation is supported by the data used to generate these figures, which
includes the training set size selected for each relative cost value as well as
the three cost components (cost of training data, cost of errors, and cost of
building the model). The underlying data is not provided here due to space
considerations.

Let us begin with the uniform and geometric progressive sampling strategies.
The strategies overlap for relative costs below threshold T1. At this point the
CPU cost dominates the error cost, so both strategies behave identically and
minimize the CPU cost by acquiring the minimum amount of training data pos-
sible. In the interval from T1 to T4 the CPU cost no longer totally dominates
the error cost, but is still a significant factor. In this interval the uniform sam-
pling strategy outperforms the geometric sampling strategy, because it acquires
data in smaller chunks, allowing it to more effectively trade off increased train-
ing set size—and the resulting increase in CPU time—with improved accuracy.
However, this occurs only for low cost ratios because learning curves are most
steep at the start. Finally, after point T4 the error cost component begins to
dominate and the sampling strategies then need to acquire large amounts of
training data in order to perform well. In this situation the geometric sampling
strategy is better than the uniform strategy since it requires fewer samples and
hence less cumulative CPU time to reach a similar training set size. Note that
in both figures the uniform and geometric sampling strategies form a triangle,
with the triangle extending from T1 to T4. The triangle spans a larger range of
relative cost for the larger CPU cost factor (10,000 vs. 1,000), since then it takes
longer for the error cost component to dominate.

Now let us turn to the straw man method, which uses all available train-
ing data regardless of the relative cost. This means that the number of errors
and CPU time required to build the model are constant and therefore so are
all of the terms in Eq. (3) for computing total cost. The observed slope for
the straw man method is therefore completely due to the increasing penalty
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Fig. 16 Comparison of progressive sampling stratgies for different CPU cost factors

for errors that the increasing relative cost imposes. As one would expect, the
relationship between relative cost and total cost is therefore linear. Both figures
show that the straw man method does poorly at the beginning (due to its large
CPU cost) but that it eventually outperforms the geometric and then uniform
sampling strategies (at points T2 and T3, respectively). This occurs because the
straw man strategy is much more efficient with respect to CPU time when all of
the potentially available training data is acquired (i.e., it tries only one sample
size); thus, once the cost of errors reaches a certain point the straw man strategy
outperforms the other strategies.

We focus on the range of x-values in Fig. 16 because that is where the most
interesting behavior occurs and where the various strategies intersect. If the
relative costs are allowed to increase dramatically, then all three strategies will
eventually intersect, if they acquire all available training data when the error
cost dominates. However, this does not occur because, as described in Sect. 4.2,
the uniform sampling strategy stops acquiring data prematurely.

This analysis demonstrates some of the patterns and behaviors that can occur
when trying to optimize the sum of the training data cost, model induction cost,
and error cost. In situations where all factors are significant, important choices
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need to be made. Figure 16 and the analysis just provided clearly show under
what circumstances these costs are important and that in many situations our
progressive sampling strategies will outperform the strategy of always acquiring
all possible training data.

6 Related work

In this section we discuss how our research relates to existing work. As men-
tioned earlier, the main connections are to work in progressive sampling and
active learning. Work on progressive sampling has focused on efficiently finding
the training set size where the learning curve reaches a plateau (Provost et al.
1999). The motivation for that work was to reduce the cost of computation by
limiting the amount of training data, while still achieving the best predictive
performance possible. Our research can be viewed as a generalization of that
work, in that we consider the cost of the training data in addition to the cost
of generating the model. The progressive sampling work focused on efficiently
identifying convergence—the training set size beyond which the generalization
accuracy ceases to increase. The corresponding task in our research is to find the
minimum of the utility curve. While the work on progressive sampling showed
that a geometric sampling schedule is asymptotically optimal, our results show
that it often does not perform as well as a uniform sampling schedule. The
observed difference is due to the fact that the training data cost is directly pro-
portional to the training set size. However, if the time of computation were to
dominate the data acquisition cost, then we would expect a similar result—the
geometric sampling scheme to outperform the uniform sampling scheme. This
is exactly what we observe in Sect. 4.3.

Our work can also be compared to work on active learning (Cohn et al. 1994).
One main difference is that work on active learning focuses on addressing the
cost of measuring features (Veeramachaneni and Avesani 2003) and labeling
examples (Cohn et al. 1994), which Turney (2000) refers to as the “cost of tests”
and the “costs of teacher,” respectively, while we focus on the cost of acquiring
complete examples (the “cost of cases”). In our setting the only choice involves
when to stop acquiring training data, whereas in active learning one also has to
decide what feature to measure or example to label next. That is, in most work
on active learning the choices are typically ranked, thus providing an ordering,
but no threshold for determining when to stop acquiring information. Other
methods (Kapoor and Greiner 2005) assume a budget and stop the active learn-
ing once the budget is consumed. Given this general lack of a stopping criterion,
the types of analyses we employ could easily be extended to decide when active
learning should stop. The only difference would be that the experiments that
generate the learning curve data would need to use an active learning method
for selecting the training data. The closest match to our research from the active
learning community involves work where the marginal utility of each example
is estimated and this is used to determine how many examples to label (Melville
et al. 2005).
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Weiss and Provost (2003) also consider the cost of cases, but only in a limited
way. The assumption in that work is that the cost of cases limits the amount of
training data that can be procured. The decision to be made in that scenario is
what class distribution should be generated for the training set in order to maxi-
mize classifier utility. That work also employed a progressive sampling strategy,
although the goal was to identify the optimal class distribution for learning
given a fixed training set size, whereas the goal in this article is to identify the
optimal training set size.

7 Conclusions and future work

This article analyzed the impact that data acquisition costs and the cost of
generating a classifier have on total classifier utility. We introduced a variety of
charts to help visualize the relationship between these costs and total cost and
also identified the optimal training set size for twelve data sets, for a variety of
cost information. We then described and analyzed the performance of two sim-
ple progressive sampling strategies and showed that they perform substantially
better than the strategy of acquiring all potentially available training data and
that they also achieve near-optimal performance. This work also provides a
good example of Utility-Based Data Mining, where utility factors from various
stages of the data mining process are jointly considered in order to generate a
classifier that maximizes the utility of the entire data mining process.

This research can help practitioners who are faced with a classification task
where training data is acquired at a cost. It is not just the methods that we
developed that are relevant, but the focus on the entire data mining process
that we advocate. First, the practitioner needs to examine the entire classifica-
tion process carefully and gather whatever cost information is available. Even
if this cost information is not precise, it should be estimated. This includes all of
the cost factors described in Sect. 2 as well as the expected size of the score set.
The practitioner can then start to incrementally acquire training data and build
and evaluate the total utility of the classification process at each iteration. This is
essentially progressive sampling, even if it is not done using one of the sampling
schedules we suggested. Rather than just generating a single utility curve, the
practitioner can easily generate multiple curves based on different estimates of
the cost factors. Note that this is trivial to do since the generation of each utility
curve is quite simple and requires very little computation. If different (but rea-
sonable) estimates of the cost factors yield the same decision (i.e., to stop or to
continue acquiring data), then the next step is clear. If different estimates yield
different decisions, then the practitioner must ultimately decide which estimate
is most reasonable. However, by using this process the practitioner need only
make this decision when it would lead to a different action.

The work described in this article can be extended in several ways. The
most straightforward extension involves analyzing utility models that are more
sophisticated that the one described in Sect. 2. We believe that work in this
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direction would help address the ultimate goal of Utility-Based Data Mining,
which is to maximize the utility of the entire data mining process.

Because the analyses are all driven by the learning curves, any method for
improving the quality of the learning curves (i.e., smoothness, monotonicity)
would improve the quality of our results, especially the effectiveness of the
progressive sampling strategies. There are a number of possible methods for
improving the learning curves. One could study the impact that different learn-
ing algorithms have on the learning curves in order to determine if some meth-
ods generate better behaved learning curves. Given that decision trees are
known to be sensitive to small changes in data (Li and Belford 2002), this sug-
gestion could lead to better learning curves. Also, one could try to use statistical
methods to improve the quality of learning curves, as we did in Sect. 4.1.

Another possible extension involves the use of a more intelligent, adap-
tive, progressive sampling scheme. One strategy might be to reduce the “gap”
between successive training set sizes as the slope of the utility curve approaches
zero, so that one can get closer to the true optimum training set size, with min-
imal effort (the gaps would be kept large when the magnitude of the slope is
large). Another approach would be to try to fit a function to a partial learning
curve and then analytically determine the optimal training set size, as suggested
by our work in Sect. 4.4. This seems like an area worthy of future research.

Finally, one could extend our utility curves to handle the case where there
is uncertainty in the cost factors. A fairly straightforward method for doing
this would be to allow the user to specify a range and distribution for each
cost factor (i.e., it ranges between 10 and 50 and is uniformly distributed) and
then consider this when generating the utility curve. It should be pointed out,
however, that although misclassification cost has been studied extensively in
the context of cost-sensitive learning, this technique, to our knowledge, has not
been applied in that area.
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