
Data Mining and Knowledge Discovery, 13, 67–87, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in the United States.

DOI: 10.1007/s10618-005-0029-z

A Rule-Based Approach for Process Discovery:
Dealing with Noise and Imbalance in Process Logs

LAURA MĂRUŞTER l. maruster@rug.nl
University of Groningen, P.O. Box 800, 9700 AV, Groningen, NL

A.J.M.M. (TON) WEIJTERS a.j.m.m.weijters@tm.tue.nl

WIL M.P. VAN DER AALST w.m.p.v.d.aalst@tm.tue.nl
Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, NL

ANTAL VAN DEN BOSCH antal.vdnbosch@uvt.nl
Tilburg University, P.O. Box 90153, 5000 LE, Tilburg, NL

Published online: 12 May 2006

Abstract. Effective information systems require the existence of explicit process models. A completely
specified process design needs to be developed in order to enact a given business process. This development
is time consuming and often subjective and incomplete. We propose a method that constructs the process
model from process log data, by determining the relations between process tasks. To predict these relations, we
employ machine learning technique to induce rule sets. These rule sets are induced from simulated process log
data generated by varying process characteristics such as noise and log size. Tests reveal that the induced rule
sets have a high predictive accuracy on new data. The effects of noise and imbalance of execution priorities
during the discovery of the relations between process tasks are also discussed. Knowing the causal, exclusive,
and parallel relations, a process model expressed in the Petri net formalism can be built. We illustrate our
approach with real world data in a case study.

Keywords: rule induction, process mining, knowledge discovery, Petri nets

1. Introduction

Managing complex business processes calls for the development of powerful infor-
mation systems, able to control and support the underlying processes. To support a
structured business process, such information systems have to offer generic process
modelling and process execution capabilities. Because problems are encountered when
designing and employing such information systems, the interest in Business Process
Analysis and Continuous Process Improvement Efforts increases. Yet, whatever the
goal is (e.g. modelling, designing, redesigning or implementing business processes),
it needs to be preceded by an analysis of the existing processes. The growing interest
into the automation of analysing existing processes, process mining can be explained
by the availability of logged information, which most information systems (traditional
or process-aware) support.

The goal of process mining is to abstract process information from transaction
logs (Aalst et al., 2003). Process mining focuses on different levels. Accordingly,
this leads to different mining perspectives, such as the process perspective, the or-
ganizational perspective, and the case perspective. The process perspective focuses

68 MĂRUŞTER ET AL.

on the control flow, i.e., the ordering of activities. The goal of this type of mining is
to find the possible relations between tasks, expressed in terms of a process model,
e.g., expressed in terms of a Petri net (Reisig and Rosenberg, 1998) or an Event-
driven Process Chain (EPC) (IDS Scheer, 2002; Keller and Teufel, 1998). For process
mining with a focus on the process perspective, the specific terms process discov-
ery or workflow mining are used (Aalst et al., 2004). Using this perspective, it is
assumed that it is possible to record events such that (i) each event refers to a task,
(ii) each event occurs in a case (i.e., process instance) and (iii) events are totally ordered.
A set of such recorded sequences is called a process log. For mining the other perspec-
tives, we refer to (Aalst et al., 2003), and http://www.processmining.org. In this paper
we will focus on the process perspective.

The idea of discovering models from process logs was previously investigated in
contexts such as software engineering and workflow management (Agrawal et al., 1998;
Cook and Wolf, 1998a; Herbst, 2000a) etc. Cook and Wolf propose alternative methods
for process discovery in case of software engineering, focusing on sequential (Cook
and Wolf, 1998a) and concurrent processes (Cook and Wolf, 1998b). Herbst and Kara-
giannis use a hidden Markov model in the context of workflow management, focusing
on sequential (Herbst and Karagiannis, 2000; Herbst, 2000b) and concurrent processes
(Herbst, 2000a). In Măruşter et al. (2002), a technique for discovering workflow pro-
cesses in hospital data is presented. Theoretical results are presented in Aalst et al.
(2004), providing proof that for certain subclasses of processes it is possible to find the
correct process model.

To illustrate the idea of process discovery, consider the process log from Figure 1(a). In
this example seven executed cases are logged. Twelve different tasks occur in these cases.
We can notice the following example regularities: for each case, the execution starts with
task a and ends with task l; if c is executed, then e is executed immediately afterwards.

Using the information shown in the process log from Figure 1(a), we can discover
the process model shown in Figure 1(b). We represented the model using Petri nets
(Reisig and Rosenberg, 1998), where all tasks are expressed as transitions. Petri net

Figure 1. An excerpt of a process log and the corresponding Petri net process model.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 69

formalism has several advantages, therefore they are often used to represent process
models (Aalst, 1998): formal semantics (a clear and precise definition), graphical nature
(intuitive and easy to learn), expressiveness (support all primitives needed to model a
process), properties (the mathematical foundation allows for reasoning of Petri Nets
properties), analysis (many analysis techniques to prove properties and calculate per-
formance measures), vendor independent (not based on software package of a specific
vendor). In Figure 1(b), after executing a, either task b or task f can be executed. If task
f is executed, tasks h and g can be executed in parallel. A parallel execution of tasks h
and g means that they can appear in any order.

In the case of real-world processes which can involve many more tasks and which
can exhibit higher levels of parallelism, the problem of discovering the underlying
process can become prohibitively complex. Moreover, process mining can be harmed
and hindered when process logs contain noise—random replacements or insertions of
incorrect symbols—or have missing information. A process log is complete when all
tasks that potentially directly follow each other, in fact do directly follow each other in
some trace in the log. In case of a complex process, incomplete process logs will not
contain enough information to detect the causal relation between tasks. The notion of
completeness is formally defined in Aalst et al. (2004). Note that a process log can be
complete without containing all possible cases. A heuristic process discovery method,
based on simple count statistics, able to handle certain levels of noise is described in
Weijters and Aalst (2001). Nevertheless, in some situations this heuristic method is not
robust enough for discovering the complete process. Tackling the problem of process
discovery at a more robust level was subsequently introduced in Măruşter, Weijters
et al. (2002), using an empirical data-driven approach; more specifically, a logistic
regression model able to detect the causal relations (or direct successors) from process
logs. However, that logistic regression approach requires a global threshold value for
deciding when there is a direct succession relation between two tasks. The use of a global
threshold has the drawback of being too rigid, thus real relations may not be found and
false relations may be considered. In Medeiros, Weijters, and Aalst (2004) subsequent
advanced issues in robustness towards noisy data and finding causality between tasks
are tackled by using genetic algorithms. An overview of issues and related work about
Process Mining can be found in Aalst and Weijters (2004).1

The problem of noisy and incomplete process log is not the only difficulty which
may occur during process mining. A review of challenging process mining problems is
made in Aalst and Weijters (2004), which refer to mining hidden tasks, mining duplicate
tasks, mining loops, using time, mining different perspectives, and dealing with noise
and incompleteness.

In Aalst et al. (2004) it is developed an algorithm called ‘the α algorithm’, which
given a complete process log, it can (re-)discover quite a large class of Petri nets (the
discussion about the properties of these Petri nets is beyond the scope of this paper and
it is addressed in Aalst et al. (2004)). However, the α algorithm has some limitations,
such as (i) mining loops and (ii) dealing with incomplete and noisy process logs. In
Medeiros et al. (2004), an extension of the α algorithm is provided, that address the first
limitation, e.g. it can handle short loops. In this paper, we address the second limitation
of the α algorithm presented in Aalst et al. (2004), namely dealing with incomplete and
noisy process logs, to allow its applicability to real-world processes.

70 MĂRUŞTER ET AL.

The aim of this article is two-fold. First, we describe a rule-based approach for process
discovery, assuming the existence of noisy information in the process log and imbalance
in execution priorities. Second, we want to gain insight into the effects of noise and
imbalance during the process discovery. Our goal is to use machine learning techniques
to induce classification rules for (i) causal relations (i.e., for each task, find its direct
successor tasks) and (ii) find the parallel/exclusive relations (i.e., for tasks that share
the same cause or the same direct successor, detect if they can be executed in parallel
or there is a choice between them). Knowing these relations between tasks, a process
model can be constructed by using the α algorithm (Aalst et al., 2004).

The article is organized as follows: in Section 2 the types of relations that can exist
between two tasks are described. The methodology for generating experimental data used
to induce the rule sets is presented in Section 3. In Section 4 the methods for inducing
the rule sets are introduced. In Section 5 we evaluate the rule sets, and in Section 6 we
discuss the results obtained, focusing on the influence of process characteristics on rule
sets performance. In Section 7 we illustrate our approach using real data from a case
study. We end with discussing issues for further research in Section 8.

2. The log-based relations

Discovering a model from process logs involves determining the dependencies among
tasks. We choose to express these dependencies as log-based relations. The log-based
relations are formally introduced in Măruşter et al. (2002) and Aalst et al. (2004), in
the context of workflow logs and workflow traces. Because we focus on the process
perspective, we use the same definitions as in Aalst et al. (2004), this time referring to
process logs and process traces.

Definition 1. Process trace, process log
Let T be a set of tasks. δ ∈ T∗ is a process trace and W : T ∗ → N 2

Figure 1(a) is an example of a process log, “afghikl ” is an example of a process
trace belonging to case 1. This process trace is unique (i.e., W(afghikl) = 1). However,
the process trace “abcejl ” appears three times (e.g. for cases 2, 5 and 7) in the log
(i.e., W(abcejl) = 3). Especially in the case that logs may contain noise the use of
frequency information appears crucial.

Definition 2. Succession relation
Let W be a process log over the tasks T with a, b ∈ T. Then between a and b there

is a succession relation (notation a > b), i.e., b succeeds a if and only if there is a
trace δ = t1 t2 . . . tn in W (i.e., W(δ) > 0), where i ∈ {1, . . ., n−1} and ti = a, ti+1

= b. The succession relation > describes which tasks appeared in sequence, i.e., one
directly following the other. In the log from Figure 1(a), a > f, f > g, b > c, h > g,
g > h, etc.

Definition 3. Causal, exclusive and parallel relations
Let W be a process log over the tasks T with a, b ∈ T . If we assume that there is no

noise in W, then between x and y there is:

1. a causal relation (notation x → y), i.e., x causes y if and only if x > y and y ≯ x. We
consider the inverse of the causal relation →−1, i.e., →−1 = {(y, x) ∈ T× T | x →
y}. We call task x the cause of task y and task y the direct successor of task x.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 71

2. an exclusive relation (notation x#y) if and only if x ≯ y and y ≯ x;
3. a parallel relation (notation x ‖ y) if x > y and y > x.

The relations → ,→−1, # and ‖ are mutually exclusive and partition T× T (Aalst
et al., 2004).

To illustrate the above definitions, let’s consider again the process log from Figure
1(a) corresponding to the Petri net from Figure 1(b). If there is no noise, there are three
possible situations in which a pair of events (henceforth referred to as tasks) can be
related, namely causal, exclusive, and parallel:

causal relation. Tasks c and e have a causal relation, because c > e, e ≯ c, thus c → e;
exclusive relation. There is a choice between tasks b and f, because b ≯ f, f ≯ b, thus b
#f (and f # b);
parallel relation. Tasks h and i are in parallel, because h > i, i > h, thus h ‖ i (and i ‖
h).

The information on all three types of relations occurring between all tasks is necessary
and sufficient to construct the Petri net model using the α algorithm (Aalst et al., 2004).
The α algorithm considers first all tasks that stand in a causal relation. Then, for all
tasks that share the same immediately-neighboring input or output task, their exclusive
or parallel relations are incorporated in the Petri net. Although this algorithm can (re-
)discover quite a large class of Petri nets, it also has some limitations, particularly with
respect to incomplete and noisy process logs.

The existence of incompleteness and noise in a process log is disturbing the application
of the notions presented in Definition 3. Considering the Petri net from Figure 1(b),
suppose that we want to discover the relations between pairs of tasks c and e, b and f,
and h and i, given a particular example log file. We may find in this file that c > e ten
times; however, because of some noisy sequences, we may also find that e > c once.
Applying Definition 3, we could conclude that c ‖ e, which is incorrect, because actually
c → e. Also, we have to find at least once in the log that c > e in order to determine c
→ e, otherwise the log is incomplete and we cannot detect the causal relation between
c and e. Similarly, when noise exists, we may find in our noisy example log that both b
> f and f > b occur once, which according to Definition 3 means that b and f stand in a
parallel relation (actually, b # f!).

We want to be able to use the α algorithm on noisy logs. Therefore, instead of using
the definitions given in Definition 3 that break down in noisy circumstances, we use
machine learning techniques to induce noise-robust rule sets to determine the status
of relations among task pairs. Given these relations, we can apply the α algorithm to
construct the Petri net process model.

3. Experimental setting and data generation

Our experimental setup assumes the presence of learning material for inducing rule sets
to detect causal, parallel, and exclusive relations. This learning material should resemble
realistic process logs and should be sufficiently general to allow for generic rule sets
to be induced. We assume here that the following four characteristics underly a typical
realistic process, where variations of these characterisics affect the process logs: (i) the

72 MĂRUŞTER ET AL.

number of possible task types, (ii) the size of the process log, (iii) the amount of noise
and (iv) the execution priorities in OR-splits and AND-splits.

Our experimental setting consists of variations of these four process log characteris-
tics:

1. The number of task types: we construct Petri nets with different number of task
types.

2. The process log size: the log size is expressed by varying the number of traces, where
one trace represents the processing of one case.

3. The amount of noise: we generate noise performing four different operations: (i)
delete the head of a event sequence, (ii) delete the tail of a sequence, (iii) delete a
random part of the body and (iv) interchange two randomly chosen events. During
the noise generation process, minimally one event and maximally one third of the
sequence is deleted.

4. The imbalance of execution priorities: we assume that tasks can be executed with
priorities between 0 and 2. Suppose that in the Petri net from Figure 1(b), after
executing task f (which is an AND-split), an imbalance may exist in the priorities of
the subsequent execution of tasks g and h. For example, task h can have an execution
priority of 0.8 and task g 1.5. This implies that after f, in 35 percent of the cases task
h is executed, and in 65 percent of the cases task g is executed.

Note that an imbalance in priorities can affect the rediscovery process negatively. In
our example, when f > h is observed less frequently than f > g, the causal relation f →
h may be more difficult to determine than the causal relation f → g. Moreover, a false
causal relation g→ h may be determined because of some possible occurrences of g >

h.
The execution imbalance is produced on four levels:

– level 0, no imbalance: all tasks have the execution priority 1;
– level 1, small imbalance: each task can be executed with a priority randomly chosen

between 0.9 and 1.1;
– level 2, medium imbalance: each task can be executed with a priority randomly

chosen between 0.5 and 1.5;
– level 3, high imbalance: each task can be executed with a priority randomly chosen

between 0.1 and 1.9.

Our overall data generation procedure is as follows. First, we design four types of Petri
nets: with 12, 22, 32 and 42 event types. Second, for each type of Petri net, we produce
four unbalanced Petri nets, corresponding to the four levels of execution imbalance.
Third, for each resulting Petri net, we generate a log file with 0, 5, 10, 20 and 50%
noise. Fourth, we vary the amount of information, i.e., we vary the number of lines in
the log: each resulting noisy log is partitioned, considering the first 20% lines, then the
first 40%, and so on, until 100% of material is considered. Applying this procedure we
generate 400 different log files.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 73

4. The relational metrics

The construction of a so-called dependency/frequency (D/F) table from the process log
information is the starting point of our method and was first used in Weijters and Aalst
(2001). An excerpt from the D/F table for the Petri net presented in Figure 1(b) is shown
in Table 1. For each pair of tasks x and y, the following information is abstracted out of
the process log:

1. The overall frequency of task x (notation |X|3);
2. The overall frequency of task y |Y| ;
3. The frequency of task x directly preceded by y |Y > X| ;
4. The frequency of task x directly succeeded by y |X > Y| ;
5. The frequency of x directly or indirectly preceded by y, but before the next appearance

of x, |Y >>> X| ;
6. The frequency of x directly or indirectly succeeded by y, but before the next appear-

ance of x, |X >>> Y|.

The information fields contained in the D/F table, exemplified in Table 1, provide a
basic representation of the data on which we intend to induce the rule sets for detecting
the log-based causal, exclusive, or parallel relations. However, the raw, unnormalized
frequencies of the D/F table cannot be used directly as input features for inducing the rule
set. We propose normalized relative metrics from these raw data that can be used more
generically to represent the cases to be given as training material to the rule induction
method.

The frequencies |X > Y| and |Y > X| from the D/F table are essential for predicting
the causal relation x → y between tasks x and y. When the difference between | X > Y|
and |Y > X| is substantially large, there is a high likelihood that x causes y. We develop
three different relational metrics that use the difference between | X > Y| and |Y > X|:
the causality metric CM, the local metric LM and the global metric GM.

The causality metric CM was first introduced in Weijters and Aalst (2001). If for a
given process log it is true that when task x occurs, shortly later task y also occurs, it
is possible that task x causes the occurrence of task y. The CM metric is computed as
follows: if task y occurs after task x and n is the number of events between x and y, then
CM is incremented with a factor (δ)n, where δ is a causality factor, δ ∈ [0.0, 1.0]. We
set δ = 0.8. The contribution to CM is maximally 1, if task y appears right after task x
and consequently n = 0. Conversely, if task x occurs after task y and again the number

Table 1. An excerpt from the D/F table for the Petri net presented in Figure 1(b).

x y |X| |Y| |Y > X| |X > Y| |Y >>> X| |X >>> Y|

a f 1800 850 0 850 0 850

f g 850 850 0 438 0 850

c d 446 504 0 0 0 0

g h 850 850 412 226 412 438

b f 950 850 0 0 0 0

i h 850 850 226 212 638 212

74 MĂRUŞTER ET AL.

of events between x and y is n, CM is decreased with (δ)n. After processing the whole
log, CM is divided with the minimum of the overall frequency of x and y.

The local metric LM was also first introduced in Weijters and Aalst (2001). Consider-
ing tasks x and y, the local metric LM is expressing the tendency of the succession relation
x > y by comparing the magnitude of | X > Y| versus |Y > X|. The formula for the local
metric LM, considering the probability of 95% likelihood of the causality relation, is:

L M = P − 1.96

√
P(1 − P)

N + 1
, P = |X > Y |

N + 1
, N = |X > Y | + |Y > X |(1)

The basis of this measure is a statistical confidence interval estimator (Mitchell,
1995). Using the expression from Formula 1, we estimate with a probability of 95% the
likelihood of the causality relation, by comparing the magnitude of | X > Y| versus |Y
> X|. For example, if | A > B| = 30, | B > A| = 1 and | A > C| = 60, | C > A| = 2,
what is the most likely: a causes b or a causes c? Although both ratios |A>B|

|B>A| and |A>C |
|C>A|

equal 30, a is more likely to cause c than b. Our LM measure for tasks a and b gives a
value of LM = 0.85 and for tasks a and c gives a value of LM = 0.90, which is in line
with our intuition.

Let’s now consider again the Petri net from Figure 1(b). If we suppose that the number
of lines in the log corresponding to this Petri net is equal to 1000 (i.e., #L=1000), we
can have the following three situations:

1. | C > E | = 1000, | E > C | = 0, LM = 0.997,
2. | H > G| = 600, | G > H| = 400, LM = 0.569,
3. | F > B| = 0, | B > F| = 0, LM = 0.

In the sequential case (situation 1), because e always succeeds c, LM ∼= 1. When h
and g are in parallel, in situation 2, LM = 0.569, i.e., a value much smaller than 1. In the
case of the choice between f and b, in situation 3, LM = 0. In general, the LM measure
has a value close to 1 when there is a clear tendency of causality between tasks x and y.
When the LM measure is close to 0, there is no causality relation between tasks x and
y. When the LM measure has a value close to 0.5, then x > y and y > x, but a clear
tendency of causality cannot be identified.

LM thus expresses the succession tendency by comparing the magnitude of | X > Y|
versus |Y > X| at a local level. Consider, for example, that the number of lines in our log
is #L = 1000 and the frequencies of tasks a, b and c are | A| = 1000, | B| = 1000 and |
C| = 1000. We also know that |A > B| = 900, |B > A| = 0 and |A > C| = 50 and |C >

A| = 0. The question is whether a is the most likely cause of b or of c. For a causes b,
LM = 0.996 and for a causes c, LM = 0.942, so we can conclude that a causes both b
and c. However, one can argue that c succeeds a less frequently, thus a should be rather
considered the cause of b.

We therefore built another measure, the global metric GM:

GM = (|A > B| − |B > A|) #L

|A| ∗ |B| (2)

Example values for the GM and LM metrics are given in Table 2.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 75

Table 2. Illustration of GM and LM measures.

X No. of events | X > A| | A > X| LM GM

B 1000 0 900 0.99 0.90

C 1000 0 50 0.94 0.05

In determining the likelihood of causality between two events x and y, the GM metric
acts as a global metric because it takes into account the overall frequencies of tasks x
and y, while the LM metric is a local metric taking into account only the magnitude of |
X > Y| versus |Y > X|.

The CM, LM, and GM metrics have been developed specifically to be used as
predictors for the causality relation. They are less useful for deciding between ex-
clusive and parallel relations, for which we need to develop other adequate predic-
tors. While we may know a → x and a → y, we do not know whether x #y or
x ‖ y. | X > Y| and |Y > X| frequencies from the D/F table can be used again
to decide between exclusive and parallel relations. When between x and y there is
an exclusive relation, both | X > Y| and |Y > X| frequencies should be zero or a
small value, while for the parallel case both should be relatively high. Because the
rule set to be induced using these metrics as predictors must be general, we have
to take into account also the frequencies of tasks x and y; we therefore normalize
| X > Y| and |Y > X| by dividing it by the minimum of | X| and | Y| . We define the YX
and XY metrics as follows:

– YX: the proportion of |Y > X| accounted by the minimum frequency of x and y i.e.,
YX = |Y >X| /min{| X| ,| Y| };

– XY: the proportion of | X > Y| accounted by the minimum frequency of x and y i.e.,
XY = |X >Y| /min{| X| ,| Y| };

In Table 3 the values for the relational metrics of some task pairs for the Petri net
shown in Figure 1(b) are presented.

5. The induction and evaluation of decision rule sets

In Section 4 we introduced five relational metrics CM, GM, LM, YX and XY to be used as
predictive features for determining the causal and exclusive/parallel relations between
pairs of events. The idea is to use the learning material generated in Section 3, compute
the five relational metrics, and induce decision rule sets that detect the existing log-based
relations between tasks.

When choosing a suitable learning algorithm we have to establish some criteria. First,
we want to obtain a model that can be easily understood; second, we are interested in
a fast and efficient algorithm. Ripper is an algorithm that induces minimal description-
length rule sets (Cohen, 1995). It has been shown that Ripper is competitive with the
commonly-used alternative algorithm C4.5rules (Quinlan, 1993) in terms of error rates,
but more efficient than C4.5rules on noisy data (Cohen, 1995), thus it seems to meet our
requirements.

76 MĂRUŞTER ET AL.

Table 3. Excerpt from the learning material used to induce the rule set for detecting causal relations (Step
1) and the exclusive/parallel relations (Step 2), from the log generated by the Petri net presented in Figure
1(b). x and y represent the task identifiers, CM, GM, LM, YX and XY are the calculated relational measures,
and the relation class (“Rel”); “c” (causal), “n” (non-causal), “e” (exclusive), and “p” (parallel).

Step x y CM GM LM YX XY Rel

1 a f 1.000 1.000 0.998 0.000 1.000 c

1 a b 1.000 1.000 0.998 0.000 1.000 c

1 f g 0.903 1.091 0.996 0.000 0.515 c

1 f h 0.857 1.026 0.995 0.000 0.485 c

1 b a −1.000 −1.000 0.000 1.000 0.000 n

1 c d 0.000 0.000 0.000 0.000 0.000 n

1 g h −0.019 −0.436 0.317 0.485 0.266 n

2 b f 0.000 0.000 0.000 0.000 0.000 e

2 c d 0.000 0.000 0.000 0.000 0.000 e

2 g h −0.019 −0.436 0.317 0.485 0.266 p

2 i h −0.404 −0.035 0.437 0.266 0.249 p

For inducing the rule sets we have to provide a set of examples, each of which has been
labelled with a class. We label each example corresponding to the log-based relations
that can exist between two tasks: “c” for causal, “e” for exclusive, “p” for parallel and
“i” for an inverse causal relation.

We induce two independent rule sets. First we separate the learning material needed
in the first step, i.e., the detection of causal relations. Therefore, we label each instance
of the generated learning material with a “c”, whether there is a causal relation between
the tasks, else with an “n”. In the second step we select from the learning material only
the pairs of tasks sharing the same cause or the same direct successor task. We label
these instances with an “e” or a “p” when there is an exclusive or a parallel relation,
respectively. An excerpt of learning material with this class labelling is presented in
Table 3. Note the pairs (c, d) and (g, h) which are labelled in Step 1 with an “n” (in the
first step they are used as non-causal examples), while in Step 2 they are labelled “e”
and “p” respectively, as labelled examples of exclusive and the parallel relations.

5.1. Induction a rule set for detecting causal relations

The computed relational measures corresponding to the 400 generated logs are stored
into one file that serves as training material for the induction of the rule sets. This
file contains a total of 341,577 data points. In order to obtain the rule sets, we use
Ripper algorithm (Cohen, 1995). This algorithm produces ordered rules according to
several optional algorithmic parameters. We use the default method, i.e., ordering by
increasing frequency, with the most frequent class as the default rule. After arranging
the classes, Ripper finds rules to separate class1 from classes class2, . . . , classn, then
rules to separate class2 from classes class3, . . . , classn, and so on. To obtain a rule set
for detecting the causal relations, we use only the instances labelled with “c” or “n”. We
obtain 33 ordered rules for class “c” (“n” is the default class); we refer this rule set as

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 77

RIPPER CAUS. The training error rate for RIPPER CAUS is 0.08% (the training error
rate represents the rate of incorrect predictions made by the model relabeling the training
data set). Since training error is not relevant to assess the generalization performance
and quality of a rule set, we estimate its generalization performance using test material
in Section 5.3. Below we present a selection of rules that cover more than 100 positive
instances.

Rule1: IF LM > = 0.949 AND XY > = 0.081 THEN class c [10797 pos, 0 neg]
Rule2: IF LM > = 0.865 AND YX = 0 AND GM > = 0.224 THEN class c [1928 pos, 6 neg]
Rule3: IF LM > = 0.844 AND CM > = 0.214, CM < = 0.438 THEN class c [525 pos, 1 neg]
Rule4: IF LM > = 0.741 AND GM > = 0.136 AND YX < = 0.009 AND CM > =0.267 AND

CM < =0.59 THEN class c [337 pos, 0 neg]
Rule5: IF XY > = 0.6 AND CM < = 0.827 THEN class c [536 pos, 0 neg]
Rule6: IF LM > = 0.702 AND YX < = 0.009 AND GM > = 0.36 THEN class c [273 pos,

0 neg]
Rule7: IF LM > = 0.812 AND CM < = 0.96 AND GM > = 0.461 THEN class c [142 pos,

0 neg]

Because the feature LM appears multiple times in several rules, we can simplify these
rules by considering the intersection of the intervals specified by the LM metric. We
choose to show the rules with a coverage of over 100 positive instances and less than 7
negative instances.

Let us interpret these rules. Suppose that we want to detect the relation be-
tween two tasks x and y. Rule1 has the highest coverage of positive examples:
almost 70% of “c” instances match this rule. If the LM measure has a very
high value (i.e., there is a big difference in magnitude between |X > Y| and
|Y > X| frequencies) and the XY measure is exceeding a small value, there is a
high chance of a causal relation existing between x and y. Similarly, the first con-
dition of Rule2 specifies LM to be high; the second condition requires the global
measure GM to exceed 0.2, i.e., the difference between |X > Y| and |Y > X| fre-
quencies accounted by the overall frequencies of x and y should be sufficiently high.
The third condition specifies that the value for the YX measure must be 0, i.e.,
|Y >X| = 0. In general, the rules require the LM measure to exceed a high value,
YX to be a value close to zero, while XY should be bigger than 0. Also, CM and GM
measures should be sufficient large.

5.2. Inducing a rule set for detecting exclusive/parallel relations

In order to induce the rule set for detecting exclusive/parallel relations from the labelled
examples generated in Section 3, we select only the pairs of tasks which share the
same cause or the same direct successor task. In Table 3 at Step 2, the pairs of tasks in
exclusive and parallel relations and the corresponding relational measures are shown.
We see that tasks g and h have as same common cause the task f and tasks b and f have
as same common cause the tasks a. The pairs in exclusive relation are labelled with “e”
(e.g. the pair of tasks (b, f)) and those in parallel relations with “p” (e.g. the pair (g, h)).

When we induced the rule set for detecting causal relations we were primarily in-
terested in rules that predict the “c” class. Here we want to develop rules for both the
exclusive and parallel relations (“e” and “p” classes). We employ Ripper with the rule

78 MĂRUŞTER ET AL.

ordering parameter set to produce unordered rules: with this setting Ripper induces rules
for both classes rather than leaving the default rule for one of the two. Conflicts are
resolved by deciding in favor of the rule with lowest training-set error. We obtain the
RIPPER ANDOR rule set with 15 unordered rules, 7 for class “e” and 8 for class“p”,
with training error rate 0.38%.

The 14 unordered rules are the following (we omit one rule with very low coverage):

Rule1: IF XY = 0 AND GM > = 0 THEN class e [4734 pos, 32 neg]
Rule2: IF XY < = 0.01 AND CM < = −0.35 AND YX < = 0.04 THEN class e [486 pos, 0 neg]
Rule3: IF YX < = 0.01 AND LM < = 0.31 AND CM > = −0.02 AND CM < = 0.04 THEN class e

[3006 pos, 2 neg]
Rule4: IF YX < = 0.01 AND CM < = −0.26 THEN class e [588 pos, 8 neg]
Rule5: IF YX < = 0.01 AND XY < = 0 AND CM > = −0.06 AND CM < = 0.01 THEN class e

[2704 pos, 7 neg]
Rule6: IF XY < = 0.01 AND CM > = 0.29 THEN class e [253 pos, 0 neg]
Rule7: IF XY > = 0.01 AND YX > = 0.02 THEN class p [5146 pos, 0 neg]
Rule8: IF XY > = 0.02 AND CM > = −0.24 AND LM > = 0.33 THEN class p [3153 pos, 0 neg]
Rule9: IF YX > = 0.01 AND CM > = −0.26 AND CM < = −0.07 THEN class p [1833 pos,

1 neg]
Rule10: IF XY > = 0.01 AND CM > = −0.24 AND CM < = −0.04 THEN class p [2227 pos,

3 neg]
Rule11: IF YX > = 0.01 AND CM > = 0.06 THEN class p [1523 pos, 1 neg]
Rule12: IF GM < = −0.01 AND CM > = 0.08 THEN class p [223 pos, 0 neg]
Rule13: IF YX > = 0.02 AND GM < = −0.03 THEN class p [1716 pos, 1 neg]
Rule14: IF XY > = 0.06 THEN class p [3865 pos, 0 neg]

Let us inspect first the RIPPER ANDOR rule set for class “p”. First, Rule7, which
has the highest coverage (it matches almost 93% of the “p” instances in the train-
ing data), requires that both the XY and YX measures exceed zero, as expected: if
there are sufficient occurrences of task x and task y next to each other, then there
is likely to be a parallel relation between them; if there are few such occurrences,
there is likely to be some noise involved and then the relation between tasks is prob-
ably exclusive. Rule14 goes in the same direction as Rule7, but requires only the
measure XY to be higher than zero. The remaining rules for class “p” have also
high coverage; other than Rule7 and Rule14 they include different combinations of
all five measures. For example, Rule8 specifies three conditions: the first one re-
quires XY to be higher than zero; the second condition specifies LM to be higher
that 0.33 (a value for LM that has to exceed 0.33 means that the difference between
|X > Y| and |Y > X| frequencies should be relatively small, which is understandable in
case of parallel tasks); the third condition involving the CM measure is not straightfor-
ward to interpret.

Inspecting the rules for class “e” we expect to find complementary conditions. Rule1
has the highest coverage, but has also 32 counterexamples. This rule specifies that XY
should be zero and GM >= 0, which makes sense: in case of a choice between tasks x
and y we would not expect any occurrence of x and y next to each other, which indeed
leads to XY = 0 and GM = 0. In the other rules for class “e” we see that XY and YX
should be smaller than 0.01, which ensures the detection of an exclusive relation when
there is noise. The involvement of the CM measure becomes clearer when inspecting
all rules, both for the “e” and the “p” class. In general, in case of class “e”, CM should

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 79

be found in an interval close to zero (Rule3 and Rule5), while in case of “p” class,
CM should not reach zero (Rule9 and Rule10). Rule6 and Rule11 both specify that CM
should be larger than zero; the decision on an exclusive or a parallel relation is based on
the XY measure (Rule3), which should be smaller than 0.01, and on YX (Rule11), which
should be larger than 0.01. If there is a choice between tasks x and y and cycles exist,
then x and y do not appear next to each other (rather, y appears somewhere later after x),
so the CM measure has to exceed a certain value, as witnessed in Rule6.

5.3. Evaluation of the rule sets

In the previous section we shown the induction of two rule sets: one for detecting the
causal relations and one for detecting exclusive or parallel relations. A natural step is to
inspect how well these two rule sets generalize by performing evaluation tests.

Estimating the generalization error can be done with a range of methods (Weiss and
Kulikowski, 1991). k-fold cross-validation (k-fold CV) is a commonly-used evaluation
method that can be used to evaluate how well a model will generalize to new data. The
data set is divided into k subsets. Each time, one of the k subsets is used as the test set
and the other k-1 subsets are joined to form a training set. Subsequently, the average
error across the k trials is computed. We set k to the commonly used value of 10 (Weiss
and Kulikowski, 1991).

In order to compare the performance of the 10 obtained models, we consider three
averaged performance indicators: the error rate, precision and recall. Error rate is not
always an adequate performance measure, because it gives skewed estimates of gen-
eralization accuracy when classes are imbalanced in their frequencies. In the case of
identifying the relations between tasks we are interested to see an aggregate of the cost
of false positives and false negatives, expressed in terms of recall and precision. In case
of causal relations, false positives are false causal relations found, i.e., linking tasks
which are not causally related. False negative are actual causal relations that are omitted
from the Petri net. Asserting that precision and recall are equally important, we use the
combined F-measure (Weiss and Indhurkya, 1998) (Eq. (3)). In Eq. (3), TP are class
members classified as class members, FP are class non-members classified as class
members and FN are class members classified as class non-members.

F = 2 ∗ T P

2 ∗ T P + F P + F N
(3)

Performing 10-fold CV experiments with Ripper, we obtain for class “c” an average
error rate of 0.11%, 99.35 precision, 98.09 recall and 98.72 F-measure. Detecting
classes “e” and “p”, Ripper achieves an averaged error rate of 0.46%. On class “e”
Ripper obtains 98.99 precision, 99.68 recall and 99.33 F-measure, while for class “p”
gets 99.72 precision, 99.08 recall and 99.40 F-measure (see Table 4). In our previous
work (Măruşter, Weijters et al., 2002), we developed a logistic regression approach to
detect direct successors (the “c” class), using a global threshold. In case of logistic
regression models based on the same 10-fold CV experiments, we obtain an error rate
of 2.70%, 99.10 precision, 97.52 recall and 98.29 F-measure. Performing a paired t-test,
we compare the performance of the logistic regression model and the rule-set model
to detect the “c” class. The outcome is that there is a significant difference between

80 MĂRUŞTER ET AL.

Table 4. Averaged error rates, precision, recall and F-measures for the 10-fold CV experiments run with
Ripper.

10-fold CV error rate precision recall F[0.1]

Ripper “c” class 0.11% 99.35 98.09 98.72

Ripper “e” class 0.46% 98.99 99.68 99.33

Ripper “p” class 0.46% 99.72 99.08 99.40

the performance (expressed in error rates) of the two models, and the rule-based model
significantly outperform the logistic regression model.

So far we inspected the performance of (i) the first rule set for detecting causal
relations and (ii) the second rule set for detecting exclusive/parallel relations separately.
When we induced the second rule set, we initially selected all the task pairs that share
a common cause or a common direct successor. This selection is made from “perfect”
data, because we know which are the task pairs that share a common cause or a common
direct successor in the learning material. However, in practice we do not know which
are the task pairs causally related. Therefore, it is interesting to check the performance
of the rule set for detecting exclusive/parallel relations based on predicted data, i.e., to
use the first rule set to predict the causal relations. From this new learning material we
select the task pairs that share a predicted common cause or a common direct successor
and we induce with Ripper a new rule set that detects exclusive/parallel relations. The
10-fold averaged error rate of this new second rule set is 0.36%; the averaged F-measure
for “e” and “p” classes is 99.83 and 99.85, respectively. These performance indicators
are comparable with the performance indicators of the first rule set induced from perfect
data (the averaged error rate is 0.46% and the F-measure is 99.33 for “e” and 99.40 for
“p” classes). Because the performance indicators do not differ significantly, we have
support to use the induced first rule set for performing future predictions on causal
relations.

Based on the outcomes of the 10-fold CV experiments we can conclude that both
rule sets (i.e., the rule set that detects causal relations and the rule set that detects exclu-
sive/parallel relations) have a high generalization accuracy on unseen data. However,
this performance was checked on test data which is randomly extracted from the gener-
ated learning material. The learning (and testing) material used so far was generated on
the basis of a fixed and limited set of Petri-nets. In order to check how robust our rule
sets are on relatively new data not originating from the same Petri nets as the training
material, we check the rule set performance on new test material of increased difficulty.
We built a new Petri net with 33 event types, having 6 OR-splits, 3 AND-splits and three
loops (our training material was based on Petri nets with at most one loop). We used the
same methodology to produce noise, imbalance and different log size as presented in
Section 3. Applying the rule set RIPPER CAUS on this new test material results in an
error rate of 0.31%; applying the rule set RIPPER ANDOR results in an error rate of
0.90%. The confusion matrix and the F-measure for the new test material by applying
RIPPER CAUS and RIPPER ANDOR rule sets are presented in Table 5.

We conclude that our rule sets show good generalization performance on new data,
even when generated by a Petri net process model with a different and more complex

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 81

Table 5. The confusion matrix and performance results for the rule sets RIPPER CAUS and
RIPPER ANDOR on new test data with from a more complex Petri net than the training material.

Predicted Predicted

Observed c n Observed e p

c 4246 254 e 1181 19

n 79 104321 p 0 900

Recall 94.36 99.92 Recall 98.42 100.00

Precision 98.17 99.76 Precision 100.00 97.93

F 96.23 99.84 F 99.20 98.96

structure than the Petri nets used to generate the training instances on which the rule
sets were based.

6. Analysis: Effects of noise and imbalance

We concluded in the previous section that our rule sets are able to predict, with high
accuracy, the presence of causal, exclusive and parallel relations between pairs of events.
Nonetheless, the degree of incompleteness and noise of the process log will affect to a
certain extent the quality of the process model. We are interested in investigating the
influence of the number of event types, imbalance, noise and log size in the prediction
of causal and exclusive/parallel relations.

By generating experimental data where variations appear in the number of event
types, imbalance, noise and log size, we attempt to control how our method misses or
incorrectly predicts some relations. We are now interested to investigate the influence
of these variations on the generalization performance of the rule sets.

In order to inspect the rule sets performance when number of event types, imbalance,
noise and log size are varied, we apply rule sets RIPPER CAUS and RIPPER ANDOR
on each of the 400 individual log files and we calculate the following three types of
measures:

1. F C: the F-measure obtained applying the rule set RIPPER CAUS. This F-measure
is calculated with the formula from Eq. (3), where TP are the number of task pairs in
“c” relation classified as “c”, FP are the number of task pairs in “n” relation classified
as “c” and FN are the number of task pairs in “c” relation classified as “n”.

2. F E PROP: the F-measure (also using Eq. (3)) obtained with rule set
RIPPER ANDOR, considering the propagated error. This means that in the previous
step, some causal relations were missed or incorrectly found.

An analogous formula is used to compute the F P PROP for pairs of tasks in parallel
relations.

In Figure 2(a) it can be observed how the number of event types is influencing the
averaged F C. Generalization performance decreases slightly when using logs originat-
ing from the Petri net with 22 event types. A possible explanation is that this particular

82 MĂRUŞTER ET AL.

no_event_types
42322212

M
ea

n
F

_c
,996

,994

,992

,990

,988

,986

,984

,982

,980

no_event_types
42322212

M
ea

n
F

_e
_p

ro
p

,99

,98

,97

,96

a. No. of event types vs. F-C b. No. of event types vs. F-E-PROP

Figure 2. The effect of the number of event types on rule set performance.

imbalance

9510

M
ea

n
F

_c

,994

,992

,990

,988

,986

,984

,982

,980

imbalance

9510

M
ea

n
F

_e
_p

ro
p

1,00

,99

,98

,97

,96

a. Imbalance vs. F C b. Imbalance vs. F E PROP

Figure 3. The effect of imbalance on rule set performance.

Petri net exhibits more parallel behavior, which is more difficult to be predicted. The
same effect is depicted in Figure 2(b).

How the imbalance in AND/OR splits affects the performance is shown in Figure 3(a).
Inspecting the F C measure we see that when the imbalance is increased, generalization
performance decreases. A different situation is shown in Figure 3(b), where it appears
that if the imbalance is increasing, the generalization performance on detecting exclusive
relations also increases. It seems that a higher level of imbalance helps in distinguishing
between exclusive and parallel relations. When the Petri nets are more balanced, event
pairs in an “e” relation are more easily confused with pairs in a “p” relation. A possible
explanation is that a rule for “p” class with a very high coverage often misclassifies “e”
instances in certain conditions. Rule7 from the model RIPPER ANDOR has the highest
coverage (i.e., 5146 positive and 0 negative examples):

Rule7: IF XY > = 0.01 AND YX > = 0.02 THEN class p

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 83

noise

50201050

M
ea

n
F

_c

1,00

,99

,98

,97

noise

50201050

M
ea

n
F

_e
_p

ro
p

1,01

1,00

,99

,98

,97

,96

,95

,94

,93

a. Noise vs. F C b. Noise vs. F E PROP

Figure 4. The effect of noise on rule set performance.

log_size (#traces)

1000800600400200

M
ea

n
F

_c

1,00

,99

,98

,97

,96

log_size (#traces)

1000800600400200

M
ea

n
F

_e
_p

ro
p

,988

,986

,984

,982

,980

,978

,976

,974

a. Size log vs. F C b. Size log vs. F E PROP

Figure 5. The effect of log size on rule set performance.

When classifying “e” instances in case of balanced Petri nets, both XY and YX can
exceed 0.01 and 0.02 (because both “xy” and “yx” can occur in the log with comparable
probability), thus such instances will be incorrectly classified as “p”. When classifying
“e” instances in case of unbalanced Petri nets, either only XY will exceed 0.01 or YX
will exceed 0.02, thus such instances have a smaller chance to be classified as “p”.

Figures 4(a) and (b) display the influence of noise on both performance measures F C
and F E PROP. They show the same expected behavior, namely that if the noise level
increases, generalization performance decreases.

Figures 5(a) and (b) illustrate how the performance measures F C and F E PROP are
influenced by log size. As expected, the incompleteness of the log affecting the gen-
eralization performance of finding causal relations: as log size increases, performance
increases. However, as the log size increases, the performance of detecting exclusive
relations decreases. Inspecting the data we remark that when the log is larger, pairs in
an “e” relation tend to become more easily confused with pairs in “p” relation. One

84 MĂRUŞTER ET AL.

possible explanation relates again to Rule7. When classifying “e” instances in case of
larger logs, both XY and YX can exceed 0.01 and 0.02 (because both “xy” and “yx” can
occur with comparable probability), thus such instances will be incorrectly classified as
“p”. When classifying “e” instances in case of smaller logs, either only XY will exceed
0.01 or YX will exceed 0.02, thus such instances have smaller chance to be incorrectly
classified as “p”.

Based on the above findings, we can formulate four conclusions. First, more noise,
less balance and less cases all have a negative effect on generalization performance.
Causal relations can be predicted more accurately if there is less noise, more balance
and more cases. Second, there is no clear evidence that the number of event types
has an influence on the performance of predicting causal relations. Third, because the
detection of exclusive/parallel relations depends on the detection of the causal relations,
it is difficult to formulate separate conclusions for the quality of exclusive/parallel
relations. It appears that noise is affecting exclusive and parallel relations in a similar
way as the causal relations, e.g., if the level of noise increases, the accuracy of finding
the excusive/parallel relations decreases. Fourth, when mining real process data, the
above conclusions can play the role of useful recommendations. It is difficult to know
the level of noise and imbalance beforehand. However, during the mining process it is
possible to collect data about these metrics through the five predictive metrics that form
the basic features of our rule sets. This information can be used to motivate additional
efforts to collect more data.

7. Case study

To illustrate our approach with real data, we used data from a Dutch governmental
institution responsible for fine-collection4. A case (or process instance) is a fine that has
to be paid; as soon as the fine is paid, the process stops. If there are more fines related
with the same person, each fine corresponds to an independent case. In total there are 99
distinct activities, which can be either manually or automatically executed. We applied
our technique to a process log consisting of 130136 cases.

Because the entire process model is very complex, we focus only on a part of
the process, namely on a sub-process called ‘RETURN OF THE UNDELIVERABLE
LETTER”. In case a person cannot be found at the specified address (he/she has moved
or deceased), the sanction is called an “Undeliverable Letter Return” (ULR). We are
comparing the discovered model with the process model resulting from a case study done
in the traditional approach, i.e., by interviewing the people involved into the process
(Veld, 2002).

The ULR sub-process starts with the task “30” - “undelivered letter return”. A written
verification (“12”) is requested if the sanction is for a company, or an electronic MBA
verification (“23”) is requested in case of a person. The case can be directly judged by
an employee (“13”). This may happen also because a wrong type of verification has
been issued. Before the case is leaving the sub-process, it must be anyway judged by an
employee, even without verification. In Figures 6(a) and (b) are presented the designed
model and the discovered model.

In both models, task “30” is directly followed by tasks “12”, “13” and “23”. Also in
both models, task “13” is directly following tasks “12” and “23”, which is in line with
the description made in the previous paragraph. Task “23” is directly followed by task

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 85

30

1312 23

30

1312 23

a. Designed ULR sub-process b. Discovered ULR sub-process

Figure 6. The designed and the discovered ULR sub-process in case of selected tasks “30”, “12”, “13” and
“23”.

“12” in both models; the explanation can be that when the sanction is for a company,
a GBA verification (“23”) instead of a written verification is incorrectly required and
only afterwards the written verification is required (“12”).

However, we can note that in case of the designed model, there are also “reversed”
direct connections: task “13” is directly followed by tasks “12” and “23” and task “12”
is directly followed by task ‘23”. The explanation can be that such reversed relations
can exist, but rather as exceptions than common practice. This reveals that maybe our
method is able rather to capture the general process model than the process model
containing exceptional paths. We have to conduct more real case studies in order to
ascertain this assumption.

When discovering both sub-processes, we came to process models comparable with
the designed sub-processes. The usefulness of the discovered process model is manifest-
ing in combination with the designed model, i.e., the common parts of these two models
can be considered as the “unquestioning” part of the process, while the differences can
be used to detect the questionable aspects of the investigated process. The discovered
models have been inspected by the domain experts. They concluded that our discovered
models were able to grasp the important aspects of the process. Moreover, the discovered
models revealed aspects that are often questioned when discussing the process model. We
conclude that process discovery can provide useful insights into the current practice of a
process.

8. Conclusions and future directions

We developed an empirical, experimental method for inducing rule sets from process
logs to predict the relations between pairs of process tasks. We generated artificial
experimental data by varying the number of event types, noise, execution imbalance and
log size. On these data we induced rule sets which show high generalization accuracy
on classifying new data.

Our method first employs a rule set to detect all causal relations. After the causal
relations are found, the second rule set detects the exclusive/parallel relations between
tasks that share the same cause or the same direct successor. Knowing the causal and
exclusive/parallel relations, a process model can be built using the α algorithm (Aalst
et al., 2004) which (re)discovers the Petri net process model that explains the data.
Therefore, the contribution of this paper can be seen as successfully complementing the
work reported in Aalst et al. (2004): it resolves limitations of the α algorithm, in dealing
with noise and incomplete process logs.

The two rule sets have a markedly high performance in classifying new data. They are
able to find virtually all relations in the presence of parallelism, imbalance and noise.

86 MĂRUŞTER ET AL.

We also tested our method on a process log generated by a more complex Petri net than
the learning material, resulting in a performance close to that on normal held-out test
material.

Analyzing the experimental data we investigated the influence of process log charac-
teristics on our model performance, which were varied systematically in the generation
of our experimental material. Causal relations can be predicted more accurately if there
is less noise, more balance and more cases. However, causal relations in a structurally
complex Petri net can be more difficult to detect. How process log characteristics are
influencing the prediction of exclusive/parallel relations is less clear. We used a large
set of data from a Dutch governmental institution responsible for the collections of
fines. We focused on one sub-process and we compared our discovered model with the
designed model. The conclusion was that the discovered models conform reality and
moreover, they provide insights into the process current practice.

The current experimental setting confirmed some of our intuitions, e.g. that noise,
imbalance and log size are factors that indeed affect the quality of the discovered model.
However, in real processes more complex situations than we are aware of could be
encountered. Therefore, in future work we plan to perform more real-world case studies
and consequently adapt our method by discovering and considering other factors that
may be influential characteristics of process logs.

Acknowledgments

We would like to thank Dr. Christine Pelletier (University of Groningen) for her valuable
comments and remarks during the review of our paper.

Notes

1. For more information see http://www.processmining.org.
2. T∗ is the set of all sequences that are composed of zero or more tasks of T. W: T∗→ N is a function from

the elements of T∗ to N (i.e., the number of times an element of T∗ appears in the process log).
3. We use a capital letter and || when referring to the number of occurrences of some task.
4. The name of the organization is not given for confidentiality reasons.

References

Aalst, W. van der. 1998. The application of Petri nets to workflow management. The Journal of Circuits,
Systems and Computers, 8(1):21–66.

Aalst, W. van der, Dongen, B. van, Herbst, J., Măruşter, L., Schimm, G., and Weijters, A. 2003. Workflow
mining: A survey of issues and approaches. Data and Knowledge Engineering, 47(2):237–267.

Aalst, W. van der and Weijters, A. 2004. Process mining: A research agenda. Computers in Industry,
53(3):231–244.

Aalst, W. van der Weijters, A., and Măruşter, L. 2004. Workflow mining: Discovering process models from
event logs. IEEE Transactions on Data and Knowledge Engineering 16(9):1128–1142.

Agrawal, R., Gunopulos, D., and Leymann, F. 1998. Mining process models from workflow logs. In Sixth
International Conference on Extending Database Technology, pp. 469–483.

Cohen, W. 1995. Fast effective rule induction. In Proceedings of the Twelfth Int. Conference of Machine
Learning ICML95.

Cook, J. and Wolf, A. 1998a. Discovering models of software processes from event-based data. ACM
Transactions on Software Engineering and Methodology, 7(3):215–249.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 87

Cook, J. and Wolf, A. 1998b. Event-based detection of concurrency. Proceedings of the Sixth International
Symposium on the Foundations of Software Engineering (FSE-6), pp. 35–45.

Herbst, J. 2000a. Dealing with concurrency in workflow induction. In U. Baake, R. Zobel, and M. Al-Akaidi
(Eds.), European Concurrent Engineering Conference. Society of Computer Simulation (SCS) Europe.

Herbst, J. (2000b). Inducing Workflow models from workflow instances. In Proceedings of the 6th European
Concurrent Engineering Conference. Society of Computer Simulation (SCS) Europe, pp. 175–182.

Herbst, J. and Karagiannis, D. 2000. Integrating machine learning and workflow management to support
acquisition and adaptation of workflow models. International Journal of Intelligent Systems in Accounting,
Finance and Management, 9:67–92.

IDS Scheer. 2002. ARIS Process Performance Manager (ARIS PPM): Measure, analyze and optimize
your business process performance (whitepaper). (IDS Scheer, Saarbruecken, Gemany, http://www.ids-
scheer.com)

Keller, G. and Teufel, T. 1998. SAP R/3 Process Oriented Implementation. Reading MA: Addison-Wesley.
Măruşter, L., Aalst, W. van der, Weijters, A., Bosch, A. van den, and Daelemans, W. 2002. Automated

discovery of workflow models from hospital data. In C. Dousson, F. Höppner, and R. Quiniou (Eds.),
Proceedings of the ECAI Workshop on Knowledge Discovery from Temporal and Spatial Data, pp. 32–37.

Măruşter, L., Weijters, A., Aalst, W., and Bosch, A. 2002. Process mining: Discovering direct successors in
process logs. In S. Lange, K. Satoh, and C.H. Smith (Eds.), Proceedings of the 5th International Conference
on Discovery Science (Discovery Science 2002), Berlin: Springer-Verlag, vol. 2534: pp. 364–373.

Medeiros, A. de, Dongen, B. van, Aalst, W. van der and Weijters, A. 2004. Process Mining: Extending
the α-algorithm to Mine Short Loops. BETA Working Paper Series, WP 113, Eindhoven University of
Technology, Eindhoven, 2004.

Medeiros, A. de, Weijters, A. and Aalst, W. van der. 2004. Using genetic algorithms to mine process models:
Representation, operators and results. BETA Working Paper Series, WP 124, Eindhoven University of
Technology, Eindhoven, 2004.

Mitchell, T. 1995. Machine Learning. McGraw-Hill.
Quinlan, J. 1993. C4.5: Programs for Machine Learning. Morgan-Kaufmann.
Reisig, W. and Rosenberg, G. (Eds.). 1998. Lectures on Petri nets I. Basic models, Berlin: Springer-Verlag.
Veld, A. 2002. WFM, een last of een lust? (Confidential Report), Eindhoven University of Technology.
Weijters, A. and Aalst, W. 2001. Process mining: Discovering workflow models from event-based data, B.

Kröse, M. Rijke, G. Schreiber, and M. Someren (Eds.), Proceedings of the 13th Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC 2001), pp. 283–290.

Weiss, S. and Indhurkya, N. 1998. Predictive Data Mining. San Francisco: Morgan Kaufmann.
Weiss, S. and Kulikowski, C. 1991. Computer Systems That Learn. Morgan Kaufmann.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

