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Abstract The high dimensionality of massive data results in the discovery of
a large number of association rules. The huge number of rules makes it diffi-
cult to interpret and react to all of the rules, especially because many rules are
redundant and contained in other rules. We discuss how the sparseness of the
data affects the redundancy and containment between the rules and provide a
new methodology for organizing and grouping the association rules with the
same consequent. It consists of finding metarules, rules that express the associ-
ations between the discovered rules themselves. The information provided by
the metarules is used to reorganize and group related rules. It is based only
on data-determined relationships between the rules. We demonstrate the sug-
gested approach on actual manufacturing data and show its effectiveness on
several benchmark data sets.

Keywords Item sets · Data sparseness · Clustering rules · Classification ·
Rules pruning

1 Introduction

Mining association rules from massive data often results in a massive set of
rules. The large number of rules makes it overwhelming to extract the desired
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information by simply analyzing the rules individually. The rules are often highly
redundant. Organizing the rules is a key to summarizing them and making them
easily understandable and interpretable by the data analyst. In this paper, we
suggest a new approach to reorganizing and grouping the redundant rules with
the same consequent by unveiling their mutual relationship and their contain-
ment in other more general rules. We find new rules that we call metarules which
reveal relationships between the discovered association rules. We use the infor-
mation provided by the metarules to reorganize and group the related rules.
The metarules are also useful for pruning the more specific, possibly overfit-
ting, rules. We apply the same association algorithm used to generate the rules
to derive the metarules. This approach postpones ad hoc, analyst preferences
for rules until an organized summary of the rules is generated. The organized
collection presents only data-determined relationships between the rules. Then
preferences can later be applied to the organized collection.

Our focus is on summarizing a subset of association rules with the same con-
sequent. Our basic approach could likely be extended to general association
application, but we do not explore that extension here. The rest of this paper
is organized as follows. A brief introduction to association rules is given in
Section 2. We also cite and summarize published work related to the topic at
hand. Containment and overlap of rules is discussed in Section 3. In Section 4,
we explain how metarules are generated and used to organize the discovered
rules. An example in Section 5, illustrates the application of the suggested
methodology to actual manufacturing data and shows its advantage over exist-
ing approaches to clustering rules. In Section 6, experimental results concerned
with the effectiveness of the suggested approach with several well known data
sets are given. Section 7 is a conclusion.

2 Background for association rules mining and related work

Association rules mining emerged as a technique for finding interesting rules
from transactional databases (Agrawal et al. 1993). More specifically, it was
initially used to reveal associations in commercial data from a database of
transactions each representing the set of items purchased by a customer. The
association analysis identifies items purchased together.

An association rule is an expression of the form: A → C, where A and C are
subsets of the set of items. Here A is referred to as the set of antecedents and
C as the set of consequents. The subsets A and C are disjoint. The importance
of a rule is evaluated by its support and confidence. The support of a rule is
the fraction of all transactions where the set of antecedents A and the set of
consequents C apply simultaneously. The support of a rule is a measure of its
importance in terms of the number of transactions where the rule applies. The
confidence of a rule is the fraction of the set of transactions containing the set
of antecedents A which contain the set of consequents C. Furthermore, the
confidence of a rule quantifies the strength of the association between the set of
antecedents and the set of the consequents. Minimum support and confidence
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thresholds are usually pre-specified before mining for association rules. Using
a low-support threshold uncovers all the underlying regularities in the data but
also results in a high number of association rules, most of which are redundant
and/or contained in other rules.

Several efforts have been deployed to tackle the problem of summarizing
and pruning the huge number of rules. Klemettinen et al. (1994) suggested a
method using templates which allow the user to retrieve only the rules that
are of interest. Other approaches, (Liu and Hsu 1996; Silberschatz and Tuzhilin
1996; Liu et al. 1997; Padmanabhan and Tuzhilin 1998) find those unexpected
rules by comparing the discovered rules to the pre-defined user’s knowledge
about the domain. These methods allow the user to view only rules that are of
interest but they don’t prune or summarize the rules. Ng et al. (1998) and Srikant
et al. (1997) require the user to specify constraints or restrictions regarding the
items that are associated simultaneously in the mined association rules. Using
these item constraints certainly reduces the number of the resulting rules but
the mined rules still need to be pruned and summarized.

Another approach to pruning the rules is called Minimum Improvement
(Bayardo et al. 2000). A rule is pruned if the difference between its confi-
dence and the confidence of any of its proper subrules (a proper subrule is a
simplification of the rule formed by removing one or more conditions from its
antecedents) is less than the pre-specified Minimum Improvement. This method
would not be effective when the data is sparse because many overlapping rules
won’t be sensitive to a low-Minimum Improvement threshold and thus won’t
be pruned. Furthermore, this method does not perform a summarization of the
rules that remain after pruning.

Statistical tests have been utilized for pruning potentially uninteresting rules
generated due to sampling. Bay and Pazzani (2001) provided a search algorithm
for mining contrast sets with pruning rules. Contrast sets refer to conjunctions of
attributes and values that differ meaningfully in their distribution across groups
or classes of interest. They applied a significance test to remove the insignificant
contrast sets. Huang and Webb (2005a) also developed an insignificance filter
for automatically discarding insignificant rules during rule discovery with the
OPUS search algorithm from data with undiscretized quantitative attributes.
Huang and Webb (2005b) suggested a new derivative rule filter using a t-test
for pruning a class of insignificant rules called Derivative Rules that are not
successfully removed using existing rule pruning techniques.

A chi-squared test was also used as the basis for pruning Liu et al. (1999). The
dependence between the antecedents and the consequent of a rule is evaluated
by a χ2 test. A rule is pruned if its χ2 statistic is lower than the pre-specified
threshold value which corresponds to a desired significance level. In sparse
domains this technique will fail to prune many rules. Furthermore Liu et al.
(1999) suggested a method for summarizing the remaining rules into a special
subset of associations called the direction setting rules which give a global picture
of the underlying relationships in the domain. Clearly the completeness of the
set of direction setting rules depends on the results of the previous pruning step.
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Toivonen et al. (1995) introduced a technique for pruning the discovered
rules by forming rule covers. A cover is a subset of rules that covers the entire
database. Although this method reduces the number of rules significantly, it does
not conserve all the information embedded in the discovered rules because a
greedy algorithm is used to find a good cover.

Chawla et al. (2004) proposed an adaptive local pruning method for asso-
ciation rules using directed hypergraphs. The method uses Association Rules
Networks as a graphical method to prune rules by associating with hypercycle
and reverse hyperedges. The pruning is local because it takes place in the con-
text of a goal node. That is, a rule that is considered redundant for a particular
goal node may become important for another goal node. Unlike our approach
presented herein, this method does not provide a global organization of the
discovered association rules.

Several methods use distance-based clustering to group association rules.
Toivonen et al. (1995) defined the distance between two association rules as
the number of rows where the rules differ. A new normalized distance metric
was presented by Gupta et al. (1999) to cluster the rules. Lent et al. (1997),
clustered association rules with a geometric-based algorithm. This application
was limited to rules with two attributes in the set of antecedents. Defining a
distance metric between two rules is sensitive to the asymmetric relationship
between the rules. That is, if a rule is viewed as the set of rows that satisfy the
rule, there is often considerable containment and overlap between the sets of
rows that satisfy each rule.

Association rule mining is also used in classification. The approach of inte-
grating classification and association rules mining (known as associative classi-
fication) is not new to the machine learning community. CBA (Liu et al. 1998)
generates association rules with consequent restricted to a class attribute. Such
class association rules (CARs) were also found using CBA-RG (Liu et al. 1998)
which is adapted from Apriori (Agrawal et al. 1993). The discovered CARs are
then used for classification. The CARs are sorted based on their confidence
then support and finally based on the order in which they were discovered.
Then a subset C of high precedence rules from CARs are chosen to cover
the data set. This subset of rules is augmented with a default class (majority
class of uncovered data) and then used for classification. A rule is chosen to
classify a data instance based on high precedence. CMAR (Li et al. 2001) or
classification based on multiple association rules, is more efficient than CBA
in terms of finding the association rules, it adopts a variant of an efficient fre-
quent pattern mining, FP-growth (Han et al. 2000), to find the rules and stores
them efficiently in a CR-tree which is a prefix tree structure. More specific and
lower confidence rules are then pruned. The rules are thereafter pruned based
on database coverage. CMAR uses a coverage threshold to select database
coverage. After pruning the rules, CMAR determines the class label of a data
instance based on a weighted χ2 analysis of multiple rules and not by the rule
with highest precedence like in CBA. Both CBA and CMAR use the pessi-
mistic-error-rate pruning in C4.5 (Quinlan et al. 1992) to prune the discovered



Using metarules to organize and group discovered association rules 413

association rules. In this paper, we suggest using metarules as an alternative to
pruning and organizing the discovered class association rules.

Association rules were also considered in the case were the data set contains
quantitative attributes. Srikant and Agrawal (1996) suggested the first algo-
rithm of the quantitative case, it uses discretization of the quantitative data.
Fukuda et al. (1999) also provided an efficient algorithm using computational
geometry and sampling methods for efficiently mining quantitative association
rules. Their solution was however, limited to rules with a categorical conse-
quent. Aumann and Lindell (2003) introduced a new definition of quantitative
association rules based on statistical inference theory. Their work focuses on
situations with rules of one quantitative attribute or categorical attributes in
the antecedent set and one quantitative consequent.

Mining association rules with multiple quantitative antecedents without prior
discretization still remains an active research problem. Significant efforts have
been made to develop discretization methods. Dougherty et al. (1995) supplied
a review of several existing methods and classified them according to three
major axes: global versus local, supervised versus unsupervised, and static ver-
sus dynamic. Yang and Webb (2002) conducted a thorough comparison of sev-
eral of the existing methods when employed for naive-Bayes classifiers. Liu
et al. (2002) provided a description of existing discretization methods and sug-
gested some guidelines on how to choose a discretization method under various
settings. In our example, we use a naive discretizer on the continuous attributes.
The focus of our work is to organize generated rules regardless of the method-
ology used within rule discovery.

3 Containment and overlap of rules

One cause of the large number of rules is the redundancy among the rules
due to the sparseness of the data in high-dimensional spaces. The sparseness of
the data is due essentially to the curse of dimensionality. Scott and Thompson
(1983), showed that the data gets sparser as the dimensionality gets higher, that
local neighborhoods of points in high dimensions are mostly empty, and that
even in the case of uniform distributions, data is concentrated at the borders
of the volume of interest. We illustrate through the following example how the
sparseness of the data results in a redundancy among the rules.

Let A, B, and C denote three categorical variables of interest: A with two
categories, A1 and A2, B with three categories, B1, B2, and B3 and C with two
categories C1 or C2. Furthermore, assume that the distribution of the data is
summarized in Tables 1 and 2.

Table 1 Distribution of the
data when C is at the level C1

B

B1 B2 B3

A A1 1 100 0
A2 0 100 1
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Table 2 Distribution of the
data when C is at the level C2

B

B1 B2 B3

A A1 0 0 15
A2 0 0 10

Table 3 Discovered
association rules with C1
as a consequent

Rule index Antecedents Consequent Support Frequency

r1 A1 C1 101
r2 A1 and B2 C1 100
r3 A2 C1 101
r4 A2 and B2 C1 100
r5 B2 C1 200

The numerical values in the cells in Tables 1 and 2, indicate the number of
observations in each cell. Note that some cells have few (or zero) observations.

Suppose that we are interested in the association rules that have C1 as a con-
sequent. It follows that we find five rules with C1 as a consequent and support
frequency of at least 100. The rules are summarized in Table 3 where the first
column, labeled rule index, represents an arbitrary index that refers to each
rule. In the case under study, all the rules have the same consequent C1. The
effect of sparseness is the generation of several rules.

The distribution of the data suggests that the categories of the variable A do
not affect the density of the data in the different cells of Table 1. Nevertheless,
the category A1 appears as an antecedent of the rules r1 and r2, and the category
A2 appears as an antecedent of the rules r3 and r4. Notice that the rules r1 and r2
are derived from nearly the same rows (or examples). It is clear then that they
convey the same information. The same thing is also true for rules r3 and r4.
In contrast, the rule r5 resulted from the high density of category B2 and the
sparseness of the data in the other categories of B.

Hence, the sparseness of the data in some regions of the space results in a
high number of redundant association rules, most of which are not important.
This makes it difficult to find important or good rules among the resulting rules
especially in a high-dimensional space. Detecting those regions where the rules
are redundant and/or contained in other rules is then a key to grouping and
pruning the discovered rules. This type of relationship between rules is difficult
to capture with a clustering algorithm based on a distance metric. Examples are
presented in Sect. 5.5.

4 Finding metarules to organize and prune the discovered rules

4.1 Finding metarules

We propose a novel technique for grouping and then pruning the discovered
rules which share the same consequent. It consists of finding one-way associa-
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tions between those discovered rules. One-way association rules refer to rules
with one antecedent and one consequent. We call these associations between
the rules metarules. The approach simply and easily summarizes the asymmetric
relationships between the rules. We apply the same association algorithm in a
new role.

Let I = {i1, i2, . . . , ip} be a set of p items, and D = {d1, d2, . . . , dn} be the set
of all n data rows, where each data row contains a subset of items from I. Let
R = {r1, r2, . . . , rm} represent the set of the m discovered association rules with
the same consequent of interest obtained from D.

We say that a rule ri from R is supported by the data row dj or that data row
dj supports rule ri if all the antecedents of the rule ri are items of dj and we
refer to this relationship by the following expression: ri ⊆ dj. Define a new set
of transactions Q = {q1, q2, . . . , ql} where l ≤ n such that every element qj of Q
is a subset of rules from R such that:

qj = {ri ∈ R | ri ⊆ dj}.

In other words, each rule is considered an item. Also, each data row from D is
mapped to the subset of rules from R which it supports and this subset of rules
(when nonempty) corresponds to a transaction in Q. Note that if every data
row supports at least one rule then l = n.

If we find one-way association rules from the set Q, we will determine all
the one-way associations between the rules from R. The metarules take the
form ri → rj where ri and rj are rules from R. The resulting metarules provide
a summary of the containment and overlap between the rules. The confidence
threshold for mining metarules is defined similarly to an ordinary association
rule but applied to the set Q. The support threshold for metarules mining can
be set to 0% in order to uncover all the relationship between all the rules.
Because metarules only calculate rules with one antecedent and consequent
the calculations are simpler than a full association analysis and the support is
easily set to 0%. Let MR = {mr1, mr2, . . . , mrk} refer to the set of the k discov-
ered metarules, obtained from Q. If we analyze the metarules from MR, we can
understand the relationship between the association rules from R.

Also, a graphical presentation of the metarules is defined here. Each rule
from R is represented by a node and each metarule connects two nodes with a
directed arc, such that the originating node is the antecedent of the metarule
and the destination node is its consequent.

We illustrate the suggested approach to mining metarules through the same
example that we used in Sect. 3. Recall that we found five rules so that R =
{r1, r2, . . . , r5}. Also, n = 227. Note that l = 227 and it corresponds to the num-
ber of data rows which support the antecedents of at least one of five rules from
R. Mining for association rules from the data cases for the corresponding Q
results in the eight metarules summarized in Table 4. The minimum confidence
and support thresholds used for this example are, respectively, 85 and 0%.

In general the support and confidence thresholds would be set for meta-
rules in identically the same manner as the usual rules. Because many rules



416 A. Berrado, G. C. Runger

are redundant, confidences as high as 90% or more can be used. Our following
examples use 100%. A higher confidence threshold results in a smaller set of
metarules. Large numbers of metarules indicate many relationships between
the rules. The support threshold for metarules mining that we use is specified
to 0% in order to uncover all the relationships between all the rules.

Note that our approach could likely be extended by using other metrics
instead of or in addition to support and confidence to assess the interestingness
of the discovered rules or metarules (Tan et al. 2002), but we do not explore
that extension here.

The metarules from Table 4 reveal the dependency between the rules of
interest: r1, . . . , r5. The graph in Fig. 1 illustrates the relationship between the
five rules. The graph is composed of five nodes, one for each rule and eight
directed arcs, one for each metarule. For example, the metarule r1 → r2 creates

Table 4 Discovered
metarules

Metarule Antecedents Consequent Support Confidence
index (%) (%)

mr1 r2 r1 44 100
mr2 r1 r2 44 86
mr3 r2 r5 44 100
mr4 r4 r3 44 100
mr5 r3 r4 44 90
mr6 r4 r5 44 100
mr7 r1 r5 44 86
mr8 r3 r5 44 90

Fig. 1 Relationship between
the rules
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an arc originating from the node r1 and ending at the node r2. Figure 1 shows
the complete relationship between the five rules.

Figure 1 shows that the rules r1 and r2 show a mutual relationship with each
other. We conclude that the rules r1 and r2 are approximately equivalent. That
is, the two rules are supported by the same data rows. The same thing is true
for the rules r3 and r4. We also notice that there are arcs originating from the
nodes r1–r4 toward the node r5 and none in the other direction, we say that the
rule r5 is less specific than the other rules. That is, the data rows that support
each of the rules r1–r4 are contained in the rows that support the rule r5. In
Sect. 4.3, formal definitions for specificity of a rule and equivalence between
rules are provided.

4.2 Finding independent subgroups of rules

Using the metarules to build a graphical representation can divide the rules
from R into disjoint subgroups of rules, if they exist. That is, there might be
no arcs that link the rules spanning a subgroup to the rules spanning the other
subgroups. We illustrate this by considering a more complex example in Sect. 5.
Each cluster of rules explains the data in a local region of the high-dimensional
space.

Using the metarules for the organization of the discovered rules into clusters
or subgroups of rules differs from the distance-based clustering algorithms used
for the same purpose (Toivonen et al. 1995; Gupta et al. 1999). Our method
does not need a distance metric to find the subgroups of rules. The asymmetric
relationships generated from the containment and overlap between the rules
makes it challenging to define an appropriate distance metric to be used for
clustering the rules.

4.3 Reorganizing the equivalent and the more specific rules

Let ri be a rule from R and let OUT(ri) refer to the subset of rules rj from R
defined as follows:

OUT(ri) = {rj ∈ R | ri → rj ∈ MR}.

Also, let IN(ri) refer to the subset of rules rj from R such that rj → ri is a
metarule from MR:

IN(ri) = {rj ∈ R | rj → ri ∈ MR}.

Definition 1 Let ri and rj be two rules from R, we say that ri is more specific
than rj or that rj is more general than ri, if the following condition is met:

1. rj ∈ OUT(ri) and rj /∈ IN(ri).
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Fig. 2 Relationship between
the rules after combining the
equivalent rules

Definition 2 Let ri and rj be two rules from R, and let cij and cji denote respec-
tively the confidences of the metarules ri → rj, rj → ri.
we say that ri and rj are equivalent if the following three conditions are satisfied:

1. ri ∈ OUT(rj) and ri ∈ IN(rj),
2. OUT(ri) \ {rj} = OUT(rj) \ {ri},
3. IN(ri) \ {rj} = IN(rj) \ {ri},

Where OUT(ri) \ {rj} refers to the subset of OUT(ri) excluding the rule rj, that
is OUT(ri) \ {rj} ∪ {rj} = OUT(ri). Note that if ri and rj are equivalent and
cij = cji = 100% then the two rules are supported by exactly the same data
rows. That is, they are different representations of the same relationship.

If we group each pair of equivalent rules and represent them by the same
node, the graph from Fig. 1 is reduced to the graph in Fig. 2. This more clearly
explains the relationships.

The computational overhead in the suggested approach could be broken
down into the following three components:

• The first one is concerned with creating the new set of transactions Q, which
takes mn computations to create.

• The second is concerned with metarules mining, which is simply the same as
the computational complexity of a priori because it is used to find metarules
from Q. We note that only one-way association rules (rules with a single
antecedent and single consequent) are calculated so that this step is much
simpler than a full association rule analysis.

• The third is concerned with the computational complexity of simplifying
metarules, which is quadratic to the number of metarules.

4.4 Pruning the discovered rules using metarules

Although the objective of the metarules approach is to group and organize
rules, the approach can also be directly used to prune the rules. First consider
equivalent rules. Suppose that rules ri and rj are found equivalent using meta-
rules. Now, if the antecedent itemset of rj is contained within the antecedent set
of ri, then rj can be pruned because it is more complex than ri. For the example
at hand, this means that r2 with antecedent {A1, B2} can be pruned because it
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is contained in r1 with antecedent {A1}. Similarly, r4 can be pruned since it is
contained in r3. This leads to the following definition.

Definition 3 Let ri and rj be two rules from R, and let cij and cji denote the
confidences of the metarules ri → rj and rj → rj, respectively. We say that rj is
more complex than ri if the following two conditions are satisfied:

1. ri and rj are equivalent according to Definition 2, and,
2. The antecedents of ri is a proper subset of the antecedents of rj.

Note that Definition 3 implies that cji = 100%, because the support of rj is
completely included in the support of ri. The examples that follow show that
a large number of rules are related through this definition of equivalence and
complexity. Consequently, pruning based on this simple definition of equiva-
lence and complexity is useful. This might be expected from sparse data in high
dimensions.

More generally, metarules can indicate clearly which rules are more specific,
and they can be directly used for pruning. However, for rules that do not satisfy
Definition 3, the decision to prune has some consequences. Even equivalent
rules may result in ambiguous pruning decisions. For example, when r1 has
antecedent {A1, B2} and r2 has antecedent {C1, D2} our solution is to merge
the rules to a common node, but not make a pruning decision. More impor-
tantly, the fact that a rule is more specific than another rule does not imply
that it should be pruned. It may or may not be overfitting the data, because
it has a smaller support than the more general one. Subject knowledge can be
used instead to decide which of the more specific rules should be pruned. We
recommend that this task be delayed until after the pruning of the equivalent
rules has taken place. For the example at hand, if subject knowledge indicates
that the two nodes with more specific rules, {r1 and r2} and {r3 and r4}, can be
pruned, then we are left only with the rule r5. Here r5 is B2 → C1 and it is a
reasonable summary of the data in Table 1.

Although metarules directly apply to the issue of pruning specific rules in
the presence of more general ones, this topic is not further explored in this
paper. Instead, we propose to simplify the rules as much as possible before
subject matter expertise is invoked. Consequently, the rule reductions that we
present in the following examples are conservative. They are based only on
our summary graphics and with nodes joined based on equivalence defined in
Definition 2, without the pruning of more specific rules.

5 Application

Assume that we are interested in determining which process variables are
responsible for a defective product from a manufacturing process. Also, as-
sume that the variables being investigated are all categorical. If we gather data
about the outcome of the process (good or defective output), given certain
process settings (operating conditions), and if we consider each observation
as a transaction, we can use association rules mining to associate defects with
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certain process settings. Process settings refer to the process variables being
set at certain levels. Because we are trying to explain a defective output, the
consequent of interest for the rules is “defective output.” Each element in the
set of antecedents represents a process variable set at some level. Note that
looking for a specific consequent such as a defective output, narrows down the
pool of rules that need to be analyzed. This subset of rules can however still be
massive and the rules highly redundant and thus they still need to be pruned
and summarized.

We now illustrate the advantage of our approach by organizing the associa-
tion rules discovered from actual data provided by a major manufacturer. The
data has been coded and no actual variables or process names are used. The
data was collected from a manufacturing process with 35 numerical variables
and a binary response indicates whether the output is good, G, or rejected, R.
The number of observations is approximately 10,000.

5.1 Discretization of the numerical variables

Because the data provided is composed of 35 numerical variables and a
binary response, we had to discretize the numerical feature space before genera-
ting the association rules. As discussed in Sect. 2, several discretization meth-
ods are available. For initial results, we adopted a simple and naive method
known as Equal Frequency Discretization to partition each of the 35 con-
tinuous attributes individually. For simplicity, each attribute was divided into
four intervals. To discretize a variable xi, we determined its minimum and
maximum values, then sorted all values in ascending order and divided the
range into four intervals so that each contains 25% of the data. As men-
tioned previously, although better quality rules might be obtained with an
alternative discretizer, our objective is to summarize rules generated in any
manner.

We identified each variable by a number between 1 and 35. For exam-
ple, the number 1 refers to the variable x1. Because each variable was par-
titioned into four intervals, we used the following indexing to refer to the
intervals of each variable: the intervals corresponding to variable xi are, respec-
tively, i_1–i_4. Because the class label (column 36) was already categorical, it
remained unchanged. As an example of the discretized data, consider the first
data row: the measured values of the 35 variables were represented by the
following record where the last element, R, on the record is the class label.
1_4, 2_1, 3_1, 4_1, 5_2, 6_1, 7_2, 8_4, 9_2, 10_2, 11_2, 12_2, 13_1, 14_3, 15_2, 16_4,
17_3, 18_1, 19_4, 20_1, 21_2, 22_4, 23_2, 24_3, 25_3, 26_1, 27_1, 28_1, 29_4, 30_4,
31_4, 32_3, 33_4, 34_2, 35_3, R.

5.2 Rule generation

A search was made for all possible rules with R as a consequent and the com-
plete set of rules that resulted from this analysis are displayed in Table 5. We



Using metarules to organize and group discovered association rules 421

Table 5 Generated
association rules

Rule Antecedents Consequent Support Confidence
index (%) (%)

r1 1_2, 13_2, 11_1 R 1.2 81.8
r2 3_2, 13_2, 11_1 R 1.6 82.1
r3 3_2, 11_1, 14_4 R 1.1 80.6
r4 20_2, 3_2, 11_1, 5_1 R 1.1 80.5
r5 20_2, 3_2, 11_1, 10_1 R 1.1 80.6
r6 20_2, 4_3, 11_1, 5_1 R 1.1 85.4
r7 20_2, 4_3, 11_1, 10_1 R 1.1 85.0
r8 17_2, 3_2, 11_1, 5_1 R 1.0 81.0
r9 17_2, 3_2, 11_1, 10_1 R 1.0 81.0
r10 12_3, 4_3, 2_2, 11_1 R 1.1 80.6
r11 1_3, 4_3, 2_2, 11_1 R 1.2 80.0
r12 1_2, 3_2, 11_1, 5_1 R 1.7 80.9
r13 1_2, 3_2, 11_1, 10_1 R 1.7 81.0
r14 1_2, 13_2, 11_1, 5_1 R 1.2 87.8
r15 1_2, 13_2, 11_1, 10_1 R 1.2 87.9
r16 1_2, 13_2, 11_1, 33_4 R 1.0 82.9
r17 1_2, 11_1, 14_4, 5_1 R 1.4 86.8
r18 1_2, 11_1, 14_4, 10_1 R 1.4 86.8
r19 1_2, 11_1, 14_4, 8_3 R 1.1 83.7
r20 3_2, 13_2, 11_1, 5_1 R 1.1 91.0
r21 3_2, 13_2, 11_1, 10_1 R 1.2 91.1
r22 3_2, 13_2, 11_1, 8_3 R 1.1 84.1
r23 3_2, 13_2, 11_1, 33_4 R 1.3 81.1
r24 4_3, 2_2, 11_1, 5_1 R 1.5 82.0
r25 4_3, 2_2, 11_1, 10_1 R 1.5 82.0

used a confidence threshold of 80%. Note that the support of the discovered
rules is in the order of 1%. It is low because we are interested in explaining the
occurrences of a rare consequent R.

The discovered rules are redundant and some of them are contained in oth-
ers. The 35 variables are not all independent from each other. Consider, for
example, the rules r1 and r14. All the antecedents of r1 are also antecedents of
r14. The set of rows that support r14 is included in the set of rows that supports
r1 so that r14 is more specific than r1.

5.3 Finding metarules and rule organization

After finding the rules, we followed the method in Sect. 4 to generate the meta-
rules and then used them to organize the discovered association rules. The
metarules discovered from the rules from Table 5 are summarized in Table 6.
Note that we used a confidence threshold of 80%. Using a higher confidence
threshold, for example 90%, would result in fewer metarules. The support
threshold used to generate the metarules is 10%. These metarules explain the
dependency between the 25 rules from Table 5. For example mr1 and mr2 show
a mutual dependency between the rules r6 and r7.
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Table 6 Discovered
metarules

Rule Antecedents Consequent Support Confidence
index (%) (%)

mr1 r6 r7 19.6 100
mr2 r7 r6 19.6 99.2
mr3 r25 r24 28.3 100
mr4 r24 r25 28.3 100
mr5 r19 r17 19.6 92.2
mr6 r19 r18 19.7 93
mr7 r8 r9 19.9 100
mr8 r9 r8 19.9 100
mr9 r22 r2 20.7 100
mr10 r4 r5 21.9 100
mr11 r5 r4 21.9 99.3
mr12 r17 r18 24.8 100
mr13 r18 r17 24.8 92.3
mr14 r16 r14 17.8 82.4
mr15 r14 r16 17.8 92.3
mr16 r16 r15 17.9 93.2
mr17 r15 r16 17.9 82.6
mr18 r16 r1 19.2 100
mr19 r1 r16 19.2 81.8
mr20 r23 r2 26.2 100
mr21 r2 r23 26.2 81.5
mr22 r14 r15 21.5 100
mr23 r15 r14 21.5 99.2
mr24 r20 r14 16.3 81.1
mr25 r21 r14 16.3 80.5
mr26 r14 r1 21.5 100
mr27 r1 r14 21.5 91.6
mr28 r20 r15 16.3 81.1
mr29 r21 r15 16.4 81.3
mr30 r15 r1 21.7 100
mr31 r1 r15 21.7 92.3
mr32 r20 r21 20.1 100
mr33 r21 r20 20.1 99.2
mr34 r20 r1 16.3 81.1
mr35 r20 r2 20.1 100
mr36 r20 r12 16.3 81.1
mr37 r20 r13 16.3 81.1
mr38 r21 r1 16.4 81.3
mr39 r21 r2 20.2 100
mr40 r21 r12 16.3 80.5
mr41 r21 r13 16.4 81.3
mr42 r12 r13 33.6 100
mr43 r13 r12 33.6 99.5

Refer to Fig. 3 for the graphical presentation of the metarules. Figure 3 shows
that the discovered association rules are organized into several subgroups as
follows:

• A cluster grouping the following eleven rules: (r1, r16, r14, r15, r12, r13, r20, r21,
r2, r23, r22).

• A cluster of three rules: (r17, r18, r19).
• Four clusters that group two rules each: (r6, r7), (r4, r5), (r8, r9), and (r24, r25).
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Fig. 3 Discovered metarules

• And finally three individual rules that did not participate in any metarule:
r3, r10, and r11.

With this new organization of the rules into independent subgroups, it is much
easier to analyze and understand the rules.

5.4 Grouping the equivalent rules and pruning the more specific ones

Our ability to analyze the rules is enhanced further after more processing of the
rules within each subgroup. Within each subgroup, we simplified the graphical
presentation by grouping into the same node the equivalent rules. The reorga-
nized rules are plotted in Fig. 4. The three individual rules which don’t belong
to any subgroup were not affected by this step. The subgroups with two nodes
were reduced to one node. The subgroup with three nodes was reduced to a
subgroup with two nodes. Finally, the subgroup with ten nodes was reduced to
seven nodes.

Pruning the contained rules according to Definition 3 would result in pruning
rules r14 and r15 since they are more complex than r1. Notice that some of the
subgroups could be simplified further. For instance, if we combine knowledge
about the process with information about the more specific rules we might
decide to prune rule r19 and possibly prune the node containing the rules r20
and r21 as well. We might also decide to group the rules (r1, r14, r15) with rule
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Fig. 4 Metarules after
grouping equivalent rules

Fig. 5 Metarules after
pruning the more specific
rules

r16 into the same node. The final set of subgroups of rules after grouping and
pruning several rules is described in Fig. 5. Each group of rules could then be
further analyzed by looking at the variables involved in each of the rules within
the same group.

This application justifies our original thesis that finding metarules enhances
our understanding of the discovered association rules by braking them down
into independent subgroups and pruning some overfitting rules within the sub-
groups. The reduced subgroups of rules are more actionable than the complete
set of discovered rules.
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5.5 Comparison with rules clustering approaches using distance metrics

In this section, we compare the groups formed using the metarules approach in
Fig. 3 with the clusters formed using two different distance metrics to group asso-
ciation rules. Let d1 and d2 refer to the distance metric suggested in (Toivonen
et al. 1995) and (Gupta et al. 1999), respectively. We used hierarchical clustering
algorithms with both distance metrics and experimented with different linkages.
Figures 6 and 7 illustrate, respectively, the dendrograms obtained with Ward
linkage using the distance metrics d1 and d2, respectively.

First, note that cluster assignment differs when using different distance met-
rics. Take, for instance, rules 20 and 21. When using d1 they were initially
grouped with rules 1 and 14–16, and then with rules 2, 23, and 22. When using
d2, rules 20 and 21 where grouped with rules 2, 23, and 22 before grouping them
with rules 1 and 14–16. Furthermore, Figs. 6 and 7 agree that rules 12 and 13 are
first clustered with rules 4, 5, 8, and 9 while the metarules approach suggests that
rules 20 and 21 have greater than 80% confidence to rules 12 and 13. We reduced
the confidence level to understand the clustering results between rules 12, 13
and 4, 5 and we found the following metarules: r4 → r12 with confidence 72.9%
and r5 → r12 with confidence 72.4% and r4 → r13 with confidence 72.9% and
r5 → r12 with confidence 73.1%, the confidence levels of these metarules are
all inferior to those of the metarules mr36, mr37, mr40, and mr41 relating rules
12, 13, 20, and 21 found in Table 6.

Another major difference between the metarules in Fig. 3 and the clusters
of Figs. 6 and 7 is that the latter do not indicate the nature of the relation-
ships between the clustered rules. Greater detail is obtained from the ability
of the metarules to provide insights into containment. For example, mr18 indi-
cates 100% confidence for r16 → r1, but mr19 shows only 81.8% confidence
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Fig. 6 Dendrogram of clustering association rules with Ward linkage and distance metric d1
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Fig. 7 Dendrogram of clustering association rules with Ward linkage and distance metric d2

for r1 → r16. The clustering results blend these two implications and place r1
and r16 close to each other in the dendrograms, without a clear description of
the 100% one-way relationship. Although the distance metrics give a sense of
proximity between the rules, they do not indicate the level of containment or
overlap of rules. Furthermore, the conclusions above continue to hold when
linkages such as complete, average and single were used instead of Ward in the
comparisons above.

6 Experimental evaluation

We show the organization provided by metarules on the following six bench-
mark data sets obtained from the UC Irvine ML repository (Blake and Merz
1998) and a Microarray data set obtained from the Kent Ridge Bio-medical
data set repository (Li and Liu 2002).

• Iris Plants data (iris),
• Johns Hopkins University Ionosphere data (ion),
• Statlog Project Heart Disease data (hea),
• Thyroid Disease data (thy),
• Attitudes Toward Workplace Smoking Restrictions data (smo), and
• Mushroom data (mush),
• Ovarian Cancer (OvaCan).

The data sets, as described in Table 7, are of different sizes and varying num-
ber and types of attributes. The continuous attributes in the data sets used were
discretized using a 4-bin equal-frequency discretization. After discretization we
reduced the number of attributes of the Ovarian Cancer data set from 15,154 to
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Table 7 Major properties of the data sets considered in the experimentation

Properties Data sets

Iris Thy Ion Smo Hea Mush Ovacan

No of classes 3 3 2 3 2 2 2
No of examples 150 7,200 351 2,855 270 8,124 253
No of attributes 4 21 34 13 13 22 500
No of continuous attributes 4 6 32 2 6 0 500

500 by random selection. The a priori algorithm itself is known to consume too
much memory with sparse data sets and this prevents it from returning any rules.

The experimental results are summarized in Table 8 where each row describes
the results of one experiment that consisted of the following steps:

• Find the set of rules with the consequent matching the class labels specified
in column 2. The support and confidence thresholds used to find association
rules are reported in the third column. It should be noted that the thresh-
olds used differ between class labels and data sets since the class labels were
not distributed evenly on the data cases. The number of rules found in each
case can be found in column 4. We used the default maximum itemset size
for a priori except for the Ovarian Cancer data set where we reduced it to
four in order to avoid too much memory consumption and enable a priori
to return rules.

• Metarules were then mined following the procedure described in Sect. 4.1
with a support threshold of 0% and a confidence threshold of 100%. The
number of metarules discovered is reported in column 5.

• After mining the metarules, the definition of rule equivalence given in Sect.
4.3 Definition 2 was applied and the number of remaining nodes after group-
ing the equivalent rules is reported in column 7. The number of remaining
metarules in the simplified graph can be found in column 6. Column 8 is the
ratio of the reduced number of metarules to the initial number of metarules.
Finally column 9 indicates the ratio of the reduced number of rules to their
initial number.

It should be noted that we do not prune the contained or the more specific
rules. Our objective is to illustrate the effect of grouping equivalent rules on
the metarule graphs.

The experimental results indicate that grouping the equivalent rules in the
same node leads to the simplification of the metarules graph. The extent of sim-
plification of the metarules graph varies between the different cases considered
both in terms of number of remaining rules and number of remaining metarules;
in some cases, such as for both class labels of the mushroom data set, both class
labels of the ovarian cancer data set, for the first two class labels of the thyroid
disease (thy) data set and for the first two class labels of the smoking (smo)
data set, the metarule graphs were reduced more compared to the remain-
ing experimental cases. The greatest simplification of rules was noted for the
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Table 9 Effect of confidence threshold for metarules mining on the metarules graph representing
the rules predicting the poisonous category from the mushroom data set

Confidence No of No of Simplified No of Simplified Remaining Remaning
metarules metarules rules metarules(%) rules (%)

100% 3,64,522 95 27 0.03 3.19
90% 5,19,275 19 10 0.00 1.18
80% 5,26,514 18 8 0.00 0.95

category Poisonous for the mushroom data set, where the number of rules
went down from 846 to 27 rules. The highest simplification of metarules was,
however, noted for the category Normal for the Ovarian Cancer data set, the
number of metarules was reduced from 336 metarules to none. Finding the
equivalent rules makes it easier to process the rules and the reduced meta-
rules graph indicates the relationships between these groups of rules. Note that
these results were achieved with a conservative metarule confidence of 100%.
Relaxing the confidence threshold for metarules mining would further simplify
the metarules graph. The following experiment illustrates how the metarules
graph is simplified with the reduction of the confidence threshold for metarules
mining. Consider the mushroom data with the class label “Poisonous.” As the
confidence threshold was reduced from 100 to 90% then 80%, the number of
simplified rules and simplified metarules decreased as reported in Table 9.

Reducing the confidence threshold of metarules results in more metarules
which in turn leads to more equivalent rules. This naturally leads to a decrease in
the percentage of rules and metarules after grouping the equivalent rules. Once
all the equivalent rules have been grouped, no further simplification occurs
with the reduction of the confidence threshold of metarules mining. Conse-
quently, the analyst can decide on a convenient confidence threshold in order
to make the metarules graph match the redundancy to discover in the rules
used in the application. A default of 100% confidence still resulted in dramatic
reductions in these examples. Each group of equivalent rules in the metarules
graph can then be further investigated individually to understand the structure
of its representative rules. The simplifications in these examples did not yet use
rule pruning based on antecedent itemsets or other criteria. We consider meta-
rules as a first step to learn of the attribute masking and redundancy generated
from sparse data in high dimensions that can be followed by further pruning.

7 Conclusion

Finding association rules is an efficient way to uncover all the hidden regular-
ities in massive high-dimensional data. The huge number of discovered rules
is a handicap for the human user to assimilate all the information provided by
the rules. Since the rules express relationships that exist indeed in the data it
is not prudent to arbitrarily prune and eliminate some of the rules. This pa-
per introduces a new approach based on metarules and a graphical display
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to partition the association rules with the same consequent into independent
subgroups of rules without assumptions about relevance of rules. These sub-
groups of rules are simplified even more after grouping the equivalent rules.
The organized collection presents only data-determined relationships between
the rules. Domain knowledge can also be applied as appropriate to possibly
prune the more specific ones. The data analyst can analyze each of the formed
subgroups of rules individually and therefore understand the relationships that
hold between the data in different regions of the measurement space.
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