
Data Min Knowl Disc (2007) 15:349–381
DOI 10.1007/s10618-007-0073-y

Tree-Traversing Ant Algorithm for term clustering
based on featureless similarities

Wilson Wong · Wei Liu ·
Mohammed Bennamoun

Received: 20 February 2007 / Accepted: 13 April 2007 / Published online: 8 June 2007
Springer Science+Business Media, LLC 2007

Abstract Many conventional methods for concepts formation in ontology
learning have relied on the use of predefined templates and rules, and static
resources such as WordNet. Such approaches are not scalable, difficult to port
between different domains and incapable of handling knowledge fluctuations.
Their results are far from desirable, either. In this paper, we propose a new ant-
based clustering algorithm, Tree-Traversing Ant (TTA), for concepts formation
as part of an ontology learning system. With the help of Normalized Google Dis-
tance (NGD) and n◦ of Wikipedia (n◦W) as measures for similarity and distance
between terms, we attempt to achieve an adaptable clustering method that is
highly scalable and portable across domains. Evaluations with an seven datasets
show promising results with an average lexical overlap of 97% and ontological
improvement of 48%. At the same time, the evaluations demonstrated several
advantages that are not simultaneously present in standard ant-based and other
conventional clustering methods.

Keywords Ontology learning · Text mining · Term clustering ·
Concept discovery · Cluster analysis · Featureless similarity measures

Responsible editor: M. J. Zaki.

W. Wong · W. Liu (B) · M. Bennamoun
School of Computer Science and Software Engineering, University of Western Australia,
35 Stirling Highway, Crawley, WA 6009, Australia
e-mail: wei@csse.uwa.edu.au

W. Wong
e-mail: wilson@csse.uwa.edu.au

M. Bennamoun
e-mail: bennamou@csse.uwa.edu.au

350 W. Wong et al.

1 Introduction

Ontology has become indispensable in modern information systems to
provide inter-operable semantics. Increasing demand on ontologies makes
labor-intensive creation more and more undesirable, if not impossible. Exacer-
bating the situation is the knowledge fluctuation resulted from the ever growing
information source, both online and offline, which makes ontology maintenance
even more difficult. Since the late nineties, more and more researchers started
looking for solutions to relieve knowledge engineers from the increasingly acute
situations. One of the main research thrusts with high potential of success is to
construct and maintain ontology automatically or semi-automatically from text
kept in electronic format. Ontology learning from text is the process of iden-
tifying concepts and relations from natural language text, and using them to
construct and maintain an ontology. In ontology learning, terms are the lexical
realizations of important concepts for characterizing a domain. Consequently,
the task of grouping together variants of terms to form concepts and separating
unrelated ones (known as term clustering) constitutes a crucial fundamental
step in ontology learning (Fig. 1).

Unlike documents (Steinbach et al. 2000), webpages (Choi and yao 2005),
and pixels in image segmentation and object recognition (Jain et al. 1999),

Fig. 1 Techniques, tasks, and output in ontology learning. Note that clustering has been largely
employed for constructing hierarchies whereas concepts are formed using templates, patterns,
co-occurrence analysis, and semantic lexicons

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 351

terms alone are lexically featureless. Similarity of objects can be established by
feature analysis based on visible (e.g. physical and behavioral) traits. Unfortu-
nately, using object names (i.e. terms) alone, similarity depends on something
less tangible, namely, background knowledge which humans acquired through
their senses over the years. The absence of features requires certain adjustments
to be made with regard to the methods for term clustering. One of the most
evident adaptation required is the use of context and other linguistic evidences
as features for the computation of similarity. A recent survey in ontology learn-
ing (Gomez-Perez and Manzano-macho 2003) reveals that all reviewed systems
which apply clustering methods rely on the contextual cues surrounding the
terms as features. The large collection of documents, and predefined patterns
and templates that are required for the extraction of contextual cues makes
the portability of such ontology learning systems difficult. Consequently, non-
feature similarity measures are fast becoming a necessity for term clustering,
especially when there are no features to rely on. Along the same line of thought,
Lagus et al. (1996) state “In principle a document might be encoded as a his-
togram of its words. . . symbolic words as such retain no information of their
relatedness”. In addition to the problems associated with feature extraction in
term clustering, much work is still required with respect to the clustering algo-
rithm itself. Even though most conventional clustering algorithms appeared to
be more established, researchers (Handl et al. 2003) have shown that certain
commonly adopted algorithms such as K-means and average-link agglomera-
tive yield mediocre results in comparison with the ant-based algorithms, which
is a relatively new paradigm. Handl et al. (2003) demonstrated certain desir-
able properties in ant-based algorithms such as the tolerance to different cluster
sizes, and the ability to identify the number of clusters. Despite such advanta-
ges, the potentials of ant-based algorithms remained relatively unexplored for
possible applications in ontology learning.

In this paper, we propose to employ the well-established Normalized Google
Distance (NGD) together with a new ant-based algorithm called Tree-Travers-
ing Ant (TTA) for clustering terms in ontology learning. TTA was designed as
an attempt to fuse the strengths of standard ant-based methods with certain
advantages of conventional clustering methods. In addition, we introduce a sec-
ond-pass for refining the results produced by the TTAs using NGD. During this
second-pass, the TTAs will employ a new measure called n◦ of Wikipedia (n◦W)
for quantifying the distance between two terms based on the cross-linking of
Wikipedia articles. Evaluations using seven datasets show promising results,
and revealed several advantages which are not simultaneously present in exist-
ing clustering algorithms. In Sect. 2, we give an introduction to the existing
techniques employed for term clustering in ontology learning. In Sect. 3, a sum-
mary of the mathematics behind the NGD, and the introduction to standard
ant-based clustering and its enhancements to-date are presented. In Sect. 4, we
present the TTA, and how NGD and n◦W are employed to support term clus-
tering. In Sect. 5, we summarize the results and findings from our evaluations.
Finally, we conclude this paper with an outlook to future work in Sect. 6.

352 W. Wong et al.

2 Existing techniques for term clustering

Faure and Nedellec (1998) presented a corpus-based conceptual clustering
method as part of an ontology learning system called ASIUM. The clustering
method is designed for aggregating basic classes based on a distance measure
inspired by the Hamming distance. The basic classes are formed prior to clus-
tering in a phase for extracting sub-categorization frames (Faure and Nedellec
2000). Terms that appear in at least two different occasions with the same verb,
and the same preposition or syntactic role, can be regarded as semantically
similar such that they can substituted with one another in a particular con-
text. Such terms are extracted in the form of selection restriction as part of
the sub-categorization frames. These semantically similar terms will form the
basic classes. The basic classes form the lowest level of the ontology and are
successively aggregated to construct a hierarchy from bottom-up. Each time,
only two basic classes are compared. The clustering begins by computing the
distance between all pairs of basic classes and aggregate those with distance less
than the user-defined threshold. The distance between two classes containing
the same words with the same frequencies is 0. On the other hand, a pair of
classes without a single common word have a distance 1. In other words, the
terms in the basic classes act as features, allowing for inter-class comparison.
The measure for distance is defined as

distance(C1, C2) = 1 −
(∑

FC1 × Ncomm
card(C1)

+ ∑
FC2 × Ncomm

card(C2)∑card(C1)

i=1 f (wordiC1) + ∑card(C2)
i=1 f (wordiC2)

)

where card(C1) and card(C2) is the number of words in (i.e. the size of) C1 and
C2 respectively, and Ncomm is the number of words common to both C1 and C2.∑

FC1 and
∑

FC2 is the sum of frequencies of the words in C1 and C2 which
also occur in C2 and C1, respectively. f (wordiC1) and f (wordiC2) is the frequency
of the ith word of class C1 and C2, respectively.

Maedche and Volz (2001) presented a bottom-up hierarchical clustering
method that functions as part of the ontology learning system Text-to-Onto.
This clustering method, designed for clustering terms, rely on an all-knowing
oracle, denoted by H, which is capable of returning possible hyper-
nyms for a given term. In other words, the performance of the clustering algo-
rithm has an upper-bound limited by the ability of the oracle to know all possible
hypernyms for a term. The oracle is constructed with the help of WordNet and
lexico-syntactic patterns (Cimiano and Stab 2005). During the clustering phase,
the algorithm would be fed with a list of terms and the similarity between each
pair is computed using a cosine measure. For this purpose, the syntactic sur-
face dependencies of each term, in the form of modifiers of various types of
phrases, are extracted and used as the features for that term. The algorithm is an
extremely long list of nested if-else statements. For the sake of brevity, it suf-
fices to know that the algorithm attempts to examine the hypernym–hyponym
relations between all pairs of terms as it decides to place a term as a hypernym

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 353

of the other or vise versa, or places two terms under a new parent. Each time
information about the hypernymy relation between two terms is required, the
oracle is consulted. The projection H(t) will return a set of tuples (x, y) where x
is a hypernym for term t and y is the number of times the algorithm has found
evidence for it.

Shamsfard and Barforoush (2002) presented two clustering algorithms as
part of the ontology learning system Hasti. Concepts have to be formed prior
to the clustering phase. It suffices to know that the process of creating the con-
cepts and extracting relations that are used as features for clustering involve a
knowledge extractor where “the knowledge extractor is a combination of logi-
cal, template driven and semantic analysis methods” (Shamsfard and Barforoush
2004). In concept-based clustering, a similarity matrix, consisting of the similarity
for all possible pairs of concepts is computed. Then the pair with the maximum
similarity, also greater than the merge-threshold, will be chosen to form a new
super concept. In this method, each intermediate (i.e. non-leaf) node in the
conceptual hierarchy has at most two children, but the hierarchy is not a binary
tree as each node may have more than one father. As for relation-based clus-
tering, only non-taxonomic relations are considered. For every concept c, a set
of assertions about the non-taxonomic relations NF(c) that c has with other
concepts is identified. In other words, these relations can be seen as features
allowing for the concepts to be merged according to what they share. If at least
one related concept is common between assertions about that relation, then
the set of other concepts (called merge-set) will be good candidates for merg-
ing. After all the relations have been examined, a list of merge-set is obtained.
The merge-set with the highest similarity between its members is chosen for
merging. In both clustering algorithms, semantic similarity is employed and is
defined as

similarity(a, b) =
maxlevel∑

j=1

⎛
⎝card(cm)∑

i=1

⎛
⎝Wcm(i).r +

valence(cm(i).r)∑
k=1

Wcm(i).arg(k)

⎞
⎠

⎞
⎠ × Lj

where cm = Nf (a) ∩ Nf (b) is the intersection between the sets of assertions
(i.e. common relations) about a and b, and card(cm) is the cardinality of cm.
Wcm(i).r is the weight for each common relation and

∑valence(cm(i).r)
k=1 Wcm(i).arg(k)

is the sum of the weights of all terms related to the common relations cm. Lj is
the level constant assigned to each similarity level which decreases as the level
increases. The main aspect of the similarity measure is the common features
between two concepts a and b. The common features are the ones in the inter-
section between the set of non-taxonomic assertions, Nf (a) ∩ Nf (b) between
the two concepts. Each common feature cm(i).r together with the correspond-
ing weight Wcm(i).r and the weight of the related terms will be accumulated. In
other words, the more features two concepts have in common, the higher the
similarity between them.

Regardless of how the existing techniques described in this section are
named, they shared a common point, namely, the reliance on some linguistic

354 W. Wong et al.

(e.g. subcategorisation frames, lexico-syntactic patterns) or predefined semantic
(e.g. WordNet) resources as features. These features are necessary for the com-
putation of similarity using conventional measures and clustering algorithms.
The ease of scalability and portability across domains, and the resources re-
quired for feature extraction are among the few questions our new clustering
technique attempts to overcome. In addition, the new clustering technique fuses
the strengths of recent innovations such as ant-based algorithms and the notion
of featureless similarity measures that have yet to benefit the techniques in
ontology learning.

3 Background

3.1 Normalized Google Distance

Normalized Google Distance (NGD) computes the similarity between objects
based on their names using only the Google search engine. NGD is a
non-feature similarity which attempts to capture every effective distance (e.g.
Hamming distance, Euclidean distance, and edit distances) into a single metric.
NGD combines the notion of Kolmogorov Complexity (Grunwald and vitanyi
2003), Shannon-Fano coding (Lelewer and Hirschberg 1987) and the Google
search engine.

The basis of NGD begins with the idea of the shortest binary program that
is capable of producing a string x as output. Kolmogorov Complexity of the
string x, K(x) is just the length, in binary bits, of that program. Extending this
notion to include an additional string y, we will have the Information Distance
(Bennett et al. 1998) where E(x, y) is the length of the shortest binary program
that can produce x given y, and y given x. It was shown (Bennett et al. 1998) that

E(x, y) = K(x, y) − min{K(x), K(y)} (1)

where E(x, x) = 0, E(x, y) > 0 for x �= y, and E(x, y) = E(y, x). Next, for every
other computable distances D that are non-negative and symmetric, there will
be a binary program, given string x and y, which has length (in binary bits) equal
to D(x, y). Formally,

E(x, y) ≤ D(x, y) + cD

where cD is a constant that depends on the distance D but not x and y. E(x, y) is
called universal because it acts as the lower bound for all computable distances.
In other words, if two strings x and y are close according to some distance D,
then they are at least as close according to E (Cilibrasi and Vitanyi 2005). Since
all computable distances compare the closeness of strings through the quantifi-
cation of certain features that the strings have in common, we can consider that
information distance determines the distance between two strings according to
the feature in which they are most similar.

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 355

By normalizing information distance, we would have NID(x, y) ∈ (0, 1) where
0 means the two strings are the same and 1 being completely different in
the sense that they share no features. The normalized information distance
is defined as:

NID(x, y) = K(x, y) − min{K(x), K(y)}
max{K(x), K(y)}

Nonetheless, referring back to Kolmogorov Complexity and Eq. 1, the non-
computability of K(x) inherently results in the non-computability of NID(x, y).
Fortunately, an approximation of K can be achieved using real compression
programs (Vitanyi 2005). If C is a compressor, then C(x) denotes the length of
the compressed version of string x. Approximating K(x) with C(x) will result
in:

NCD(x, y) = C(x, y) − min{C(x), C(y)}
max{C(x), C(y)}

The derivation of NGD continues by observing the working behind compres-
sors. Compressors encode source words x into code words x′ such that the
length |x| < |x′|. We can consider these code words from the perspective of
Shannon-Fano coding. Shannon-Fano coding encodes a source word x using a
code word that has the length log 1

p(x)
. p(x) can be thought of as a probability

mass function that maps each source word x to the code that achieves optimal
compression of x. In Shannon-Fano coding, p(x) = nx

X captures the probability
of encountering source word x in a text or a stream of data from a source,
where nx is the occurrence of x and N is the total number of source words
in the same text. Cilibrasi and Vitanyi (2005) extensively discussed the use of
compressors for NCD and concluded that the inability of these compressors to
take into consideration external knowledge during compression makes them
inadequate. Instead, the authors proposed to make use of a source that “. . .

stands out as the most inclusive summary of statistical information” (Cilibrasi
and Vitanyi 2005), namely, the World Wide Web. More specifically, the authors
proposed the use of the Google search engine to devise a probability mass
function that reflects knowledge and constructs a Shannon-Fano code alike. It
appears that the Google’s equivalence of Shannon-Fano code, known as Google
code, has length defined by Cilibrasi and Vitanyi (2006)

G(x) = log
1

g(x)

G(x, y) = log
1

g(x, y)

where g(x) = |x|/N and g(x, y) = |x ∩ y|/N are the new probability mass func-
tion that capture the probability of occurrences of search terms x and y. x is the

356 W. Wong et al.

set of web pages returned by Google containing the single search term x (i.e.
singleton set) and similarly, x ∩ y is the set of web pages returned by Google
containing both search term x and y (i.e. doubleton set). N is the summation of
all unique singleton and doubleton sets.

Consequently, the Google search engine can be considered as a compressor
for encoding search terms (i.e. source words) x to produce the meaning (i.e.
compressed code words) that has the length G(x). By rewriting the NCD, we
will obtain the new NGD defined as:

NGD(x, y) = G(x, y) − min{G(x), G(y)}
max{G(x), G(y)} (2)

In a nutshell, NGD is an approximation of NCD and hence NID to overcome
the non-computability of Kolmogorov Complexity by employing the Google
search engine as a compressor to generate Google code based on the Shan-
non-Fano coding. From the perspective of term clustering, NGD provides an
innovative starting point to demonstrate the advantages that featureless simi-
larity measures can offer. In our new term clustering technique, we take such an
innovation one step further by employing NGD in a new clustering technique
that combines the strengths from both conventional and ant-based algorithms.

3.2 Ant-based clustering

The idea of ant-based clustering was first proposed by Deneubourg et al. (1991)
in 1991 as part of an attempt to explain the different types of emergent technol-
ogies inspired by nature. During simulation, the ants are represented as agents
that move around the environment, a square grid, in random. Objects are ran-
domly placed in this environment and the ants can pick-up the object, move
and drop them. These three basic operations are influenced by the distribution
of the objects. Objects that are surrounded or isolated by dissimilar ones are
more likely to be picked up and are later dropped elsewhere in the surrounding
of more similar ones. The probability of picking up and dropping of objects are
influenced by the probabilities:

Ppick(i) =
(

kp

kp + f (i)

)2

Pdrop(i) =
(

f (i)
kd + f (i)

)2

where f (i) is an estimation of the distribution density of the objects in the ants’
immediate environment (i.e. local neighborhood) with respect to the object that
the ants is considering to pick or drop. The choice of f (i) varies depending on
the cost and other factors related to the environment and the data items. As f (i)

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 357

decreases below kp, the probability of picking up the object is very high, and
the opposite occurs when f (i) exceeds kp. As for the probability of dropping an
object, high f (i) exceeding kd will induce the ants to give up the object while low
f (i), which is less than kd, will encourage the ants to hold onto the object. The
combination of these three simple operations and the heuristics behind them
gave birth to the notion of basic ants for clustering, also known as standard ant
clustering algorithm (SACA).

Gutowitz (1993) examined the basic ants described by Deneubourg et al.
and proposed a variant ant known as complexity-seeking ants. Such ants are
capable of sensing local complexity and are inclined to work in regions of high
interest (i.e. high complexity). Regions with high complexity are determined
using a local measure that assesses the neighboring cells and counts the number
of pairs of contrasting cells (i.e. occupied or empty). Neighborhoods with all
empty or all occupied immediate cells have zero complexity while regions with
checkboard patterns have high complexity. Hence, these modified ants are able
to accomplish their task faster because they are more inclined to manipulate
objects in regions with higher complexity (Vizine et al. 2005).

Lumer and Faieta (1994) further extended and improved the idea of ant-
based clustering in terms of the numerical aspects of the algorithm and the
convergence time. The authors represented the objects in terms of numerical
vectors and the distance between the vectors is computed using Euclidean dis-
tance. Hence, given that δ(i, j) ∈ [0, 1] as the Euclidean distance between object
i (i.e. i is the location of the object in the center of the neighborhood) and every
other neighboring objects j, the neighborhood function f (i) is defined by the
authors as:

f (i) =
{

1
s2

∑
j 1 − δ(i,j)

α
if f (i) > 0

0 otherwise
(3)

where s2 is the size of the local neighborhood, and α ∈ [0, 1] is the constant for
scaling the distance among objects. In other words, an ant will have to consider
the average similarity of object i with respect to all other objects j in the local
neighborhood before performing an operation (i.e. pickup or drop). As the
value of f (i) is obtained by averaging the total similarities with the number of
neighboring cells, s2, empty cells which do not contribute to the overall similar-
ity must be penalized. In addition, the radius of perception (i.e. the extent to
which objects are taken into consideration for f (i)) of each ant at the center of
the local neighborhood is given by s−1

2 . The algorithm behind clustering using
the basic ant SACA is defined in Algorithm 1.

Handl and Meyer introduced several enhancements to make ant-based clus-
tering more efficient. The first was the concept of eager ants where idle phases
are avoided by having the ants to immediately pickup objects as soon as exist-
ing ones are dropped. The second was the notion of stagnant control. There
are occasions in ant-based clustering when ants are occupied or blocked due to
objects that are difficult to dispose. In such cases, the ants will be forced to drop

358 W. Wong et al.

Algorithm 1 Basic ant-based clustering defined by Handl et al. (2006)
1: begin
2: INITIALIZATION PHASE
3: Randomly scatter data items on the toroidal grid
4: for each j in 1 to #agents do
5: i := random_select (remaining_items)
6: pick_up(agent(j), i)
7: g := random_select (remaining_empty_grid_locations)
8: place_agent (agent(j), g)
9: end for

10: MAIN LOOP
11: for each it_ctr in 1 to #iterations do
12: j := random_select (all_agents)
13: step(agent(j), stepsize)
14: i := carried_item (agent(j))
15: drop := drop_item? (f (i))
16: if drop = TRUE then
17: while pick = FALSE do
18: i := random_select (free_data_items)
19: pick := pick_item? (f (i))
20: end while
21: end if
22: end for

whatever they are carrying after a certain number of unsuccessful drops. In a
different paper (Handl et al. 2003), the authors have also demonstrated that
the ant-based algorithm triumphs in several aspects:

– tolerance to different cluster size
– ability to identify the number of clusters
– performance increases with the size of the datasets
– graceful degradation in the face of overlapping clusters.

Nonetheless, the authors have also highlighted two shortcomings of ant-based
clustering, namely, the inability to distinguish more refined clusters within
coarser level ones, and the inability to specify the number of clusters can be
seen as a disadvantage when the users have precise ideas about it.

Vizine et al. (2005) proposed an adaptive ant clustering algorithm (A2CA)
that improves upon the algorithm by Lumer and Faieta. The authors intro-
duced two major modifications, namely, progressive vision scheme and the use of
pheromones on grid cells. The progressive vision scheme allows the dynamic
adjustment of s2. Whenever an ant perceives a larger cluster, it will increase
its radius of perception from the original s−1

2 to the new s′−1
2 . The second

enhancement allows ants to mark regions that are recently constructed or under
construction. The pheromones will attract other ants resulting in increases of
probability of deconstruction of relatively smaller regions, and increases the
probability of dropping objects at denser clusters.

Ant-based algorithms have been employed to cluster objects that can be
represented using numerical vectors. Similar to conventional algorithms, the
similarity or distance measures used by existing ant-based algorithms are still

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 359

Fig. 2 Example of TTA at work

feature-based. Consequently, they share similar problems like portability across
domains. In addition, despite the strengths of standard ant-based algorithms,
two disadvantages have been identified. In our new technique, we make use of
the known strengths of standard ant-based algorithms and some desirable traits
from conventional ones for clustering terms using featureless similarity.

4 The proposed Tree-Traversing Ants

Unlike the standard ant-based clustering where the ants walk on a toroidal
grid, the structure employed for clustering by the TTAs are a dynamic tree. The
dynamic tree begins with one root node r0 consisting of all terms T = {t1, . . . , tn},
and will further branch out to new sub-nodes as required. In other words, we
begin with r0 = {t1, . . . , tn}. For example, the first snapshot in Fig. 2 shows the
start of the algorithm with the root node r0 initialized with the terms t1, . . . , tn=10.
Essentially, each node in the tree is a set of terms ru = {t1, . . . , tq}. The size of
each new sub-nodes |ru| reduces as less and less terms are assigned to them in
the process of creating nodes with higher intra-node similarity.

The processing starts with only one ant, while a theoretically infinite number
of ants awaits to work at each of the new sub-node created for each node. In
the third snapshot in Fig. 2, while the original ant moves on to work at the left

360 W. Wong et al.

sub-node r01, a new ant proceeds to process the right sub-node r02. The exact
number of new sub-nodes that can be grown for each main node (i.e branching
factor) in this version of TTA is two. In other words, for each main node rm,
we have got the sub-nodes rm1, rm2. As the TTAs are no different from the
standard ants in terms of the number of objects that they can carry at any given
time and the inability for direct communication, pheromones may be required
for leaving behind trails and as a positive feedback mechanism from its envi-
ronment. Similar to some of the enhanced ants, TTAs too are endowed with
the ability of short-term memory for remembering similarities and distances
acquired through its senses. The TTAs are equipped with two types of senses,
namely, NGD and n◦ of Wikipedia (n◦W).

The standard ants has a radius of perception defined in terms of cells imme-
diately surrounding the ants. The radius of perception of TTAs covers all terms
in the two sub-nodes created for each main node. The main node is defined as
the node originally consisting of terms to be sorted to the two sub-nodes. It is
also worth pointing out that the vision of the TTAs changes as they move from
the main node to any of the sub-nodes for further processing once the main
node runs out of terms. In such cases, the sub-node that the ant has moved to
will become the main node, and so on. For example, in the second and third
snapshot of Fig. 2, ant1 moves from r0 to the new left sub-node r01 once the root
node has run out of terms. While ant1 was on r0 (as in snapshot 2), its vision
(denoted by the dotted box) covers both r01 and r02. Once ant1 has moved to
the r01 (as in snapshot 3 and 4), its radius of perception has changed to the
subsequent two new sub-nodes r011 and r012, created for the main node r01.

The TTAs work in a two-pass approach for term clustering. During the first-
pass, the TTAs recursively break nodes into sub-nodes and relocate terms until
the ideal clusters are achieved. The resulting tree of clusters created in the
first-pass are often good enough to reflect the natural clusters. Nonetheless, dis-
crepancies do occur, not due to the TTAs, but rather due to certain oddities in
the co-occurrences of terms on the World Wide Web that manifest itself through
NGD. Accordingly, a second-pass is proposed for relocating terms which are
misplaced due to NGD. n◦W is employed for this purpose. The second-pass can
be regarded as a refinement phase for producing clusters with higher quality.

4.1 First-pass using Normalized Google Distance

The proposed clustering algorithm begins processing at the root node which
consists of all n terms r0 = {t1, . . . , tn}. Each term can be considered as an ele-
ment in the node. The TTA will randomly pick a term, and proceed on to sense
its similarity with every other terms on that same node. The TTA will repeat
this for all n terms until the similarity of all possible pair of terms have been
memorized. The similarity between two terms tx and ty is defined as:

s(tx, ty) = 1 − NGD(tx, ty)α (4)

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 361

where NGD(tx, ty) is the distance between term tx and ty estimated using
the original NGD defined at 2. α is a constant for scaling the distance between
the two terms. The algorithm will grow two new sub-nodes to accommodate the
two least similar terms ta and tb. The TTA will move the first term ta from the
main node rm to the first sub-node while emitting pheromones that trace back
to tb in the process. The TTA will then follow the trail pheromones back to the
second term tb to move it to the second sub-node.

The second snapshot in Fig. 2 shows two new sub-nodes r01 and r02 with the
ant having moved the term t1 to r1 and the least similar term t6 to r02. None-
theless, prior to the creation of the new sub-nodes and the moving of the two
least similar terms to the new sub-nodes, an ideal intra-node similarity condition
must be tested. The operation of moving the two least similar terms from the
main node to create and initialize new sub-nodes can be regarded as a parti-
tioning process. Eventually, each leaf node will end up with only one term if the
TTAs do not know when to stop. For this reason, we adopt an ideal intra-node
similarity threshold sT for controlling the extent of branching out. Whenever a
TTA senses that the similarity between the two least similar term exceeds sT , no
further sub-nodes will be created and the current main node will be left as it is.
A high similarity (higher than sT) between the two most dissimilar terms in the
current main node provide a simple but effective indication that the intra-node
similarity has reached an ideal stage. More refined factors such as the mean
and standard deviation of intra-node similarity are possible but have not been
considered here due to time constraint.

If the similarity between the two most dissimilar terms is still less than sT ,
further branching out will be performed. The TTA will repeatedly picks up
the remaining terms on the current main node one by one and senses their
similarities with every other terms which are already located in the sub-nodes.
Formally, the probability of picking up term ti by the TTA in the first-pass is
defined as:

P1
pick(ti) =

{
1 if ti ∈ rm
0 otherwise

(5)

where rm is the set of terms in the main node. In other words, the probability
of picking up terms by the TTAs is always 1 as long as there are still terms
remaining in the main node.

Each sub-node ru of the main node rm can be seen as a neighborhood in
which a TTA senses for the similarities between the term ti it picked up from rm
with every other terms tj ∈ ru. Each term ti ∈ rm will be moved to neighborhood
ru that has the term tj ∈ ru with the highest similarity with ti. In other words,
a TTA considers multiple neighborhoods prior to dropping a term. Snapshot 3
in Fig. 2 illustrates the corresponding two sub-nodes r01 and r02 that have been
filled with all the terms which are used to be located at the main node r0. The
standard neighborhood function f (i) defined in Eq. 3 represents the density of
the neighborhood as the average of the similarities between ti with every other
term in its immediate surrounding (i.e. local neighborhood) confined by s2.

362 W. Wong et al.

Unlike the senses of basic ants which cover the surrounding cells s2, the extent
to which TTAs perceive cover all terms in two sub-nodes (i.e. multiple neigh-
borhoods) corresponding to the immediate main node. Accordingly, instead
of estimating f (i) as the averaged similarity defined over s2 terms surrounding
the ant, the new neighborhood function fTTA(ti, u) is defined as the maximum
similarity between term ti ∈ rm and the neighborhood (i.e. sub-nodes) ru. The
maximum similarity between ti and ru is the highest similarity between ti and
all other terms tj ∈ ru. Formally, we define the density of neighborhood ru with
respect to term ti during the first-pass as:

f 1
TTA(ti, ru) = maximum of s(ti, tj) w.r.t tj ∈ ru (6)

where the similarity between the two terms s(ti, tj) is computed using Eq. 4.
Besides deciding on whether to drop an object or not, like in the case of basic

ants, TTAs have to decide on one additional issue, namely, where to drop. A
TTA will decide on where to drop a term based on the fTTA(ti, ru) that it has
memorized for all sub-nodes ru of the main node rm. Formally, the decision on
whether to drop term ti ∈ rm on sub-node rv depends on:

P1
drop(ti, rv) =

⎧⎪⎨
⎪⎩

1 if (f 1
TTA(ti, rv) = maximum of f 1

TTA(ti, ru)

w.r.t. ru ∈ {rm1, rm2})
0 otherwise

(7)

The current version of the algorithm for clustering using TTAs is implemented
in two parts, one as the main function while the other one is a recursive function.
The main function is defined in Algorithm 2 while the recursive function for
the first-pass elaborated in this subsection is reported in Algorithm 3.

Algorithm 2 Main function
1: input A list of terms, T = {t1, ...tn}.
2: Create an initial tree with a root node r0 containing n terms.
3: Define the ideal intra-node similarity threshold sT and δT .
4: //first-pass using NGD
5: ant := new_ant()
6: ant.ant_traverse(r0, r0)
7: //second-pass using n◦W
8: leafnodes := ant.pickup_trail()//return all leaf nodes marked by pheromones
9: for each rnext ∈ leafnodes do

10: ant.ant_refine(leafnodes, rnext)
11: end for

4.2 n◦ of Wikipedia: a new distance metric

The use of NGD for quantifying the similarity between two objects in terms of
their names is by no means perfect. We will highlight certain discrepancies that

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 363

Algorithm 3 Function ant_traverse(rm, r0) using NGD
1: if |rm| = 1 then
2: leave_trail(rm, r0)//leave trail from current leave node to root node. for use in second-pass
3: return //only one term left. return to root
4: end if
5: {ta, tb} := find_most_dissimilar_terms(rm)
6: if s(ta, tb) > sT then
7: leave_trail(rm, r0)//leave trail from current leave node to root node. for use in second-pass
8: return //ideal cluster has been achieved. return to root node
9: else

10: {rm1, rm2} := grow_sub_nodes(rm)
11: move_terms({ta, tb}, {rm1, rm2})
12: for each term ti ∈ rm do
13: pick(ti)//based on Eq. 5
14: for each ru ∈ {rm1, rm2} do
15: for each term tj ∈ ru do
16: s(ti, tj) := sense_similarity(ti, tj) //based on Eq. 4
17: remember_similarity(s(ti, tj))
18: end for
19: f 1

TTA(ti, ru) := sense_neighborhood() //based on Eq. 6

20: remember_neighbourhood(f 1
TTA(ti, ru))

21: end for
22: {∀u, f 1

TTA(ti, ru)} := recall_neighborhood()

23: rv := decide_drop({∀u, f 1
TTA(ti, ru)})// based on Eq. 7

24: drop({ti}, {rv})
25: end for
26: end if
27: antm1 := new_ant()
28: antm1.ant_traverse(rm1, r0)//repeat the process recursively for each sub-node
29: antm2 := new_ant()
30: antm2.ant_traverse(rm2, r0)//repeat the process recursively for each sub-node

surfaced during our initial experiments in the following section. The initial tree
of clusters generated by the TTAs using NGD demonstrated promising results.
Nonetheless, we reckoned that better results could be generated if we would
allow the TTAs to visit the nodes again for the purpose of refinement. Instead
of using NGD, we proposed a different way to gauge the similarity between
terms.

Google can be regarded as the gateway to the huge volume of documents
on the World Wide Web. The sheer size of Google index has enables the NGD
to reliably estimate the usage of terms in the society. The page count provided
by Google is the essence of NGD in the attempt to compute the similarity
between two terms based on the mutual information that they both share at
the compressed level. Other than the frequency of occurrences of terms, it is
rather difficult to reliably make use of the other aspects of documents on the
World Wide Web through Google search engine. There is no restriction on the
topic and the content of each document, and the hyperlinks between them do
not adhere to any particular categorical indices. As for Wikipedia, its num-
ber of articles is less than a fraction of what Google indexes. Nonetheless, the
restrictions imposed on the authoring of articles and the organization of its

364 W. Wong et al.

articles provide us with a possibly new way of looking at similarity between
terms.

n◦ of Wikipedia (n◦W) (Wong et al. 2006) is inspired by a game for Wikip-
edians. 6◦ of Wikipedia1 is a task set out to study the character of Wikipedia
in terms of the similarity between its articles. An article in Wikipedia can be
regarded as an entry of encyclopedic information describing a particular topic.
The articles are organized using categorical indices which eventually leads to
the highest level, namely, “Categories”.2 Each article can appear under more
than one category, making the organization of articles in Wikipedia to appear
more as a directed acyclic graph with a root node, instead of a pure tree struc-
ture.3 The huge volume of articles in Wikipedia, the organization of articles in
a graph structure, the open-source nature of its articles, and the availability of
the articles in electronic form makes it the ideal candidate for our endeavor.

We define Wikipedia as a directed graph W := (V, E). W is essentially a net-
work of linked-articles where V = {a1, . . . , aω} is the set of articles. We limit the
vertices to English articles. At the moment, ω = |V| is reported to be 1, 384, 729,4

making it the largest encyclopedia5 in merely five years since its conception. The
inter-connections between articles are represented as the set of ordered pairs
of vertices E. At the moment, the edges are uniformly assigned with weight 1.
Each article can be considered as an elaboration of a particular event, entity
or abstract idea. In other words, an article in Wikipedia can be regarded as a
manifestation of the information encoded in the terms. Consequently, we can
represent each term ti using the corresponding article ai in Wikipedia. Hence,
finding the distance between two terms ti,tj can be reduced to the discovery of
how closely situated are the two corresponding articles ai,aj in the Wikipedia
categorical indices. The problem of finding the degree of separation between
two articles can be addressed in terms of the single-source shortest path prob-
lem. Since the weights are all positive, we have resorted to Dijkstra’s Algorithm
for finding the shortest-path between two vertices (i.e. articles). The benefits
of various other existing algorithms for the shortest-path problem have yet to
be scrutinized and considered due to time-constraint. Formally, the distance
between term tx and ty given by n◦W is defined as

δ(tx, ty) = n◦W(ax, ay) =
|SP|∑
k=1

cek (8)

where n◦W(ax, ay) is the degree of separation between the articles ax and ay
which corresponds to the term tx and ty, respectively. The degree of separation
is computed as the sum of the cost of all edges along the shortest path between

1 http://en.wikipedia.org/wiki/Six_Degrees_of_Wikipedia
2 http://en.wikipedia.org/wiki/Category:Categories
3 http://en.wikipedia.org/wiki/Wikipedia:Categorization#Categories_do_not_form_a_tree
4 http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons
5 http://en.wikipedia.org/wiki/Wikipedia:Largest_encyclopedia

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 365

articles ax and ay in the graph of Wikipedia articles W. SP is the set of edges
along the shortest path and ek is the kth edge or element in set SP. |SP| is the
number of edges along the shortest path and cek is the cost associated with the
kth edge. It is also worth pointing out that δ(tx, ty) ≥ 1 for tx �= ty but no upper
bound can be ascertained. Although there is a hypothesis stating6 that no two
articles in Wikipedia are separated by more than six degrees, no certainties can
be made as there are some Wikipedians who have shown that certain articles
can be separated by up to eight steps.7 This is the reason why we adopted the
name n◦ of Wikipedia instead of 6◦ of Wikipedia.

4.3 Second-pass using n◦ of Wikipedia

At the end of the first-pass of creating the sub-nodes, there will be at most n leaf
nodes where each term in the initial set of all terms T end up in individual nodes
(i.e. clusters). There are only two possibilities for such extreme cases. The first is
when the ideal intra-node similarity threshold sT is set too high while the second
is when all the terms are extremely unrelated. In normal cases, most of the
terms will be nicely grouped into nodes with intra-node similarities exceeding
sT . Only a small number of terms will be isolated into individual nodes. We refer
to these terms as isolated terms. There are two possibilities of isolated terms in
normal cases, one is that the term has been displaced during the first-pass due
to discrepancies related to NGD, or the term is in fact an outlier. During the
returning of the TTAs to the root node at the end of the first-pass (as in line 2
and line 7 of Algorithm 3), trail pheromones will be released to mark the path
from root node to leaf nodes. For the purpose of relocating the isolated terms
to possibly more suitable nodes, one TTA will be allocated to work in the sec-
ond-pass. The single TTA will jump to the leaf nodes following the pheromone
trails. At each leaf node rl, the probability of picking up a term ti during the
second-pass is 1 if the leaf node has only one term (isolated term):

P2
pick(ti) =

{
1 if |rl| = 1 ∧ ti ∈ rl
0 otherwise

(9)

After picking up an isolated term, the single TTA will continue to jump from
one leaf node to the next. In each leaf node, the TTA will determine whether
that particular leaf node (i.e. neighborhood) rl is the most suitable one to house
the isolated term ti it is carrying based on the average distance between ti and all
other existing terms in rl. Formally, the density of neighborhood rl with respect
to the isolated term ti during the second-pass is defined as:

f 2
TTA(ti, rl) =

∑|rl|
j=1 δ(ti, tj)

|rl| (10)

6 http://tools.wikimedia.de/sixdeg/index.jsp
7 http://en.wikipedia.org/wiki/Six_Degrees_of_Wikipedia

366 W. Wong et al.

where |rl| is the number of terms in the leaf node rl and the distance between
the two terms ti and tj is computed using Eq. 8.

This process of sensing the distance of the isolated term with all other terms
in each leaf node is carried out for all leaf nodes. The probability of the TTA
dropping the isolated term ti on the most suitable leaf node rv is evaluated once
the TTA returns to the original leaf node of ti. Back at the original leaf node of ti,
the TTA will recall the neighborhood density f 2

TTA(ti, rl) that it has memorized
for all neighborhoods (i.e leaf nodes). In the case of ti being an outlier, it will
have very high average distances with all other leaf nodes. Without a threshold,
the TTA will still relocate the outlier to the leaf node that has the minimum
average distance, which by comparison with all other cases of non-outliers, is
still considered extremely high. In short, the TTA will drop the isolated term
ti which it is carrying on the leaf node rv if all terms in rv collectively yields
the minimum average distance with ti that satisfies the outlier discrimination
threshold δT . Formally,

P2
drop(ti, rv) =

⎧⎪⎨
⎪⎩

1 if (f 2
TTA(ti, rv) = minimum of f 2

TTA(ti, rl) w.r.t. rl ∈ L)
∧ (f 2

TTA(ti, rv) ≤ δT)
0 otherwise

(11)

where L is the set of all leaf nodes.
Unlike the first-pass where the number of TTAs employed increases at the

same rate as the creation of sub-nodes, we only need one TTA in the second-
pass. Multiple TTAs revisiting the leaf nodes will introduce problems related to
concurrency control such as the communication between TTAs and the possi-
bility of conflict due to the sharing of the same address space (i.e. tree structure).
For example, assume that we have an isolated term t1 about to be relocated by
a TTA to a better leaf node that has the least average distance. At the same
time, another TTA is already on its way to drop a different isolated term t2 in
the same node as t1. What will happen when the second TTA arrived at the
leaf node that used to contain t1 but discovered that it is now empty? The use
of multiple TTAs will result in such predicaments that will eventually lead to a
sub-optimal condition in the second-pass when all the TTAs, each holding an
isolated term, never gets to drop them. After the TTA has visited all the leaf
nodes and has failed to drop the isolated term, the term will be returned to its
original location. The failure to drop the isolated term in a more suitable node
indicates that it is an outlier.

Referring back to the example in Fig. 2, let’s assume that snapshot 5 rep-
resents the end of the first-pass where the intra-node similarity of all nodes
have satisfied sT . While all other leaf nodes, namely r011, r012, and r021 consist
of more than one term, leaf node r022 contains only one term t6. Hence, at the
end of the first-pass, all TTAs, namely, ant1, ant2, ant3 and ant4 will all retreat
back to the root node r0. For the purpose of the second-pass, only one TTA will
be deployed to relocate the isolated term t6 from r022 to either leaf node r011,

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 367

r012 or r021 depending on the average distances of these leaf nodes with respect
to t6.

The algorithm for the second-pass using n◦W is described in Algorithm 4.
Unlike the ant_traverse() function in Algorithm 3 where each new sub-node is
processed as a separate iteration of ant_traverse() using an independent TTA,
there is only one TTA required throughout the second-pass.

Algorithm 4 Function ant_refine(leafnodes, ru) using n◦W
1: if |ru| = 1 then
2: //current leaf node has isolated term ti
3: pick(ti)//based on Eq. 9
4: for each rl ∈ leafnodes do
5: for each term tj in current leaf node rl do
6: //jump from one leaf node to the next to sense neighborhood density
7: δ(ti, tj) := sense_distance(ti, tj)//based on Eq. 8
8: remember_distance(δ(ti, tj))
9: end for

10: f 2
TTA(ti, rl) := sense_neighbourhood()//based on Eq. 10

11: remember_neighbourhood(f 2
TTA(ti, rl))

12: end for
13: //back to original leaf node of term ti after visiting all other leaves
14: {∀l, f 2

TTA(ti, rl)} := recall_neighbourhood()

15: rv := decide_drop({∀l, f 2
TTA(ti, rl)})// based on Eq. 11

16: if rv not null then
17: drop({ti},{rv})//drop at ideal leaf node
18: else
19: drop({ti},{ru})//outlier. no ideal leaf node. drop back at original leaf
20: end if
21: end if

5 Evaluations and discussions

There are three ways of assessing ontology learning approaches, namely, evalu-
ation as part of a working application, empirical evaluation by domains experts,
and evaluation using gold standards (i.e. reference-based evaluation). For refer-
ence-based evaluations, different measures are available (Dellschaft and Staab
2006) for evaluating the quality of the different intermediate outputs of ontology
learning (i.e. layers on an ontology) such as terms, concepts, and relationships.
At the lexical term layer, the extraction performance can be measured using
Lexical Precision (LP) and Lexical Recall (LR). LP and LR are employed to
assess the relevance of the extracted terms (i.e. correcte) by comparing them
against a gold standard corpus. LP and LR are defined as (Sabou et al. 2005):

LP = |correcte|
|alle| (12)

368 W. Wong et al.

LR = |correcte|
|allc| (13)

where allc is the set of all terms in the corpus and alle is the set of extracted
terms.

At the concept hierarchy layer, we assess the degree to which the concepts
and taxonomic relationships in an ontology covers a certain domain of inter-
est. For comparing the domain coverage, evaluations can be performed at two
different levels, namely, lexical and conceptual. At the conceptual level, tax-
onomic structures are taken into consideration. At the lexical level, only the
sets of terms representing the concepts are compared. In this paper, we will
only focus on the evaluation of the concept hierarchy layer at the lexical level
since we have yet to verify the taxonomic structure discovered by the TTAs.
For the purpose of our experiments, we will employ three existing metrics. The
first is known as Lexical Overlap (LO) for evaluating the intersection between
the discovered concepts (Cd) and the recommended (i.e. manually created)
concepts (Cm) (Maedche and Staab 2002). The manually created concepts can
be regarded as the reference for our evaluations. LO is defined as:

LO = |Cd ∩ Cm|
|Cm| (14)

Some minor changes were made in terms of how the intersection between the
set of recommended clusters and discovered clusters (i.e. Cd ∩ Cm) should be
computed. The normal way of having exact lexical matching of the concept
identifiers cannot be applied to our experiments. Due to the ability of TTA
in discovering concepts with varying level of granularity depending on sT , we
have to put into consideration the possibility of sub-clusters that collectively
correspond to some recommended clusters. For this reason, such related sub-
clusters that are automatically discovered can be collectively considered as
a valid representation of the corresponding recommended clusters. For our
evaluations, the presence of discovered sub-clusters that correspond to some
recommended clusters are considered as a valid intersection. In other words,
given that Cd = {c1, . . . , cn} and Cm = {cx} where cx /∈ Cd, then

|Cd ∩ Cm| = 1 if c1 ∪ . . . ∪ cn = cx

The second and third metric are meant to account for new concepts that are
absent during the manual creation, and for concepts which exist during manual
creation but were not discovered, respectively. The second metric is referred to
as Ontological Improvement (OI) while the third metric is known as Ontological
Loss (OL). They are defined as (Sabou et al. 2005):

OI = |Cd − Cm|
|Cm| (15)

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 369

OL = |Cm − Cd|
|Cm| (16)

Ontology learning is an incremental process that involves the continuous main-
tenance of ontology every time new terms are added. As such, we do not see
clustering large datasets as a problem. At the moment, we are employing seven
datasets to assess the quality of the discovered clusters using the three metrics
described above. The origin of the datasets and some brief descriptions are
provided below:

– Three of the datasets used for our experiments were obtained from the UCI
Machine Learning Repository.8 They are WINE_15T, MUSHROOM_16T
and DISEASE_20T. These datasets have to be modified for our purpose
because they contain mainly numerical attributes that are meant for use
with feature-based similarities.

– We also use the original Animals dataset (i.e. ANIMAL_16T) proposed for
use with Self-Organizing Maps (SOMs) by Ritter and Kohonen (1989).

– We constructed the remaining three datasets called ANIMAL
GOOGLE_16T, MIX_31T, and MIX_60T. ANIMALGOOGLE_16T is sim-
ilar to the ANIMAL_16T dataset except for a single replacement using the
term “Google”. The other two MIX dataset consist of a good mixture of
terms from a large number of domains.

Table 1 summarizes the datasets employed for our experiments. The column
Cm are the recommended clusters and Cd are clusters automatically discovered
using TTA. Table 2 summarizes the evaluation of TTA using the three metrics
for all ten experiments. The high performance in terms of LO shows the good
domain coverage of the discovered clusters. The occasionally high OI demon-
strates the ability of TTA in highlighting new, interesting concepts that were
ignored during manual creation of the recommended clusters.

During the experiments, snapshots were produced to show the results in two
parts: results after the first-pass using NGD, and results after the second-pass
using n◦W. The first experiment uses WINE_15T. The original dataset has 178
nameless instances spread out over three clusters. Each instances has 13 attri-
butes for use with feature-based similarity measures. We augment the dataset
by introducing famous names in the Wine domain and remove their numerical
attributes. We maintained the three clusters namely, “white”, “red”, and “mix”.
“Mix” is actually referring to wines that were named after famous wine regions
around the world. Such wines can either be red or white. As shown in Fig. 3, set-
ting sT = 0.92 produces five clusters. Clusters A and D are actually sub-clusters
for the recommended cluster “red”, while Clusters C and E are sub-clusters
for the recommended cluster “white”. Cluster B corresponds exactly to the
recommended cluster “mix”. The second experiment uses MUSHROOM_16T.
The original dataset has 8,124 nameless instances spread out over two clusters.
Each instances has 22 nominal attributes for use with feature-based similarity

8 http://www.ics.uci.edu/∼mlearn/MLRepository.html

370 W. Wong et al.

Table 1 Summary of the datasets employed for experiments.

Experiment Datasets Number
of
terms

Number of
recom-
mended
clusters Cm

Number of
discovered clusters
(obtained through
experiments), Cd

Granularity
(determined
using Sr)

1 WINE_15T 15 3 [red, white,
mix]

5 [red_non_noble,
white_non_noble,
mix, red_nible,
white_noble]

0.92

2 MUSHROOM_16T 16 2[edible,
poisonous]

3 [edible_
east_asian,
poisonous,
edible_western]

0.89

3 DISEASE_20T 20 4 [skin, blood,
cardio-
vascular,
digestive]

7 [cardiovascular_
inflame_vein, skin,
blood_anaemia,
blood_low_
leukocyte_platelet,
blood_etc, digestive,
cardiovascu-
lar_inflame_clot_vein]

0.86

4 ANIMAL_16T 16 2 [bird,
mammal]

2 [bird, mammal 0.60

5 ANIMAL_16t 16 2 [bird,
mammal]

5 [bird,
mammal_hoofed,
mammal_
prey_feline,
mammal_prey_
canine, mammal_
kept_as_pet]

0.72

6 ANIMAL
GOOGLE_16T

16 3 [bird,
mammal,
google]

2[animal, google] 0.58

7 ANIMAL
GOOGLE_16T

16 3 [bird,
mammal,
google]

3 [bird, mammal,
google]

0.60

8 ANIMAL
GOOGLE_16T

16 3 [bird,
mammal,
google]

5 [bird,
mammal_prey,
mammal_hoofed,
mammal_
kept_as_pet, google]

0.72

9 MIX_31T 31 8[actor_
actress,
musician,
country,
politics,
transport,
finance_
account,
internet,
food]

8 [actor_actress,
musician, country,
politics, transport,
finance_account,
internet, food]

0.70

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 371

Table 1 continued

Experiment Datasets Number
of
terms

Number of
recom-
mended
clusters Cm

Number of
discovered clusters
(obtained through
experiments), Cd

Granularity
(determined
using Sr)

10 MIX_60T 60 12 [transport,
country_city,
marsupial,
mammal_
prey, bird,
finance_
account,
computing_
hardware,
food,
beverage,
politician,
plant, herb]

20 [herb, food_pastry,
food_italian,
computing_
hardware, politician,
country_city_france,
country_city_etc,
plant_eucalyptus
marsupial,
finance_account,
transport_
four_more_
wheel, plant_organ,
beverage, bird_prey,
bird_etc, transport_
two_wheel,
mammal_prey,
plant_acacia

0.76

Column Cm are the recommended clusters and Cd are clusters automatically discovered using TTA.

Table 2 Summary of the evaluation results for all ten experiments using the three metrics LO, OI
and OL

Experiment Datasets Cm Cd Cd
⋂

Cm Cm-Cd Cd-Cm LO OI OL
(common) (missed) (new)

1 WINE_15T 3 5 3 0 2 100% 67% 0%
2 MUSHROOM_16T 2 3 2 0 1 100% 50% 0%
3 DISEASE_20T 4 7 4 0 3 100% 75% 0%
4 ANIMAL_16T 2 2 2 0 0 100% 0% 0%
5 ANIMAL_16T 2 5 2 0 3 100% 150% 0%
6 ANIMAL GOOGLE_16T 3 2 2 1 0 67% 0% 33%
7 ANIMAL GOOGLE_16T 3 3 3 0 0 100% 0% 0%
8 ANIMAL GOOGLE_16T 3 5 3 0 2 100% 67% 0%
9 MIX_31T 8 8 8 0 0 100% 0% 0%
10 MIX_60T 12 20 12 0 8 100% 67% 0%
Average 97% 48% 3%

measures. We augment the dataset by introducing names of mushrooms that fit
into one of the two recommended clusters, namely, “edible” and “poisonous”.
As shown in Fig. 4, setting sT = 0.89 produces four clusters. Cluster A corre-
sponds exactly to the recommended cluster “poisonous”. The remaining three
clusters where actually sub-clusters of the recommended cluster “edible”. Clus-
ter B contains edible mushrooms prominent in East Asia while Clusters C and
D comprise of mushrooms found mostly in North America and Europe, and are

372 W. Wong et al.

Fig. 3 Experiment using 15 terms from the Wine domain. Setting sT = 0.92 results in five clusters.
Cluster A is simply red wine grapes or red wines, while Cluster E represents white wine grapes or
white wines. Cluster B represents wines named after famous regions around the world and they can
either be red, white, or rose. Cluster C represents white noble grapes for producing great wines.
Cluster D represents red noble grapes. Even though not common, but Shiraz was occasionally
admitted to this group

Fig. 4 Experiment using 16 terms from the Mushroom domain. Setting sT = 0.89 results in four
clusters. Cluster A represents poisonous mushrooms. Cluster B comprises of edible mushrooms
which are prominent in East Asian cuisine except for Agaricus Blazei. Nonetheless, this mushroom
was included in this cluster due to its high content of beta glucan for potential use in cancer treat-
ment, just like Shiitake. Moreover, China is the major exporter of Agaricus Blazei, also known as
Himematsutake, further relating this mushroom to East Asia. Cluster C and D comprises of edible
mushrooms found mainly in Europe and North America, and are more prominent in Western
cuisines

prominent in Western cuisines. Similarly, the third experiment was conducted
using DISEASE_20T. At sT = 0.86 TTA discovered hidden sub-clusters within
the four recommended clusters, namely, “skin”, “blood”, “cardiovascular”, and
“digestion”. In relation to this, Handl et al. (2006) highlighted a shortcoming in
their evaluation of ant-based clustering algorithm. The authors state that the
algorithm “... only manages to identify these upper-level structures and fails to

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 373

further distinguish between groups of data within them”. In other words, unlike
existing ant-based algorithms, the first three experiments demonstrated that
our TTA has the ability to further distinguish hidden structures within clusters.

The fourth and fifth experiments were conducted using ANIMAL_16T data-
set. This dataset has been employed to evaluate both the standard ant-based
clustering (SACA) and an improved version called A2CA by Vizine et al. (2005).
The original dataset consists of 16 named instances, each representing an animal
using binary feature attributes. Both SACA and A2CA discovered two natural
clusters, one for “mammal” while the other for “bird”. While SACA was incon-
sistent in its results, A2CA yielded 100% recall rate over 10 runs. The authors
of A2CA stated that the dataset can also be represented as three recommended
clusters. In the spirit of the evaluation by Vizine et al., we performed the cluster-
ing of the 16 animals using TTA over 10 runs. In our case, no features were used.
Just like all experiments in this paper, the 16 animals were clustered based on
their names. As shown in the fourth experiment in Fig. 5, by setting sT = 0.60,
the TTAs automatically discovered the two recommended clusters after the
second-pass: “bird” and “mammal”. While the ant-based methods are known
for their intrinsic capability in identifying clusters automatically, conventional
clustering methods (e.g. K-means, average link agglomerative clustering) rely
on the specification of the number of clusters (Handl et al. 2006). The inability
to control the desired number of natural clusters can be troublesome. Accord-
ing to Vizine et al. (2005), “in most cases, they generate a number of clusters
that is much larger that the natural number of clusters”. Unlike both extremes,
TTA has the flexibility in regards to the discovery of clusters. The granularity
and number of discovered clusters in TTA can be adjusted by simply modifying
the threshold sT . By setting higher sT , the number of discovered clusters for
ANIMAL_16T has been increased to five as shown in Fig. 6. A lower value

Fig. 5 Experiment using 16 terms from the Animal domain. Setting sT = 0.60 results in two
clusters. Cluster A comprises of birds and Cluster B represents mammals

374 W. Wong et al.

Fig. 6 Experiment using 16 terms from the Animal domain (the same dataset from the experi-
ment in Figure 5). Setting sT = 0.72 results in five clusters. Cluster A represents birds. Cluster B
includes hoofed mammals (i.e. ungulates). Cluster C corresponds to predatory feline while Cluster
D represents predatory canine. Cluster E constitutes animals kept as pet

of the desired ideal intra-node similarity sT results in less branching out and
hence less clusters, making the elements in the final leaf nodes more loosely
coupled. Conversely, setting higher sT produces more tightly coupled terms
where the similarities between elements in leaf nodes are very high. In the fifth
experiment depicted in Fig. 6, the value sT was raised to 0.72 and more refined
clusters were discovered: “bird”, “mammal_hoofed”, “mammal_kept_as_pet”,
“predatory_canine”, and “predatory_feline”.

The next three experiments were conducted using the ANIMAL-
GOOGLE_16T dataset. These three experiments were meant to reveal an-
other advantage of TTA through the presence of an outlier namely the term
“Google”. An outlier can be simply considered as a term that does not fit into
any of the clusters. According to Berkhin (2002), “Legitimately, outliers can
be viewed as legitimate records having abnormal behaviour. In general, cluster-
ing techniques do not distinguish between the two. . .” In Fig. 7, TTA successfully
isolated the term “Google” while discovering clusters at different levels of gran-
ularities based on the different settings of sT . As similar terms will be clustered
into the same node, outliers will eventually be singled out as individual terms in
leaf nodes. Consequently, unlike some conventional methods such as K-means
(Yao and Choi 2003), clustering using TTA is not susceptible to poor results due
to outliers. In fact, there are two ways of looking at the term “Google”, one as

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 375

Fig. 7 Experiment using 15 terms from the Animal domain plus an additional term “Google”.
Setting sT = 0.58 (left screenshot), sT = 0.60 (middle screenshot) and sT = 0.72 (right screenshot)
result in two clusters, three clusters, and five clusters, respectively. In the left screenshot, Clus-
ter A acts as the parent for the two recommended clusters “bird” and “mammal”, while Cluster
B includes the term “Google”. In the middle screenshot, the recommended clusters “bird” and
“mammal” were clearly reflected through Cluster A and C, respectively. By setting sT higher, we
dissected the recommended cluster “mammal” to obtain the discovered sub-clusters C, D, and E
as shown in the right screenshot

an outlier as described above, or the second as an extremely small cluster with
one term. Either way, the term “Google” demonstrates two abilities of TTA:
capable of identifying and isolating outliers, and tolerance to differing cluster
sizes like its predecessors. Handl et al. (2006) have shown through experiments
that certain conventional clustering methods such as K-means and one-dimen-
sional self-organizing maps perform poorly in the face of increasing deviations
between cluster sizes.

The last two experiments were conducted using MIX_31T and MIX_60T.
Figure 8 shows the results after the first-pass and second-pass using 31 terms
while Fig. 9 shows the final results using 60 terms. Similar to the previous exper-
iments, the first-pass resulted in a number of clusters plus some isolated terms.
The second-pass aims to relocate these isolated terms to the most appropri-
ate clusters. Despite the rise in the number of terms from 31 to 60, all the
clusters formed by the TTAs after the second-pass correspond precisely to
their occurrences in real-life (i.e. natural clusters). With the absolute consis-
tency of the results over 10 runs, these two experiments yield 100% recalls just
like the previous experiments. Consequently, we can claim that TTA is able to
produce consistent results, unlike the standard ant-based clustering where the
solution does not stabilize and fail to converge. For example, in the evaluation by
Vizine et al. (2005), the standard ant-based clustering were inconsistent in their
performance over the 10 runs using the ANIMAL_16T dataset. This is a very
common problem in ant-based clustering when “they constantly construct and

376 W. Wong et al.

Fig. 8 Experiment using 31 terms from various domains. Setting sT = 0.70 results in eight clusters.
Cluster A represents actors and actresses. Cluster B represents musicians. Cluster C represents
countries. Cluster D represents politics-related notions. Cluster E is transport. Cluster F includes
finance and accounting matters. Cluster G constitutes technology and services on the Internet.
Cluster H represents food

deconstruct clusters during the iterative procedure of adaptation” (Vizine et al.
2005).

There is also another advantage of the TTAs that is not found in the standard
ants namely the ability to identify taxonomic relationships between clusters.
Referring to all the 10 experiments conducted, we noticed that there are implicit
hierarchical information that connects the discovered clusters. For example,
referring to the most recent experiment in Fig. 8, the two discovered Clusters A
(which contains “Sandra Bullock”, “Jackie Chan”, “Brad Pitt”) and B (which
contains “3 Doors Down”, “Aerosmith”, “Rod Stewart”) after the second-pass
share the same parent node. We can employ the graph of Wikipedia articles W
to find the most common parent of the two natural clusters and label it with
the category name provided by Wikipedia. In our case, we can label the parent
node of the two natural clusters as “Entertainers”. In fact, the labels of the nat-
ural clusters themselves can be named using the same approach. For example,
the terms in the discovered cluster B (which contains “3 Doors Down”, “Aero-
smith”,“Rod Stewart”) fall under the same category “American musicians” in
Wikipedia and hence, we can accordingly label the cluster using that category
name. In other words, clustering using TTA with the help of NGD and n◦W
does not only produce flexible and consistent natural clusters, but is also able
to identify implicit taxonomic relationships between clusters. Nonetheless, we
would like to point out that not all hierarchies of natural clusters formed by
the TTAs correspond to real-life hierarchical relationships. More research is
required to properly validate this capability of the TTA.

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 377

Fig. 9 Experiment using 60 terms from various domains. Setting sT = 0.76 results in 20 clusters.
Cluster A and B represent herbs. Cluster C comprises of pastry dishes while Cluster D represents
dishes of Italian origin. Cluster E represents computing hardware. Cluster F is a group of politicians.
Cluster G represents cities or towns in France while Cluster H includes countries and states other
than France. Cluster I constitutes trees of the genus Eucalyptus. Cluster J represents marsupials.
Cluster K represents finance and accounting matters. Cluster L represents transports with four or
more wheels. Cluster M represents plant organs. Cluster N represents beverages. Cluster O repre-
sents predatory birds. Cluster P represents birds other than predatory birds. Cluster Q represents
two-wheeled transports. Cluster R and S represent predatory mammals. Cluster T represents trees
of the genus Acacia

One can notice that in all the experiments of this section, the quality of the
overall output of clustering using TTA was less desirable if we were to only rely
on the result of the first-pass. As pointed out earlier, the second-pass is nec-
essary to produce naturally occurring clusters. The results after the first-pass
usually contain isolated terms due to discrepancies in NGD. This is mainly due
to the appearance of words and popularity of word pairs that are not natural.
For example, given the words “Fox”, “Wolf” and “Entertainment”, the first two
should go together naturally. Unfortunately, due to the popularity of the name
“Fox Entertainment”, a search in Google using the pair “Fox” and “Wolf” will
generate lower page count as compared to “Fox” and “Entertainment”. A lower
page count will have adverse effects on Eq. 2, resulting in lower similarity. Using
Eq. 4, “Fox” and “Entertainment” achieve a similarity of 0.7488 while “Fox” and
“Wolf” yield a lower similarity of 0.7364. Despite such shortcomings related to
NGD and probably, n◦W, these two huge collection of online documents offer
TTA the ability to handle technical or everyday terms of any domain regardless
of whether they have been around for some time or merely beginning to evolve
into common use on the Internet. As visible throughout all of our experiments,

378 W. Wong et al.

Fig. 10 Experiment using 20 terms from the Disease domain. Setting sT = 0.86 results in seven
clusters. Cluster A represents skin diseases. Cluster B represents a class of blood disorders known
as anaemia. Cluster C represents other kinds of blood disorders. Cluster D represents blood dis-
orders characterized by the relatively low count of leukocytes (i.e. white blood cells) or platelets.
Cluster E represents digestive diseases. Cluster F represents cardiovascular diseases characterized
by both the inflammation and thrombosis (i.e. clotting) of arteries and veins. Cluster G represents
cardiovascular diseases characterized by the inflammation of veins

the TTAs successfully cluster objects based only on their names, regardless of
how common or rare the usage of such names are. Due to the mere reliance
on names or nouns for clustering, some readers may question TTAs’ ability in
handling various linguistic issues such as synonyms and word senses. Looking
back at Fig. 10, the term “Buerger’s disease” and “Thromboangiitis obliterans”
are actually synonyms referring to the acute inflammation and thrombosis (clot-
ting) of arteries and veins of the hands and feet. In the context of the experiment
in Fig. 3, the term “Bordeaux” was treated as Bordeaux wine instead of the city
of Bordeaux and successfully clustered together with other wines from other
famous regions such as “Burgundy”. In another experiment in Fig. 9, the similar
term “Bordeaux” was automatically disambiguated and treated as a port-city in
the Southwest of France instead. The TTA then automatically cluster this term
together with other cities in France such as “Chamonix” and “Paris”. In short,
TTA poses the inherent capability of coping with synonyms, word senses and the
fluctuation in terms usage.

The quality of the clustering results is very much dependent on the choice
of sT and to a lesser extent, δT . Nonetheless, as an effective rule-of-thumb, sT
should be set as high as possible. Higher sT will result in more leaf nodes
with each having possibly a smaller number of terms that are tightly cou-
pled together. High sT will also enable the isolation of potential outliers. The
isolated terms and outliers generated by a high sT can then be further refined
in the second-pass. The ideal range of sT derived through our experiments is
within 0.6–0.9. Setting sT too low will result in very coarse clusters like the ones

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 379

shown in Fig. 5 where potentially hidden clusters are left uncovered. Regarding
the value of δT , it is usually set inversely proportional to sT . As can be witnessed
from our evaluations, as we set sT higher, we decreases the value of δT . The
reason behind the choices of these two threshold values can be explained as
follows: as we lower sT , it will results in coarser clusters with loosely coupled
terms. The intra-node distance of such clusters are inevitably higher compared
to the much finer clusters because the terms in these coarse clusters are more
likely to be less similar. In order for the second-pass to function appropriately
during the relocation of isolated terms and the isolation of outliers, δT has to be
set comparatively higher. Besides, lower sT will not provide the adequate dis-
criminative ability for the TTAs to distinguish or pick out the outliers. Another
interesting point about sT is that by setting it to the maximum (i.e. 1.0), it re-
sults in a divisive clustering effect. In divisive clustering, the process starts with
one, all-inclusive cluster and at each step, splits the cluster until only singleton
clusters of individual term remain (Steinbach et al. 2000). When sT = 1.0, the
TTAs will continue to branch out from every current main nodes until there is
only one term left for all the leaf nodes.

6 Conclusion and future work

In this paper, we presented a research that seeks to introduce a decentralized
multi-agent system for term clustering in ontology learning. Unlike document
clustering or other forms of clustering in pattern recognition, clustering terms in
ontology learning requires a different approach. The most evident adjustment
required in term clustering is the measure of similarity and distance. Existing
approaches employed for term clustering in many ontology learning systems
remain confined within the realm of conventional clustering methods and fea-
ture-based similarity measures. As there are no explicit features attached to
terms, unlike an image of a man that has heights and weights, these existing
approaches have come to rely on contextual cues surrounding the terms. Not
only that these approaches yield results that have yet to reach a level we desire,
they are expensive in terms of the need for an extremely large collection of
domain documents to reliably extract contextual cues for the pre-computation
of similarity matrices. In addition the static resources employed by these sys-
tems such as WordNet, patterns and templates make the approach even more
difficult to port across domains.

Consequently, we have proposed the innovative use of featureless similar-
ity based on Normalized Google Distance (NGD) and n◦ of Wikipedia (n◦W).
The use of the two similarity measures as part of a new hybrid clustering algo-
rithm called Tree-Traversing Ant (TTA) demonstrated excellent results during
our evaluations. Standard ant-based methods exhibit certain characteristics that
have been shown to be useful and superior compared to conventional clustering
methods. The TTA is the result of an attempt to inherit these strengths while
avoiding some inherent drawbacks. In the process, certain advantages from the
conventional divisive clustering were incorporated, resulting in the appearance

380 W. Wong et al.

of a hybrid between ant-based and conventional algorithm. Seven of the most
notable strength of the TTA with NGD and n◦W are:

– Able to further distinguish hidden structures within clusters;
– Flexible in regards to the discovery of clusters;
– Capable of identifying and isolating outliers;
– Tolerance to differing cluster sizes;
– Able to produce consistent results;
– Able to identify implicit taxonomic relationships between clusters; and
– Inherent capability of coping with synonyms, word senses and the fluctuation

in terms usage.

Nonetheless, much work is still required in certain aspects. One of the main
future work we have in plan is to ascertain the validity and make good use
of the implicit hierarchical relationships discovered by the TTAs. In addition,
the next issue that interests us is the formalization of the automatic labeling of
the natural clusters and the nodes in the hierarchy using Wikipedia. Labeling
has always been a hard problem in clustering especially documents and term
clustering. We are also keen on conducting more studies on the relationship
between the two most important thresholds in TTA, namely, sT and δT . If pos-
sible, we intend to find ways for the automatic adjustment of these threshold
values to maximize the quality of our output.

Acknowledgements This research was supported by the Australian Endeavour International
Postgraduate Research Scholarship, and a Research Grant 2006 from the University of Western
Australia.

References

Bennett C, Gacs P, Li M, Vitanyi P, Zurek W (1998) Information distance. IEEE Trans Inform
Theory 44(4): 1407–1423

Berkhin P (2002) Survey of clustering data mining techniques. Technical report. Accrue Software
Choi B, Yao Z (2005) Web page classification. In: Chu W, Lin T (eds) Foundations and advances in

data mining. Springer-Verlag
Cilibrasi R, Vitanyi P (2005) Automatic meaning discovery using google. http://xxx.lanl.

gov/abs/cs.CL/0412098
Cilibrasi R, Vitanyi P (2006) Automatic extraction of meaning from the web. In: Proceedings of the

IEEE international symposium on information theory, Seattle, USA
Cimiano P, Staab S (2005) Learning concept hierarchies from text with a guided agglomerative clus-

tering algorithm. In: Proceedings of the workshop on learning and extending lexical ontologies
with machine learning methods, Bonn, Germany

Dellschaft K, Staab S (2006) On how to perform a gold standard based evaluation of ontology
learning. In: Proceedings of the 5th international semantic web conference (ISWC)

Deneubourg J, Goss S, Franks N, Sendova-Franks A, Detrain C, Chretien L (1991) The dynamics
of collective sorting: robot-like ants and ant-like robots. In: Proceedings of the 1st international
conference on simulation of adaptive behavior: from animals to Animats, France

Faure D, Nedellec C (1998) A corpus-based conceptual clustering method for verb frames and
ontology acquisition. In: Proceedings of the 1st international conference on language resources
and evaluation (LREC), Granada, Spain

Faure D, Poibeau T (2000) First experiments of using semantic knowledge learned by asium for
information extraction task using intex. In: Proceedings of the 1st Workshop on Ontology
Learning, Berlin, Germany

Tree-Traversing Ant Algorithm for term clustering based on featureless similarities 381

Gomez-Perez A, Manzano-Macho D (2003) A survey of ontology learning methods and techniques.
Deliverable 1.5, OntoWeb Consortium

Grunwald P, Vitanyi P (2003) Kolmogorov complexity and information theory. J Logic Lan-
guage(and Information) 12(4): 497–529

Gutowitz H (1993) Complexity-seeking ants. In: Proceedings of the 3rd European conference on
artificial life.

Handl J, Meyer B (2002) Improved ant-based clustering and sorting. In: Proceedings of the 7th
international conference on parallel problem solving from nature

Handl J, Knowles J, Dorigo M (2003) Ant-based clustering: a comparative study of its relative
performance with respect to k-means, average link and 1d-som. Technical Report TR/IRI-
DIA/2003-24, Universite Libre de Bruxelles

Handl J, Knowles J, Dorigo M (2006) Ant-based clustering and topographic mapping. Artif Life
12(1): 35–61

Jain A, Murty M, Flynn P (1999) Data clustering: a review. ACM Comput Survey 31(3): 264–323
Lagus K, Honkela T, Kaski S, Kohonen T (1996) Self-organizing maps of document collections: A

new approach to interactive exploration. In: Proceedings of the 2nd international conference
on knowledge discovery and data mining

Lelewer D, Hirschberg D (1987) Data compression. ACM Comput Surveys 19(3): 261–296
Lumer E, Faieta B (1994) Diversity and adaptation in populations of clustering ants. In: Proceed-

ings of the 3rd international conference on simulation of adaptive behavior: from animals to
animats 3

Maedche A, Staab S (2002) Measuring similarity between ontologies. In: Proceedings of the Euro-
pean conference on knowledge acquisition and management (EKAW), Madrid, Spain

Maedche A, Volz R (2001) The ontology extraction & maintenance framework: text-to-onto. In:
Proceedings of the IEEE international conference on data mining, California, USA

Ritter H, Kohonen T (1989) Self-organizing semantic maps. Biol Cybernet 61(1): 241–254
Sabou M, Wroe C, Goble C, Mishne G (2005) Learning domain ontologies for web service descrip-

tions: an experiment in bioinformatics. In: Proceedings of the 14th international conference on
World Wide Web

Shamsfard M, Barforoush A (2002) An introduction to hasti: an ontology learning system. In:
Proceedings of the 7th Iranian conference on electrical engineering, Tehran, Iran

Shamsfard M, Barforoush A (2004) Learning ontologies from natural language texts. Int J Human-
Computer Stud 60(1): 17–63

Steinbach M, Karypis G, Kumar V (2000) A comparison of document clustering techniques. Tech-
nical Report 00-034, University of Minnesota

Vitanyi P (2005) Universal similarity. In: Proceedings of the IEEE ITSOC information theory
workshop on coding and complexity, New Zealand

Vizine A, deCastro L, Hruschka E, Gudwin R (2005) Towards improving clustering ants: an adap-
tive ant clustering algorithm. Informatica 29(2): 143–154

Wong W, Liu W, Bennamoun M (2006) Terms clustering using tree-traversing ants and featureless
similarities. In: Proceedings of the international symposium on practical cognitive agents and
robots, Perth, Australia

Yao Z, Choi B (2003) Bidirectional hierarchical clustering for web mining. In: Proceedings of the
IEEE/WIC international conference on web intelligence

	Tree-Traversing Ant Algorithm for term clustering based on featureless similarities
	Abstract
	Introduction
	Existing techniques for term clustering
	Background
	Normalized Google Distance
	Ant-based clustering
	The proposed Tree-Traversing Ants
	First-pass using Normalized Google Distance
	n of Wikipedia: a new distance metric
	Second-pass using n of Wikipedia
	Evaluations and discussions
	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

