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Abstract. k-Anonymity is a useful concept to solve the tension between data utility and respondent privacy in
individual data (microdata) protection. However, the generalization and suppression approach proposed in the
literature to achieve k-anonymity is not equally suited for all types of attributes: (i) generalization/suppression is
one of the few possibilities for nominal categorical attributes; (ii) it is just one possibility for ordinal categorical
attributes which does not always preserve ordinality; (iii) and it is completely unsuitable for continuous attributes,
as it causes them to lose their numerical meaning. Since attributes leading to disclosure (and thus needing k-
anonymization) may be nominal, ordinal and also continuous, it is important to devise k-anonymization procedures
which preserve the semantics of each attribute type as much as possible. We propose in this paper to use categorical
microaggregation as an alternative to generalization/suppression for nominal and ordinal k-anonymization; we
also propose continuous microaggregation as the method for continuous k-anonymization.
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1. Introduction

Whenever data from respondents are collected and then released for general or research use
(e.g. in official statistics, in e-commerce or in e-health), there is a tension between privacy
for respondents and data utility for users. This tension is the raison d’être of Statistical
Disclosure Control (SDC, (Willenborg and DeWaal, 2001)).

The protection provided by SDC techniques normally entails some degree of data mod-
ification. The challenge for SDC is to modify data in such a way that both the risk of
disclosing private respondent information and the information loss caused are acceptably
low. SDC-protected data should stay useful for data mining purposes.

SDC can be applied to information in several formats: tabular data, dynamically queryable
databases and microdata (individual respondent data). We will concentrate here on micro-
data protection and specifically on how to deal with the aforementioned tension between
low disclosure risk and low information loss.
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1.1. Contribution and plan of this paper

Section 2 recalls the basics of microdata protection. Section 3 discusses approaches to
trading off information loss for disclosure risk and analyzes their strengths and limitations;
in particular k-anonymity is identified as a clean approach to conciliating information
loss and disclosure risk. In Section 4, a critique of the current generalization/suppression
approach to k-anonymity is made. Section 5 shows how to use microaggregation to achieve
k-anonymity for continuous, ordinal and nominal data. Section 6 presents empirical results.
Section 7 contains a conclusion.

2. Fundamental concepts of microdata protection

A microdata set V can be viewed as a file with n records, where each record contains m
attributes on an individual respondent. The attributes in an original unprotected dataset can
be classified in four categories which are not necessarily disjoint:

• Identifiers. These are attributes that unambiguously identify the respondent. Examples are
passport number, social security number, full name, etc. Since our objective is to prevent
confidential information from being linked to specific respondents, we will assume in
what follows that, in a pre-processing step, identifiers in V have been removed/encrypted.

• Quasi-identifiers. Borrowing the definition from Dalenius (1986) and Samarati (2001), a
quasi-identifier is a set of attributes in V that, in combination, can be linked with external
information to re-identify (some of) the respondents to whom (some of) the records in
V refer. Unlike identifiers, quasi-identifiers cannot be removed from V. The reason is
that any attribute in V potentially belongs to a quasi-identifier (depending on the external
data sources available to the user of V). Thus one would need to remove all attributes (!)
to make sure that the dataset no longer contains quasi-identifiers.

• Confidential outcome attributes. These are attributes which contain sensitive information
on the respondent. Examples are salary, religion, political affiliation, health condition,
etc.

• Non-confidential outcome attributes. Those attributes which contain non-sensitive infor-
mation on the respondent. Examples are town and country of residence, etc. Note that
attributes of this kind cannot be neglected when protecting a data set, because they can
be part of a quasi-identifier. For instance, if ‘Job’ and ‘Town of residence’ can be consid-
ered non-confidential outcome attributes, but their combination can be a quasi-identifier,
because everyone knows who is the doctor in a small village.

The purpose of microdata SDC mentioned in the previous section can be stated more
formally by saying that, given an original microdata set V, the goal is to release a protected
microdata set V′ in such a way that:

1. Disclosure risk (i.e. the risk that a user or an intruder can use V′ to determine confidential
attributes on a specific individual among those in V) is low.
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2. User analyses (regressions, means, etc.) on V′ and V yield the same or at least similar
results. This is equivalent to requiring that information loss caused by SDC should be
low, i.e. that the utility of the SDC-protected data should stay high.

Microdata protection methods can generate the protected microdata set V′

• either by masking original data, i.e. generating a modified version V′ of the original
microdata set V;

• or by generating synthetic data V′ that preserve some statistical properties of the original
data V

Masking methods can in turn be divided in two categories depending on their effect
on the original data (see Willenborg and DeWaal (2001) and Domingo-Ferrer and Torra
(2001a) for more details on the methods mentioned below):

• Perturbative. The microdata set is distorted before publication. In this way, unique com-
binations of scores in the original dataset may disappear and new unique combinations
may appear in the perturbed dataset; such confusion is beneficial for preserving statistical
confidentiality. The perturbation method used should be such that statistics computed on
the perturbed dataset do not differ significantly from the statistics that would be obtained
on the original dataset. Microaggregation and additive noise are examples of perturbative
methods.

• Non-perturbative. Non-perturbative methods do not distort data. Rather, they rely on the
principles of generalization and suppression. For a categorical attribute Vi, generalization
combines several categories to form new (less specific) categories; for a continuous
attribute, generalization means replacing that attribute by another attribute which is a
discretized version of the former. Suppression can be applied to the values of a few
attributes in few records (local suppression) or can be applied to entire records. The latter
is equivalent to obtaining the protected data set as a sample of the original data set (the
sample formed by the non-suppressed records).

The alternative to masking methods is synthetic data generation, which seems to have
the philosophical advantage of circumventing the re-identification problem: since published
records are invented and do not derive from any original record, some authors claim that
no individual having supplied original data can complain from having been re-identified.
Other authors (e.g., Winkler (2004) and Reiter (2004) remark that, at a closer look, even
synthetic data might contain some records allowing for re-identification of confidential
information. In short, synthetic data overfitted to original data might lead to disclosure just
as original data would.

So far in this section, we have classified microdata protection methods by their operating
principle. If we consider the type of data on which they can be used, a different dichotomic
classification applies:

• Continuous. An attribute is considered continuous if it is numerical and arithmetical
operations can be performed on it. Examples are income and age. When designing
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methods to protect continuous data, one has the advantage that arithmetical operations
are possible, and the drawback that every combination of numerical values in the original
dataset is likely to be unique, which leads to disclosure if no action is taken.

• Categorical. An attribute is considered categorical when it takes values over a finite set
and standard arithmetical operations do not make sense. Thus, SDC techniques based
on arithmetical manipulation cannot be used on categorical data. Two main types of
categorical attributes can be distinguished:

– Ordinal. An ordinal attribute takes values in an ordered range of categories. Thus,
the ≤, max and min operators are meaningful and can be used by SDC techniques
for ordinal data. The instruction level and the political preferences (left-right) are
examples of ordinal attributes.

– Nominal. A nominal attribute takes values in an unordered range of categories. The
only possible operator is comparison for equality, which restricts the range of appli-
cable SDC techniques. The eye color and the address of an individual are examples
of nominal attributes.

Although most attributes in a quasi-identifier can be expected to be nominal or ordinal,
continuous attributes can also be present. Indeed, sometimes numerical outcome attributes
give enough clues for re-identification. Thus an intruder can use such continous attributes
as (part of) a quasi-identifier. As an example, if respondents are companies and turnover is
an outcome attribute, everyone in a certain industrial sector knows which is the company
with largest turnover.

3. Approaches to trading off information loss and disclosure risk

There exist a plethora of methods to protect microdata in addition to the ones mentioned
above (see Domingo-Ferrer and Torra (2005), Domingo-Ferrer and Torra (2001a) and
Willenborg and DeWaal (2001). To complicate things further, most of such methods are
parametric, so the user must go through two choices rather than one: a primary choice to
select a method and a secondary choice to select parameters for the method to be used. To
guide those choices, several approaches have been proposed which are summarized in this
section.

3.1. Score construction

The mission of SDC to modify data in such a way that sufficient protection is provided
at minimum information loss suggests that a good SDC method is one achieving a good
tradeoff between disclosure risk and information loss.

Following this idea, (Domingo-Ferrer and Torra, 2001b) proposed a score for method
performance rating based on the average of information loss and disclosure risk measures.
For each method M and parameterization P, the following score is computed:

Score(V, V′) = I L(V, V′) + DR(V, V′)
2
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where IL is an information loss measure, DR is a disclosure risk measure and V′ is the
protected dataset obtained after applying a specific method with a specific parameterization
to an original dataset V.

Domingo-Ferrer and Torra (2001b) and Domingo-Ferrer et al. (2001) computed IL
and DR using a weighted combination of a set of information loss and disclosure risk
measures they defined. With the resulting score, a ranking of masking methods (and their
parameterizations) was obtained. Yancey et al. (2002) followed the line of the above two
papers and ranked a different set of methods using a slightly different score.

Using a score allows the selection of a masking method and its parameters to be regarded
as an optimization problem. This idea was first used in Sebé et al. (2002). In that paper, a
masking method was applied to the original data file and then a post-masking optimization
procedure was applied to increase the score obtained.

On the negative side, no specific score weighting can do justice to all methods. Thus,
when ranking methods, the values of all measures of information loss and disclosure risk
should be supplied along with the overall score.

3.2. R-U maps

A tool which may be enlightening when trying to construct a score or, more generally, opti-
mize the tradeoff between information loss and disclosure risk is a graphical representation
of pairs of measures (disclosure risk, information loss) or their equivalents (disclosure
risk, data utility). Such maps are called R-U confidentiality maps (Duncan et al., 2001a;
Duncan et al., 2001b)). Here, R stands for disclosure risk and U for data utility. According
to Duncan et al. (2001b), ‘in its most basic form, an R-U confidentiality map is the set of
paired values (R, U), of disclosure risk and data utility that correspond to various strategies
for data release’ (e.g., variations on a parameter). Such (R,U) pairs are typically plotted
in a two-dimensional graph, so that the user can easily grasp the influence of a particular
method and/or parameter choice.

3.3. k-Anonymity

A different approach to facing the conflict between information loss and disclosure risk
is the following concept proposed by Samarati and Sweeney (1998), Samarati (2001) and
Sweeney (2002a, 2002b).

Definition 3.1 (k-anonymity). A dataset is said to satisfy k-anonymity for k > 1 if, for
each combination of values of quasi-identifiers (e.g. name, address, age, gender, etc.), at
least k records exist in the dataset sharing that combination.

Note that, if a protected dataset V′ satisfies k-anonymity, an intruder trying to link V′

with an external non-anonymous data source will find at least k records in V′ that match
any value of the quasi-identifier the intruder uses for linkage. Thus re-identification, i.e.
mapping a record in V′ to a non-anonymous record in the external data source, is not
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possible; the best the intruder can hope for is to map groups of k records in V′ to each
non-anonymous external record.

If, for a given k, k-anonymity is assumed to be enough protection, one can concentrate on
minimizing information loss with the only constraint that k-anonymity should be satisfied.
This is a clean way of solving the tension between data protection and data utility. In
Samarati (2001) and Sweeney (2002b), the approach suggested to reach k-anonymity is to
combine generalization and local suppression (described in Section 2 above); thus, with
that approach, minimizing information loss usually translates to minimizing the number
and/or the magnitude of suppressions and also minimizing the granularity loss caused by
generalizations.

For the sake of concreteness, we will assume in what follows a single quasi-identifier,
i.e. we will deal with a single intruder or intruder coalition able to link the protected dataset
with external datasets through the quasi-identifier.

4. A critique of generalization/suppression for k-anonymity

Satisfying k-anonymity with minimal data modification using generalization (recoding)
and local suppression has been shown to be NP-hard in Meyerson and Williams (2004)
and Aggarwal et al. (2004). In fact, even how to optimally combine generalization and
local suppression is an open issue. Unless carefully combined, those two non-perturbative
methods may cause a substantial loss of data utility.

Furthermore, the use of generalization to ensure k-anonymity poses several practical
problems. One of them is the computational cost of finding the optimal recoding. This is
partly related to the exponential number of generalizations that can be defined for each
attribute:

Lemma 4.1. For an attribute with c categories, there are 2c − c − 1 possible generaliza-
tions.

Proof: Generalization is replacing a subset of categories by a new general category. Thus
the number of generalizations equals the number of subsets of categories containing more
than one category. There are 2c subsets of categories, of which c consist of a single category
and one is the empty subset. Thus there are 2c − c − 1 subsets containing more than one
category. �

Another problem is determining the subset of appropriate generalizations, i.e. which
are the new categories and which is the subset of old categories that can be recoded into
each of such new categories. Not all recodings are appropriate because the semantics of
the categories and the intended data uses must be taken into account. For example, when
generalizing ZIP codes, recoding 08201 and 08205 into 0820∗ makes sense as long as 0820∗

is meaningful as a location (e.g. corresponds to a city, a county or another geographical
area). For the same reason, it is probably not meaningful to recode 08201 and 05201 into
0 ∗ 201 because the set of regions represented by 0 ∗ 201 might lack any geographical
significance. The need for significance makes automatic generation of recodings a thorny
issue.
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Table 1. Records consisting of attributes V1 and V2 with ranges D(V1) = {a, b, c, d, e} and D(V2) =
{r, s, t, u, v}.

Record V1 V2

r1 a r

r2 b r

r3 c r

r4 e r

r5 e s

r6 e t

r7 e v

r8 d v

r9 c v

r10 a v

r11 a u

r12 a t

Given a set of possible generalizations, the methods in the literature diverge on how
the generalization is applied. This is, once a particular generalization rule ci → C is
considered, methods diverge on which records containing ci are recoded. For example,
µ-Argus (Hundepool et al., 2003) and (Domingo-Ferrer and Torra, 2001b) recode all
occurrences of ci (this is known as global recoding) while Sweeney (2002a) and Samarati
(2001) only replace some of the occurrences (this is known as local recoding).

Neither global nor local recoding are free from disadvantages:

• Global recoding implies greater information loss because it may recode some records
that do not need it. A related drawback is that the recoding that might be suitable for a set
of records might be completely unsuitable for another set. Records in Table 1 illustrate
this process. Note that, if we consider 3-anonymization of this table, the best recoding
for records r1, r2 and r3 turns out to be the rule {a, b, c} → ABC. At the same time,
the best recoding for records r4, r5 and r6 is the rule r, s, t → RST . Nevertheless, such
recodings would force r9 to be recoded as (ABC, v) and r12 to be recoded as (ABC, RST).
It can be seen from the graphical representation of records given in Figure 1 that such a

a b c d e

v

u

t

s

r

Figure 1 Graphical representation of records in Table 1.
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transformation is very awkward when r9 and r12 are not considered in isolation but with
the rest of records.

• Local recoding is quite difficult to use in an automated way and makes data analysis more
complex as both original values ci and recoded values C appear in the protected file. Thus,
local recoding requires the system to consider a larger number of generalizations and it
is possible that several recodings for a category ci exist in the file. Such is the case when
categories ci and cj are recoded for some records into category C and at the same time
categories ci and ck are recoded into C′ for some other records in the same dataset. This
complicates data analyses on the protected dataset.

In Samarati (2001) and Sweeney (2002a), the use of local suppression is suggested to
avoid too much recoding. Local suppression has several drawbacks:

• As mentioned above, it is not known how to optimally combine generalization and local
suppression.

• The use of suppression is not homogeneous in the literature:

– While e.g. Sweeney (2002a) applies suppression at the tuple level (a tuple can be
suppressed only in its entirety), others, such as Hundepool et al. (2003) and Aggarwal
et al. (2004), suppress only some particular attributes for some particular records. In
fact, Aggarwal et al. (2004) provide a polynomial 1.5-approximation to the optimal
attribute suppression.

– Suppression can consist of either blanking a value or replacing it with a locally neutral
value (e.g. some kind of average).

• Whatever the type of local suppression used, it is very unclear how the user of protected
data can analyze them without highly specific software (e.g. imputation software or
software for dealing with censored data).

For ordinal attributes, using generalization and local suppression to achieve k-anonymity
is far from perfect for the above reasons, but could still be considered. However, for
continuous attributes in a quasi-identifier, generalization and local suppression are definitely
unsuitable. Using such non-perturbative methods on a continuous attribute causes this
attribute to become categorical and lose its numerical semantics. In other words, if any
value in a continuous range [a, b] is replaced by a label L[a, b], then information on the
position of original numerical values within [a, b] vanishes: for example, one cannot infer
from L[a, b] whether the original numerical values were mostly in the lower half of [a, b]
or in its upper half. It would be thoroughly unacceptable if, on the grounds of using k-
anonymity, data protectors denied continuous attributes to data users. Therefore, a method
to provide k-anonymity for continuous attributes is definitely needed.

5. Microaggregation for k-anonymity

For the reasons sketched in Section 4, it is very interesting to find alternatives to gener-
alization/suppression for satisfying k-anonymity. Microaggregation stands out as a natural
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approach to satisfy k-anonymity. Microaggregation is a family of perturbative SDC meth-
ods originally defined for continuous data (Defays and Nanopoulos, 1993; Domingo-Ferrer
and Mateo-Sanz, 2002) and recently extended for categorical data (Torra, 2004). Whatever
the data type, microaggregation can be operationally defined in terms of the following two
steps:

Partition: The set of original records is partitioned into several clusters in such a way that
records in the same cluster are similar to each other and so that the number of records in
each cluster is at least k.

Aggregation: An aggregation operator (for example, the mean for continuous data or the
median for categorical data) is computed for each cluster and is used to replace the
original records. In other words, each record in a cluster is replaced by the cluster’s
prototype.

In the remainder of this paper, we will show how to use microaggregation for k-anonymity
in order to circumvent most of the problems of generalization/suppression listed above:

• Microaggregation is a unified approach, unlike the dual method combining generalization
and suppression;

• Even if optimal microaggregation is also NP-hard (Oganian and Domingo-Ferrer,
2001)—like generalization/suppression—, near-optimal heuristics exist –unlike for
generalization/suppression—; one of those will be described below;

• Microaggregation does not complicate data analysis by adding new categories to the
original scale —unlike global recoding—;

• Microaggregation does not result in suppressed data, which makes analysis of k-
anonymized data easy with standard software;

• Microaggregation is perfectly suitable to protect continuous data without removing their
numerical semantics.

5.1. Multivariate microaggregation

We give next an algorithm for the partition step in multivariate microaggregation called
MDAV-generic. MDAV-generic is a generic variant of the algorithm of the MDAV (Max-
imum Distance to Average Vector) that we implemented in Hundepool et al. (2003) as
an evolution of the multivariate fixed-size microaggregation described in Domingo-Ferrer
and Mateo-Sanz (2002). The common and distinctive feature of this algorithm series is
that single-axis projection of multivariate data is not required. The difference between
MDAV-generic and its predecessors (Hundepool et al., 2003) and (Domingo-Ferrer and
Mateo-Sanz, 2002) is that the former can work with any type of attribute, aggregation oper-
ator and distance (continuous, ordinal or nominal), whereas the precedessors were designed
for continuous data only and used the arithmetical mean and the Euclidean distance.

Algorithm 5.1 (MDAV-generic) (R: dataset, k: integer).

1. While |R| ≥ 3k do
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(a) Compute the average record x̃ of all records in R. The average record is computed
attribute-wise.

(b) Consider the most distant record xr to the average record x̃ using an appropriate
distance.

(c) Find the most distant record xs from the record xr considered in the previous step.
(d) Form two clusters around xr and xs, respectively. One cluster contains xr and the

k −1 records closest to xr. The other cluster contains xs and the k −1 records closest
to xs.

(e) Take as a new dataset R the previous dataset R minus the clusters formed around xr

and xs in the last instance of Step 1d.

end while

2. If there are between 3k − 1 and 2k records in R:

(a) compute the average record x̃ of the remaining records in R
(b) find the most distant record xr from x̃
(c) form a cluster containing xr and the k − 1 records closest to xr

(d) form another cluster containing the rest of records.

else (less than 2k records in R) form a new cluster with the remaining records.

In the description of MDAV-generic, the term ‘record’ stands for the projection of an
actual record on the attributes of the quasi-identifier.

Implementation of MDAV-generic for a particular attribute type requires specifying how
the average record is computed and what distance is used. This is detailed below for the
three different attribute types described above: continuous, ordinal and nominal.

5.2. Continuous attributes

Following Domingo-Ferrer and Mateo-Sanz (2002) and Hundepool et al. (2003), the av-
erage operator used is the arithmetical mean and the distance used is the Euclidean one.
Before applying MDAV-generic, attributes are standardized (by subtracting their mean and
dividing by their standard deviation), so that they have equal weight when computing
distances.

After application of MDAV-generic, attributes are destandardized and the original units
are recovered. By construction, MDAV-generic exactly preserves the means of original
attributes in the k-anonymized dataset. A simple rescaling transformation is applied to the
k-anonymized dataset for exact preservation of the variances of the original attributes. This
rescaling does not violate k-anonymity and for the j-th k-anonymized attribute is((

xij − m0
1( j)

)√
µ2( j)√

m2( j)

)
+ µ0

1( j)

where xi j is the value of the k-anonymized j-th attribute for the i-th record, (m0
1( j), m2( j))

are the mean and the variance of the k-anonymized j-th attribute and (µ0
1( j), µ2( j)) are the

mean and the variance of the original j-th attribute.
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5.3. Ordinal attributes

A possible distance between two ordinal categories a and b of an attribute Vi, with a ≤ b,
is

dORD(a, b) = |{i |a ≤ i < b}|
|D(Vi )| (1)

that is, the number of categories separating a and b divided by the number of categories in
the range of the attribute (the division is used to standardize the distance between 0 and 1).

The average operators we use for ordinal attributes are the median and the convex median.

Definition 5.2 (Median). Given an ordinal scale C = {c1 < c2 < · · · < co}, the median
of the set S = {a1, a2, . . . , aN } (with ai ∈ C) is the category that occupies the central
position in S once S is ordered. In terms of frequencies, the median is a category such that
its predecessors and successors in the ordered S have equal frequency.

For example, the median of S = {1, 2, 2, 5, 6} is 2.

Definition 5.3 (Convex median). If the frequency function f on categories is transformed
into a convex function f ′

f ′(ci ) = min
(

max
c j ≤ci

( f (c j )), max
c j ≥ci

( f (c j ))
)

then the median over f ′ is called convex median.

Figure 2 illustrates the computation of frequencies for the median and the convex median
for the set S = {1, 2, 2, 5, 6} in the ordinal scale C = {0, 1, 2, 3, 4, 5, 6, 7}.

The advantage of the convex median over the median is that the former allows for
compensation: aggregation using the median can only yield one of the aggregated categories
(i.e. a category with nonzero frequency), whereas using the convex median does not present
this limitation. Like the arithmetic mean, the convex median can yield a value which, while
being different from all aggregated values, is more central to them. This can be readily seen
if we take integer categories: the median of {1, 2, 7} is 2, while the convex median is 4;
clearly, 4 is more central to the set, because it is closer to the arithmetic mean 3.3.

1 2 3 4 5 6

1 2 1 11 1

Categories

Frequencies

01 2 3 4 5 6

1 2 0 0 1 1

70 7

Figure 2. Frequencies for computing the median and the convex median of the set S = {1, 2, 2, 5, 6} defined on
the ordinal scale C = {0, 1, 2, 3, 4, 5, 6, 7}.
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5.4. Nominal attributes

Distance for nominal attributes is defined using the equality predicate. Thus, the distance
between two values of a nominal attribute is 0 if they are equal and 1 if they are not.

The plurality rule (or mode) is used as the average operator. This is, for a set S =
{a1, a2, . . . , aN }, the most frequent value is selected as the average.

MDAV-generic for categorical data is similar to the algorithm proposed in (Torra, 2004),
in that both use the median and the mode as average operators. What is different is the
partition step, which does not require the number of clusters to be specified as an input
parameter.

6. Empirical results

As mentioned in Section 3.3, using k-anonymity has the advantage that security against
disclosure risk is no longer an empirical outcome: it becomes an input parameter. Indeed,
once the data protector adopts a specific quasi-identifier and a parameter k suitable for
her/his disclosure scenario, there is no need to worry about disclosure risk any more, so our
empirical work can concentrate on assessing information loss. Even though MDAV-generic
can at the same time work on continuous and categoric attributes, we report information
loss results separately so that comparison with previous work is easier.

6.1. Continuous attributes

MDAV-generic was first tried on a continuous dataset extracted from the U. S. Current
Population Survey (1995) using the Data Extraction System (DES) of the U. S. Census
Bureau. This continuous dataset, described in more detail in Domingo-Ferrer and Torra
(2001b), contains 1080 records described by 13 continuous attributes. We have computed
k-anonymous versions of the dataset for k = 3, . . . 9 and for quasi-identifiers consisting
of: (i) only the first 6 attributes, and (ii) all 13 attributes. The longer quasi-identifier is
a worst-case scenario, because one assumes that the intruder or the coalition of intruders
can use all attributes for re-identification. Consistently with Section 5.2 above, the average
operator used for k-anonymization was the arithmetic mean and the distance used was
Euclidean.

In Table 2, the information loss measures described in Domingo-Ferrer and Torra (2001a)
and Domingo-Ferrer et al. (2001) are given for the various combinations of quasi-identifier
length (6, 13) and k = 3, 6, 9, 12. Information loss is only computed for attributes in
the quasi-identifier, because these are the only attributes modified by k-anonymization.
Information loss metrics are as follows:

1. IL1 is the mean variation of individual attribute values in the original and k-anonymous
data sets;

2. IL2 is the mean variation of attribute means in both datasets;
3. IL3 is the mean variation of attribute variances;
4. IL4 is the mean variation of attribute covariances;
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Table 2. Information loss measures (according to (Domingo-Ferrer and Torra, 2001a; Domingo-Ferrer et al.,
2001) for continuous data depending on k and the quasi-identifierlength.

Quasi-
identifier
length k IL1 IL2 IL3 IL4 IL5 IL

6 3 0.131 0 0 0.036 0.007 3.48

6 6 0.174 0 0 0.075 0.013 5.24

6 9 0.203 0 0 0.129 0.017 6.98

6 12 0.185 0 0 0.166 0.020 7.42

13 3 0.907 0 0 0.058 0.016 19.62

13 6 1.389 0 0 0.134 0.032 31.10

13 9 1.535 0 0 0.161 0.039 34.70

13 12 1.564 0 0 0.164 0.046 35.48

5. IL5 is the mean variation of attribute Pearson’s correlations;
6. IL is 100 times the average of IL1, IL2, IL3, IL4 and IL5.

IL in Table 2 is comparable to IL reported in the empirical results in Domingo-Ferrer and
Torra (2001b) and Domingo-Ferrer et al. (2001). The ten best masking methods identified
in those papers result in IL between 13.37 and 25.81, which is much higher than IL reported
in Table 2 for quasi-identifier length 6, and similar to the IL reported for quasi-identifier
length 13. Of course, the ranking in Domingo-Ferrer and Torra, (2001b) and Domingo-
Ferrer et al. (2001) is based not only on information loss, but also on disclosure risk;
nonetheless, comparing that ranking with our results shows that information loss caused by
microaggregation-based k-anonymity is quite moderate.

In Table 3, the new probabilistic information loss measures described in the companion
paper (Mateo-Sanz et al., 2005) are given for the various combinations of quasi-identifier

Table 3. Information loss measures (according to (Mateo-Sanz et al., 2005)) for continuous data depending on
k and the quasi-identifier length.

Quasi-
identifier
length k PIL(Q) PIL(m0

1) PIL(m2) PIL(m11) PIL(r )

6 3 0.142 0 0 0.161 0.255

6 6 0.187 0 0 0.270 0.371

6 9 0.194 0 0 0.332 0.430

6 12 0.198 0 0 0.373 0.471

13 3 0.498 0 0 0.363 0.534

13 6 0.536 0 0 0.548 0.674

13 9 0.577 0 0 0.598 0.705

13 12 0.618 0 0 0.628 0.731
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length and k. These measures are bounded in the [0, 1] interval and correspond to the
previous ones as follows:

1. PIL(Q) is average impact on quantiles from 5% to 95% in 5% increments over all
attributes;

2. PIL(m0
1) is the average impact on means over all attributes;

3. PIL(m2) is the average impact on variances over all attributes;
4. PIL(m11) is the average impact on covariances over all attribute pairs;
5. PIL(r) is the average impact on Pearson’s correlation coefficients over all attribute pairs.

From analysis of Tables 2 and 3, it can be seen that:

• By construction, MDAV-generic exactly preserves means and variances.
• The impact on the non-preserved statistics (individual values, quantiles, covariances

and correlations) grows with the quasi-identifier length, as one would expect: the more
intruder’s knowledge, the more distortion is required to reach k-anonymity.

• For a fixed quasi-identifier length, the impact on the non-preserved statistics grows with
k: the higher the anonymity, the more distortion is required.

6.2. Categorical attributes

MDAV-generic was also tried on a categorical dataset extracted from the U.S. Housing
Survey (1993) using the Data Extraction System (DES) of the U.S. Census Bureau. Three
attributes were ordinal and the remaining eight were nominal (this dataset is described in
more detail in Torra (2004)). We have computed k-anonymous versions of the dataset for
k = 2, . . . 9 and for quasi-identifiers consisting of 3, 4, 8 and 11 attributes. For ordinal
attributes, the median was used as average operator. For each combination of k and quasi-
identifier length, we computed the information loss measures similar to those defined in
Domingo-Ferrer et al. (2001) and Domingo-Ferrer and Torra (2001b) for categorical data.
Information loss is only computed for the attributes in the quasi-identifier. These are:

Table 4. Information loss depending on k for a categorical quasi-identifier of length 8.

k Dist CTBIL′ ACTBIL′ EBIL

2 102.0 154.29 0.058 514.019

3 131.0 162.60 0.061 601.595

4 171.0 189.52 0.071 747.785

5 197.0 208.77 0.079 831.610

6 208.0 227.75 0.086 891.143

7 224.0 233.93 0.088 916.754

8 245.0 236.33 0.089 964.685

9 243.0 244.09 0.092 940.932
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• Dist: Direct comparison of categorical original and protected values using a categorical
distance;

• CTBIL′: Mean variation of frequencies in contingency tables for original and protected
data (similar to CTBIL in Domingo-Ferrer and Torra (2001b) but dividing absolute
differences among cells by the cell count in the contingency table of the original dataset);

• ACTBIL′: This is CTBIL′ divided by the total number of cells in all considered tables;
• EBIL: Entropy-based information loss, measuring the reduction of uncertainty (e.g.

information) in the protected categorical attributes with respect to the original attributes);
this corresponds to EBILMF in Domingo-Ferrer and Torra (2001b).

Tables 4 and 5 correspond to two different quasi-identifiers: a quasi-identifier consisting
of 8 attributes in the case of Table 4 and a quasi-identifier consisting of 4 attributes in the
case of Table 5. Both quasi-identifiers contain a mixture of nominal and ordinal attributes,
and the attributes in the shorter quasi-identifier are a subset of those in the longer one. As
expected, the longer the quasi-identifier, the higher the information loss; also, for a fixed
quasi-identifier length, the larger k, the higher the information loss.

Table 5. Information loss measures depending on k for a categorical quasi-identifier of length 4.

k Dist CTBIL′ ACTBIL′ EBIL

2 39.0 24.26 0.071 121.171

3 52.0 24.41 0.072 233.515

4 67.0 24.97 0.073 252.571

5 69.0 28.15 0.082 292.166

6 75.0 28.11 0.082 300.846

7 86.0 30.44 0.089 342.690

8 104.0 30.62 0.089 377.067

9 112.0 30.70 0.090 424.762

Table 6. Information loss measures for the experiments on categorical data depending on k for a quasi-identifier
consisting of three ordinal attributes. Average operator used: median.

k Dist CTBIL′ ACTBIL′ EBIL

2 117.0 106.15 0.112 481.821

3 162.0 109.42 0.115 694.442

4 211.0 142.19 0.150 856.971

5 218.0 150.93 0.159 908.302

6 243.0 164.71 0.173 982.631

7 269.0 165.23 0.174 1037.38

8 283.0 171.68 0.181 1078.13

9 312.0 186.40 0.196 1160.37
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Table 7. Information loss measures depending on k for a quasi-identifier consisting of three ordinal attributes.
Average operator used: convex median.

k Dist CTBIL′ ACTBIL′ EBIL

2 111.0 100.66 0.106 461.089

3 151.0 108.95 0.115 639.920

4 198.0 141.87 0.149 828.326

5 229.0 145.75 0.153 938.592

6 240.0 157.82 0.166 975.469

7 269.0 188.18 0.198 1002.10

8 288.0 175.41 0.185 1067.81

9 296.0 179.31 0.189 1103.61

We then investigated whether replacing the median by the convex median as average
operator leads to better results. Tables 6 and 7 compare both operators for a quasi-identifier
consisting of the three ordinal attributes in the dataset. The results show that the convex
median leads to better results in terms of the information loss measures selected than the
median.

7. Conclusion

In statistical disclosure control of microdata, k-anonymity is an elegant way of dealing with
the conflict between disclosure risk and data utility. In particular, it avoids the computational
burden of disclosure risk assessment inherent to the classical approach to microdata SDC —
first mask and then assess information loss and disclosure risk, usually via record linkage.
If a protected dataset satisfies k-anonymity, disclosure is no longer possible. Thus the
challenge is to satisfy k-anonymity with little information loss (damage to data utility) and
high computational efficiency.

The algorithms to reach k-anonymity proposed in the literature are based on generaliza-
tion and suppression. We have discussed the drawbacks of that approach, which include
the difficulty of adequately combining generalization and suppression, the difficulty of
processing partially suppressed data, the inability to deal with continuous microdata, etc.
We have proposed microaggregation as a natural, unified and efficient way of reaching
k-anonymity for any type of attributes (continuous and categorical).
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