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Abstract A large volume of research in temporal data mining is focusing on
discovering temporal rules from time-stamped data. The majority of the meth-
ods proposed so far have been mainly devoted to the mining of temporal rules
which describe relationships between data sequences or instantaneous events
and do not consider the presence of complex temporal patterns into the data-
set. Such complex patterns, such as trends or up and down behaviors, are often
very interesting for the users. In this paper we propose a new kind of temporal
association rule and the related extraction algorithm; the learned rules involve
complex temporal patterns in both their antecedent and consequent. Within
our proposed approach, the user defines a set of complex patterns of interest
that constitute the basis for the construction of the temporal rule; such com-
plex patterns are represented and retrieved in the data through the formalism
of knowledge-based Temporal Abstractions. An Apriori-like algorithm looks
then for meaningful temporal relationships (in particular, precedence temporal
relationships) among the complex patterns of interest. The paper presents the
results obtained by the rule extraction algorithm on a simulated dataset and on
two different datasets related to biomedical applications: the first one concerns
the analysis of time series coming from the monitoring of different clinical vari-
ables during hemodialysis sessions, while the other one deals with the biological
problem of inferring relationships between genes from DNA microarray data.
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1 Introduction

A large number of data analysis problems deal with the interpretation of time
series data. This is crucial both for studying experimental data, where one ana-
lyzes the time course of a set of variables under controlled conditions, and for
analyzing the so-called process data, where a number of variables are collected
to monitor the functioning of processes of interest. Examples of experimen-
tal data are temporal profiles of gene expression measured in cell lines under
stressful conditions, while examples of process data are the outputs of sensors
during the microprocessor synthesis in the electronics industry. Within this con-
text, it is often of interest to detect the occurrence of certain temporal patterns,
i.e., time intervals in which one or more time series assume a behavior of inter-
est. Examples are the presence of activation patterns in the expression of gene
transcription factors, or the increasing temperature in a chemical process. The
selection of these kinds of pattern is typically based on the background knowl-
edge available on the problem domain and their detection may nowadays rely
on a large number of powerful algorithms.

When the knowledge available is mainly of qualitative nature, it is possi-
ble to resort to specialized tools, designed to extract qualitative patterns from
data, such as knowledge-based Temporal Abstractions or qualitative reasoning
(Shahar and Musen 1996; Hau and Coiera 1997; Kuipers 1986). Even more inter-
estingly, although not widely investigated, is the automated search for temporal
relationships between such patterns (Höppner and Klawonn 2002a; Kam and
Fu 2000; Bellazzi et al. 2005). More particularly, the discovery of a temporal
precedence between patterns may greatly help in generating hypotheses about
the causal interactions between the problem variables, thus enabling an effec-
tive mining of temporal data. Moreover, the analysis of temporal precedence is
also very important when looking at the long-run behavior of single variables
to understand the timing and sequence of different patterns which may occur in
one time series. Within this context, goals of different nature may be pursued.
When prior knowledge about the interesting patterns is available, i.e., when we
know what we are looking for, at least in terms of qualitative shapes of the tem-
poral profiles, the problem is to find the temporal precedence occurrences. Such
problem requires the formalization of the notions of pattern and of temporal
precedence, and an efficient strategy to search for the occurrences of temporal
precedence between given patterns in multivariate time series. A slightly differ-
ent, and apparently more complex, goal is related to the discovery of frequent
occurrences of temporal precedence between any pattern, in particular when
the number of patterns or the measurement time span is high. In this case, in
addition to the formalization of patterns and of temporal precedence, and to
the use of an efficient search strategy, it is also necessary to define the frequency
of the considered occurrences. Finally, the two above mentioned goals must
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be complemented with a pre-processing step, which may extract the patterns
characterizing the available time series (Chiu et al. 2003). We must note that
such goals require background knowledge on the problem domain. As a matter
of fact, even an intuitive notion of precedence requires to specify what kind of
relationship we are interested into: do we look for patterns which may have a
temporal gap between each other? How long should be this gap? What happens
if there is another pattern during the time gap? For this reason, the search will
be by nature knowledge-driven.

In this article we will deal with the problem of extracting frequent tempo-
ral precedence occurrences between patterns by resorting to the framework of
knowledge-based Temporal Abstractions, originally studied in Haimowitz and
Kohane (1993) and Larizza et al. (1992) and formalized by Shahar (1997). Such
a framework allows one to naturally define temporal patterns and to apply
Allen’s temporal operators (Allen 1984) in order to look for temporal prece-
dence. Temporal abstractions will be coupled with an Apriori-like algorithm to
search over a set of multivariate time series. Our proposed algorithm will be
able to extract temporal association rules, in which the antecedent of the rule
is a multivariate complex pattern.

The algorithm described in the article may deal with both the temporal data
mining goals described above, allowing to answer questions of the kind: does
pattern A precede pattern B? Does pattern A frequently precede pattern B?
Since the problem of defining the precedence relationships is highly context-
dependent, our approach is aimed at providing different design parameters
which can be set by the data analyst. The result will be a general purpose tool
for mining time series databases; such tool will however require a fine tuning
on the available problem in order to properly extract useful information.

The article is structured as follows: in Sect. 2, the knowledge-based Tempo-
ral Abstraction framework is introduced. We will then propose a new kind of
temporal association rule and a method for their extraction from time series
(Sect. 3). The method will be further tested (Sect. 4) on simulated data and on
two applications related to the biomedical field: time series coming from he-
modialysis monitoring and time series describing gene expression in human cell
cycle. After a section on related work, the article will end with some concluding
remarks.

2 Patterns and knowledge-based Temporal Abstractions

The problem of discovering occurrences of temporal relationships between
patterns characterizing a time series needs the accomplishment of three con-
ceptual and procedural steps. First of all, it is necessary to define the patterns
and retrieve them in the time series; then a formal definition of the relationships
of interest must be given and, finally, an algorithm for searching for frequent
occurrences of such relationships in the dataset must be designed, implemented
and run. As mentioned in the introduction, to define and describe the time
series through complex patterns we exploited the knowledge-based Temporal
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Abstractions technique (Shahar 1997; Bellazzi et al. 1998; Combi and Chittaro
1999); such methodology offers a natural way for defining a qualitative repre-
sentation of temporal data and gives a sound basis for defining patterns and for
specifying temporal relationships between them.

Intuitively, a pattern is a behavior or property that we may want to distin-
guish in the data. In temporal data, a pattern is usually associated to a time
interval in which such behavior occurs. Moreover, a pattern is often related
to a qualitative representation of the property that we are looking for, which
may be interesting in the problem domain. For example, a pattern may be an
increasing trend of a variable, or an up and down behavior repeated several
times. In order to resort to a precise definition of pattern, able to preserve the
qualitative nature of its interpretation, we give a formalization referring to the
Temporal Abstractions (TAs) framework (Shahar 1997).

Temporal Abstractions provide a description of a (set of) time series through
sequences of temporal intervals corresponding to relevant patterns detected in
their time courses. The basic approach of the TAs framework is to move from a
time-point to an interval-based representation of time series data. In this work
we start from the data model proposed in Bellazzi et al. (1998), where temporal
data are time-stamped entities, called events, while their abstract representa-
tion is given by TAs as a sequence of intervals, called episodes. Each episode
corresponds to a specific behavior of interest detected in the time course of the
data.

The generation of the episodes can be viewed as a Temporal Abstraction
task; TA tasks can be divided into two subtasks, each one solved by specific
mechanisms:

– Basic TAs—solved by mechanisms that abstract time-stamped data into
intervals (input data are events and outputs are episodes);

– Complex TAs—solved by mechanisms that abstract intervals into other
intervals (input and output data are episodes).

2.1 Formalizing temporal abstractions

Let us assume to have a time series TS: it is an ordered finite set ({(vi, ti)}, <),
where the couple (vi, ti) is composed by a value vi belonging to the domain D
of some numerical values,1 and by a timestamp ti belonging to the time domain
T, isomorphic to the natural numbers. Let us assume that TS is the universe of
all the possible time series TS : TS ≡ {TS}. Moreover, we assume to have the
domain I of intervals: I = {[a, b]} with a ≤ b, a and b ranking on the natural
numbers, where [a, b] ≡ {x|a ≤ x ≤ b}.

A TA abs is a tuple < αabs, βabs >, where αabs is an abstraction specification,
called pattern, and βabs is the application of the pattern to some specific data.

1 Even though we will consider only numerical values in the article, our framework can suitably
handle abstractions on a domain of ordinal values.
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As we distinguish basic and complex abstractions, we can recursively define
specification and application as in the following.

Abstraction specification αabs for a basic abstraction is a mapping

αabs : TS → 2I

while application βabs is a tuple 〈TS1, E〉, where TS1 ∈ TS , E ⊂ I , and
αabs(TS1) = E, with E = {[e.start, e.end]}. Each interval e is called episode.

A complex abstraction is composed by a specification of the form

αabs = αa1ϕabsαa2, ϕabs : 2I × 2I → 2I ,

where αa1, αa2 are the patterns of the composing abstractions, and ϕabs is the
specification of how to relate episodes of the two composing abstractions to
build up the episodes of αabs. Application βabs is a tuple 〈βa1, βa2, E〉 where βa1
and βa2 are applications of two abstractions a1 and a2 (which cannot be defined
in terms of abstraction abs), E ⊂ I is the set of episodes, and ϕabs(Ea1, Ea2) =
E, being Ea1 and Ea2 the episode sets of the component abstractions a1 and a2,
respectively.

The only requirement for the set E of episodes we consider is related to
the fact that, being episodes an abstract representation of some time series,
some kind of maximality is imposed: it is not possible to have in the set of epi-
sodes neither intervals one containing another nor contiguous intervals. More
formally:

∀e ∈ E(¬∃e1 ∈ E(e1 d e ∨ ed e1 ∨ e1 m e ∨ em e1)),

where d and m stand for the Allen’s relations DURING and MEETS, respec-
tively (Allen 1984).

Different approaches can be taken for specifying patterns, which describe
which sets of intervals correspond to different time series: they can be specified
in a declarative manner by logical formulas; often they are described by specific
mathematical formulas, where ad-hoc parameter values allow one to deal with
different data acquired in several domains; moreover, they can be specified in
an imperative way, by specifying step by step the algorithm which builds up the
set E of episodes, given either a time series or the episode sets of other abstrac-
tions. In the following, we introduce the main basic abstractions we considered
in this work and then discuss the complex abstractions we built up.

2.2 Basic Temporal Abstractions

Herein we distinguish two different types of basic TAs: State and Trend. State
TAs extract the intervals in which values are within a predefined range. More
formally, given a variable V (possibly) assuming continuous values, we can
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always perform a qualitative description on V. The qualitative description cor-
responds to a suitable discretization of the values D(V) = {[V1,V2), [V2, V3), . . .,
[Vm−1, Vm], [Vm, Vm+1]} and to the association of a set of labels, or states,
VL = {VL1, VL2, . . ., VLm} to such discretization. A State TA pattern for a
(state) abstraction VLi is thus a specification of the form:

∀TS ∈ TS , αVLi(TS) = {[e.start, e.end]|∃(v1, t1), (v2, t2) ∈ TS((∃(v3, t3)

∈ TS((v3, t3) = prev((v1, t1))) → v3 /∈ [Vi, Vi+1])
∧ (∃(v4, t4) ∈ TS((v4, t4) = next((v2, t2))) → v4

/∈ [Vi, Vi+1]) ∧ ∀(v, t) ∈ TS(t ∈ e → v ∈ [Vi, Vi+1])
∧ e.start = t1 ∧ e.end = t2)}

where the functions prev(·) and next(·) defined for a time series TS return the
previous element and the next one of a given element of the set TS, according
to the given (temporal) order, respectively.

Given a time series TSV of the variable V, i.e., a sequence of n values
v1, v2, . . ., vn, holding at the time points t1, t2, . . ., tn, respectively, a State TA
application looks for the time intervals in which V has values corresponding to
only one given state VLi in VL. According to the previous formalization, the
State TA application is thus a tuple 〈TSV , EV〉. State abstractions correspond to
expressions like “high arterial pressure” or “low temperature.”

Trend TAs represent increase, decrease, and stationary patterns in a numer-
ical time series. As an example, a simple declarative definition of an I (Increas-
ing) pattern could be:

∀TS ∈ TS , αI(TS) = {[e.start, e.end]|∃(v1, t1), (v2, t2) ∈ TS((∃(v3, t3)

∈ TS((v3, t3) = prev((v1, t1))) → v3 > v1) ∧ (∃(v4, t4)

∈ TS((v4, t4) = next((v2, t2))) → v4 < v2) ∧ ∀(v, t)(v∗, t∗)
∈ TS((t1 ≤ t≤ t∗ ≤ t2) → v≤v∗) ∧ e.start=t1∧ e.end= t2)}

where, for each time series, we associate maximal sets of values increasing
over time with an episode ranging from the minimum to the maximum of the
timestamps related to the considered values.

Of course, different trend patterns could be suitably defined, exploiting dif-
ferent strategies. In particular, they may be adapted to deal with noisy data,
performing a sophisticated search for obtaining the largest possible intervals.

In our approach trend patterns are obtained in a procedural way: any given
time series is processed in order to obtain a description of the variables in terms
of a set of consecutive basic trend TAs.

A straightforward way of deriving trend abstractions on time series is to rely
on a piecewise linear representation of raw temporal data. An overview of the
most used segmentation algorithms proposed in the literature was offered by
Keogh et al. (2004) and recently reviewed and updated by Mörchen (Mörchen
2006). The algorithms were classified into three methodological groups:
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Fig. 1 Representation through trend TAs. A raw time series is processed in order to derive the sets
of episodes of validity of trend abstractions in the set {αI , αD, αS}, where I stands for Increasing, D
for Decreasing, and S for Stationary

– sliding window algorithms, that recursively expand segments by adding
new points until some error bound is exceeded;

– top-down algorithms, that recursively partition the time series until some
stopping constraint is satisfied;

– bottom-up algorithms, that, starting from the finest possible approxima-
tion, iteratively merge segments until some stopping condition is satisfied.

In Keogh et al. (2004), each methodology is evaluated on ten datasets with
diverse characteristics and their performances are compared in order to high-
light advantages and disadvantages of each technique; moreover, a new algo-
rithm which is a mixture of the sliding window and the bottom-up approaches
is introduced.

For what concerns the construction of the final trend TA representation,
there are several possible algorithms that can be used for the extraction of the
piecewise linear approximation; the choice is up to the user, and may depend
on several characteristics of the dataset as the length of the time series, the
expected level of noise, etc.

The results discussed in Sect. 4 are all obtained by processing the time series
with a sliding window algorithm (Bellazzi et al. 2003). Figure 1 shows an exam-
ple of a time series represented through trend abstractions; in particular, the
episodes related to the specification set {αI , αD, αS} (where I stands for Increas-
ing, D for Decreasing, S for Stationary) are detected and the episodes identified
by the corresponding labels are shown.
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It is apparent from the description above that each basic TA requires the def-
inition of several design parameters to completely specify the kind of pattern
to be detected in dependence of the characteristics of the application. Usually,
there is a set of parameters which are common to both State and Trend TAs,
while some others are specific to the particular TA. The common parameters
are: the granularity, which defines the maximum temporal distance allowed
to aggregate two measurements in the same episode and the minimal extent,
that specifies the minimal time-span of an episode to be considered relevant
in the specific context. As an example of a TA specific parameter we can
mention the min-slope parameter of Trend TAs which defines the minimum
increase/decrease rate that triggers the detection of a pattern.

2.3 Complex Temporal Abstractions

Complex TAs are used to detect patterns characterized by behaviors which can’t
be represented by basic TAs. Complex TA applications need as input two epi-
sode sets, associated to two different TAs, and provide as output an episodes set,
associated to the new TA. The episode set is evaluated according to a pattern
specified between episodes of the two composing episode sets. The complex
TA patterns are based on temporal relationships: more specifically, the tempo-
ral relationships investigated correspond to the 13 temporal operators defined
in Allen’s algebra (Allen, 1984). They include: BEFORE, FINISHES, OVER-
LAPS, MEETS, STARTS, DURING, their corresponding inverse relations, and
the EQUALS operator. We will refer to the set of the 13 Allen’s operators as
AO. As a consequence, we define a complex TA mechanism for each temporal
relationship.

Given two episode sets, E1 = {[e11.start, e11.end], [e12.start, e12.end], . . .,
[e1h.start, e1h.end]} and E2 = {[e21.start, e21.end], [e22.start, e22.end], . . ., [e2k.
start, e2k.end]}, a complex TA application associates episodes of E1 and E2
according to the specified Allen’s temporal operator, obtaining an ordered set
of episodes in which the corresponding relationship holds. Time intervals over
which complex TAs (i.e., complex episodes) hold are suitably defined with
respect to the starting and ending points of the involved episodes of E1 and E2,
considering also the adopted operator. More formally, such a pattern could be
defined as:

∀E1, E2 ∈ 2Iϕabs(E1, E2) = {e|∃ e1 ∈ E1, ∃ e2 ∈ E2(e1 θ e2 ∧ e = e1ζ e2)},

where θ ∈ AO and ζ is any interval constructor (as intersection, union, or
user-defined ones).

Each pattern for the 13 complex TAs requires the specification of one or more
parameters used to make more or less restrictive the temporal relationship and,
therefore, to make more flexible the definition of the pattern to be recognized.
For example, the FINISHES operator could require as parameter the maxi-
mum temporal distance between the pair of interval starting points, while the
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Fig. 2 Complex TAs used to detect patterns of complex shape both (a) on a single time series
(MEETS–ID), and (b) on multidimensional time series (BEFORE–ID); in this case, an I episode
in V1 occurs before a D episode in V2

BEFORE operator (possibly) requires the maximum time gap between the end
point of the first interval and the starting point of the second one.

In addition, as the two series of intervals used as input to a complex abstrac-
tion can originate both from the same and from different time series, we can
exploit this kind of TA to detect a great variety of patterns. Figure 2 shows pat-
terns of complex shape which have been detected both on a single time series
(Fig. 2a), and on multiple time series (Fig. 2b).

For example, considering the complex abstraction BEFORE–ID, depicted
in Fig. 2b, we could formally define the complex pattern as:

αBEFORE−ID = αIϕBEFORE−IDαD

∀E1, E2 ∈ 2IϕBEFORE−ID(E1, E2) = {e|∃ e1 ∈ E1, ∃ e2 ∈ E2

(e1b e2 ∧ e = e1 ∪c e2)},

where the operator ∪c builds the minimal interval containing the two interval
operands (in this case, the interval spans from the start of e1 to the end of e2)
and b stands for the Allen’s relation BEFORE. We recall here that given two
episodes, e1 ≡ [e1.start, e1.end] and e2 ≡ [e2.start, e2.end], e1b e2 ⇔ e1.end <

e2.start.
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Application βBEFORE−ID of this temporal abstraction is formally defined by
the tuple 〈〈TS1, EI〉, 〈TS2, ED〉, EBEFORE−ID〉.

In the next section we will focus on how we may represent and mine time
series within the TA framework relying on trend abstractions only.

3 Mining Temporal Abstractions

In our framework, the data mining task is performed through different steps.
First, the user defines a set of complex patterns of interest that constitute the
basis for the construction of temporal rules; such complex patterns are repre-
sented and retrieved in the data through the formalism of knowledge-based
Temporal Abstractions. Then, temporal rules may be specified by setting some
context-dependent parameters. Finally, after confidence and support for tem-
poral rules on complex patterns have been specified, an Apriori-like algorithm
looks for meaningful temporal relationships among the complex patterns of
interest.

3.1 Complex TA representation

The description of the time series through basic trend TAs represents the start-
ing point for the creation of the final representation of the complex TAs of
interest. The core aspect of this phase is the definition of a set AoI of abstrac-
tions of interest. Since we have based the initial representation of the time
series on trend TAs, each complex pattern αabs for abs ∈ AoI is defined in
terms of Increasing, Decreasing, Stationary,2 through the abstraction specifica-
tions αI , αD, and αS, respectively. The set AoI may be either user-defined or
automatically suggested to the researcher after a pre-processing of the initial
qualitative representation of the time series in order to extract the most sig-
nificant behaviors (Chiu et al. 2003; Sacchi et al. 2005a). As an example, let us
consider a situation in which it is interesting to investigate whether a peak in
the dynamics of a variable V1 is often temporally related to an opposite peak
of another variable V2. This problem can be formalized by defining the set AoI
as in the following:

AoI = {〈αID1, βID1〉, 〈αDI2, βDI2〉} where

αID1 = αIϕID1αD and

αDI2 = αDϕDI2αI

∀E1, E2 ∈ 2IϕID1(E1, E2)={e|∃ e1∈E1, ∃ e2 ∈ E2(e1 m e2 ∧ e=e1 ∪c e2)},
and ϕDI2 ≡ ϕID1.

2 In general, the elements of AoI may be described also by other kind of abstractions (state TAs,
or both state and trend), depending on the qualitative representation chosen; the algorithm that
we are presenting is in fact flexible and can be easily adapted to different qualitative descriptions
of the data.
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As for the applications,

βID1 = 〈〈TS1, EIV1〉, 〈TS1, EDV1〉, EIDV1〉
βDI2 = 〈〈TS2, EDV2〉, 〈TS2, EIV2〉, EDIV2〉

The extraction of significant temporal relationships will thus be performed on
those episodes that verify αID1 over the increasing and decreasing of V1 and
αDI2 over the decreasing and increasing of V2, respectively.

As we did for the set AoI of the previous example, hereinafter we will focus on
the presence of complex patterns by applying the Allen’s relation m (MEETS).
In other words, each ϕabs we will consider for complex abstractions compares
intervals of the composing abstractions through the MEETS relation: the name
we will use for the complex abstraction will be built by simply concatenating
the names of the composing abstractions, as in the previous example.

We recall here that given two episodes, e1 ≡ [e1.start, e1.end] and e2 ≡
[e2.start, e2.end], e1m e2 ⇔ e1.end = e2.start.

An example of the steps that lead to the representation through complex
temporal abstractions for a single time series is depicted in Fig. 3.

3.2 Definition and evaluation of Temporal Association rules

In order to systematically look for temporal relationships between the complex
temporal patterns introduced in Sect. 3.1, we first need a formal definition of
the notion of precedence we want to represent. To this aim, we consider tem-
poral relationships expressed by the temporal operator PRECEDES, defined
as follows (Bellazzi et al. 2005):

Definition 1 Given two episodes, e1 ≡ [e1.start, e1.end] and e2 ≡ [e2.start, e2.
end], e1PRECEDESe2 ⇔ e1.start ≤ e2.start ∧ e1.end≤e2.end.

According to this definition, the operator PRECEDES synthesizes 6 of the
13 Allen’s temporal relationships, which are: OVERLAPS, FINISHED-BY,
MEETS, BEFORE, EQUALS, and STARTS.

Based on the PRECEDES relation, the temporal association rule is defined
as follows:

Definition 2 A temporal association rule is an implication of the form A →Pc,
where P is a triple (LS, G, RS), A is the set {a1, a2, a3, . . . , an} ⊆ AoI and
c ∈ AoI.

The temporal association rule is evaluated on the set {Ea1, Ea2, Ea3, . . . , Ean}
of episode sets corresponding to the abstractions a1, a2, a3, . . . , an and is
satisfied when the following formula holds:
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Fig. 3 Example of the representation through complex temporal patterns for one time series. After
the definition of the set AoI = {< αID, βID >, < αDI , βDI >} the set of episodes of validity of each
abstraction (EID, EDI) is determined

∃ea1, ea2, . . . , ean, ec (∩i = 1..neai �= Ø∧
[
maxi = 1..n(eai.start), mini = 1..n(eai.end)

]
PRECEDESec ∧

(ec.start − maxi = 1..n(eai.start)) ≤ LS ∧
(ec.end − mini = 1..n(eai.end)) ≤ RS ∧ |ec.start − mini = 1..n(eai.end)| ≤ G)

where eai(i = 1, . . . , n) is ranging over episodes of the set Eai for the abstrac-
tion ai.

Informally, a temporal association rule holds when all the patterns in the
antecedent intersect and when the relation PRECEDES holds between the
intervals of this intersection and an episode of the pattern in the consequent.
As we observe from the above definition, the PRECEDES relationship may be
conveniently constrained in the temporal association rule by the parameters set
in the triple P, introduced to allow some restrictions on the mutual position of
the involved intervals (see Fig. 4). These parameters are: the left shift (LS), de-
fined as the maximum allowed distance between ec.start and maxi = 1..n(eai.start),
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Fig. 4 Parameterization of the PRECEDES relationship through the triple (LS, G, RS) which fixes
some restrictions to the mutual positions of the intervals

Table 1 Parameterization of the temporal association rule: specific constraints and allowed
parameters

Temporal Operator Specific constraints

LS G RS

BEFORE – >0 –

MEETS >0 =0 >0

OVERLAPS >0 <0 >0

FINISHED BY >0 X =0

EQUALS =0 X =0

STARTS =0 X >0

Herein the symbol – denotes that the corresponding parameter may assume any value, while the
symbol X denotes that the parameter is not defined for the corresponding temporal operator

the gap (G), defined as the maximum allowed distance between ec.start and
mini = 1..n(eai.end) and the right shift (RS), defined as the maximum allowed
distance between ec.end and mini = 1..n(eai.end). Note that only the difference
between ec.start and mini = 1..n(eai.end) may assume negative values without vio-
lating the precedence constraints defined when introducing the PRECEDES
operator.

As shown in Table 1, it is possible to select the subset of relationships to be
evaluated during the analysis by properly tuning the three parameters G, RS,
and LS; it is not indeed necessary to look for all the relationships covered by
PRECEDES in every kind of analysis.

Another important feature of this parameterization is the possibility of avoid-
ing (possible) ambiguous situations as the one depicted in Fig. 5. This picture
shows two episodes x, z ∈ Ea1 which satisfy pattern αa1, and the interval y ∈ Ea2
which satisfies αa2. If not parameterized, we would obtain both {a1} →P a2 and
{a2} →P a1, thus generating a possible ambiguity: indeed, it could be the case
that the second rule is not meaningful in the considered domain, due to the
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Fig. 5 Effects of the parameterization of the temporal association rule. If no parameter is set,
both the rules {a1} →P a2 and {a2} →P a1 would be verified in the example. In fact both the
pairs of intervals ([x.start, x.end], [y.start, y.end]) and ([y.start, y.end], [z.start, z.end]) satisfy the pre-
cedence constraints stated in the definition of PRECEDES. On the other hand, if suitable values
for the parameters are fixed, it would be possible to extract only the relationship which connects
[x.start, x.end] with [y.start, y.end]

long temporal distance between y and z. If we properly set the parameters, we
could be able to find only the two closest intervals; this would be very important
especially when dealing with long time series and with large datasets.

Once the temporal association rule has been formally defined, the next step is
to efficiently search for occurrences of the corresponding relationships between
patterns in the data. This can be done both over multivariate datasets, where
time series coming from the measurement of different variables are collected,
but also on single time series, to study the timing of different patterns that may
repeat frequently over time. To pursue this goal, what we need is to introduce a
strategy for the search of frequent precedence relationships between complex
patterns in the time series. It is therefore necessary to couple the complex TA
representation and the temporal association rule with a search strategy for an
efficient mining of temporal rules (Bellazzi et al. 2005; Höppner and Klawonn
2002a; Winarko and Roddick 2005; Kam and Fu 2000). We herein propose a
method for temporal rule extraction based on an Apriori-like strategy, which
looks for both the antecedent and the consequent of the rule coming from the
episode sets of complex TAs that represent the time series. With respect to tra-
ditional algorithms for temporal rule extraction, the novel feature that is herein
introduced is the possibility of creating arbitrarily complex patterns both in the
antecedent and in the consequent thanks to the introduction of the set AoI
of complex abstractions. The rule extraction strategy will then look for rules
in which a set of intersecting TAs episodes (the antecedent) has a precedence
temporal relationship with another TA episode (the consequent). Note that,
since temporal rules are derived through the combination of complex temporal
abstractions on the basis of a temporal relationship, they can themselves be
considered as complex TAs.

3.3 Frequent complex patterns: confidence and support

In this section, we will briefly introduce the notions of confidence and sup-
port extended to the temporal domain. These concepts are of crucial impor-
tance for the definition of frequent patterns and, as in the Apriori algorithm
(Agrawal and Srikant 1994), they are essential for an efficient search over the
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rule space. In more detail, in order to define confidence and support, we will
first introduce some terminology. We will denote:

– TSO: the time span, i.e., the total duration, of the observation period over
which the rule is derived;

– RTS: the rule time span, i.e., the time span corresponding to the union of
the episodes in which both the antecedent and the consequent of the rule
occur;

– NAT: the number of times (episodes) the antecedent occurs during TSO;
– NARTS: the number of times (episodes) the antecedent occurs during RTS.

We therefore define:

– Support3 (Sup) = RTS / TSO;
– Confidence (Conf ) = NARTS / NAT.

Intuitively, the support gives a measure of how the rule is ‘spread’ over the
observation time span, while the confidence indicates the frequency of the rule
over the total amount of episodes of the antecedent. It is important to note
that the two quantities must always be evaluated together, since they both give
important information about the quality of a rule. When dealing with long time
series, it may in fact happen that a precedence relationship occurs several times
over very short intervals; in this situation the support would be low, but the
confidence may be very high.

Figure 6 shows a simple example of these definitions. In particular, we are
interested into a precedence relationship between abstractions a and c in a mul-
tivariate set of time series. The picture shows that pattern αa is verified over the
two time intervals x and z, while pattern αc is verified over y; the temporal asso-
ciation rule is instead satisfied only on two of the three intervals, x and y, since
x.start < y.start and x.end < y.end. The picture shows the time intervals defined
as TSO and RTS, considering RTS as the time span covered by the intervals
corresponding to the antecedent (x) and the consequent (y) of the rule. In this
example the two quantities NAT and NART would be equal respectively to 2 (x
and z) and 1 (only x is involved in the rule), so the confidence will be: Conf = 0.5.

3.4 Temporal rules extraction

Once we have stated the definitions for confidence and support, we can
finally introduce the temporal rule extraction algorithm. As already mentioned,
the method follows an Apriori-like search strategy where frequent patterns
are selected on the basis of thresholds for confidence and support (min_conf,
min_sup). As it will be clear in Sect. 4, also when dealing with the definition of
these thresholds, the features of the data and the domain knowledge play a key
role for the proper selection of significant rules. The pseudocode in Figure 7
illustrates the development of the rule extraction method.

3 Several definitions of support can be considered; in our case, we chose to consider the real time
span of the episodes, in order to take into account also low frequency episodes with long TSO.
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Fig. 6 Definition of confidence and support. We are interested into a precedence relationship
between abstraction a and abstraction c over the two episode sets Ea and Ec. The temporal asso-
ciation rule is satisfied only on two of the three intervals, x and y. The picture shows the time
intervals defined as TSO and RTS. In this example the two quantities NAT and NARTS are equal
respectively to 2 (x and z) and 1 (only x is involved in the rule)
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Fig. 7 The pseudocode of the proposed algorithm for extracting temporal association rules

Note that, if we are only interested into the discovery of precedence rela-
tionships between the abstractions identified by the set AoI, for example when
dealing with single time series, it is enough to extract the basic set (set of rules
with antecedent of cardinality 1) and evaluate the results in terms of confi-
dence and support. In the case of a multivariate dataset the method helps to
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efficiently extract occurrences of frequent precedence temporal rules between
patterns that could be arbitrarily complex in the antecedent.

4 Results

The experimental part of this work was performed both to confirm the sound-
ness of the proposed approach and to show the wide applicability of our frame-
work. First, we considered simulated data consisting of univariate and mul-
tivariate time series. These simulation studies are directed to a double aim:
first, the capability of the algorithm of correctly reconstructing temporal rules
is evaluated over two datasets where the patterns of interest and the level of
noise corrupting the data is known in advance. Second, both the univariate and
the multivariate problem are illustrated to show the potential generality of the
method on different applications.

We, then, considered two different kinds of experimental data: the first exper-
imental setting is related to temporal mining of clinical data (blood pressures,
heart rate, weight loss, etc.) acquired during the monitoring of hemodialysis
sessions: in this case we have to deal with long and noisy time series of clin-
ical variables. The second experimental setting consists of temporally mining
genetic regulatory relationships from DNA microarray gene expression data. In
this case, data consist of a huge amount of (relatively) short time series related
to several genes.

4.1 Studies on simulated data

In this section we present the evaluation of the algorithm on two simulated
datasets, where both the univariate and the multivariate problems were consid-
ered.

For both the simulation studies, prototypical simple patterns (i.e., trends in
the set {αI , αD, αS}) were simulated using segments of fixed slope and specific
duration; these segments, properly composed to form piecewise linear curves,
were then used to generate the desired complex patterns.

In order to simulate realistic data, the patterns were added to a set of time
series of 2,050 points extracted from the random walk process xt specified by
Eq. (1).

xt+1 = xt + vt, where vt ∼ N(0, (0.01)2) (1)

The final simulated data were thus obtained according to the schema intro-
duced in Table 2.

The first dataset simulates a problem with a single time series where an up-
and-down peak is frequently followed by an increase episode. To represent this
behavior, the patterns αID and αI were added to the random walk time series so
that an ID episode is often followed by an I one. To simulate a realistic situation
where ‘false’ precedence may occur (presence of the antecedent but not of the
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Table 2 Characteristics of the two simulated datasets

Dataset No of time
series

AoI Qualitative patterns
added to data

Noise Target rule

Simulated 1 1 {ID, I} ID followed by I ID {ID} →P I

TS1: ID

Simulated 2 3 {ID1, DI2, ID3} TS2: DI – {ID1, DI2} →P ID3

TS3: ID

For each simulated dataset the Table reports the number of time series involved, the set of Abstrac-
tions of Interest (AoI) that has been generated, how the patterns were added to the random-walk
time series and the target rule, that is the rule which we expect to find in the data (I for Increas-
ing, ID for episodes of Increasing meeting episodes of Decreasing, DI for episodes of Decreasing
meeting episodes of Increasing; for the second dataset TSi is the i-th time series)

consequent) we also added some single ID episodes. In this case we evaluated
the ability of the algorithm in reconstructing the relationship {ID} →P I. A
simulated time series for dataset 1 is shown in Fig. 8a.

The second study is aimed at simulating a multivariate problem with three
time series, characterized by the fact that a contemporaneous (but opposite)
peak in the first two time series (TS1 and TS2) precedes an up-and-down peak
in the third one (TS3). The patterns αID1, αDI2, αID3 were thus considered and
suitably simulated on the initial time series (see Table 2); the capability of the
algorithm in reconstructing the rule {ID1, DI2} →P ID3, considering time series
TS1 and TS2 for the antecedent, and TS3 for the consequent, respectively, was
tested in terms of confidence and support. The simulated time series for dataset
2 are shown in Fig. 8b.

Tables 3 and 4 show the results obtained by running the rule extraction algo-
rithm over the two simulated datasets. In the first case only the basic set (set of
rules with only one element in the antecedent) was generated and confidence
and support directly evaluated on it. The goal of the study is to evaluate whether
the algorithm is able to find significant precedence relationships between the
patterns present in the data; this property could be an important feature in the
study of the timing of different patterns into a single time series. In the second
study, instead, we tested the algorithm to check its capability of finding frequent
rules with complex antecedents characterized by pair-wise intersecting patterns
coming from different variables.

We achieved satisfactory results in both cases: for the univariate problem all
the occurrences of the precedence relationships {ID} →P I were discovered
(Table 3). Moreover, the information on the confidence assures that the algo-
rithm had been able to extract all the occurrences of the pattern ID, but that
some of them were not involved into the precedence relationships of interest.

For what concerns the multivariate problem (Table 4) the algorithm was able
to derive all the precedence relationships between simple patterns (see Fig. 8b)
and also a complex rule characterized by the combination of two intersecting
patterns in the antecedent. In particular, this rule expresses the precedence
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Fig. 8 Examples of the simulated datasets. (a) In the first dataset (one variable) the time series is
characterized by patterns belonging to the set AoI = {<αI , βI>, <αID, βID>}. Both ID episodes
followed by I trends and ID episodes alone can be found. (b) The second dataset represents a multi-
variate problem with 3 time series: TS1, TS2, and TS3. These time series are characterized by occur-
rences of the patterns belonging to the set AoI = {<αID1, βID1>, <αDI2, βDI2>, <αID3, βID3>} In
particular, TS1 and TS3 present ID episodes, while TS2 is characterized by patterns of an opposite
shape DI



236 L. Sacchi et al.

Table 3 Results for the first simulated dataset (I for Increasing, ID for episodes of Increasing
meeting episodes of Decreasing)

Operator: PRECEDES

Parameters: min_conf = 0.7, min_sup = 0.2, LS = 30, G = 20, RS = 30

Rule No of rule episodes Confidence Support

Antecedent Consequent

ID I 15 0.71429 0.34195

I ID 0 – –

Table 4 Results for the second simulated dataset (ID for episodes of Increasing meeting episodes
of Decreasing, DI for episodes of Decreasing meeting episodes of Increasing; TSi is the ith time
series)

Operator: PRECEDES

Parameters: min_conf = 0.7, min_sup = 0.2, LS = 40, G = 45, RS = 40

Rule No of rule episodes Confidence Support

Antecedent Consequent

Time series Pattern Time series Pattern

TS1 ID TS2 DI 20 1 0.27805

TS1 ID TS3 ID 19 0.95 0.5

TS2 DI TS3 ID 19 0.95 0.45122

TS1 ID
TS3 ID 19 0.95 0.45122

TS2 DI

relationship that occurs between the two intersecting patterns ID1 and DI2 in
TS1 and TS2 and the pattern ID3 in the third time series, TS3.

The parameters (first row in Tables 3 and 4) were selected to prevent the
algorithm from detecting rules that may lead to an ambiguous or contradic-
tory interpretation of the results (e.g., in the first example the precedence rule
{I} →P ID is excluded from the set of extracted relationships). Of course, the
assignment of the parameters specifying the PRECEDES operator constraints
(LS, G, RS) and the thresholds for confidence and support (min_conf, min_sup)
is a procedure that should be strongly driven by the domain knowledge about
the problem. A complete control on the problem domain should allow to ex-
tract the kind of rules one is interested into. In order to better highlight the
influence of the choice of these parameters on the performances of the algo-
rithm, a robustness analysis has been carried out by properly varying the values
of LS, G, and RS for the time series in the first simulation study. Let us first note
that the choice of very high values for one of the parameters makes the corre-
sponding constraint never violated. According to this observation, we evaluated
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Table 5 Robustness analysis on the parameters values (I for Increasing, ID for episodes of Increas-
ing meeting episodes of Decreasing)

Target rule {ID} →P I

Parameters setting # Episodes of the target rule # Episodes of {I} →P ID Precision Recall

LS = 30

G = 4000 15 0 1 1

RS = 30

LS = 55

G = 4000 16 30 0.3261 1

RS = 60

LS = RS = 4000
16 – 0.9375 1

G = 20

LS = RS = 4000
20 30 0.3 1

G = 40

the performance of the algorithm following two steps: first, the values for LS
and RS were changed by letting G assume values greater than the length of the
time series. Second, the values for G were changed by letting LS and RS assume
values greater than the length of the time series.

Considering as a target rule {ID} →P I, we computed the following indexes:

Precision = TP/(TP + FP);

Recall = TP/(TP + FN),

where:

– TP are the true positives, i.e., the occurrences of the target rule correctly
extracted by the algorithm;

– FP are the false positives, i.e., the occurrences of the non target rules
extracted by the algorithm;

– FN are the false negatives, i.e., the episodes of the target rule not found by
the algorithm.

In Table 5, we report the results of the analysis with different values for the
three parameters. As the value of the Recall is always 1 (i.e., the algorithm
is able to find all the target precedence relationships), the main interesting
parameter turns out to be the Precision. In particular it is possible to note that,
as the values of the parameters increase to non suitable ranges, the computed
Precision gets worst. This is due to the fact that the algorithm both starts to
find episodes belonging to the non-target rule and also (G = 40) finds non
consistent episodes for the target rule.
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The evaluation confirms the crucial role of background knowledge in the
precedence rule discovery process.

4.2 Analysis of experimental data

The next two sections present the results obtained by applying the method
to two different problems, the first in a clinical domain, while the other one
concerning the biological problem of inferring gene regulatory relationships
from DNA microarray data. These examples allow one to understand the wide
spectrum of applicability of the proposed solutions.

4.2.1 Analysis of time series coming from hemodialysis sessions monitoring

In this first application we examine the problem of finding interesting rules
occurring between patterns found over a set of variables monitored during an
Hemodialysis session. The data had been made available by courtesy of the
Dialysis Unit of the A.O. of Vigevano, Italy. The dataset includes 36 patients,
each one undergoing several hemodialysis treatments, during which many phys-
iological variables are monitored in order to control the patient’s conditions.

Our study is focused on three variables: systolic pressure (SP), diastolic
pressure (DP) and heart rate (HR); the measurements are taken by a digi-
tal sphygmomanometer. From a clinical viewpoint, it is interesting to look for
temporal relationships that may highlight a negative correlation between arte-
rial pressure and heart frequency; such relationships may in fact be related to
hypertension or hypotension episodes taking place during a single hemodial-
ysis treatment. Relying on this prior assumption, the set of abstractions was
defined as:

AoI = {ISDSP, ISDDP, ISDHR, DSISP, DSIDP, DSIHR}

ISD and DSI abstractions are defined by the MEETS operator. For example,
the generic specification of an ISD abstraction is defined as:

αISD = αI ϕISD αSD and

∀E1, E2∈2I ϕISD(E1, E2) = {e|∃ e1∈E1, ∃ e2∈E2(e1m e2 ∧ e = e1 ∪c e2)},
αSD = αS ϕSD αD and ϕSD ≡ ϕISD.

These two abstract patterns represent a general up-and-down and down-
and-up behavior of clinical variables; the addition of the Stationary TA allows
one to catch behaviors presenting a sort of plateau between the Increasing and
Decreasing trend episodes. Trends are detected through a sliding window algo-
rithm, fixing a threshold of the 5% on the slope change to detect the patterns
of increase and decrease. This choice is justified by the fact that a change in
pressure values or in heart rate of 5 out of 100 units is already significant from
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a clinical viewpoint; such variation can be properly detected by considering the
precision of the measurement instrument.

In order to obtain a description of the time course of each variable over dif-
ferent dialysis sessions, the data of all the dialysis sessions of the same patient
were concatenated to get a single time series. We thus obtained 36 time series
for each variable, each one with a number of measurements which depends on
the number of treatments for the specific patient; in particular, we collected an
average number of 70 treatments per patient and of 2,452 points per time series
(see Table 6 for a detailed description of the dataset).

Temporal rules were evaluated on the complete dataset to discover signifi-
cant relationships between opposite patterns occurring during the same dialysis
session. From a computational viewpoint, the rule extraction algorithm works
by searching opposite patterns belonging to the set AoI in the antecedents with
respect to the consequents (e.g., ISD vs. DSI). The parameters in the triple
P were set in order to extract temporal rules holding within a single dialysis
session; considering an average treatment duration of 4 h, with measurements
taken every 5 min, we set LS = RS = 40 and G = 30. Episodes starting during
one treatment and ending in the consecutive one were automatically removed
by the algorithm before the rule mining step.

Table 7 shows the results obtained fixing a threshold for the confidence,
Conf ≥ 0.5, and for the support, Sup ≥ 0.1.

Interesting rules which describe relationships between complex patterns
involving one or more variables were detected. The first rule extracts a con-
temporaneous pattern of SP and DP, in which a down and up pattern DSI
is followed by an up and down pattern ISD of HR. From the clinical view-
point, this rule highlights the occurrence of hypotension episodes taking place
during dialysis treatments: when arterial blood pressure decreases, the organ-
ism reacts with an increase in the heart rate, which then goes back to normal
values as soon as blood pressure increases. Other four similar rules, which
relate HR with SP and DP were also found. These episodes are clinically
relevant, since they correspond to the patient’s response to blood pressure
instability.

On the basis of these results, and in particular of the ones obtained for con-
fidence and support, an interesting clinical question that may rise is whether
there is a group of patients which are particularly prone to hypo or hypertensive
episodes during hemodialysis. To tackle this problem, we ran the rule extrac-
tion algorithm on each patient separately and we then evaluated confidence
and support of the obtained rules (results not shown). Following this strategy,
we identified a group of 10 patients showing an high number of precedence
rules involving blood pressure and heart rate, in which the variables present an
opposite pattern. Table 8 shows the results obtained by running the rule extrac-
tion algorithm on this subset of 10 patients (min_conf = 0.7, min_sup = 0.1). The
table shows a relevant improvement in the confidence and support of the rule in
which a down and up pattern DSI in SP and DP is followed by an up and down
pattern ISD for HR. In this last application, the proposed approach clearly
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Table 6 Description of the
hemodialysis dataset

Patient # Dialysis # Time points

1 85 2,742

2 52 1,520

3 91 3,784

4 77 2,887

5 80 2,776

6 80 2,679

7 92 2,896

8 77 2,463

9 22 946

10 91 3,685

11 75 2,776

12 90 2,963

13 71 2,804

14 72 2,935

15 91 3,305

16 83 3,443

17 69 2,903

18 82 2,641

16 90 2,861

20 88 3,061

21 65 2,169

22 83 2,810

23 85 3,378

24 75 2,861

25 81 2,827

26 68 2,037

27 84 3,146

28 22 706

29 86 2,963

30 74 2,625

31 80 2,241

32 14 198

33 78 2,509

34 1 32

35 33 972

36 33 749
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Table 7 The rules derived from the analysis of the haemodialysis data (ISD and DSI stand for
meeting episodes of patterns Increasing, Stationary, and Decreasing, in the specified order)

Operator: PRECEDES

AoI = {ISDSP, ISDDP, ISDHR, DSISP, DSIDP, DSIHR}
Antecedent Consequent Confidence Support

Parameter Pattern Parameter Pattern

SP DSI
HR ISD 0.580 0.119

DP DSI

HR DSI DP ISD 0.623 0.192

HR DSI SP ISD 0.622 0.199

HR ISD DP DSI 0.580 0.228

HR ISD SP DSI 0.615 0.234

Table 8 The rules derived from the analysis of the haemodialysis data for 10 patients showing
episodes of hypertension or hypotension in their dialysis history (ISD and DSI stand for meeting
episodes of patterns Increasing, Stationary and Decreasing, in the specified order)

OPERATOR: PRECEDES

AoI = {ISDSP, ISDDP, ISDHR, DSISP, DSIDP, DSIHR}
Antecedent Consequent Confidence Support

Variable Pattern Variable Pattern

SP DSI
HR ISD 0.728 0.154

DP DSI

HR DSI SP ISD 0.734 0.342

shows its capability of answering to clinically relevant questions, together with
extracting useful information from the data.

4.2.2 Reconstruction of gene regulatory relationships through gene
expression data

The second study is about the attractive biological problem of inferring genetic
regulatory relationships from DNA microarray gene expression data. DNA
microarrays are a relatively new technique which allows the extraction of a
genome-wide snapshot of gene activity under specific experimental conditions
(Brown and Botstein 1999); by repeating observations at different time points
it is possible to obtain the gene expression profile, i.e., a time series that de-
scribes the behavior of gene expression over a specific observation interval. Due
mainly to economic reasons, temporal experiments with DNA microarrays give
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usually origin to very short time series (up to 50 time points), which need to
be handled by specific methods designed to treat this kind of data. The aim
of this study is to show how our algorithm can be adapted to deal with time
series of gene expression data. In this domain, our algorithm could in fact be
particularly suited since it allows the description of patterns of synchroniza-
tion and precedence in gene expressions; such patterns might be the evidence
of close relationships between genes. Moreover, by highlighting the relation-
ships between synchronized gene sets, we can gain insight into the temporal
sequence of macro-processes, potentially suggesting cause-effect relationships
between the involved genes. An application of the method as a step in the
process of deriving precedence temporal networks between genes involved in
specific biological processes has been presented in (Sacchi et al. 2005b).

In this example we show the analyses performed on data coming from
DNA microarray experiments on the human cell cycle,4 presented in Whitfield
et al. (2002) and available athttp://genome-www.stanford.edu/Human-
CellCycle/Hela/. From the whole dataset, we extracted 5 time series of
47 samples that correspond to a group of human genes which regulate the cell
cycle (Tyson et al. 2001). Since these five genes are known to be characterized
by a peak in their expression profiles taking place at different phases of the cell
cycle, we focused on the extraction of rules between abstract patterns reflecting
the intuitive notion of peak, i.e., AoI = {IDC_A, IDC_B, IDC_E, IDP27, IDCDC25,
DIC_A, DIC_B, DIC_E, DIP27, DICDC25}, where C_A, C_B, C_E, P27, and CDC25
denote the considered genes, as detailed in the following. These patterns are
useful to highlight synchronization and phase shifts between genes during the
selected process. The rules were derived with confidence Conf = 1 and sup-
port Sup ≥ 0.7. These constraints are motivated by the nature of the problem:
we are in fact dealing with a multivariate set of short time series, each gene
corresponding to a single time series. The threshold on the confidence forces
the algorithm to keep only rules where each episode of the antecedent is also
involved in one episode of the rule, while the constraint on the support requires
the time span of the rule to cover the 70% of the total observation period.

Rather interestingly, the most important known relationships between genes
are automatically derived by the algorithm. Table 9 and Fig. 9 show some exam-
ples related to the gene for cyclin E(C_E): its activity is needed for the transition
from phase G1 to phase S of the cell cycle. This gene is overexpressed at the
G1–S phase boundary while it is degraded as the cell progresses through phase
S. The expression profile of the gene which encodes for protein P27, which is
able to bind to and to prevent the activation of cyclin E, is always in opposition
to the one of cyclin E (Fig. 9a); this behaviour results into a temporal rule which
expresses that a peak of one gene is found to always precede the peak of the
other one. Cyclins A and B promote both cell cycle G1/S and G2/M transitions,
and CDC25 is a protein which triggers the entry in the phase M from G2; the

4 The cell cycle is the life cycle of the cells. It develops through four phases called G1, S, G2, and M.
The last phase, M, corresponds to Mitosis, when the cell divides into two new cells. If a population
of cells is observed over time, the overall behavior is therefore periodic.
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Table 9 Examples of the rules extracted from the analysis of gene expression data of human cell
cycle (ID and DI stand for meeting episodes of patterns Increasing, and Decreasing, in the specified
order)

Operator: PRECEDES

AoI = {IDC_A, IDC_B, IDC_E, IDP27, IDCDC25, DIC_A, DIC_B, DIC_E, DIP27, DICDC25}
Antecedent Consequent Confidence Support

Gene Pattern Gene Pattern

P27 ID Cyclin E(C_E) DI 1 0.915

Cyclin A(C_A) ID
Cyclin E(C_E) ID 1 0.745

Cyclin B(C_B) ID

CDC25 ID
Cyclin E(C_E) ID 1 0.745

Cyclin A ID

expression time series for these genes reflect their synchronization, which is also
translated by the algorithm into two temporal rules showing in the antecedent a
contemporaneous peak for cyclin A and cyclin B and for cyclin A and CDC25.
Such rules express also the periodical precedence between the complex pat-
terns related to the three genes just mentioned and cyclin E, which instead is
expressed in an earlier phase of the cell cycle (Fig. 9b, c).

5 Discussion and related work

The work presented in this article deals with several areas in the field of tem-
poral data mining (TDM) (Lin et al. 2002; Roddick and Spiliopoulou 2002).
The central goal of the article is to find interesting temporal rules between
complex patterns found in a set of time series. The task of extracting temporal
rules has been addressed by several authors: the Apriori-like technique orig-
inally exploited by Agrawal and Srikant (1995) to extract sequential patterns
was further extended in Mannila and Toivonen (1996) to deal with the dis-
covery of frequent episodes and episodes rules. Afterwards, several extensions
on the extraction of temporal association rules and inter-transactional associ-
ation rules were presented (Chen et al. 1998; Li et al. 2003; Tung et al. 2003).
As regards the discovery of rules between temporal patterns, Guimarães and
Ultsch (1999) and Guimarães et al. (2001) applied unsupervised neural net-
works to detect complex temporal patterns and generated temporal grammat-
ical rules for a symbolic knowledge representation, underlining the usefulness
of incorporating prior knowledge for the improvement of the performances of
the algorithm.

The task of mining temporal rules on interval-based data has been tackled
by several authors: after a definition of temporal pattern based on temporal
relationships between interval-based events, Kam and Fu (2000) proposed an
Apriori-like strategy to efficiently detect such patterns. In Villafane et al. (2000),
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Fig. 9 Expression profiles for the genes involved in human cell cycle. (a) The expression profile
of the gene which encodes for the protein P27, which is able to prevent the activation of cyclin
E, is always in opposition to the one of cyclin E. (b) The expression time series for cyclin A and
CDC25 reflect their synchronization; they are in fact both activated in the transition from phase
G2 to M. The figure shows also a periodical precedence with cyclin E, which activity is needed in
earlier phases of the cell cycle. (c) Cyclin A and cyclin B are both activated into the same phases of
the cell cycle and their profile shows a phase shift with the one for cyclin E

the authors propose a mining technique to discover containment relationships
in series of interval events; such events are derived from numerical time series
through a quantization step. In Last et al. (2001), a general methodology for
the entire process of knowledge discovery in time series databases, addressing
both the preprocessing and the rule mining step, is presented. Cohen (2001)
introduces the theory of fluent learning to extract common patterns (described
as the ‘shape’ of episodes) in time series, a statistical technique which results
well suited to deal with multivariate time series with binary variables. Höppner
and Klawonn (2002b) and Höppner (2003) address the problem of discovering
informative temporal rules on a given sequence of labeled intervals, making
more flexible the definition of temporal pattern stated in Kam and Fu (2000).
Starting from the work of Höppner and from an algorithm proposed in Lin
and Lee (2005) for the discovery of temporal patterns from interval-based data,
Winarko and Roddick recently proposed a new method for extracting frequent
temporal patterns and then infer temporal rules from such patterns (Winarko
and Roddick 2005).
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Another recent work (Papapetrou et al. 2005) offers a novel formalization
of the problem of mining frequent arrangements of temporal intervals. The
method acts on a database of sequences of events, where each event occurs
during a time interval, thus removing the assumption of handling only instan-
taneous events.

Among the above mentioned previous works, Höppner suggests a formu-
lation of the problem of extracting rules from temporal patterns which is the
closest to the one described in our article. In particular, the author proposes
qualitative features to divide up the time series into segments accordingly, and
a method for the mining of temporal patterns from which informative rules are
derived. In Höppner (2003), an introduction is provided on how to learn qual-
itative labels (usually trends) from time stamped data, mentioning techniques
such as clustering, piecewise linear approximation, smoothing and wavelets.
By formalizing the framework of knowledge-based temporal abstractions, we
herein introduce a more general environment, that allows one to extract qual-
itative labels from temporal data, potentially exploiting each of the methods
introduced by Höppner. This technique allows us to embed into the same pro-
cess both the extraction of episodes characterized by qualitative labels and a
sound and general definition of the concept of pattern. Moreover, the process of
deriving complex patterns is naturally contained into the definition of complex
temporal abstractions and has not to be computed online with the rule mining
step. The novel, knowledge-based definition of the set AoI is in fact performed
prior to the rule extraction step; this, besides reducing the number of potential
patterns to be retrieved in the time series, allows us also to avoid an online
candidate generation during the process of rule extraction.

Following the ideas of Bellazzi et al. (2005), in our work we started from raw
time series introducing a step for the extraction of an interval-based representa-
tion based on the formalism of TAs; also the AoI set is made up following such
representation. In previous proposals, even when a qualitative representation of
the time series is suggested (Höppner and Klawonn 2002b) or achieved through
TAs (Bellazzi et al. 2005), the representation that is considered is always of a
basic nature (e.g., intervals of Increasing, Decreasing, or Stationary trends for
a single time series) and the temporal rules are always extracted between such
simple patterns. In our work we extended this framework towards a representa-
tion through complex TAs and a rule detection which allows complex patterns
in both the antecedent and the consequent of the rule itself.

6 Conclusions

In this article we presented a new kind of temporal association rule and the
related algorithm for the extraction of temporal relationships between com-
plex patterns defined over time series. The method is based on a qualitative
representation of basic trends which relies on the formalism of knowledge-
based Temporal Abstractions, which is coupled with an Apriori-like technique
for the efficient mining of frequent occurrences of precedence between episodes
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of complex patterns. The knowledge-driven procedure that is applied through-
out the article for the extraction of results can handle background knowledge in
an explicit way; this facilitates explanation and user control on the output. The
choice of TAs for the representation of the basic temporal information (i.e.,
basic trends) leads to a simple translation of the user’s notion of interesting
patterns into data description and to an intuitive understanding of the results.
The presented approach can be used in a variety of application domains, and it
was already tested on two different biomedical problems.

The great flexibility that characterizes the algorithm allows some immedi-
ate extensions, such as the consideration of both Trend and State TAs for the
representation of the temporal profiles or the possibility of taking into account
different types of relationships between the episodes. Moreover, we also plan to
introduce an automated generation of the set AoI resulting from a pre-process-
ing of the time series aimed at finding the most interesting qualitative behaviors
in the whole set of profiles.
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